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Metabolic reprogramming plays a critical role in the initiation and progression of skin cutaneous 
melanoma (SKCM). This study aims to construct a prognostic model based on metabolic-related genes 
(MRGs) to forecast patient outcomes and their response to immunotherapy. 10 machine learning 
algorithms within a cross-validation framework were utilized to compute prognostic risk scores 
based on MRGs, dividing SKCM patients into high- and low-risk groups. Further exploration included 
immune-related scores, immune infiltration levels, and oncological phenotype between these groups. 
The expression levels of six essential MRGs were assessed, and the effect of GALNT2 on proliferation 
and migration in SKCM cell lines was confirmed. This study has developed a new MRGs prognostic risk 
model that effectively predicts the survival of melanoma patients. The low-risk group exhibits higher 
immune scores and immune cell infiltration, which are beneficial for immunotherapy. In contrast, the 
high-risk group is positively correlated with the malignant phenotype of tumors, with increased MRG 
expression promoting tumor development. The study also identified six key genes, among which 
both the silencing and overexpression of GALNT2 significantly affect the proliferation and migration 
of melanoma cells. This study highlights the significance of MRGs in predicting patient survival and 
immunotherapy outcomes, providing insights for potential future targeted therapies.
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Skin cutaneous melanoma (SKCM), one of the deadliest forms of skin cancer, is classified among the most 
frequently occurring cancer types1. The incidence of melanoma has risen significantly over the past decades, 
especially in the Caucasian population2,3. In 2020, approximately 325,000 melanoma cases were reported 
worldwide4. Melanoma has multiple causatibe factors and results from the combination of genetic predisposition 
and environmental exposure5–7. Tsao et al.8 demonstrated that melanoma has a clear autosomal dominant pattern 
of inheritance, and mutations in the CDKN2A and P16 genes are the most common genetic abnormalities. Volko 
et al.9 examined the hypothesis that exposure to environmental factors, including sunscreens, photosensitizing 
drugs, and exogenous hormones, may increase the risk of melanoma development. Multiple risk factors 
associated with SKCM, such as age, gender and skin type10, have been identified. However, these elements 
are not accurate predictors of the prognosis and survival in patients with SKCM. Therefore, identifying new 
biomarkers associated with prognosis is extremely important.

Specific metabolic environments are considered to be key factors that directly promote tumor growth11,12. 
Metabolic reprogramming is recognized as a crucial characteristic of cancer and a necessary step during 
tumorigenesis13–15. Heiden et al.16 described the changes in glucose metabolism in the tumor cells (the 
Warburg effect). Mutations in oncogenes induce metabolic reprogramming to varying degrees by activating 
the proliferation-related signaling pathways17. Jiang et al.18 observed that exposure to TGFβ1 alters fatty acid 
synthesis in non-small-cell lung cancer cells. This modification leads to enhanced oxidative phosphorylation, 
which in turn promotes ATP production and cell migration. In addition, abnormalities in this metabolic pattern 
may play a role in the tumor immune microenvironment (TME) and the infiltration of immune cells within the 
tumor19. Therefore, metabolic reprogramming is crucial in tumor development. However, the role of metabolic 
genes in cutaneous melanoma prognosis remains to be elucidated.

In this study, we aimed to reveal the potential roles of MRGs (Metabolic-Related Genes) in cutaneous 
melanoma progression and provide a basis for the development of novel therapeutic strategies. The expression 
pattern, correlation with disease prognosis, and biological function of MRGs in SKCM were evaluated. Patients 
were categorized into three different clustering groups based on MRG expression data. We applied 101 machine 
learning algorithms to construct a prognostic model from the selected MRGs. This model demonstrated efficacy 
in forecasting the outcomes in patients with SKCM and analyzing the TME. The findings demonstrated the 
high precision and dependability of the model, and it was further validated using independent datasets from 
several public databases and performing cell-based experiments. Our prognostic model will significantly aid in 
evaluating the risk and prognosis of patients with SKCM in clinical settings.

Materials and methods
Transcriptome and clinical data download and organization
The Cancer Genome Atlas (TCGA-SKCM), Gene Expression Omnibus (GEO accession numbers: GSE3189, 
GSE46517, GSE114445, GSE54467, and GSE65904), the iMeng210 database (​h​t​t​p​:​/​​/​r​e​s​e​a​​r​c​h​-​p​u​​b​.​g​e​n​.​​c​o​m​/​I​​
M​v​i​g​o​r​​2​1​0​C​o​r​​e​B​i​o​l​o​​g​i​e​s), and Tumor Immune Single-cell Hub 2 (TISCH2; http://tisch.comp-genomics.org/, 
containing datasets GSE115978, GSE120575, GSE134388, GSE159251, GSE123139, GSE139249, GSE148190, 
and GSE72056). Among these, three datasets (TCGA-SKCM, GSE54467, and GSE65904) contained complete 
follow-up information and were used for constructing machine learning models and calculating the concordance 
index (C-index) to evaluate associations between clinical characteristics, tumor microenvironment (TME), and 
metabolism-related genes (MRGs). TCGA-SKCM raw data were normalized to transcripts per million (TPM) 
values using R (v4.3.0). Batch effect correction was performed by merging two GEO datasets into a GEO-
Meta cohort, followed by empirical Bayes-based batch adjustment using the ComBat algorithm, and a Log2 
transformation using the sva R package to improve data distribution. Quality control was applied by retaining 
only cases with complete clinical information and definitive survival outcomes for subsequent analyses.

Identification and transcriptome analysis of MRGs in SKCM
MRGs (n = 2752), derived from previously published data20,21. The transcriptome data were merged and 
normalized using the “limma” and “sva” R packages to construct the prognostic model. Differentially expressed 
genes (DEGs) between nevus and melanoma samples were analyzed to select relevant genes from the set of 2752 
MRGs and assess the association of these DEGs with overall survival, using selection criteria of P < 0.05 and 
|log2(Fold Change)| > 1. Statistically significant DEGs with prognostic relevance were then selected, resulting in 
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the identification of 39 key MRGs (Supplementary Table S1). Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG)22–24 analyses were performed, focusing on the biological functions and metabolic 
pathways associated with the identified MRGs (Supplementary Table S2). Somatic mutation traits of these genes 
were visualized using the “maftools” package in R to create waterfall plots. Additionally, transcriptome and 
mutation data for these MRGs were retrieved from the TCGA database, and their copy number variation (CNV) 
frequencies and genomic distributions were examined. Differential expression analysis of MRGs in normal and 
melanoma tissues was conducted using the “limma” software package, with statistical significance confirmed by 
the Wilcoxon test. The relationship between MRGs and patient survival was analyzed using the log-rank test, 
and the interactions among MRGs were investigated through correlation studies.

Molecular subtype classification through clustering analysis of MRGs
Patients with SKCM were categorized into three distinct molecular subtypes based on the expression of 39 
MRGs. The K-means clustering algorithm was applied to determine the optimal number of subtypes. Principal 
component analysis (PCA) was then performed in the R environment using the “limma” and “ggplot2” packages 
to distinguish the three MRG molecular subtypes and examine the variance in expression patterns across these 
subtypes.

Evaluation of clinical and biological characteristics in three MRG molecular clusters
Survival analyses were conducted using the R software packages “survival” and “survminer” to determine the 
prognostic outcome across three groups, which were based on different molecular subtypes of MRGs. The 
survival time disparities among these subtypes were evaluated using Kaplan–Meier (KM) curve analysis. The 
standard multiplicity shift was greater than 1.5 with a p-value of less than 0.05. In addition, the variability of 
immune checkpoint expression and TME in three different clusters was analyzed. The immune-related pathways 
among the unused clusters were explored using single-sample genome enrichment analysis.

Integration of machine learning algorithms for prognostic modeling and analysis
Three SKCM datasets were used for comparative analysis of machine learning models. A variety of machine 
learning methods were used to compute the combined scores, including Random Survival Forest (RSF), 
CoxBoost, StepCox, Least Absolute Selection and Shrinkage Operator (Lasso), elastic network (Enet), Ridge, 
partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), generalized 
boosted regression modeling (GBM) and Support Vector Machine (SVM). By calculating the consistency index 
(C-index) in each dataset, the predictive performance of each model was evaluated, and the models were ranked 
based on the average C-index across the three datasets. The model with the highest C-index was considered the 
best model25. Patients were divided into high-risk and low-risk groups based on the median risk score of the 
model, and survival differences between these groups were analyzed using Kaplan-Meier (KM) survival analysis 
and log-rank tests. Additionally, the model’s performance in feature prediction was assessed using the Receiver 
Operating Characteristic (ROC) curve. A meta-analysis was performed on the three datasets, and the Hazard 
Ratio (HR) and 95% Confidence Interval (CI) for each study were calculated and reported.

Risk score for clinical application
Chi-square tests were used to compare the proportions of different clinicopathological features between high 
and low-risk groups, as depicted in pie charts. Additionally, the Kruskal-Wallis test was used to analyze the 
differences between different stages of the disease. Furthermore, to assess the sensitivity and specificity of the 
model at different time points, time-dependent receiver operating characteristic (ROC) curves were used. the 
clinical information of patients in the TCGA-SKCM dataset was used to screen prognostic features by univariate 
and multivariate cox regression analysis, a nomogram model were constructed based on these prognostic 
features, and calibration graphs were used to evaluate the prediction efficiency.

Immune cell infiltration analysis in groups with high and low risk
The CIBERSORT algorithm was employed to quantify immune cell infiltration in SKCM tissue samples 
accurately, and a comprehensive Spearman rank correlation analysis was performed to explore the relationship 
between the relative abundance of immune cells and patient risk scores. Additionally, Variances in various 
immune-related scores, including stromal, immune, and ESTIMATE scores, were evaluated, and comparisons 
were made between these scores in high- and low-risk patient groups. And Pathology images from the TCGA 
database were analyzed to highlight differences in immune cell infiltration between low- and high-risk patient 
groups.

Z- score score analysis of biological processes in prognostic related genes
The expression levels of prognosis-related genes were analyzed to assess the levels of specific biological pathways 
using the z-score algorithm of the Gene Set Variation Analysis (GSVA) software package in R. The analysis 
specifically focused on several key biological processes, including angiogenesis, epithelial to mesenchymal 
transition (EMT), and the cell cycle26. The levels of each pathway were quantified using the corresponding 
z-score values.

Prognostic genes were analyzed by online database
Database (http://TISCH.comp-genomics.org/) was used to examine the expression of protein-coding genes 
in various cell clusters. This analysis involved multiple single-cell melanoma datasets, Namely, GSE115978, 
GSE120575, GSE134388, GSE159251, GSE123139, GSE139249, GSE148190, and GSE72056. To understand how 
different cell clusters in the TISCH database influence the expression of protein-coding genes. The DepMap 
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database (https://depmap.org/portal/) was used to analyze the expression levels of the GALNT2 gene across 39 
melanoma cell lines. In addition, the differences in the GALNT2 gene expression in both healthy skin and tumor 
tissues were analyzed using the TCGA and Genotype-Tissue Expression (GTEx) databases.

Protein network construction and functional annotation analysis
GO and KEGG analyses were conducted to reveal the molecular features and biological processes potentially 
involving the GALNT2 gene (Supplymentary Table S6). The GeneMANIA database, which integrates extensive 
genomic and proteomic data, was used to explore the genes functionally similar to GALNT2. A network of 
functionally similar genes was predicted, and potential roles of GALNT2 in various biological contexts were 
identified.

Cell culture
MeThe cell lines used in this study were kindly provided by the Department of Biochemistry and Molecular 
Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University. The 
experiment utilized the following three cell lines: Normal human melanocyte cell line (PIG1),Human melanoma 
cell lines (A2058 and A375).

All cell lines were cryopreserved in the laboratory liquid nitrogen tank. For routine culture, cells were 
maintained in DMEM complete medium (C0223; Beyotime, China) supplemented with 10% fetal bovine serum 
(FBS) and 1% penicillin-streptomycin-gentamicin antibiotic solution, and incubated at 37 °C with 5% CO2 in a 
humidified incubator.

qRT-PCR
Total RNA was separated from the cells using TRIzol reagent (SparkZol Reagent, #AC0101-A, Shandong, China). 
RNA was converted into cDNA using the ToloScript RT EasyMix kit for reverse transcription. (TOLOBIO, 
#22106, Shanghai, China) according to the manufacturer’s instructions. Subsequently, qRT-PCR was conducted 
on a Bio-Rad CFX96 system using SYBR Green PCR master mix (TOLOBIO, #22204, China) to determine the 
target gene expression. The primer sequences used are listed in Supplementary Table S3.

Western blot assay
PIG1, A375, and A2058 cells were cultured in a suitable medium. Cells were allowed to grow at 90% confluence 
and washed twice with precooled PBS. Subsequently, cells were lysed using RIPA buffer supplemented with 
phosphatase and protease inhibitors. The extracted proteins were transferred to Eppendorf tubes and lysed 
for 15  min at 4  °C. Protein levels were measured using a BCA protein assay kit (Beyotime). Subsequently, 
equal amounts of proteins were separated using 10% SDS-PAGE and transferred onto a 0.45-µm pore size 
PVDF membrane (Millipore, MO, USA). After blocking the membranes with 5% skim milk solution for one 
hour, they were washed and incubated overnight with primary antibodies, including anti-GALNT2 (1:1000, 
Abcam(ab140637), Massachusetts, USA) and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 
1:1000, Santa(sc-47724), Cruz Biotechnology, CA, USA) at 4  °C. The membranes were then washed and 
incubated with mouse/rabbit IgG coupled with horseradish peroxidase. Chemiluminescence was used to detect 
protein bands, and blots were imaged using the AlphaView analysis system (ProteinSimple Inc., MN, USA).

Cell transfection
The cells were seeded in 6-well plates (Corning, USA), and when the cell confluence reached 60%, overexpression 
plasmids and knockdown siRNAs (siRNA target sequences as follows: GALNT2 siRNA-1: 5′-​G​A​G​A​G​U​G​A​U​
A​A​G​C​U​U​C​G​A​A-3′, GALNT2 siRNA-2: 5′-​G​A​C​A​G​U​C​A​C​U​G​C​G​A​G​U​G​U​A-3′) were synthesized by Qingke 
Biotechnology and Heyuan Bio, and transfection was carried out according to the instructions of Lipofectamine 
3000 transfection reagent (Life Technologies, CA, USA).After 48 h of transfection, the cells were harvested for 
subsequent experiments.Total protein was extracted using RIPA lysis buffer (Beyotime, China), and Western 
blotting was used to detect GALNT2 protein expression levels (primary antibody dilution 1:1000, incubated 
overnight at 4 °C; HRP-conjugated secondary antibody 1:5000, incubated for 1 h at room temperature).

Edu assay
A375 and A2058 cells from various treatment groups were seeded into twelve-well plates and allowed to 
grow until 70% confluence. The cells were then cultured in 1× EdU solution for 2 h. Subsequently, cells were 
immobilized with 4% formaldehyde for 30 min and rinsed thrice in a BSA rinse solution. EdU Cell Proliferation 
Image Kit and 1× Hoechst 33,342 (Abbkine, #KTA2030, Wuhan, China) were used to perform staining. Finally, 
fluorescence microscopy was used to observe and document proliferating cells.

Colony formation assay
The cells from various groups were inoculated into six-well plates at a density of 1,000 cells/well and incubated 
at 37 °C and 5% CO2 to determine the effect of GALNT2 on melanoma cell colony formation. After 10 days of 
incubation, the cells were washed with PBS and fixed with 4% paraformaldehyde. Finally, the fixed cells were 
immersed in 1% crystal violet for approximately 20 min. Photographs were taken and statistical comparisons 
were performed using imagej.

Wound healing assay
Cells were seeded in a 6-well plate and cultured in complete medium with 10% FBS. When the cell confluence 
reached 80%-90%, a scratch was made using a 200 µl pipette tip. After PBS washing, the medium was replaced 
with 1% FBS low-serum medium.The scratch area was captured at 0 h and 24 h, and the cell migration rate was 
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calculated using ImageJ software (migration rate = (0 h scratch area − 24 h scratch area) /0 h scratch area×100%).
The experiment was performed with three biological replicates, and the data are expressed as mean ± standard 
deviation.

Transwell assay
Cell migration assays were performed using Transwell chambers (Corning Incorporated, New York, USA). Pre-
transfected A375 and A2058 cells were resuspended in serum-free medium at a density of 5 × 10⁴ cells/mL, and 
200 µL of the cell suspension was seeded into the upper chamber of the Transwell system. The lower chamber 
was filled with medium containing 10% fetal bovine serum (FBS) as a chemoattractant. After incubation at 
37 °C with 5% CO₂ for 48 h, the chambers were carefully removed. Non-migrated cells on the upper side of the 
membrane were gently wiped away with a cotton swab. The migrated cells on the lower side of the membrane 
were fixed with 4% polyformaldehyde and stained with crystal violet. Multiple random fields were photographed 
under a microscope for subsequent quantitative analysis.

Statistical analysis
Each experiment in this study was independently repeated at least three times, and the data are expressed as the 
mean ± standard deviation (Mean ± SD) to ensure the reliability and reproducibility of the results.Data analysis 
was conducted using GraphPad Prism 10 software.The differences between the two groups were analyzed using 
an independent t-test.The significance level for statistical analysis was set at P < 0.05.

Results
Genetic and transcriptional alterations of MRGs in SKCM
We examined the clinical information of patients (Supplementary Table S4) and analyzed somatic mutation 
rates of MRGs in these patients (Fig. 1A). We then investigated the roles of MRGs in biological processes (BP), 
cellular components (CC), and molecular functions (MF) using GO and KEGG analyses (Fig. 1B). MRGs were 
significantly enriched in biological processes, such as alcohol metabolism, amino acid transmembrane transport, 
and neutral amino acid transport. In cellular components, MRGs were mainly found in the basal cell area and 
basolateral plasma membrane. Functionally, these genes were associated with active transmembrane transporter 
activity and transmembrane transport of organic acids and carboxylic acids. KEGG analysis highlighted the 
enrichment of MRGs in pyrimidine metabolism, nucleotide metabolism, and mineral adsorption (Fig.  1B), 
underscoring their involvement in metabolic processes and cell membrane structure. In addition, we analyzed 
the CNVs of MRGs in SKCM (Fig. 1C). TK1, ABCA5, CH13L1, NME1, ABCC3, ATP1B1, and GALNT2 showed 
an increase in CNVs, whereas SLC27A2, QPRT, G6PC3, and SLC7A5 showed a decrease in CNVs. Figure 1D 

Fig. 1.  Genetic and transcriptional alterations and functional analysis of MRGs in SKCM. (A) Analysis of 
somatic mutation rates across 39 melanoma-related genes (MRGs) in patients with SKCM, highlighting the 
genetic variability within this cohort. (B) Functional enrichment analysis of MRGs using GO and KEGG 
pathways. (C) Frequency of CNV gain and loss in MRGs. (D) Orientation of CNV changes in MRGs across 
23 chromosomes. (E) Comparative expression profiles of MRGs between normal skin and SKCM samples. 
(F) Network diagram depicting interactions among MRGs in SKCM. Lines between genes represent their 
interrelations; pink indicates positive correlations, whereas blue indicates negative correlations. (*p < 0.05; 
**p < 0.01; and ***p < 0.001).
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presents the distribution of these CNVs on human chromosomes. Additionally, we compared the expression 
levels of MRGs between normal and tumor tissues using the TCGA database (Fig. 1E) and constructed a network 
to illustrate their’ interactions and prognostic significance (Fig. 1F).

Identification and transcriptome analysis of MRGs in SKCM
Patients with SKCM were grouped into three clusters based on the expression patterns of MRGs using a consensus 
clustering method (Fig. 2A). PCA was used to determine the distinction between these MRG clusters (Cluster 
A, B, and C; Fig. 2B). KM curves showed that patients in MRG cluster C had a better prognosis (Fig. 2C). The 
heatmap revealed the gene expression patterns of different MRG clustering groups and their associated clinical 
features (Fig. 2D). Upon conducting a comprehensive analysis of TME scores, immune checkpoint expression, 
and immune cell infiltration levels across three MRG clusters, Cluster C exhibited higher scores (Fig. 2E). In 
addition, we further explored the relevant enrichment pathways among different MRG clusters using the GSVA 
method (Fig. 2F-H).

Construction and validation of prognostic models related to MRGs
We incorporated 39 MRGs into 10 machine learning algorithm within the framework of Leave-One-Out 
Cross-Validation (LOOCV). The C-index of the program was calculated for the model in the data to test 
the prediction efficiency. The best model portfolio consisting of RSF and step-wise Cox regression methods 

Fig. 2.  Clustering and clinical characterization of MRGs and the immune microenvironment in SKCM 
samples. (A) Three clusters of MRGs were analyzed using consistent clustering. (B) Differences between the 
three clusters were analyzed using PCA. (C) KM survival curves indicated significant differences among the 
three clusters (P < 0.001). (D) Heatmap of MRG clusters correlated with clinical features and gene expression 
in patientspatients with SKCM. (E) Differences among the three clusters between immune checkpoints 
and immune cell infiltration in SKCM tumor samples. (F–H) GSVA results indicating pathway enrichment 
between two distinct clusters.
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achieved the maximum mean C-index of 0.629 (Fig. 3A). Furthermore, we constructed a model comprising six 
key genes (MRGs) (Supplementary Table S5). The univariate Cox regression analysis with HRs revealed that 
SLC27A2 and HSD11B1 are potentially protective (HR < 1), whereas QPRT, NME1, MCAL2, and GALNT2 may 
negatively influence prognosis in SKM (HR > 1) (Fig. 3B). We then calculated a risk score from the expression 
levels and coefficients of these six genes: Risk Score = [Expression of SLC27A2 × (-0.32901)] + [Expression of 
HSD11B1 × (-0.07997)] + [Expression of QPRT × (0.07336)] + [Expression of NME1 × (0.16097)] + [Expression 
of MCAL2 × (0.12810)] + [Expression of GALNT2 × (0.16827)]. Patients were separated into high and low risk 
categories according to the median risk score, with higher scores being associated with greater mortality rates 
(Fig. 3C). The analysis of KM curves revealed a significantly worse prognosis for patients in the high-risk group 
compared to those in the low-risk group within the validation set (Figs. 3D-F). Further, the Area Under Curve 
(AUC) values for MRGs across 1-year, 3-year, and 5-year survival duration validated the reliability and accuracy 
of MEGs in prognosis, showing their high specificity and sensitivity (Figs. 3G-I). A meta-analysis of the three 

Fig. 3.  Construction and validation of MRG-based prognostic models derived after integrated machine 
learning algorithms. (A) 101 predictive models were developed using LOOCV, and their C-indexes were 
calculated in the validation dataset. (B) Independent prognostic relationships of modeled genes were analyzed 
using univariate COX. (C) Risk levels and survival outcomes for each instance. (D–F) KM survival curves in 
each dataset. (G–I) and 1-, 3- and 5-year ROC scores. (J) Forest plot demonstrating meta-analysis of the three 
datasets.
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datasets yielded a combined HR of 3.06 with 95% CI, indicating a three-fold increase in risk associated with the 
study parameters and low heterogeneity among datasets, suggesting high consistency (Fig. 3J).

MRGs for clinical applying
Pie charts revealed a higher tendency of advanced pathological stages and increased mortality risks in the high-
risk group (Fig. 4A). The risk score positively correlates with disease progression (Fig. 4B-C). 1-, 3-, and 5-year 
ROC curves over various time points were utilized to compare clinical information and staging of patients, with 
the AUC values being calculated (Fig. 4D-F). The variables with a P-value below 0.05 (Fig. 4G) in the initial 
univariate analysis were considered for the subsequent multivariate analysis (Fig. 4H). Several factors remained 
statistically significant: tumor size (T) with P < 0.001, HR of 1.4901, and 95% CI of 1.265–1.755; lymph node 
status (N) with P < 0.001, HR of 1.733, and 95% CI of 1.369–2.196; and risk score with P < 0.001, HR of 2.279, and 

Fig. 4.  Efficiency of using risk score assessments to predict patient prognosis and construct nomogram 
models. (A) Pie chart demonstrating the Chi-square test for clinicopathological features across high- and 
low-risk patient groups. Relationship of clinical staging (B) and T-staging (C) to risk scores. 1-, 3-, and 5-year 
ROC curves of the risk score and other clinicopathologic features (D–F). Forest plots displaying (G) univariate 
and (H) multivariate Cox regression analyses in patients with SKCM. (I) Development of nomogram models 
incorporating risk scores and key clinical parameters. (J) Calibration plots evaluating the discrepancy between 
forecasted and observed survival outcomes.
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95% CI of 1.490–3.487. These three parameters were subsequently incorporated into the final nomogram model 
(Fig. 4I). And the alignment plot illustrated a strong correspondence between the projected survival percentages 
and the real survival percentages (Fig. 4J).

Immune response and risk score correlation in tumor therapy
Scores for risk groups and correlation scores for the infiltration of 10 distinct immune cells were analyzed, 
revealing a significant correlation (P < 0.05; Fig. 5A). Additionally, a relationship was observed between six genes 
linked to prognosis and the risk scores (Fig. 5B). The analysis was extended to stromal, immune, and ESTIMATE 
scores across groups with varying risk levels (Fig. 5C). The groups at low-risk consistently outperformed their 
high-risk counterparts in all three scoring categories (P < 0.01). Further, analysis of TCGA pathology sections 
showed that the level of immune cell infiltration was higher in the low-risk group than in the high-risk group 
(Fig. 5D). In addition, the immune predictive scores (IPS) were compared across both patient groups. It was 
observed that the IPS was notably higher in low-risk patients undergoing various forms of immune checkpoint 

Fig. 5.  Comparative analysis of the tumor immune microenvironment in high- versus low-risk groups. 
(A) Exploring of the association between risk scores and various immune cell types. (B) Analysis of the 
link between immune cell prevalence and six genes within the prognostic model. (C) Examination of the 
relationship between risk score and immune-related score. (D) TCGA pathology sections showing higher 
tumor immune cell infiltrations in low-risk patients compared with those in high-risk patients (*p < 0.05; 
**p < 0.01; and ***p < 0.001).
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inhibitor therapy (P < 0.01; Supplementary Figure S1). This suggests that patients categorized as low risk may 
have an enhanced reaction to immune checkpoint inhibition therapy.

MRG signature and the malignant characteristics of the tumor
The hallmark features, such as rapid cell proliferation, marked EMT, and increased angiogenesis, play a significant 
role in defining the aggressive behavior of the cancer during the transition from normal cells to malignant 
tumors. Furthermore, alterations in metabolic genes are linked to an increased likelihood of melanoma onset. 
We used a z-score algorithm to quantify tumor activity in MRG promotion, angiogenesis, EMT, and cell cycle 
to clarify the relationship between MRGs and malignant tumors. We analyzed the comprehensive cancer cohort 
of TCGA (Figs. 6A) and published studies across most tumor types (Figs. 6B-C) and found a strong positive 
correlation between MRG z-scores and both angiogenesis (R = 0.67; P < 0.0001) and EMT (R = 0.51; P < 0.0001) 
z-scores. However, a negative correlation was observed with cell cycle z-scores (R = -0.24; P < 0.0001). In the 

Fig. 6.  Single-cell level of MRGs in SKCM. (A) Relationship between the risk scores and the TCGA pan-
cancer cohort. (B,C) in most tumor types.
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context of SKCM, MRGs were positively correlated with angiogenesis (R = 0.67; P < 0.0001) and EMT (R = 0.42; 
P < 0.0001). Overall, MRGs were associated with increased angiogenesis and an aggressive cellular environment 
in SKCM tumor.

Experimental validation of MRGs identified in Multi-Dataset transcriptomic analysis
We analyzed prognosis-related MRGs using the TISH database, with careful consideration of cell-type 
specificity. Gene expression patterns were evaluated across immune cell types in multiple datasets, including 
GSE115978, GSE120575, GSE134388, GSE159251, GSE123139, GSE139249, GSE148190, and GSE72056. 
Prognosis-associated genes showed consistent distribution profiles across these independent cohorts (Fig. 7A-
I). To experimentally validate key genes from the prognostic model, we performed qRT-PCR in melanocyte 
PIG1 and melanoma cell lines A375 and A2058. Results confirmed that expression of GALNT2 and HSD11B1 
was significantly upregulated in melanoma cells compared with normal melanocytes (Supplementary Figure S2).

Functional enrichment analysis of GALNT2 and its effect on malignant phenotype in 
melanoma cells
GALNT2 expression levels were positively correlated with poor prognosis in tumor patients. We used 
GeneMANIA to analyze the molecular interactions of GALNT2 and the potential roles of GALNT2. The network 

Fig. 7.  Expression and analysis of MRGs across SKCM datasets. (A) GALNT2, HSD11B1, MICAL2, NME1, 
QPRT, and SLC27A2 are predominantly expressed in CD8Tex, Fibroblasts, and malignant cells in 10 SKCM 
datasets. (B–I) Visualization and analysis of MRGs in different datasets.
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(Fig. 8A) highlighted the primary functions of the gene in protein O-linked glycosylation and interactions with 
C1GALT1 and MUC family members (such as MUC4, MUC7, MUC16, and MUC17). DepMap analysis indicated 
that GALNT2 gene expression was generally increased in 39 melanoma cell lines (Fig. 8B). Concurrently, GO 
(Fig. 8C) and KEGG (Fig. 8D) enrichment analyses were used to investigate the potential biological functions of 
GALNT2 (Supplementary Table S6). GO functional enrichment analysis indicated that BPs were predominantly 
involved in small GTPase-mediated signal transduction, proteasome-mediated ubiquitin-dependent protein 
catabolic processes, and cellular component disassembly. CC were primarily enriched in cell–substrate junctions, 
focal adhesions, and the mitochondrial matrix. MF were significantly enriched in protein serine/threonine 
kinase activity, DNA-binding transcription factor binding, and GTPase regulator activity. KEGG analysis 
predominantly linked these functions to the cell cycle, apoptosis, MAPK signaling, and sphingolipid signaling 

Fig. 8.  Functional analysis of the GALNT2 gene in normal melanocytes and tumor cells. (A) Target protein 
candidate biomarker prediction for GALNT2 PPI network diagram; different colors represent different 
functional networks. (B) GALNT2 expression in 39 melanoma cell lines. (C) Functional enrichment analysis of 
GALNT2 using GO (D) and KEGG (E) pathways. (E) Immunohistochemical staining showing the expression 
of the GALNT2 protein in normal and melanoma tissues. (F) Western blotting was performed to analyze the 
expression of the GALNT2 protein in PIG1, A375, and A2058 cells. (G) GALNT2 expression in normal skin 
tissues and tumor tissues. (*p < 0.05,**p < 0.01,****p < 0.0001).
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pathways. Furthermore, we further explored the role of GALNT2 in the development of cutaneous melanoma. 
Immunohistochemical data was downloaded from the HPA database to preliminarily assess the differences in 
GALNT2 expression in normal skin tissue and melanoma tissue samples. The results showed that GALNT2 
expression was higher in melanoma tissue samples compared with that in normal skin tissue (Fig. 8E). We then 
explored the difference in GALNT2 expression in normal melanocytes (PIG1) and melanoma cell lines (A375 
and A2058) using western blotting. The results showed a significant increase in the expression of GALNT2 in 
PIG1 compared with that in A375 and A2058 (Fig. 8F). In addition, further analysis of the GTEx and TCGA 
datasets comprising 233 normal skin samples and 237 melanoma tissue samples showed that the GALNT2 gene 
expression was significantly higher in melanoma than in the normal tissues (Fig. 8G).

Knockdown of GALNT2 inhibited cell proliferation and migration capacity
we constructed knockdown GALNT2 siRNAs and transfected them into A375 and A2058 cell lines. The 
transfected siRNAs were categorized as siRNA-1, siRNA-2, and Ctrl and western blot was used to assess the 
expression efficiency (Fig.  9A-B).The effect of siGALNT2 on the proliferative capacity of A375 and A2058 
cell lines was evaluated using Edu (Fig. 9C-D) and colony formation (Fig. 9E-F) assays. The results revealed 
a significant reduction in cell proliferation in the siGALNT2 group compared to the Ctrl group. Additionally, 

Fig. 9.  Knockdown of GALNT2 inhibited cell proliferation and migration capacity. Edu assays. Western 
blotting was performed to assess the transfection efficiency of GALNT2 in A375 and A2058 cells (A,B). 
Edu assays (C,D) and colony formation assays (E,F) were performed to assess the effect of siGALNT2 
expression on A375 and A2058 proliferation. Wound healing assays (G,H) and Transwell assays (I,J) were 
performed to assess the effect on A375 and A2058 migration after interfering with GALNT2 expression. 
(**p < 0.01,***p < 0.001).
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wound healing (Fig. 9G-H) and Transwell (Fig. 9I-J) assays were performed to assess the impact of siGALNT2 
on cellular migration. The findings demonstrated a notable decrease in the migration abilities of cells treated 
with siGALNT2.

Overexpression of GALNT2 promoted cell proliferation and migration capacity
In contrast, to investigate the effect of GALNT2 overexpression, we constructed GALNT2 overexpression plasmids 
and transfected them into A375 and A2058 cell lines. The transfected plasmids were categorized as oe-GALNT2- 
and oe-Ctrl, and western blot was used to assess the expression efficiency (Fig. 10A-B). the proliferative capacity 
of A375 and A2058 cells was assessed following GALNT2 overexpression using Edu (Fig. 10C-D) and colony 
formation (Fig. 10E-F) assays. The results showed a significant increase in cell proliferation in the oe-GALNT2 
group compared to the oe-Ctrl group, indicating that GALNT2 overexpression promotes cell proliferation. 
Furthermore, to examine the effect of GALNT2 overexpression on cellular migration, we conducted wound 
healing (Fig. 10G-H) and Transwell (Fig. 10I-J) assays. These results revealed a marked enhancement in the 
migration abilities of cells subjected to GALNT2 overexpression.

Discussion
Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to sustain uncontrolled proliferation 
and adapt to hostile microenvironments27. In cutaneous melanoma, metabolic alterations have been strongly 
associated with tumor progression, mutational burden, and patient survival28,29. While considerable attention 
has been devoted to pathways such as glycolysis and oxidative phosphorylation, glycosylation-related enzymes—
key regulators of protein stability and signaling—remain largely unexplored in melanoma30,31. Given their 

Fig. 10.  Overexpression of GALNT2 promoted cell proliferation and migration capacity. Edu assays. Western 
blotting was performed to assess the transfection efficiency of GALNT2 in A375 and A2058 cells (A,B). Edu 
assays (C,D) and colony formation assays (E,F) were performed to assess the effect of GALNT2 overexpression 
on A375 and A2058 proliferation. Wound healing (G,H) and Transwell assays (I,J) were performed to assess 
the effect on A375 and A2058 migration after GALNT2 overexpression.(*p < 0.05,**p < 0.01,***p < 0.001).
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emerging roles in shaping tumor behavior in other cancers, systematic evaluation of glycosylation enzymes in 
melanoma may provide new insights into metabolic vulnerabilities and prognostic markers32,33. To address this 
gap, we established and validated a metabolism-based prognostic model for cutaneous melanoma.

This study comprehensively profiled the transcriptional levels and mutation landscape of 39 MRGs. These 
three clusters showed different clinical outcomes. The TME deconvolution analysis showed a notably greater 
infiltration of immune cells in Cluster C compared to that in other subtypes. This encompasses crucial immune 
cells, such as cytotoxic T cells, helper T cells, B/plasma cells, and macrophages/monocytes34. Notably, these cells 
play an integral role in the immune defenses against tumors35. CD4 + T cells can either enhance or suppress 
immune responses against tumors by identifying antigens presented by HLA class II molecules33. In contrast, 
myeloid-derived suppressor cells contribute to tumor growth by suppressing the immune response mediated by 
T and natural killer cells against the tumor34.The RSF + StepCox model yielded the highest mean C-index among 
the ten machine learning algorithms evaluated for constructing an MRGs-related signature. According to the 
median value of the risk score, patients were divided into high-risk and low-risk groups. A comparative analysis 
across three datasets revealed that high-risk MRGs were associated with a poor prognosis. Having established 
the risk score as a significant prognostic factor in both univariate and multivariate Cox analyses, we integrated it 
with established clinical staging factors. The resulting model demonstrated high predictive efficiency.

TME is crucial in cancer progression. Beyond stromal cells, its composition encompasses fibroblasts, 
endothelial cells, as well as innate and adaptive immune cells36,37. The risk score showed a positive correlation 
with two specific types and a negative correlation with the other eight types within the diverse range of 
immune cells. The scores related to immunity significantly influence the outcomes of both immunotherapy and 
chemotherapy38. The patient group with lower risk exhibited superior scores pertaining to the TME, and showed 
increased IPS scores associated with immune checkpoint blockade therapy. This implies enhanced immune 
infiltration in the low-risk group, potentially leading to more effective responses in immunochemotherapy.

Among the six key genes screened based on the C-index, we observed mRNA expression abnormalities in 
four of them in melanoma cells. We selected GALNT2 as the core subject for subsequent in-depth investigation: 
Firstly, analysis of TCGA and GTEx data revealed that GALNT2 expression was significantly upregulated 
in melanoma tissues, and its high expression was closely associated with poor patient prognosis, suggesting 
important clinical implications. Secondly, single-cell transcriptome analysis high expression of GALNT2 in 
CD8+ T cell subsets, implying its potential involvement in regulating the tumor immune microenvironment. 
Additionally, GO/KEGG enrichment analysis demonstrated that GALNT2 was significantly enriched in 
melanoma-related pathways such as the MAPK signaling pathway and cell cycle regulation, providing direction 
for its functional mechanisms. Although GALNT2 has been reported to promote malignant progression through 
pathways such as PI3K/Akt and MAPK/ERK in tumors including non-small cell lung cancer, cervical cancer, 
and gastric cancer39–41, and is considered a potential therapeutic target42, its role in melanoma remains unclear. 
Therefore, we performed functional validation. In vitro experiments showed that knockdown of GALNT2 
significantly inhibited the proliferation and migration abilities of melanoma cells, while its overexpression 
promoted these phenotypes. Consequently, our results suggest that GALNT2 may serve as a novel diagnostic 
and prognostic biomarker for SKCM patients.

This study has several limitations. First, the analysis was primarily based on publicly available databases 
and retrospective sample collection, which may introduce selective bias and limit the generalizability of the 
findings. Second, although the study provided functional insights into the effects of GALNT2 silencing and 
overexpression in melanoma cell lines, the lack of clinical tissue samples restricts our ability to validate these 
findings in a clinical setting. Additionally, the molecular mechanisms underlying the observed effects remain 
unclear, and further mechanistic studies are required to better understand how GALNT2 regulates melanoma 
progression. Lastly, in vivo experiments are needed to confirm the findings observed in cell culture models, as 
they may not fully recapitulate the complex in vivo tumor microenvironment and could provide critical insights 
into the therapeutic potential of GALNT2 in SKCM. In future research, we plan to address these limitations by 
incorporating clinical tissue samples and conducting in vivo studies to further explore the role of GALNT2 in 
melanoma and its potential as a therapeutic target.

Conclusion
We comprehensively analyzed the role of MRGs in SKCM and constructed a prognostic model by multiple 
machine learning algorithms. This model effectively predicts the clinical survival of SKCM patients, in their 
immune infiltration and responses to immunotherapy and chemotherapy. These findings may provide valuable 
insights for enhancing the diagnosis and treatment strategies for SKCM. Furthermore, the results confirmed that 
the key gene GALNT2 promotes melanoma cell proliferation and migration.

Data availability
The datasets generated and/or analyzed in the current study are available in the TCGA(SKCM-TCGA) and 
GEO(GSE3189, GSE46517, GSE114445, GSE54467, and GSE65904)repositories, (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​c​a​n​c​e​​r​.​g​​o​v​​/​c​​c​g​/​​r​
e​s​e​a​​r​​c​h​/​g​e​n​​​o​m​e​-​s​​e​q​u​e​n​​c​i​n​g​/​t​c​g​a), (https://www.ncbi.nlm.nih.gov/geo/).
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