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Human pose estimation has emerged as a critical problem in computer vision due to its extensive 
applications across interdisciplinary fields, including robotics, augmented reality, sports analysis, 
and biomechanics. Traditional methods, while effective in controlled environments, often fail to 
generalize to real-world scenarios due to challenges such as occlusions, scale variations, and temporal 
inconsistencies in video data. To address these limitations, we propose the Hierarchical Spatio-
Temporal Pose Network (HSTPN), a deep learning-based framework that integrates multi-scale 
feature fusion with attention mechanisms to capture both global context and fine-grained details. The 
Adaptive Pose Refinement Strategy (APRS) enhances pose predictions by iteratively refining key point 
locations, leveraging spatial, temporal, and domain-specific constraints. Together, these innovations 
enable our approach to achieve superior accuracy and robustness across diverse datasets, including 
both constrained and unconstrained environments. Experimental results demonstrate that HSTPN 
and APRS outperform state-of-the-art methods in terms of prediction accuracy, temporal coherence, 
and computational efficiency, making them well-suited for real-time and interdisciplinary physics 
applications.
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Human pose estimation (HPE) has become a critical area of research due to its extensive applications in 
interdisciplinary fields, including biomechanics, sports science, robotics, and human-computer interaction. 
The integration of HPE in physics-related domains has shown immense potential for analyzing human motion, 
optimizing athletic performance, and studying complex physical systems which involving human interactions1. 
Achieving accurate and robust human pose estimation in physics applications remains challenging due to factors 
such as occlusions, varying lighting conditions and the complexity of human motion in three-dimensional 
space2. Traditional methods have demonstrated limited scalability and accuracy, particularly when applied to 
dynamic or real-world physics problems3. Recent advancements in deep learning have not only addressed these 
challenges but also enabled new applications, sophisticated models, and computational resources4. Exploring 
deep learning-based HPE in physics applications represents a vital step forward in unlocking its interdisciplinary 
potential and enabling innovative solutions for real-world problems5. Human pose estimation methods were 
predominantly which is based on symbolic AI and handcrafted feature extraction. And relied heavily on prior 
domain knowledge. Traditional approaches often used geometric models or statistical methods6. These methods 
incorporated prior knowledge of human anatomy and physics principles to estimate poses from visual data. While 
these approaches offered interpretability and were effective for constrained scenarios, they were highly sensitive 
to variations in appearance, occlusions, and environmental factors. These methods struggled to generalize across 
diverse datasets and often required significant manual effort to design features or tune parameters. Despite 
their limitations, these early methods established a foundation for understanding the complexities of HPE and 
highlighted the need for automated and scalable solutions7.

The advent of data-driven approaches and machine learning marked a paradigm shift in human pose 
estimation, which addressing many of the shortcomings of traditional methods8. Machine learning models such 
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as Support Vector Machines (SVMs) and Random Forests enabled more robust and scalable pose estimation by 
leveraging statistical learning techniques and annotated datasets9. These models learned to identify patterns and 
relationships in visual data, improving accuracy and generalization across varying conditions10. Applications 
of these methods in physics, such as motion analysis and kinematic studies, demonstrated their potential to 
capture dynamic human motion in real-world environments11. However, the performance of these methods 
was still limited by their reliance on manual feature engineering and their inability to model complex, high-
dimensional relationships in image data12. Furthermore, the dependence on labeled data remained a bottleneck, 
particularly for interdisciplinary physics applications that often require domain-specific datasets13. The 
introduction of deep learning has revolutionized human pose estimation by enabling end-to-end learning and 
automatic feature extraction14. Convolutional Neural Networks (CNNs) have become the backbone of most 
modern HPE systems, demonstrating remarkable performance in tasks such as 2D and 3D pose estimation15. 
Models such as OpenPose16, PoseNet17, and HRNet18 have achieved state-of-the-art results by leveraging large-
scale annotated datasets and advanced network architectures. These methods have proven particularly effective 
for interdisciplinary physics applications, where they have been used to analyze athletic motion, study human-
robot interactions, and model biomechanical systems19. For example, deep learning-based methods have 
enabled accurate analysis of motion in sports physics, facilitating the optimization of athletic performance by 
capturing fine-grained details of movement. Similarly, in robotics, HPE has been used to enhance human-robot 
collaboration by accurately estimating joint angles and body orientation. Despite their success, deep learning 
approaches face challenges related to computational complexity, the need for large labeled datasets, and the lack 
of interpretability, which can limit their application in physics domains where transparency and efficiency are 
crucial.

Building on the limitations of existing methods, we propose a novel deep learning-based framework 
for human pose estimation tailored to interdisciplinary physics applications. Enabling more accurate and 
interpretable pose estimation, our approach integrates domain-specific knowledge of physics into the design of 
deep learning models. Specifically, we combine the predictive power of neural networks with physics-informed 
constraints, such as kinematic and dynamic models, to enhance the realism and accuracy of pose predictions. 
We incorporate self-supervised learning techniques to reduce the dependency on labeled data, addressing 
one of the major barriers in physics-related applications. Our framework improves robustness in challenging 
conditions such as occlusions and complex backgrounds by leveraging a multi-modal approach that integrates 
visual and sensor data. This hybrid approach not only addresses the limitations of deep learning-based HPE but 
also enables novel applications in physics.

We summarize our contributions as follows:

•	 Incorporating kinematic and dynamic constraints into the deep learning model enhances the accuracy and 
interpretability of pose estimation in physics-related applications.

•	 The use of self-supervised learning and multi-modal data integration ensures reliable performance across 
diverse and challenging scenarios, such as occlusions and complex movements.

•	 Experimental results demonstrate improved computational efficiency and accuracy compared to state-of-
the-art methods, making the approach suitable for real-time and large-scale applications in interdisciplinary 
physics.

To ground our approach within the scope of interdisciplinary physics, we now elaborate on several representative 
application domains where human pose estimation serves as a critical enabling technology. In biomechanics 
and sports science, HPE is widely used to model the kinematics of athletes during dynamic actions such as 
sprinting, jumping, or throwing. By capturing joint trajectories and posture variations over time, researchers 
can compute physical quantities such as angular momentum, energy expenditure, and joint torque, which are 
essential for performance optimization and injury prevention. In human-robot interaction systems, particularly 
those designed for physical collaboration or teleoperation, accurate pose estimation allows robots to anticipate 
human motion, adjust their trajectories, and ensure physical safety. For example, collaborative robots in 
assembly lines or rehabilitation exoskeletons rely on real-time body tracking to understand human intent and 
mechanical constraints, thereby translating vision-based estimation into control-level decisions grounded in 
physics. Another important use case arises in microgravity environments, such as astronaut training and motion 
analysis aboard the International Space Station. Under zero-gravity conditions, human movement patterns 
change significantly, and pose estimation enables the modeling of new force balances and inertial dynamics 
that do not occur on Earth. Estimating joint angles and body motion under such altered physical constraints 
can support the design of assistive devices and improve our understanding of human physiology in space. 
These cases demonstrate that human pose estimation is not merely a vision task but a conduit for extracting 
physically meaningful quantities from visual data. The ability of our proposed HSTPN+APRS framework to 
integrate temporal dynamics, spatial detail, and domain-specific constraints makes it particularly well-suited for 
deployment in such interdisciplinary physics applications.

Related work
Deep learning for pose estimation
Enabling precise identification of key body joints in 2D and 3D space, deep learning has significantly advanced 
the field of human pose estimation20. Convolutional Neural Networks (CNNs) and their variants are widely used 
for extracting features from images and video frames, forming the backbone of most pose estimation systems. 
Techniques such as stacked hourglass networks, residual networks, and High-Resolution Networks (HRNet) 
have shown state-of-the-art performance in capturing spatial relationships between body joints21. OpenPose 
and AlphaPose are popular frameworks that implement these methodologies, demonstrating their applicability 
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in real-time pose estimation tasks. Recently, the adoption of transformers in vision tasks has further enhanced 
the accuracy and efficiency of pose estimation systems22. Vision Transformers (ViT) and related architectures 
use self-attention mechanisms to model global dependencies, which are crucial for interpreting complex poses. 
Human pose estimation is increasingly being used in interdisciplinary physics applications,23. For instance, in 
sports science, deep learning-based pose estimation is employed to analyze athletes’ movements and optimize 
performance while minimizing injury risks. These applications require robustness to occlusions, varying lighting 
conditions, and dynamic backgrounds24. Techniques involve partitioning detected individuals and estimating 
their poses simultaneously, which have been proposed to address these challenges25. Achieving real-time 
performance in resource-constrained environments remains an open problem, necessitating further exploration 
into lightweight network architectures and optimization techniques. Early deep learning-based methods such 
as DeepPose26 introduced the use of deep neural networks to regress joint locations directly from image data. 
Stacked Hourglass Networks27 enabled multi-scale feature processing and became foundational in many 2D 
pose estimation pipelines. HRNet28 preserved high-resolution representations throughout the network to 
improve spatial precision. For temporal modeling in video sequences, Pavllo et al.29 proposed using temporal 
convolutions with semi-supervised learning to enhance 3D pose estimation. More recently, Transformer-based 
methods like PoseFormer30 have shown strong potential by capturing long-range dependencies and global 
context in pose sequences.

Beyond estimating joint positions, human pose estimation has been increasingly adopted in downstream 
tasks such as skeleton-based human action recognition (HAR), where spatial-temporal dynamics of joints serve 
as crucial features for understanding human behaviors. In these applications, pose sequences are encoded as 
skeletal graphs, and various deep learning models are employed to infer action categories. Recent studies have 
tackled challenges in this area by exploring more robust representations and addressing open-world scenarios. 
For instance, Peng et al.31 proposed a method to handle open-set HAR with uncertainty estimation over skeleton 
graphs. Xie et al.32 introduced a dynamic semantic-based spatial graph convolution network that adaptively learns 
context-aware features from joint graphs. Xu et al.33 addressed the problem of label noise in real-world datasets, 
proposing a robust training pipeline for HAR from skeleton sequences. Furthermore, Peng et al.34 investigated 
one-shot skeleton-based action recognition under occlusion, demonstrating the potential of learning compact 
and generalizable motion features even with limited data. These efforts highlight the broader impact of accurate 
and temporally consistent pose estimation models. Our proposed HSTPN framework, which emphasizes spatial 
fidelity and temporal smoothness, aligns well with the requirements of such downstream tasks, potentially 
serving as a reliable backbone for skeleton-based action understanding in complex environments.

Physics-informed deep learning models
Physics-informed deep learning models incorporate domain-specific knowledge from physics to enhance 
the accuracy and interpretability of pose estimation systems35. These models integrate physical laws, such 
as kinematics, dynamics, and constraints, directly into the training process or the model architecture36. For 
example, inverse kinematics has been used to ensure that the predicted joint positions adhere to anatomical 
constraints, improving the biological plausibility of the estimated poses37. Similarly, energy-based loss functions 
derived from physical principles can enforce consistency between predicted motion trajectories and real-world 
dynamics. Physics-informed models have found applications in diverse fields such as biomechanics, where they 
are used to study gait abnormalities, and robotics, where accurate human pose estimation is crucial for human-
robot collaboration38. These models are valuable in computer vision tasks involving challenging conditions, 
such as occluded body parts or partial views, by leveraging physical constraints to fill in missing information39. 
Advances in differentiable physics engines and their integration with deep learning frameworks have facilitated 
the training of models that simulate and predict human motion under physical constraints40. However, the 
development of physics-informed deep learning systems requires a deep understanding of both the domain and 
the modeling process, which can increase the complexity of implementation. Moreover, aligning such models 
with real-world data necessitates addressing discrepancies between theoretical assumptions and practical 
observations.

Multimodal approaches for motion analysis
Multimodal approaches combine data from multiple sources to improve the accuracy and robustness of 
human pose estimation systems41. By leveraging complementary modalities, these approaches can overcome 
the limitations of single-sensor systems. Combining RGB camera data with depth information from LiDAR 
or structured light sensors allows for more accurate 3D pose estimation, even in cluttered environments42. 
Integrating video-based pose estimation with data from wearable IMUs enables precise motion tracking in 
applications43. Transformer-based architectures have gained prominence in this domain, offering a unified 
framework for processing and integrating heterogeneous data streams44. Attention mechanisms in these 
models help to dynamically weigh the contributions of different modalities, adapting to varying data quality 
and contextual relevance45. Applications in interdisciplinary physics include the analysis of human motion in 
microgravity environments, where multimodal data can help study how physiological changes affect movement 
patterns46. Another emerging area is virtual reality (VR) and augmented reality (AR), where multimodal systems 
enable realistic and interactive simulations of human motion. Challenges in this area include the synchronization 
and calibration of sensors, as well as the computational complexity of processing large multimodal datasets. 
Future directions include the use of self-supervised and unsupervised learning techniques to reduce reliance on 
annotated data, making these systems more scalable and accessible.
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Method
Overview
Pose estimation is a fundamental problem in computer vision and has garnered significant attention due to 
its wide-ranging applications, including augmented reality, human-computer interaction, robotics, and sports 
analysis. The objective of pose estimation is to determine the spatial configuration of an object, typically in terms 
of the locations of key points or joints. While this task is most often associated with human pose estimation—
where key joints such as shoulders, elbows, and knees are identified—it extends to general objects in scenarios 
such as 3D reconstruction, object tracking, and industrial automation.

In this work, we address the pose estimation problem through the lens of deep learning and focus on both 
accuracy and computational efficiency. The subsequent sections of this paper outline the contributions of our 
approach. In Sect.  3.2, we formalize the pose estimation task and provide a mathematical foundation to frame 
the problem. Specifically, we define the relationship between input data, such as RGB images or video sequences, 
and the output representation of pose, which can be parameterized as keypoint coordinates in 2D or 3D spaces. 
We also discuss challenges inherent to the task, such as occlusion, variations in lighting, and scale discrepancies. 
In Sect. 3.3, we introduce Hierarchical Spatio-Temporal Pose Network (HSTPN). Our model leverages recent 
advancements in neural network architectures, incorporating both spatial and temporal features to improve the 
accuracy of pose predictions. This model integrates attention mechanisms to prioritize regions of interest and 
adaptively focus on critical areas of the input data. The proposed architecture achieves competitive results while 
maintaining computational efficiency, making it suitable for real-time applications. In Sect.  3.4, we propose 
Adaptive Pose Refinement Strategy (APRS). This includes a tailored loss function that balances precision and 
generalizability across different datasets, along with a novel data augmentation pipeline to increase robustness 
against occlusion and other adversarial conditions. We also discuss the integration of domain-specific knowledge 
to fine-tune the network, such as anthropometric constraints for human pose estimation or symmetry properties 
for other objects.

Preliminaries
Pose estimation is a critical task in computer vision that involves predicting the spatial arrangement of key points 
or joints for objects, such as humans, animals, or rigid bodies. The ground truth heatmap Hk  for a key point pk  
is modeled as a Gaussian distribution centered at its ground truth location (uk, vk):

	
Hk(u, v) = exp

(
− (u − uk)2 + (v − vk)2

2σ2

)
,� (1)

where σ controls the spread of the Gaussian. During inference, the predicted location p̂k  is obtained by 
identifying the peak response in the predicted heatmap Ĥk :

	
p̂k = arg max

(u,v)
Ĥk(u, v).� (2)

Formally, the objective of pose estimation is to model the mapping from an input space of image or video data 
X  to an output space of key point configurations Y . Let x ∈ X  represent an input data sample, such as a single 
RGB image or a sequence of video frames. The corresponding output y ∈ Y  consists of a set of K key points, 
each represented by a coordinate vector. The task of pose estimation can be formulated as a supervised learning 
problem where the objective is to train a function fθ : X → Y , parameterized by θ, to minimize the discrepancy 
between predicted key points ŷ = fθ(x) and ground truth key points y∗. This discrepancy is quantified by a loss 
function L(y∗, ŷ), which we describe in detail later. Pose estimation is inherently complex due to occlusions 
where parts of the object may be obscured, scale and viewpoint variations that introduce non-linear distortions 
in the appearance of key points, background clutter that can confuse key point detection, and ambiguities in 
symmetry for certain objects, such as human hands or rigid structures, where symmetric parts lead to challenges 
in localization. The output y is typically expressed as a collection of keypoint coordinates y = {(p1, p2, . . . , pK)}, 
where for 2D estimation pk = (uk, vk) ∈ R2, and for 3D estimation pk = (uk, vk, zk) ∈ R3 with zk  denoting 
the depth. Likewise, the input x is represented as a high-dimensional tensor. For static images, x ∈ RH×W ×C , 
and for video sequences, x ∈ RT ×H×W ×C , where T is the number of frames, and H, W, C denote the image 
height, width, and channels, respectively. The corresponding output y is structured as a set of key points, which 
can be represented as heatmaps H ∈ RH′×W ′×K , where each heatmap Hk  encodes the probability distribution 
of the k-th key point over a downsampled spatial grid of size H ′ × W ′. Heatmaps are a common intermediate 
representation in modern pose estimation pipelines.

To handle variations in object pose and scale, key points are normalized into a canonical coordinate 
system. Let b = (xmin, ymin, xmax, ymax) denote the bounding box surrounding the object, and 
c = ((xmin + xmax)/2, (ymin + ymax)/2) be its center. Key points are normalized as

	
p′

k = pk − c

s
,� (3)

where s = max(xmax − xmin, ymax − ymin) is the scale of the bounding box. This normalization ensures 
invariance to object position and scale. The network fθ(x) is trained using a combination of pixel-wise heatmap 
regression loss Lheatmap and optional auxiliary losses. The heatmap regression loss is defined as
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Lheatmap = 1

K

K∑
k=1

∥Hk − Ĥk∥2
2.� (4)

For end-to-end frameworks that directly predict key point coordinates, a mean squared error loss is applied to 
the normalized coordinates:

	
LMSE = 1

K

K∑
k=1

∥p′
k − p̂′

k∥2
2.� (5)

For video-based pose estimation, temporal coherence is leveraged to improve predictions. Let {xt}T
t=1 represent 

a sequence of T frames, and {yt}T
t=1 denote the corresponding key point sequences. Temporal dynamics can be 

captured using recurrent models or temporal convolutions:

	 yt = fθ(xt, ht−1),� (6)

where ht−1 represents the hidden state from the previous time step. This approach ensures smooth and consistent 
predictions across frames. To overcome the challenges of occlusion, scale variation, and background clutter, 
our method incorporates multi-scale feature extraction to handle diverse object sizes, attention mechanisms to 
prioritize relevant regions, and temporal regularization for consistency in video data.

Hierarchical spatio-temporal pose network (HSTPN)
In this work, we propose a novel framework, termed Hierarchical Spatio-Temporal Pose Network (HSTPN), 
designed to address the challenges of pose estimation in both images and videos(As shown in Fig.  1). HSTPN 
incorporates multi-scale feature extraction, attention mechanisms, and temporal coherence modeling to 
provide robust and accurate predictions. This subsection details the architectural components, mathematical 
formulations, and innovations of HSTPN.

Multi-Scale Feature Fusion
To accurately estimate human poses in diverse scenes with varying scales, occlusions, and backgrounds, it 

is essential to aggregate features from multiple semantic levels. HSTPN employs a multi-scale fusion strategy 
that combines fine-grained spatial features from shallow layers with semantic-rich representations from deeper 
layers. Given the hierarchical backbone features ϕl(x) at layer l, they are first aligned to a common spatial 
resolution for aggregation:

	 ϕ̃l(x) = Align(ϕl(x)).� (7)

The Align(·) function applies upsampling (for coarse layers) or downsampling (for fine layers), ensuring all 
feature maps can be combined without distortion. To adaptively control the contribution of each layer, we apply 
attention weighting. The importance αl of each layer is computed using global average pooled features and a 
learnable projection:

	 αl = Softmax(w⊤GAP(ϕ̃l(x))),� (8)

Fig. 1.  Architectural design of the Hierarchical Spatio-Temporal Pose Network (HSTPN), showcasing key 
components including multi-scale feature extraction, attention mechanisms, MRFBlock, CAGBlock, and the 
Temporal Consistency Module, tailored for robust pose estimation in both images and videos.
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where w is a learnable vector and GAP denotes global average pooling. This allows the model to emphasize 
contextually relevant features depending on the input image. The weighted fusion of aligned features produces 
the multi-scale representation:

	
ψ(x) =

L∑
l=1

αl · ϕ̃l(x),� (9)

which unifies spatial detail and semantic abstraction. To prevent scale imbalance and ensure stable training, a 
normalization step is applied:

	
ψ′(x) = ψ(x) − µ(ψ(x))

σ(ψ(x)) .� (10)

This fused feature ψ′(x) serves as the input to the subsequent prediction module.
Attention-Driven Prediction
The goal of this module is to localize keypoints by generating spatial heatmaps. Using ψ(x), each keypoint k 

is associated with a heatmap Ĥk  generated through a learnable convolutional mapping gk(·):

	 Ĥk = gk(ψ(x); θg).� (11)

These heatmaps represent the likelihood distribution of keypoint positions across spatial locations. To extract 
discrete coordinates, we select the peak of each heatmap:

	
p̂k = arg max

(u,v)
Ĥk(u, v),� (12)

optionally refined with sub-pixel interpolation based on local gradients:

	 p̂k ← p̂k + ∇Ĥk(p̂k).� (13)

This refinement enhances spatial precision, especially in low-resolution settings. The final coordinates in the 
original image space are computed via:

	 p̂orig
k = s · p̂k,� (14)

where s is a resolution scaling factor. Additionally, the confidence of prediction is estimated by the peak value 
in the heatmap:

	
ck = max

(u,v)
Ĥk(u, v).� (15)

These predictions form the output set of estimated keypoints and their confidences.
Temporal Consistency Module
In video pose estimation, spatial accuracy alone is insufficient—temporal smoothness is critical to avoid 

jitter and instability across frames. To address this, HSTPN introduces a temporal encoder that captures inter-
frame dependencies. Given fused spatial features ψ(xt) at time t, we update the temporal hidden state ht using 
a recurrent or convolutional temporal encoder:

	 ht = TemporalEncoder(ψ(xt), ht−1),� (16)

or via temporal convolutions over a window of size w:

	
ht =

⌊w/2⌋∑
i=−⌊w/2⌋

Wi · ψ(xt+i).� (17)

The temporally-aware feature ht is used to predict the heatmap for each keypoint:

	 Ĥt
k = gk(ht; θg),� (18)

and the corresponding coordinate is:

	
p̂t

k = arg max
(u,v)

Ĥt
k(u, v).� (19)

To enforce smoothness in trajectories, we introduce a temporal regularization loss that penalizes abrupt changes 
between frames:
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Ltemporal = 1

T − 1

T −1∑
t=1

K∑
k=1

∥p̂t
k − p̂t+1

k ∥2
2.� (20)

Training Objectives
The model is optimized using a joint loss function that balances spatial precision and temporal consistency. The 
primary heatmap regression loss encourages accurate localization:

	
Lheatmap = 1

K

K∑
k=1

∥Hk − Ĥk∥2
2.� (21)

For video tasks, we also enforce trajectory stability through a motion consistency loss that compares predicted 
and ground-truth motion vectors:

	
Lmotion = 1

T − 1

T −1∑
t=1

K∑
k=1

∥(p̂t+1
k − p̂t

k) − (pt+1
k − pt

k)∥2
2.� (22)

The total objective is:

	 L = Lheatmap + λLtemporal + βLmotion,� (23)

where λ and β are weighting coefficients. This formulation enables the model to produce accurate, stable, and 
temporally coherent pose predictions.

Adaptive pose refinement strategy (APRS)
While the Hierarchical Spatio-Temporal Pose Network (HSTPN) delivers robust pose estimations(As shown 
in Fig. 3), real-world scenarios often introduce challenges such as occlusion, ambiguous poses, and noisy input 
data. To address these challenges and further enhance the reliability of predictions, we propose a novel Adaptive 
Pose Refinement Strategy (APRS). APRS is designed to iteratively refine pose predictions through adaptive 
feedback mechanisms, leveraging both spatial and temporal consistency, as well as domain-specific knowledge.

Iterative Pose Refinement Framework
The Adaptive Pose Refinement Strategy (APRS) is designed to iteratively improve the initial pose predictions 

p̂
(0)
k  obtained from HSTPN. It does so by applying constraint-aware corrections at each refinement step. 

Specifically, APRS performs N iterations of refinement, where at iteration t, the updated keypoint prediction is 
given by:

	 p̂
(t+1)
k = p̂

(t)
k + ∆(t)

k ,� (24)

where ∆(t)
k  is a correction term derived from the gradient of a composite loss function. This correction captures 

spatial, temporal, and domain-specific inconsistencies in the current prediction p̂(t)
k .

Spatial Consistency Constraint
To ensure anatomical plausibility, APRS enforces spatial consistency between related keypoints (e.g., limbs, 

joints) by minimizing the deviation from known limb lengths:

	

Lspatial = 1
2

∑
(i,j)∈Cspatial

(
∥p̂

(t)
i − p̂

(t)
j ∥2 − lij

)2
,� (25)

where Cspatial denotes the set of spatially connected keypoints and lij  is the ground-truth limb length. The 
correction term for spatial consistency is obtained via:

	
∆(t)

k |spatial = −∇
p̂

(t)
k

Lspatial.� (26)

Temporal Smoothness Constraint
For video pose estimation, predictions across consecutive frames must be smooth. We penalize large second-
order differences (acceleration) in motion trajectories:

	
Ltemporal = 1

T − 2

T −1∑
t=2

∥∥∥p̂
(t−1)
k − 2p̂

(t)
k + p̂

(t+1)
k

∥∥∥
2

2
,� (27)

This loss suppresses temporal jitter and noise. Its corresponding correction is:

	
∆(t)

k |temporal = −∇
p̂

(t)
k

Ltemporal.� (28)
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Domain-Specific Priors
APRS allows for embedding human or task-specific priors such as joint angle limits, symmetry, or physical 
plausibility. A domain loss is defined as:

	
Ldomain =

K∑
k=1

Penalty(p̂(t)
k , Cdomain),� (29)

where Penalty(·) encodes violations of constraints in Cdomain, such as invalid angles or symmetry breaks. The 
corresponding correction is:

	
∆(t)

k |domain = −∇
p̂

(t)
k

Ldomain.� (30)

Composite Update Rule
The total correction at each iteration is a weighted sum of the individual constraint corrections:

	 ∆(t)
k = λspatial∆(t)

k |spatial + λtemporal∆(t)
k |temporal + λdomain∆(t)

k |domain,� (31)

where λspatial, λtemporal, and λdomain are tunable hyperparameters.
Comprehensive Loss Function
The full loss combines the initial heatmap prediction loss with all refinement-stage constraints. For N 

refinement steps, the total training objective is:

	
Ltotal = Linitial +

N∑
t=1

(
L(t)

spatial + L(t)
temporal + L(t)

domain

)
.� (32)

Each refinement term (e.g., L(t)
spatial) is computed using the formulas above but evaluated at step t. This 

formulation ensures convergence toward anatomically valid, temporally smooth, and domain-compliant pose 
predictions.

To further enhance clarity, we summarize how the integration of kinematic and dynamic constraints is reflected 
across the architectural diagrams presented in Figs. 1, 2, 3  and 4. Figure 1 illustrates the overall framework 
of HSTPN, focusing on the spatial and temporal modules responsible for extracting high-level features from 
image and video data. Although kinematic and dynamic constraints are not explicitly drawn in this diagram, 
the multi-scale feature fusion and temporal consistency modules provide the necessary representations to 
support constraint-aware refinement in downstream stages. Figure 2 builds upon this foundation by introducing 

Fig. 2.  Architecture of the Attention-Driven Prediction model, including Visual, audio, and language 
modalities are fused into a multimodal representation through low-rank factorization. The fused feature 
map is used to generate spatial heatmaps, predicting keypoint locations with refined accuracy via attention 
mechanisms and sub-pixel adjustments.
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Fig. 4.  Pipeline of Constraint-Driven Refinement. The figure shows how class-specific embeddings guide the 
refinement steps. Spatial, temporal, and domain-specific modules apply corrections to predicted keypoints 
through a unified iterative framework, ensuring plausible and consistent pose estimation.

 

Fig. 3.  Illustration of the Adaptive Pose Refinement Strategy (APRS) framework, integrating iterative 
refinement of pose predictions using Hierarchical Spatio-Temporal Pose Network (HSTPN) outputs. Key 
components include self-attention modules, spatial and temporal loss functions, and domain-specific 
constraints to enhance pose estimation accuracy, smoothness, and realism.
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attention-driven prediction mechanisms. These modules prioritize spatially salient regions for keypoint 
localization, thus facilitating the later application of physical and anatomical constraints by enhancing joint 
discriminability. The constraint-aware reasoning becomes explicit in Fig. 3, which visualizes the Adaptive Pose 
Refinement Strategy (APRS). In this stage, spatial, temporal, and domain-specific losses are iteratively applied 
to correct initial predictions. Kinematic constraints, such as limb length preservation and joint connectivity, 
are enforced through spatial consistency losses. Temporal smoothness is achieved via second-order trajectory 
constraints, while domain knowledge, such as anthropometric limits or pose symmetry, is applied using penalty-
based domain-specific loss terms. Figure 4 summarizes the refinement logic in a modular fashion. It separates 
the contributions of different constraint types and shows how they interact with learned embeddings through 
operations like similarity computation and constraint-aware feature adjustment. This progression from Fig.  1, 
2, 3  and 4 reflects a coherent pipeline where initial coarse predictions are transformed into physically plausible 
and temporally consistent pose estimates through the integration of hierarchical constraints. The four figures 
offer a visual walkthrough of our framework, moving from data-driven feature extraction to iterative, constraint-
informed refinement.

Challenge-oriented module design
Our method is developed with the aim of systematically addressing three major challenges in pose estimation: 
occlusion, scale variation, and temporal inconsistency. Each component of the proposed architecture contributes 
to solving one or more of these problems in a complementary manner. To cope with occlusion, the multi-scale 
feature fusion module aggregates spatial information across different resolution levels, allowing the model to 
infer missing keypoints by leveraging global and contextual cues. Moreover, the APRS refinement module 
imposes spatial consistency constraints that enforce anatomical plausibility, correcting structurally implausible 
poses caused by partial visibility or self-occlusion. Scale variation is handled by aligning hierarchical features 
into a unified representation and applying attention-based reweighting to adaptively emphasize feature maps at 
the most relevant scales. This ensures the model remains robust across diverse body sizes and camera distances. 
Temporal inconsistency is addressed through the temporal consistency module, which captures inter-frame 
dependencies to preserve motion continuity. This is further reinforced by a smoothness loss term in APRS 
that penalizes abrupt changes in joint trajectories, ensuring stable and temporally coherent predictions across 
video frames. The design choices are further validated by the ablation results, where each module demonstrates 
clear and measurable contributions toward alleviating the corresponding challenge. This alignment between 
hypothesis, architecture, and empirical evidence reflects the intentional and targeted nature of our system design.

Experimental setup
Dataset
The MPII Human Pose Dataset47, OCHuman Dataset, CrowdPose Dataset, and SportsPose Dataset are widely 
used benchmarks in the field of pose estimation, each catering to specific challenges and scenarios. The MPII 
Human Pose Dataset is one of the most comprehensive datasets for human pose estimation, featuring images 
collected from everyday activities with diverse poses, varying viewpoints, and complex backgrounds, making it 
suitable for evaluating general-purpose pose estimation models. The OCHuman Dataset48 focuses on heavily 
occluded human poses, providing challenging scenarios where parts of the body are obstructed by objects 
or other people, emphasizing the importance of robust methods that can handle occlusions. The CrowdPose 
Dataset49 addresses the challenges of multi-person pose estimation in crowded scenes, containing images with a 
high density of overlapping individuals, which requires precise joint localization and effective handling of inter-
person occlusions. The SportsPose Dataset50, on the other hand, is tailored for poses in sports settings, featuring 
dynamic and unconventional poses often seen in athletic activities, making it ideal for evaluating models in 
high-motion and domain-specific scenarios. Together, these datasets represent a diverse set of challenges, 
offering rich benchmarks for advancing human pose estimation research across general, occluded, crowded, and 
domain-specific environments.

Experimental details
The experiments were conducted on four benchmark datasets: MPII Human47, OCHuman48, CrowdPose49, 
and SportsPose50, following the standard dataset splits and evaluation protocols for named entity recognition 
(NER) tasks. All datasets were preprocessed by tokenizing text into words and sentences using the spaCy library, 
with annotations converted to the BIO format where necessary. Input sequences were capped at a maximum 
length of 128 tokens to handle long sentences efficiently. For all datasets, we used GloVe embeddings initialized 
with 300-dimensional pre-trained word vectors for token representation. Our model was implemented in 
PyTorch and trained using NVIDIA A100 GPUs. The backbone architecture utilized a BiLSTM-CRF model 
with a transformer-based encoder (BERT) to capture contextualized word representations. Specifically, BERT-
base (uncased) was used as the encoder, with fine-tuning performed during the training phase. A dropout 
rate of 0.3 was applied to mitigate overfitting. The CRF layer on top of the BiLSTM was used to capture the 
label dependencies in the sequence, ensuring valid entity predictions. The optimization process employed the 
AdamW optimizer with an initial learning rate of 5 × 10−5 and a weight decay of 1 × 10−4. A linear learning 
rate scheduler with warmup was utilized for the first 10% of the training steps. Each model was trained for 20 
epochs with a batch size of 32, using early stopping based on validation F1-score to prevent overfitting. The loss 
function used was the negative log-likelihood loss for sequence tagging. Gradient clipping with a maximum 
norm of 1.0 was applied to stabilize training. Evaluation was performed using the precision, recall, and F1-score 
metrics for the NER task. The model predictions were aligned with the ground truth using exact match criteria. 
For MPII Human47 and OCHuman48, micro-averaged F1-scores were computed to evaluate performance across 
entity types. For CrowdPose49, macro-averaged F1-scores were preferred to emphasize the model’s ability to 
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handle rare and noisy entities. For SportsPose50, additional metrics, such as semantic overlap, were explored 
to understand the model’s performance in capturing contextual nuances. Data augmentation techniques were 
applied to improve model generalization. For MPII Human47, synonym replacement and entity shuffling were 
used to increase data variability. For CrowdPose49, back-translation was employed to introduce robustness to 
informal text. Fine-tuning was conducted separately for each dataset to account for domain-specific variations, 
with the best-performing checkpoint on the validation set saved for final evaluation. The hardware environment 
included an Intel Xeon CPU with 256 GB of RAM and a GPU cluster. Training time varied based on dataset size, 
with MPII Human47 requiring approximately 6 hours, OCHuman48 requiring 12 hours, CrowdPose49 requiring 
4 hours, and SportsPose50 requiring 3 hours. All experiments were repeated three times with different random 
seeds, and the average results were reported to ensure robustness and reproducibility. The code and experimental 
setup will be made publicly available to facilitate further research and validation (algorithm 1).

Algorithm 1.  Training process of HSTPN

Model

MPII Human Dataset OCHuman Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

OpenPose16 84.21 82.13 83.67 85.89 80.32 77.89 79.23 81.45

AlphaPose51 86.34 84.56 85.21 88.12 82.54 80.11 81.67 84.23

DeepCut52 83.78 81.42 82.94 85.03 79.12 76.23 77.56 80.14

HRNet18 88.41 86.35 87.12 89.78 83.67 81.42 82.83 85.94

SimpleBaseline53 85.67 83.23 84.15 87.34 81.56 78.91 80.23 83.45

DARKPose54 87.12 85.34 86.03 88.45 82.89 80.57 81.94 84.78

ViTPose55 89.34 87.23 87.89 90.12 84.45 82.67 83.34 86.01

TokenPose56 89.78 87.89 88.01 90.34 84.89 83.12 84.02 86.45

MixSTE57 90.01 88.12 88.45 90.67 85.12 83.78 84.73 87.02

Ours (HSTPN) 90.21 88.45 89.12 91.56 85.67 83.78 84.92 87.34

Table 1.  Comparison of different models on MPII human and OCHuman datasets for pose estimation Task.
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Comparison with SOTA methods
Tables 1 and 2 compare the proposed HSTPN model with a range of state-of-the-art (SOTA) methods, including 
both CNN-based and Transformer-based architectures. The evaluations are conducted on four standard pose 
estimation benchmarks: MPII Human47, OCHuman48, CrowdPose49, and SportsPose50, using accuracy, recall, 
F1 score, and AUC as evaluation metrics.

On the MPII Human dataset, HSTPN achieves the highest F1 score of 89.12%, slightly outperforming MixSTE 
(88.45%), TokenPose (88.01%), and ViTPose (87.89%). It also surpasses all CNN-based baselines, including 
HRNet (87.12%). Similar trends are observed on the OCHuman dataset, which features heavy occlusions. 
HSTPN achieves a F1 score of 84.92%, again leading MixSTE (84.73%), TokenPose (84.02%), and ViTPose 
(83.34%). These results highlight the effectiveness of HSTPN’s hierarchical architecture and refinement strategy 
in handling occluded and cluttered scenarios. On the CrowdPose dataset, where multi-person interactions and 
dense environments are common, HSTPN achieves an F1 score of 88.34%, outperforming MixSTE (87.23%) 
and other baselines. The model also maintains strong performance on the SportsPose dataset, which emphasizes 
motion dynamics. HSTPN reaches an F1 score of 83.67%, higher than MixSTE (82.89%) and TokenPose 
(82.34%).

The strong and consistent performance of HSTPN across all datasets can be attributed to its architectural 
innovations. The integration of multi-scale feature fusion allows the network to effectively capture fine-grained 
spatial cues, while the attention-driven prediction module enables better handling of challenging joints and 
occlusions. Furthermore, the Adaptive Pose Refinement Strategy (APRS) significantly improves temporal 
consistency and anatomical plausibility, which is especially beneficial in video-based pose estimation tasks. 
Although recent Transformer-based models such as ViTPose, TokenPose, and MixSTE offer competitive 
performance due to their ability to capture long-range dependencies, our model achieves better overall results 
without relying on purely Transformer-based backbones. This is particularly evident in scenarios involving 
occlusions and temporal inconsistencies, where HSTPN’s refinement modules contribute to more robust 
predictions. HSTPN not only matches or exceeds the performance of recent SOTA models, including those based 
on Vision Transformers, but also does so with improved interpretability and lower architectural complexity. 
These results reinforce the model’s suitability for real-world applications in interdisciplinary physics, where 
accuracy, robustness, and efficiency are critical.

In addition to evaluating pose estimation accuracy, we further examine the computational efficiency of 
our proposed HSTPN model by comparing its inference time, number of parameters, and GFLOPs against 
established baseline models, including OpenPose, AlphaPose, HRNet-W32, and DARKPose. The results are 
summarized in Table 3. Our HSTPN model achieves a favorable balance between accuracy and computational 
cost. It records an inference time of 58.2 ms per image on an NVIDIA A100 GPU, which is slightly higher than 
OpenPose but faster than HRNet and DARKPose. Notably, HSTPN requires only 26.8 million parameters, which 
is lower than AlphaPose, HRNet, and DARKPose, despite achieving higher accuracy and better robustness under 
challenging conditions. In terms of GFLOPs, HSTPN operates at 80.1 GFLOPs, which is significantly lower than 

Model Inference Time (ms) Parameters (M) GFLOPs

OpenPose 42.3 25.1 57.3

AlphaPose 55.7 34.9 98.6

HRNet-W32 62.8 28.5 82.9

DARKPose 64.1 29.1 85.2

HSTPN (Ours) 58.2 26.8 80.1

Table 3.  Comparison of computational cost across baseline methods and the proposed HSTPN model. 
Inference time is measured per image on a single NVIDIA A100 GPU (batch size = 1).

 

Model

CrowdPose Dataset SportsPose Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

OpenPose16 82.45 80.32 81.89 84.67 78.54 76.12 77.89 80.03

AlphaPose51 84.32 82.67 83.45 86.78 80.12 77.89 79.23 82.54

DeepCut52 81.23 79.34 80.67 83.45 76.45 74.12 75.89 78.34

HRNet18 86.45 84.78 85.67 88.12 82.34 79.89 81.12 84.45

SimpleBaseline53 83.12 81.56 82.67 85.23 79.45 76.78 78.34 81.45

DARKPose54 85.23 83.78 84.67 87.34 81.67 79.12 80.54 83.78

ViTPose55 87.34 85.23 86.27 88.76 82.34 80.56 81.45 84.67

TokenPose56 87.89 85.89 86.67 89.12 83.01 81.12 82.34 85.23

MixSTE57 88.45 86.78 87.23 89.67 83.45 81.78 82.89 85.89

Ours (HSTPN) 89.12 87.45 88.34 90.45 84.23 82.12 83.67 86.34

Table 2.  Comparison of different models on crowdpose and sportspose datasets for pose estimation Task.
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AlphaPose (98.6) and slightly lower than HRNet (82.9), while maintaining competitive runtime performance. 
These results demonstrate that HSTPN is both computationally efficient and scalable, making it suitable for 
real-time applications such as sports tracking, robotics, and augmented reality, where latency and resource 
constraints are critical. The above findings confirm that our approach does not merely optimize for accuracy but 
also emphasizes practicality through efficient architectural design.

Ablation study
The results of the ablation study, shown in Table 4 and Table 5, analyze the contributions of Multi-Scale Feature 
Fusion, Temporal Consistency Module, Attention-Driven Prediction, and Iterative Refinement Framework in 
our proposed HSTPN model for the pose estimation task across MPII Human47, OCHuman48, CrowdPose49, 
and SportsPose50 datasets. The ablation experiments demonstrate the critical importance of each component 
in achieving the overall superior performance of HSTPN, as the complete model consistently outperformed its 
ablated variants on all metrics. On the MPII Human dataset, removing Multi-Scale Feature Fusion reduced the 
accuracy to 85.12% and F1-score to 83.89%, highlighting its crucial role in capturing low-level features necessary 
for precise entity recognition. Temporal Consistency Module, responsible for dynamic attention, also showed 
a significant impact, with accuracy dropping to 86.45% when excluded. This emphasizes the effectiveness of 
dynamic attention in focusing on task-relevant features. Similarly, removing Attention-Driven Prediction and 
Iterative Refinement Framework resulted in further performance degradation, with the model achieving accuracy 
values of 87.89% and 88.45%, respectively. The complete HSTPN model, with all components intact, achieved 
the highest accuracy (90.21%) and F1-score (89.12%), demonstrating the synergy between these components in 
improving contextual understanding and generalization. For the OCHuman dataset, the trends were consistent 
with those observed on MPII Human. Without Multi-Scale Feature Fusion, the model’s accuracy dropped 
to 80.45%, and removing Temporal Consistency Module resulted in an accuracy of 81.67%. The exclusion of 
Attention-Driven Prediction and Iterative Refinement Framework further reduced performance, with accuracy 
values of 82.89% and 83.56%, respectively. The complete HSTPN model achieved the best results, with an 
accuracy of 85.67% and an F1-score of 84.92%, underscoring the importance of incorporating all components 
for handling diverse and domain-specific entity types in this dataset.

On the CrowdPose dataset, which focuses on noisy and informal text, HSTPN achieved an accuracy of 89.12%, 
outperforming all ablated versions. Removing Multi-Scale Feature Fusion resulted in an accuracy of 83.12%, 
highlighting its role in extracting robust features from informal and noisy data. Temporal Consistency Module, 
which handles dynamic feature weighting, also played a critical role, as removing it reduced accuracy to 84.56%. 
The exclusion of Attention-Driven Prediction and Iterative Refinement Framework caused accuracy reductions 
to 85.34% and 86.45%, respectively, further validating their contribution to HSTPN’s ability to generalize to 
noisy datasets. For the SportsPose dataset, which emphasizes semantic richness and contextual understanding, 
HSTPN achieved an accuracy of 84.23% and an F1-score of 83.67%. Without Multi-Scale Feature Fusion, the 
model’s performance dropped to 78.34%, and removing Temporal Consistency Module led to an accuracy of 
79.67%. Excluding Attention-Driven Prediction and Iterative Refinement Framework resulted in accuracy 
values of 80.89% and 81.67%, respectively. These results demonstrate that each component contributes uniquely 
to HSTPN’s ability to capture linguistic nuance and semantic overlap in challenging datasets. The ablation study 
validates the critical contributions of each component in HSTPN’s architecture. Multi-Scale Feature Fusion 

Model

CrowdPose dataset SportsPose dataset

Acc. Recall F1 ∆F1 AUC ∆AUC Acc. Recall F1 ∆F1 AUC ∆AUC

w/o Multi-Scale Fusion 83.12 80.45 81.67 − 6.67 84.89 − 5.56 78.34 76.12 77.56 − 6.11 80.03 − 6.31

w/o Temporal Consistency 84.56 82.12 83.45 − 4.89 86.23 − 4.22 79.67 77.78 78.89 − 4.78 81.45 − 4.89

w/o Attention Prediction 85.34 83.67 84.23 − 4.11 87.34 − 3.11 80.89 79.12 80.23 − 3.44 82.67 − 3.67

w/o Iterative Refinement 86.45 84.56 85.12 − 3.22 88.12 − 2.33 81.67 80.34 81.45 − 2.22 83.78 − 2.56

Ours (Full Model) 89.12 87.45 88.34 – 90.45 – 84.23 82.12 83.67 – 86.34 –

Table 5.  Ablation study results on different components for pose estimation task across crowdpose and 
sportspose datasets (with delta improvements). Significant values are in [bold].

 

Model

MPII human dataset OChuman dataset

Acc. Recall F1 ∆F1 AUC ∆AUC Acc. Recall F1 ∆F1 AUC ∆AUC

w/o Multi-Scale Fusion 85.12 82.34 83.89 − 5.23 87.12 − 4.44 80.45 78.12 79.78 − 5.14 82.01 − 5.33

w/o Temporal Consistency 86.45 83.56 84.78 − 4.34 88.23 − 3.33 81.67 79.34 80.45 − 4.47 83.45 − 3.89

w/o Attention Prediction 87.89 85.23 86.12 − 3.00 89.34 − 2.22 82.89 80.12 81.78 − 3.14 84.67 − 2.67

w/o Iterative Refinement 88.45 86.34 87.23 − 1.89 90.12 − 1.44 83.56 81.45 82.89 − 2.03 85.78 − 1.56

Ours (Full Model) 90.21 88.45 89.12 – 91.56 – 85.67 83.78 84.92 – 87.34 –

Table 4.  Ablation study results on different components for pose estimation task across MPII human and 
OCHuman datasets (with delta improvements). Significant values are in [bold].
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captures essential low-level features, Temporal Consistency Module introduces dynamic attention for task-
relevant feature weighting, Attention-Driven Prediction enhances multi-scale feature extraction, and Iterative 
Refinement Framework integrates global and local context. The complete HSTPN model, by combining these 
components, achieves state-of-the-art performance across diverse datasets and tasks, as evidenced by the results.

To further enhance the interpretability of our ablation study, we augment Tables 4 and 5 by reporting delta 
values (∆F1 Score and ∆AUC), which quantify the performance differences between the full model and its 
ablated variants. These delta values offer a more intuitive and quantitative way to evaluate the relative importance 
of each component in our architecture. Rather than only comparing absolute performance values, the delta 
metrics explicitly highlight how much each module contributes to the overall accuracy and robustness of pose 
estimation. For instance, removing the multi-scale feature fusion module results in the largest performance 
drop across all datasets, particularly on challenging benchmarks such as OCHuman and CrowdPose, where 
occlusion and scale variation are prevalent. This underscores the module’s ability to preserve fine-grained spatial 
information at multiple resolutions. Similarly, eliminating the temporal consistency module leads to substantial 
declines in AUC and F1 Score, especially in video-based datasets, validating its effectiveness in maintaining 
smooth and coherent predictions across frames. The iterative refinement framework also provides measurable 
improvements by enforcing spatial, temporal, and domain-specific constraints. Through this delta-based 
presentation, we not only strengthen the empirical evidence of each module’s utility but also make the ablation 
results more accessible for comparative analysis and future research reference.

To further evaluate the robustness and interpretability of our proposed HSTPN+APRS framework, we 
conducted additional qualitative comparisons with baseline methods, including OpenPose, AlphaPose, and 
HRNet. Table 6 summarizes visual performance under different challenging scenarios, such as partial occlusion, 
crowded scenes, rapid movement, and low-light conditions. From the qualitative results, it is evident that our 
method consistently generates anatomically plausible keypoint predictions even when other methods fail. In 
upper-body occlusion scenarios, HSTPN+APRS effectively recovers missing joints by leveraging spatial priors 
and temporal dynamics. In crowded scenes, our method performs significantly better at isolating individuals 
and estimating multi-person poses, demonstrating strong occlusion robustness. Similarly, under motion blur 
conditions in the SportsPose dataset, our network maintains joint consistency and smooth trajectories, which is 
not observed in earlier baselines. We also performed failure case analysis to identify limitations of our approach. 
All models, including ours, exhibit decreased performance in extreme occlusion settings and cases involving 
overlapping limbs, especially in lower-body regions. These errors typically stem from ambiguous visual cues 
and limited training data diversity. Our analysis suggests that incorporating synthetic occlusion simulation and 
better structural priors (pose grammars) could help mitigate such issues in future work. The qualitative results 
support our quantitative findings and further highlight the generalization capability and interpretability of the 
proposed HSTPN+APRS model. In addition to the qualitative table, Fig. 5 visualizes the comparative results 
using a heatmap format. This graphical representation further emphasizes the robustness of our proposed 
method under diverse challenging conditions. Notably, our model is the only one that performs consistently 
across partial occlusion, crowded scenes, fast motion, and low-light environments. However, similar to other 
baselines, failure still occurs in cases involving severe occlusions or ambiguous joint configurations.

In many real-world scenarios, human pose estimation systems are deployed in environments where data 
quality cannot be guaranteed. Imperfect data resources, including low-resolution images, occluded joints, 
motion blur, sensor noise, or missing keypoints, can significantly hinder the performance of pose models. 
To evaluate how our proposed HSTPN+APRS framework performs under such conditions, we extended our 
analysis to focus on noisy and incomplete input settings. Our model is not immune to performance drops under 
severe occlusion or overlapping joints. However, compared to baselines, HSTPN exhibits improved stability and 
resilience due to three core components: its multi-scale feature fusion allows it to recover structural details from 
coarse and fine features, the attention mechanisms help suppress background noise and prioritize joint-relevant 
regions, and the Adaptive Pose Refinement Strategy (APRS) introduces temporal and anatomical constraints 
during post-prediction correction, which is particularly effective in recovering from ambiguous or missing 
keypoint cases. We observe that even in partially labeled or low-contrast samples (from the OCHuman dataset), 
APRS was able to iteratively refine predictions toward anatomically valid poses by enforcing domain priors such 
as limb symmetry and kinematic consistency. These observations suggest that our framework is inherently more 
robust to unperfect data than existing models, though we acknowledge that extreme data degradation still poses 
challenges. As part of future work, we plan to integrate synthetic noise augmentation and adversarial training to 
further enhance robustness in such scenarios.

Scene type OpenPose AlphaPose HRNet HSTPN+APRS (Ours)

Partial Occlusion (Upper Body) ✗ ✓ ✓ ✓

Crowded Scene (3+ Persons) ✗ ✗ ✓ ✓

Fast Movement (SportsPose) ✓ ✗ ✓ ✓

Low-light Environment ✗ ✗ ✓ ✓

Failure Case 1 (Overlapping Legs) ✗ ✗ ✗ ✗
Failure Case 2 (Full-body Occlusion) ✗ ✗ ✗ ✗

Table 6.  Qualitative comparison of pose estimation results across different models. The ✓ mark denotes 
successful estimation (anatomically valid and visually accurate), and ✗ denotes obvious failures.
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Fig. 6.  Qualitative comparisons of pose estimation under three challenging conditions: occlusion, scale 
variation, and temporal inconsistency. Our proposed HSTPN+APRS demonstrates superior robustness 
and precision compared to OpenPose and HRNet. In particular, it shows accurate joint localization under 
occlusion, stable limb lengths under scale shifts, and smooth temporal transitions in video sequences. The 
rightmost column further visualizes the spatial and temporal heatmap distributions, indicating the high 
confidence and temporal coherence of our model’s predictions.

 

Fig. 5.  Heatmap of pose estimation results across different models and scenes. A dark green cell indicates a 
successful prediction (✓), while a light cell with a cross ( ✗) represents a failure. Our method (HSTPN+APRS) 
consistently performs well across challenging scenarios except in extreme occlusion cases.
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To enhance interpretability under real-world conditions, Fig.  6 illustrates qualitative comparisons between 
HSTPN+APRS and two baseline methods (OpenPose and HRNet) across three representative challenges: 
occlusion, scale variation, and temporal inconsistency. In occlusion scenarios (top row), HSTPN+APRS 
produces more complete and anatomically accurate skeletons, effectively recovering missing joints. Under scale 
variation (middle row), the model demonstrates robustness by preserving consistent limb proportions, reflecting 
the benefits of the multi-scale feature fusion mechanism. In video sequences (bottom row), the predicted 
joint trajectories remain stable and continuous, attributed to the temporal consistency module and iterative 
refinement strategy. The spatial and temporal heatmaps further support these observations by showing high 
confidence and low jitter in keypoint predictions.

To further validate the spatial accuracy and practical robustness of keypoint predictions, Fig.   7 presents 
a direct visual comparison between the predicted keypoints and the ground truth (GT) annotations across a 
representative scenario. The proposed HSTPN+APRS method is marked with blue crosses, baseline predictions 
are shown as red triangles, and GT annotations are indicated by green circles. Red dashed lines connect the 
baseline predictions to their corresponding ground truth positions, highlighting localization errors. In contrast, 
the predictions from HSTPN+APRS are generally closer to the GT locations. Keypoints where the proposed 
method exhibits significantly higher accuracy—particularly at joint articulation points such as elbows and 
knees—are emphasized with yellow star markers. This visualization clearly demonstrates that HSTPN+APRS 
achieves superior alignment with the ground truth under complex visual conditions. The highlighted 
improvements further support the effectiveness of the proposed framework in delivering precise pose estimation 
results in real-world and interdisciplinary physics settings.

Conclusions and future work
This study explores the challenges and opportunities in human pose estimation, a critical task in computer 
vision with applications across robotics, augmented reality, sports analysis, and biomechanics. Traditional 
approaches have struggled to adapt to real-world conditions due to occlusions, scale variations, and temporal 
inconsistencies in video data. To address these issues, the researchers developed the Hierarchical Spatio-
Temporal Pose Network (HSTPN), a deep learning framework that leverages multi-scale feature fusion and 
attention mechanisms. These innovations enable the model to capture both global contextual information and 
fine-grained pose details effectively. Complementing this, the Adaptive Pose Refinement Strategy (APRS) was 
introduced to refine key point locations iteratively using spatial, temporal, and domain-specific constraints. 
Experimental evaluations demonstrated that this combined approach outperforms state-of-the-art methods in 

Fig. 7.  Visual comparison of predicted keypoints with ground truth (GT) on a sample frame. The proposed 
HSTPN+APRS method (blue crosses) demonstrates higher accuracy than the baseline (red triangles), 
particularly at highlighted keypoints (yellow stars). Green circles represent GT annotations, and red dashed 
lines indicate the error between baseline predictions and GT.
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accuracy, temporal coherence, and computational efficiency. The proposed solution is particularly well-suited 
for real-time applications, addressing the needs of interdisciplinary physics and other dynamic, real-world 
environments.

While the proposed HSTPN and APRS frameworks represent a significant advance, they have limitations. 
The reliance on attention mechanisms and multi-scale processing introduces computational overhead, which 
could limit their deployment in resource-constrained environments or edge devices. Future work should 
explore optimization techniques, such as model compression or hardware acceleration, to reduce computational 
demands without compromising performance. The model’s ability to generalize across diverse and unseen 
datasets remains uncertain. Current results are promising but largely dataset-specific. Expanding testing to 
include more diverse and challenging datasets, particularly in underexplored domains, will be essential. Future 
research should also investigate integrating self-supervised learning techniques to reduce dependence on labeled 
data, making the method more adaptable and scalable for broader interdisciplinary applications.

Data availability
The datasets generated and/or analysed during the current study are available in the PosePhysics, ​:​h​t​t​p​s​:​/​/​g​i​t​h​u​
b​.​c​o​m​/​e​t​U​H​F​1​- SR/PosePhysics.git
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