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In the pursuit of sustainable industrial operations, efficient energy management has become a critical 
challenge, particularly under scenarios where the electrical grid is restricted to serving industrial 
loads. This study addresses the urgent need for intelligent forecasting and scheduling frameworks 
by proposing a hybrid Gene Expression Programming Adaptive Neuro-Fuzzy Inference System 
(GEP-ANFIS) for predictive energy management in hybrid renewable energy systems. The model 
was evaluated using standard forecasting metrics. For solar PV prediction, GEP-ANFIS achieved low 
short- and long-term error rates, with MAPE values below 6% and 8%, respectively. For industrial load 
forecasting, the model exhibited high precision, maintaining MAPE values under 2.5% (short-term) and 
under 3.5% (long-term). These results demonstrate consistent improvements over conventional ANFIS 
and GEP models. Economic evaluation confirmed significant cost benefits. In a Grid-only configuration, 
GEP-ANFIS reduced daily energy costs by 7.4% compared to ANFIS. Greater efficiency was observed 
in PV and Battery-only and Grid-connected PV-Battery setups, where GEP-ANFIS achieved daily cost 
reductions of 6.5% and 6.3%, respectively. Over a 20-year planning horizon, the system recorded a 
6.5% reduction over ANFIS and a 37.7% improvement over HOMER. A sensitivity analysis was also 
conducted to assess the robustness of the GEP-ANFIS model under varying solar PV power, and 
battery storage capacity. Results indicated the robustness, efficiency, and scalability of the GEP-ANFIS 
controller, especially in resource-constrained, PV-dominated microgrids, making it a strategic solution 
for sustainable industrial energy management while preserving battery longevity by avoiding deep 
discharge scenarios.

Keywords  Energy management system, GEP-ANFIS, Load forecasting, Solar PV, Economic optimization, 
Predictive scheduling, Hybrid energy systems

Uganda’s industrial sector faces significant energy challenges, primarily characterized by grid instability, high 
costs, and long-term financial burdens due to their reliance on the grid, exacerbated by rising energy demands 
and fluctuating prices. Despite abundant energy resources, including hydropower and biomass, only about 
28% of the population has access to electricity, with urban areas, particularly slums, experiencing severe access 
deficits due to high tariffs and unreliable supply1,2. The high costs of electricity significantly impact small and 
medium-sized enterprises (SMEs), leading to increased production costs that make local goods less competitive 
compared to imports3,4. Additionally, the reliance on biomass contributes to environmental degradation and 
energy poverty, further complicating the energy landscape5,6. The implementation of energy policies has been 
hindered by bureaucratic challenges and financial constraints, which exacerbate the issues of accessibility and 
affordability7,8. Thus, addressing these challenges is crucial for Uganda’s socio-economic development and the 
sustainability of its industrial sector9.

The integration of smart grid technologies and demand-side management (DSM) strategies can mitigate 
these issues by optimizing energy usage and reducing operational costs10. For instance, implementing an energy 

1Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, 81441 
Ha’il, Saudi Arabia. 2Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432 Riyadh, Saudi Arabia. 
3Department of Electrical Engineering, Kampala International University, 20000 Ishaka, Uganda. 4Department 
of Civil Engineering, Kampala International University, Kampala, Uganda. email: kskriaa@imamu.edu.sa;  
shola.bakare@studwc.kiu.ac.ug

OPEN

Scientific Reports |        (2025) 15:43065 1| https://doi.org/10.1038/s41598-025-26988-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-26988-w&domain=pdf&date_stamp=2025-11-5


management system (EMS) can lead to substantial savings, with one study reporting an annual cost reduction of 
nearly $3 million through effective load scheduling11. Additionally, DSM can reshape peak load profiles, further 
decreasing electricity charges and enhancing financial performance12,13. However, the instability of traditional 
power sources necessitates a shift towards microgrids and renewable energy solutions, which can provide 
localized energy supply and reduce dependence on the national grid, ultimately lowering long-term costs and 
emissions14. Thus, while the initial investment in these technologies may be high, the potential for significant 
long-term savings and reliability improvements justifies the transition (Mariappan15,16).

Demand-side energy management is pivotal in optimizing energy consumption patterns to improve efficiency, 
reduce costs, and stabilize energy grids17. DSM strategies involve leveraging demand-side resources (DSRs) 
to reshape load profiles while integrating distributed energy resources (DERs) for sustainability18,19. Effective 
practices include demand response programs, energy audits, and energy storage systems, enabling consumers to 
monitor and control their energy usage, particularly during peak periods20,21. Flexible DSM programs tailored to 
consumer constraints have shown success in reducing peak loads and encouraging participation, making DSM 
an essential component of sustainable energy strategies22,23.

Industrial facilities, as major electricity consumers, rely on sophisticated demand response (DR) systems to 
manage load efficiently. Strategies such as load shifting from peak to off-peak hours and curtailment during DR 
events have proven effective24,25. Intelligent systems, including fuzzy logic and expert systems, prioritize load 
adjustments while considering production schedules, inventory, and workforce constraints26,27. Furthermore, 
the flexibility provided by DR programs enables industries to reduce utility loads during energy crises, achieving 
substantial operational savings28.

Renewable energy sources (RESs) such as solar, wind, and biomass are increasingly integrated into DSM 
frameworks to reduce dependency on fossil fuels and minimize environmental impact29,30. However, their 
intermittent nature necessitates the use of energy storage systems (ESS) for consistent energy supply31. 
Battery ESS, in particular, enhance operational efficiency and cost-effectiveness, supporting decentralized 
energy production and self-consumption in industrial applications32,33. Advanced hybrid EMSs incorporating 
technologies like hydrogen subsystems have further optimized energy use, extended storage lifespans, and 
improved overall system flexibility34,35. These innovations align with global sustainability efforts, emphasizing 
DSM’s role in creating resilient energy infrastructures.

The increasing demand for grid-connected systems is driven by global energy demand, urbanization, 
industrialization, and environmental concerns36,37. These systems, equipped with intelligent controllers, can 
reduce operational costs and improve energy management. Advanced technologies like Recurrent Neural 
Networks, Walrus Algorithm, Reinforcement Learning, Cuckoo Search Algorithm, Hippopotamus Algorithm, 
Ali Baba & Forty Thieves optimization and enable superior Maximum Power Point Tracking, adapting to 
environmental changes and improving energy output38–43. Additionally, AI-driven frameworks facilitate better 
forecasting, DSM, and energy storage optimization, enhancing grid stability and reducing reliance on costly 
peak power sources44,45. By leveraging these intelligent systems, businesses and consumers can benefit from 
lower electricity costs, increased reliability, and a more sustainable energy supply, contributing to a more cost-
effective and eco-friendly energy landscape46–48.

Recent advancements in DSM leverage smart grid technologies to enhance communication between energy 
suppliers and consumers, enabling integration with distributed generation, energy storage, and demand response 
mechanisms49,50. These innovations address energy management across residential, commercial, and industrial 
domains, despite facing technical, economic, and regulatory challenges47,51. Optimization techniques, including 
hybrid approaches, have been shown to effectively address DSM challenges by rescheduling non-critical loads 
and shifting them to off-peak periods, enhancing efficiency and reducing costs for all stakeholders52.

Accurate forecasting is essential for effective EMS operations. Recent research integrates probabilistic 
Photovoltaic (PV) forecasting into control strategies for solar energy systems, optimizing energy injection into the 
grid and enhancing economic revenue. By predicting solar energy availability based on weather and time factors, 
EMS optimizes energy storage and electricity injection during peak periods. Comparisons between probabilistic 
and deterministic forecasting approaches highlight the importance of precise predictions in maximizing system 
reliability and revenue generation53,54. In microgrid applications, predictive models like Long Short-Term 
Memory networks facilitate EMS optimization. These models manage the state-of-charge (SOC) of battery ESS 
while ensuring cost-efficient operation of PV-dominated microgrids. Advanced decision algorithms, combined 
with economic and technical analyses, showcase the potential of EMS in achieving demand satisfaction and 
reducing operational costs without compromising equipment longevity55,56.

Forecasting renewable energy production is a cornerstone of EMS advancements. Support Vector Regression 
(SVR), for example, has demonstrated high accuracy in predicting solar PV and wind energy generation. By 
incorporating historical data, weather patterns, and grid conditions, SVR reduces forecast errors, contributing 
to optimized energy schedules and a reduction in operational costs by 8.4%37. Similarly, a bi-level EMS model 
combines day-ahead scheduling with real-time rescheduling to handle uncertainties in renewable sources like 
wind and solar. This approach employs a meta-heuristic algorithm, such as the Coronavirus Herd Immunity 
Optimizer, for scheduling and real-time optimization under fluctuating weather conditions, achieving economic 
and operational efficiency57.

Predictive EMS approaches also integrate fuzzy logic and rule-based algorithms for residential and microgrid 
PV-battery systems. For instance, in a study at Swansea University, a fuzzy logic-based Battery Management 
System reduced energy costs by 18% over six months and extended battery life by optimizing state-of-health 
and SOC decisions58. These predictive models demonstrate how accurate forecasting and rule-based strategies 
can minimize reliance on the utility grid while enhancing operational efficiency. The integration of AI-based 
techniques has revolutionized DSM, particularly in predictive energy management and optimization. AI 
techniques, such as artificial neural networks and ensemble methods like random forest and gradient boosting, 

Scientific Reports |        (2025) 15:43065 2| https://doi.org/10.1038/s41598-025-26988-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


have proven effective in forecasting energy demand and stabilizing renewable energy systems59–61. These tools 
enable better decision-making, energy cost reduction, and enhanced efficiency in grid-connected PV-battery 
systems.

Existing EMS face significant limitations in accurately predicting load behavior and optimizing the operation 
of grid-connected PV and battery systems. Traditional systems often struggle with the inherent variability of 
renewable energy sources, leading to inefficiencies and energy losses62. It is worth knowing that the forecasting 
modules for predicting solar irradiance, temperature, and load demand, combined with optimization modules 
for day-ahead scheduling, can improve economic operation of grid-connected microgrids63. However, 
the effectiveness of EMSs depends on various factors, including practical implementation, computational 
requirements, and data quality64. For instance, while some models utilize historical data for load forecasting, 
they may not effectively integrate real-time data or adapt to changing conditions, resulting in suboptimal 
performance65,66.

Moreover, conventional optimization techniques, such as genetic algorithms, can be computationally 
intensive and may not provide timely solutions for dynamic environments67. Recent advancements, such 
as the Intelligent EMS and hybrid models, show promise in enhancing predictive accuracy and operational 
efficiency by leveraging machine learning and real-time data integration65,68. However, the reliance on extensive 
data and computational resources remains a challenge, highlighting the need for more robust and adaptable 
EMS solutions66. Thus, while progress has been made, substantial gaps remain in the capability of EMS to fully 
optimize energy distribution in dynamic contexts.

In order to fully optimize the effectiveness of EMS, there is need for intelligent controllers in managing 
hybrid systems arises from the complexities and challenges associated with integrating multiple energy sources, 
particularly in renewable energy applications. These systems, which often combine solar, wind, and storage 
technologies, face issues such as intermittent energy supply, load fluctuations, and the necessity for real-time 
adaptability to changing environmental conditions69,70. Intelligent power management controls, particularly 
those utilizing fuzzy logic, have been proposed to enhance system responsiveness and efficiency by dynamically 
adjusting operations based on real-time data and predictive analytics71,72. Such controllers not only optimize 
energy utilization and stabilize voltage levels but also extend the lifespan of power sources by ensuring balanced 
operation under varying loads72,73. The integration of smart technologies and advanced control strategies is 
essential for achieving reliable, efficient, and sustainable hybrid energy systems70.

Recent studies highlight the use of hybrid optimization models, integrating machine learning and 
decomposition techniques to address the complexities of modern energy systems. For example, a two-phase 
decomposition model combining complementary ensemble empirical mode decomposition and bidirectional 
long short-term memory has improved load forecasting accuracy74. Similarly, multi-model fusion methods 
utilizing advanced algorithms like particle swarm optimization-support vector machines and autoencoders 
have proven effective for forecasting load components in smart grid systems75. In the realm of smart grids, 
deep learning models, particularly those combining graph convolutional networks and sequence-to-sequence 
models with attention mechanisms, have shown significant improvements in load type prediction, enhancing 
energy management and optimization76. These advancements have facilitated demand response initiatives and 
improved energy efficiency through precise load predictions and real-time energy management.

In commercial microgrids, advanced EMS approaches combine fuzzy logic and intelligent energy controllers 
to dynamically manage DERs and consumer loads. These systems, tested in MATLAB/Simulink, showcase 
improved techno-economic feasibility by reducing peak loads and electricity costs by up to 11.87% daily and 
7.94% over 20  years, ensuring sustainable energy management77. Advanced DSM strategies have achieved 
substantial economic and environmental benefits. For instance, deep learning-based energy management 
systems have reduced grid reliance by 84% and energy expenses by 87% through accurate energy forecasting78. 
Similarly, community renewable energy networks employing shared PV and storage systems have achieved 
savings of up to 95.5% compared to traditional energy setups79. Additionally, the adoption of DSM in industrial 
and residential settings has facilitated cost reductions through improved load distribution, better tariff selection, 
and energy resource optimization80,81. These efforts contribute significantly to reducing carbon footprints and 
aligning energy practices with sustainability goals.

Hybrid EMS solutions are essential for handling the intermittency of renewable energy and dynamic grid 
demands. For instance, the integration of solar PV with battery storage systems in grid-tied microgrids benefits 
from real-time predictive algorithms, such as XGBoost for solar PV forecasting, achieving root mean square error 
(RMSE) below 4%. These frameworks optimize battery charging and discharging operations, reducing electricity 
bills by 20% for energy-intensive systems like sewage treatment plants82. Furthermore, an optimization method 
tailored for hourly electricity prices considers a cluster of interconnected price-responsive demands, including 
an energy storage facility. By leveraging LP and ANN-based future power consumption predictions, this EMS 
enables consumers to buy, store, and sell energy effectively, optimizing hourly load levels. Simulations using 
the IEEE 14-bus system reveal superior performance in enhancing efficiency and reducing losses compared to 
conventional methods83.

Adaptive Neuro-Fuzzy Inference System (ANFIS) has been effectively utilized in various hybrid energy 
systems, including those combining photovoltaic and wind sources, to dynamically adjust power outputs and 
enhance grid stability84. The incorporation of ANFIS in controlling voltage source converters further illustrates 
its capability in managing energy from multiple sources, ensuring quality power delivery and load balancing85. 
The study of86 proposes an ANFIS to optimize energy flow in grid-linked solar and battery storage systems, 
ensuring optimal operation, increased efficiency, and cost savings by dynamically adjusting energy distribution 
based on solar irradiance, demand patterns, and grid prices. The Smart Home Energy Management System using 
Multi-output ANFIS for efficient management of ESS, scheduled appliances and to integrate Renewable energy 
is introduced87. Additionally, The paper of88 describes and evaluates an ANFIS-based EMS of a grid-connected 
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hybrid system and compares with a classical EMS composed of state-based supervisory control system based on 
states and inverter control system based on PI controllers.

Similarly, ANFIS has demonstrated its utility in managing energy in hybrid RES, such as PV/Wind/Battery 
setups. By mitigating power fluctuations and maintaining battery SOC within acceptable limits, ANFIS improves 
system reliability and extends battery lifespan. Simulations confirm that this strategy significantly reduces power 
injection fluctuations into the grid, a critical issue in renewable energy systems89. Other hybrid solutions leverage 
probabilistic and deterministic forecasting for wind energy conversion systems and battery storage. A predictive 
energy management control and communication system (PEMCCS) minimizes renewable energy curtailment 
while ensuring smooth power injection into the grid. By dynamically adjusting to forecast errors, PEMCCS 
increases the revenue of renewable energy systems and enhances grid reliability90.

Hybridizing ANFIS with other optimization methods, such as metaheuristics and machine learning 
techniques, can achieve effective parameters tunning to enhance its exploration and exploitation capabilities 
for better solution quality and robust optimal performance91. These research gaps in the literature reveal 
the necessity to advance further ANFIS variant methods that can effectively adapt the optimization process 
parameters in highly dynamic hybrid energy systems environment. For example, ANFIS is optimized with 
Balancing Composite Motion Optimization to enhances energy management by responding to price-based 
demand response programs, thereby improving user comfort and reducing electricity costs92.

Additionally, in our order study in65, we design and evaluation of a hybrid GEP-ANFIS controller for 
optimizing energy management and load control in industrial settings can significantly enhance operational 
efficiency and reduce costs. The controller allows for improved predictive accuracy in energy management, as 
demonstrated in grid-connected solar PV-battery systems, where the hybrid model achieved a mean absolute 
percentage error (MAPE) of 7.25% and reduced energy costs by 6.7%65. However, the long-term economic 
analysis of hybrid predictive energy management models remains underexplored, despite the potential benefits 
highlighted in recent studies as shown in Table 1.

The integration of technical optimization with long-term financial analysis offers a comprehensive solution 
for industrial users, addressing both operational efficiency and financial viability. Research highlights the 
importance of optimizing investment planning through process integration methods, which can significantly 
enhance energy efficiency and reduce costs, achieving up to a 27% improvement in operating costs without 
budget constraints98. Additionally, the development of a techno-economic analysis tool facilitates the assessment 
of long-term viability for emerging processes, such as biorefining, by incorporating various supply chain models 
and future uncertainties99. Collectively, these studies of100–104 highlight the necessity for more extensive long-
term economic evaluations in hybrid energy management models.

Recent years have witnessed an accelerating integration of deep-learning and hybrid-AI techniques into 
PV–battery and energy–storage management systems. For example105, introduced a transformer-based fusion 
model for day-ahead PV generation forecasting that combines physical modelling with AI106. applied a transfer-
learning double-deep Q-network in a wind–PV–storage context to balance active power, achieving improved 
adaptability under uncertainty. More recently107, demonstrated a deep-reinforcement learning (DRL) method 
for PV–battery storage scheduling, realizing significant reductions in imbalance penalties. A broader review 
by108 highlights how AI/ML controllers for EMSs are evolving towards hybrid architectures combining predictive 
analytics, reinforcement control and storage optimisation. Despite these advances, few studies explicitly combine 
symbolic evolutionary rule-learning (via GEP) with neuro-fuzzy inference systems in the context of PV–battery 
energy management, and even fewer integrate full techno-economic modelling and structural optimisation of 
fuzzy controllers.

Despite the rapid evolution of energy management systems (EMS), existing approaches exhibit key 
limitations. Most ANFIS- or fuzzy-based controllers rely on static rule sets and lack adaptive capability when 
exposed to fluctuating renewable inputs and dynamic industrial loads65. Similarly, optimization techniques 
such as genetic algorithms or particle swarm optimization improve EMS performance but often at the cost of 
computational efficiency and real-time adaptability. Moreover, while hybrid EMS models incorporating artificial 
intelligence have shown promising results, their integration rarely extends to evolving fuzzy membership rules 
and long-term techno-economic optimization in industrial microgrid contexts. Therefore, there exists a crucial 
research gap in developing a self-adaptive EMS framework that can jointly optimize forecasting accuracy, 
economic performance, and system longevity under grid constraints. This study addresses this gap by proposing 
a hybrid Gene Expression Programming–Adaptive Neuro-Fuzzy Inference System (GEP–ANFIS) capable of 
evolving fuzzy inference rules and optimizing control parameters dynamically, thus bridging the divide between 
predictive intelligence and techno-economic sustainability in industrial hybrid renewable–grid systems. A 
comparative techno-economic analysis of daily energy consumption was performed against the HOMER 
optimization model, demonstrating the proposed EMS’s superior effectiveness in demand response applications.

The novelty of this work lies in the integration of Gene Expression Programming (GEP) with Adaptive Neuro-
Fuzzy Inference System (ANFIS) for the first time within a techno-economically optimized EMS designed for 
industrial hybrid renewable–grid systems. Unlike previous EMS models that either focus on energy scheduling 
or predictive control in isolation, this study presents a unified predictive–economic optimization framework that 
evolves its fuzzy rules and membership functions adaptively through GEP. Furthermore, the model’s long-term 
cost evaluation establishes new insights into lifecycle savings and operational reliability for grid-constrained 
industries.

Quantitatively, the proposed GEP–ANFIS framework achieved a Mean Absolute Percentage Error (MAPE) 
of 5.31% for solar PV forecasting and 2.24% for industrial load prediction, reducing long-term operational costs 
by 37.7% compared to HOMER-based EMS and by 6.5% compared to conventional ANFIS models.

The main contributions are summarized as follows:
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•	 Novel predictive optimization model: Development of a hybrid GEP–ANFIS framework that simultaneously 
evolves fuzzy rules and tunes control parameters to improve forecasting accuracy for solar PV and load de-
mand prediction.

•	 Integrated technical–economic optimization: Incorporation of both operational and long-term economic 
analyses within the same EMS platform a dimension largely unexplored in prior studies.

•	 Hierarchical multi-level control architecture: Implementation of a decentralized–centralized structure for op-
timal coordination between PV, battery, and grid systems, enhancing scalability and resilience.

•	 Demonstrated superiority through comparative metrics: Achieved up to 37.7% long-term cost reduction over 
HOMER and 6.5% over conventional ANFIS, validating its predictive and economic advantages.

•	 Strategic contribution to industrial sustainability: Introduced a data-driven, adaptive EMS that extends bat-
tery lifespan, minimizes grid dependence, and provides a replicable model for industrial energy-intensive 
applications.

The remainder of this paper is organized as follows: Sect.  2 presents the overall system architecture and 
modeling, including the conventional grid system, solar PV modeling, and battery storage system. Section 3 
describes the proposed energy management control strategy, while Sect. 4 introduces the proposed GEP-ANFIS 
hybrid model. This includes the hybrid GEP-ANFIS-based MPPT, hybrid GEP-ANFIS-based load and solar 
PV forecasting, and the hybrid GEP-ANFIS-based EMS. Section  5 provides a comprehensive discussion of 
the simulation results, which cover: the optimized ANFIS-based MPPT results, predictive analytics for load 
and solar PV forecasting, predictive generation scheduling scenarios, and the optimized sizing of the solar PV 
and battery storage systems tailored for industrial applications. This section also includes a detailed sensitivity 
analysis, along with both daily and long-term economic evaluations. Finally, Sect. 6 concludes the study and 
offers recommendations and directions for future research.

System architecture
The architecture of the proposed grid-connected solar PV and battery energy storage system utilizes a hierarchical 
control structure to optimize energy flow and ensure reliability. The system comprises decentralized controllers 
for solar PV and battery management, along with a centralized Energy Management Controller (EMC) as shown 
in Fig. 1. The solar PV array serves as the primary energy source, interfaced via a DC-DC converter equipped 
with MPPT to maximize power extraction. A bi-directional DC-DC converter manages the battery storage 
system, regulating charge/discharge cycles. A DC-AC inverter ensures seamless conversion of DC power to AC, 
synchronized with grid parameters for both local loads and grid export/import. The EMC integrates a predictive 
GEP-ANFIS control algorithm, which monitors solar output, battery SOC, and grid conditions to optimize 
energy dispatch. This advanced architecture enhances system efficiency and cost-effectiveness while leveraging 
renewable resources to mitigate intermittency through intelligent storage and control strategies.

Fig. 1.  The architecture of the proposed system.
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Site description and meteorological data
Global Tea Company, a leading player in Uganda’s tea industry, is strategically located along Ishaka-Kasese Road 
in the Bushenyi district at latitude −0.264164 and longitude 30.106706. This location offers an ideal environment 
for production and logistics, enabling the company to maintain its position as one of the largest producers and 
consumers of tea and energy in Uganda. The company boasts advanced infrastructure, including tea and grains 
color sorters, fermenting and drying machines, boilers, rolling and packaging equipment, and monorail systems, 
ensuring efficient and high-quality tea processing operations.

However, energy usage represents a significant operational cost, accounting for over 50% of production 
expenses, making the company one of the most energy-intensive enterprises in the country109. Traditionally, 
Global Tea Company relies on a three-phase grid system supplemented by diesel generators to address grid 
intermittency. This reliance incurs high costs associated with fuel and generator maintenance, creating financial 
and operational inefficiencies. To mitigate these challenges, the company is transitioning to renewable DG, 
incorporating solar PV systems as a cost-effective and sustainable solution. With an average solar irradiation of 
5.7 kWh/m2/day and a temperature of 26.97 °C110, solar energy presents a viable option for reducing energy costs 
and enhancing energy reliability.

This study leverages load data from UMEME’s regional office in Ishaka and meteorological data from NASA, 
spanning 2016 to 2023 (see Fig. 2 for the average hourly data), to analyze energy demand patterns and forecast 
renewable energy integration. Research findings, supported by studies by111,112, suggest that solar PV’s levelized 
cost of energy (LCOE) can be more economical than grid electricity during peak periods, particularly for 
industrial users. By adopting solar PV systems, Global Tea Company aims to lower operational costs, improve 
energy reliability, and promote sustainability, setting an example for renewable energy adoption in Uganda’s 
industrial sector.

System modeling
By creating accurate models for each component and their interactions, the overall grid-connected solar PV 
system’s behavior, performance, and impact on the grid can be simulated, analyzed, and optimized for efficient 
and reliable energy generation. These models assist in designing, predicting, and assessing the system’s behavior 
under various operating conditions, as well as making informed decisions for system optimization and integration 
with the grid65. The system model components and parameter (refer to Table 2) are explained briefly below:

Conventional grid system
A comprehensive three-phase grid-connected system is modeled in Simulink to replicate actual grid conditions, 
starting with a programmable voltage source configured at 240 Vrms and 60  Hz. The system integrates 
a three-phase V-I Measurement block to monitor real-time voltage and current variations, enabling precise 
tracking of grid performance under varying loads. A Series RLC Load block is included to simulate realistic 
power consumption, while a power measurement block computes instantaneous power, facilitating accurate 
evaluation of system efficiency. Display blocks are employed to visualize voltage, current, and power readings 
during the simulation, providing real-time feedback for diagnosing issues and ensuring optimal operation. 
The grid is configured to automatically supply power when solar and battery outputs are insufficient, ensuring 
system stability and continuous power delivery. This robust modeling approach supports seamless integration of 
renewable energy sources while maintaining grid reliability. The energy supplied by the grid is mathematically 
expressed as94:

Fig. 2.  Average hourly load and meteorological data.
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Egrid =

T∑
t=1

Pgrid,(t) × ∆t� (1)

The energy cost for grid customers is calculated by integrating the time-of-use (T oU) rate into the mathematical 
framework, as shown in Eq. (1)65. This approach effectively captures the dynamic variability of electricity pricing, 
enabling accurate cost estimation based on hourly consumption patterns. The formulation is expressed as:

	
Cgrid =

T∑
t=1

Pgrid,(t) × ∆t × T oUt� (2)

where Pgrid,t represents the power supplied by the grid at time (t), ∆t denotes the time interval and T  is the 
total number of time intervals considered (i.e.24 h).

The (T oU) tariff for large industrial users employed in this study is derived from recent data sources115,116 
and is detailed in Table 3. The tiered structure comprises peak, shoulder peak, and off-peak periods, each 
associated with distinct rates designed to reflect the variability in energy demand and supply dynamics.

Solar PV modeling
In this study, the solar PV system, serving as the primary source of energy, is modeled in the Simulink environment 
using a double-diode equivalent circuit constructed with Simscape Electrical components. Although both single- 
and double-diode models are widely used to represent PV cell characteristics, the double-diode model is selected 
in this study to capture the nonlinear recombination and diffusion losses that significantly influence industrial 
PV performance under variable irradiance and temperature conditions. The single-diode model assumes that 

Solar PV module data specification113

Maximum Power (Wp) 300

Open-Circuit Voltage (V) 44.9

Short-Circuit Current (A) 9.61

Voltage at Point of Maximum Power (V) 32.54

Current at Point of Maximum Power (A) 9.22

Module Efficiency (%) 18.44

Length (mm) 1640

Width (mm) 992

Depth (mm) 35

Mass (kg) 18

Operating Temperature (°C) −40 to 85

Cost (UGX) 844,375 ($220.08)

Replacement Cost (UGX) 0

Maintenance cost (UGX) 0

Lifetime (years) 20

Sunshine per day 10

Efficiency (%) 80

The datasheet of 12 V, 200Ah LiFeP04114

Capacity (Ah) 200

Capacity (w) 2560

Norminal voltage (v) 12.8

Max continuous discharge current(A) 100

Charge voltage(v) 14.6

Pulse discharge current(A) 200

Cost (UGX) 1,268,000 
($330.50)

Replacement Cost (UGX) 1,268,000 
($330.50)

Lifetime (years) 5

Maintenance cost (UGX) 0

Minimum SOC (%) 30

Maximum SOC (%) 100

Battery loss efficiency (%) 85

Table 2.  System components economic and technical parameters65.
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all carrier losses occur via a single exponential process, which simplifies computation but introduces notable 
inaccuracies at low irradiance or partial shading scenarios where recombination currents dominate. The double-
diode model introduces an additional exponential term that explicitly accounts for junction recombination 
effects, enabling a more accurate estimation of output current​ and voltage relationships across the entire 
operating range. This higher fidelity is particularly beneficial for GEP–ANFIS-based predictive optimization, 
where accurate PV response modeling directly affects controller training and long-term cost predictions65,117.

The model incorporates resistors, capacitors, two diodes, and a controlled current source to accurately 
represent the electrical characteristics of PV cells, with inputs for irradiance and temperature to simulate real-
world environmental variations. Voltage and current sensors, along with a product block, are integrated to 
measure and calculate instantaneous power. The DC-DC converter, comprising an inductor, capacitor, diode, 
and MOSFET, is controlled by a PWM generator to regulate the duty cycle. Simulation parameters in65, are 
carefully configured to ensure realistic and efficient performance analysis. The generated power is expressed as:

	 PP V = I × VP V � (3)

where VP V and I  represent the voltage and current at the maximum power point. In the double-diode model, 
the output current is modeled as118:

	 I = Iph − ID1 − ID2 − Ip� (4)

The output current is given by the following expression as:

	
I = [Iph−s + K1 (T − Ts)] G

Gs
− I01

[
exp

(
V + IRS

a1 × VT

)
− 1

]
− I02

[
exp

(
V + IRS

a2 × VT

)
− 1

]
− V + IRS

RP
� (5)

where: IP h is Photocurrent; ID1 and ID2 is the Shockley diode equation due to diffusion and charge recombination 
mechanism respectively; I is the output current of the PV cell; I01, I02 are the reverse saturated current of the 
diodes D1 and D2 respectively; q is the electron charge, K is the Boltzmann constant, T, Ts = Temperature at 
normal condition and S.T.P respectively; G,Gs = Solar irradiation at normal condition and S.T.P respectively; a1 
and a2 are ideality factor of the diodes D1 and D2 respectively for the two diode model, V is the thermal voltage 
of the module, RS  and RSh is series and shunt resistors respectively65.

Battery storage system
To ensure realistic system representation, all significant nonlinearities inherent in the hybrid solar PV–battery–
grid system were explicitly modeled. The double-diode PV model captures both diffusion and recombination 
current effects, ensuring accurate representation of nonlinear current–voltage (I–V) and power–voltage 
(P–V) characteristics under variable irradiation and temperature. Similarly, the battery energy storage system 
incorporates nonlinear charge–discharge efficiency, internal resistance variation, and state-of-charge (SOC) 
dynamics, which influence voltage response and depth-of-discharge behavior. The inverter and converter 
subsystems were also modeled to reflect nonlinear switching and control behaviors within the Simulink 
environment. Collectively, these nonlinearities ensure that the simulated environment mirrors real operating 
conditions, providing a reliable basis for developing and validating the GEP–ANFIS controller.

In this study, a battery charging and discharging system is modeled in Simulink using a comprehensive setup 
in65 to ensure accurate performance analysis and optimization, as defined in Eqs. (6–7)119:

	
Et(t) = Et(t − 1) × (1 − DoD) +

[
Et(t) − Et(t)

ηinv

]
× ηB � (6)

	
Et(t) = Et(t − 1) × (1 − DoD) +

[
Et(t)
ηinv

− Et(t)
]

� (7)

The battery capacity (Cb) is represented as94:

	
Cb = Et × φ

lb × DoD × Vb
� (8)

The expression for the battery’s SOC is given by120,121:

Period Time Range Tariff (UGX) Tariff ($)

Peak 6:00 PM – 12:00 noon 497.0 0.13

Shoulder Peak 6:00 AM – 6:00 PM 368.6 0.097

Off-Peak 12:00 noon – 6:00 AM 233.1 0.061

Feed in tariff All time 297.2 0.077

Table 3.  ToU purchasing and selling tariff structure for large industrial consumers.
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SOC = 100

(
1 −
´

ibdt

Cb

)
� (9)

The battery current is given as120:

	
I = PR

Et

(
1 − ∆SOC

100

)
� (10)

The constraints are given in Eq. 11 and 12 respectively

	 ∆SOC = SOCBat − SOCRef � (11)

	 SOCMin ≤ SOC(n) ≤ SOCMax� (12)

where: φ = autonomy days, DoD = depth of discharge (%), lb = battery loss (%), Vb = battery voltage (V), 
ηinv  = inverter efficiency (%), and ηB  = battery efficiency (%).

These constraints were embedded into the simulation control structure, where the GEP–ANFIS controller 
continuously monitors the SOC, charging/discharging limits, and inverter efficiency. Violation of these limits 
automatically triggers corrective actions through rule-based logic, ensuring that all operating points remain 
within safe physical boundaries. This dynamic constraint handling is fundamental for extending battery life and 
ensuring long-term system stability.

Proposed energy management control strategy
The flowchart in Fig. 3 illustrates the decision-making logic of a demand-side energy management controller 
for a grid-connected solar PV system with battery storage. Initially, weather data and system parameters for the 
PV array, battery SOC, and load demand are input into the model. The controller calculates the solar power 
generated (Ps), the load demand (PL), and the battery’s SOC at each time step (t). If the solar power meets or 
exceeds the load demand (PS ≥ PL), the system supplies power directly to the load. Under conditions of excess 
generation, the controller checks the battery’s SOC: if the SOC is below the minimum threshold, the battery is 
charged; otherwise, surplus energy is exported to the grid.

When solar generation is insufficient to meet the load (PS ≺ PL), the controller evaluates other power 
sources. If the battery’s SOC is above the minimum threshold, the system draws power from the battery. If not, 
the system determines grid availability; if the grid is accessible, power is purchased to satisfy the demand. This 
hierarchical control structure ensures optimal utilization of solar power, battery storage, and grid resources, 
minimizing costs and reducing peak demand charges. The process iterates until the end of the simulation period 
(TMax), ensuring a dynamic response to fluctuations in solar power and load demand, thereby enhancing 
reliability and resilience in industrial applications. These methodologies aim to maximize the utilization of 
available energy sources, minimize wastage, and ensure optimal source operation, thereby improving overall 
system efficiency via the EMC.

Proposed GEP-ANFIS hybrid model
GEP-ANFIS is selected for this study due to its ability to combine the adaptability and optimization capabilities 
of genetic algorithms with the uncertainty-handling strengths of fuzzy logic, making it ideal for optimizing 
complex energy systems. The model is particularly suited for addressing non-linearities in energy data, adapting 
to varying scenarios, and optimizing intricate systems. Key components of the GEP-ANFIS framework include 
genetic algorithms for optimizing control strategies, fuzzy inference systems for uncertainty management, and 
adaptive learning mechanisms that enhance accuracy over time.

While heuristic-based optimization methods such as GEP, GA, PSO have demonstrated strong global 
search capabilities and flexibility for nonlinear controller tuning, they typically require access to high-fidelity 
simulation environments or extensive experimental datasets to achieve convergence and generalizability122,123. 
This requirement can pose limitations in large-scale or highly dynamic industrial systems, where obtaining 
such datasets or building full digital twins is resource-intensive. To mitigate this, the present study uses a hybrid 
simulation data-driven strategy that leverages historical load and meteorological data to train and evolve the 
GEP–ANFIS controller within a realistic Simulink-based digital environment. This approach minimizes the 
need for exhaustive experimentation while maintaining the model’s adaptability to real operating conditions.

The hybridization of GEP-ANFIS presented in this study represents a substantive methodological innovation 
beyond existing ANFIS–metaheuristic combinations such as ANFIS–PSO, ANFIS–GA, or ANFIS–XGBoost. 
Traditional metaheuristic-based ANFIS frameworks primarily focus on parameter tuning through stochastic or 
gradient-based search, where rule structures and membership functions are fixed and only optimized numerically. 
In contrast, the proposed GEP–ANFIS framework performs structural as well as parametric optimization, 
meaning that GEP evolves both the fuzzy rule base and membership functions’ topology before ANFIS fine-
tunes their parameters through hybrid learning. This dual-layer adaptation provides deeper exploration of the 
solution space and greater adaptability under nonlinear, dynamic energy environments.

Algorithmically, GEP contributes symbolic regression capability, enabling the discovery of interpretable 
functional relationships between energy variables. This feature is not available in PSO, GA, or XGBoost hybrids, 
which typically rely on black-box optimization. Moreover, GEP’s chromosome-based encoding allows compact 
representation of rule evolution, reducing computational overhead and avoiding premature convergence 
issues common in population-based metaheuristics. When coupled with ANFIS’s gradient-based local 
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learning, the hybrid ensures both global exploration (via GEP) and local exploitation (via ANFIS), achieving 
faster convergence, lower forecast error, and better generalization. To further highlight the methodological 
advancement of the proposed hybrid GEP–ANFIS model, a comparative summary of existing hybrid ANFIS 
approaches is presented in Table 4.

Moreover, recent research suggests that simplified optimization methods including zero-order or derivative-
free techniques such as Nelder–Mead simplex, pattern search, and response surface-based tuning can serve 
as computationally efficient alternatives for small-scale implementations or initial parameter estimation127. 
Integrating these low-complexity optimizers with the proposed hybrid framework represents a promising 
direction for future work, potentially reducing calibration costs while preserving controller robustness.

The proposed GEP–ANFIS framework inherently accommodates system nonlinearities by mapping 
complex relationships among irradiance, temperature, load demand, and state-of-charge through adaptive 
fuzzy inference rules. Unlike linear optimization or deterministic EMSs, the hybrid model continuously learns 
nonlinear interactions between energy sources and demand-side responses, ensuring accurate control decisions 
even under fluctuating environmental and operational conditions. The GEP-ANFIS framework is implemented 
as a hierarchical control system to monitor and manage solar power generation, battery charge and discharge 

Fig. 3.  Operational flow chart for the proposed system.
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cycles, and predictive EMS, including load and solar PV generation forecasting in different levels. This approach 
effectively minimizes, controls, and optimizes energy usage, providing robust and reliable performance in real-
time applications. The pseudocode for the GEP-ANFIS algorithm is detailed in Table 6, with further explanation 
on each levels are provided in subsequent subsections.

A thorough examination of the collected data is conducted to identify and rectify any missing values and 
anomalies. The data is normalized to standardize the range of input variables, facilitating better performance of 
the ANFIS model. The dataset is divided into three subsets: training (80%), validation (10%), and testing (10%). 
This partitioning ensures a robust training process and reliable performance evaluation. An ANFIS model with 
N inputs and one output can be expressed in terms of its rule base, where each rule defines a fuzzy relationship 
between inputs and outputs. In this study, the inputs. Which are typically crisp values are donated as:

	 X = [x1, x2, x3, ..........xn]� (13)

where [x1, x2, x3, ..........xn] is the input vector of system parameters such as solar irradiance (W/m2), ambient 
temperature (°C), load demand (kW), and battery state-of-charge (SOC, %). Each input has its own fuzzy set and 
associated membership function, µAi,j (xi), where i is the input index, and j represents the fuzzy set for that 
input. The membership functions are model using a Gaussian form as:

	
µAi,j (xi) = exp

(
(xi − ci,j)2

2σ2
i,j

)
� (14)

where the membership function for the jth fuzzy set of input variable xi, dimensionless, defined by a Gaussian 
function in Eq. (14), ci,j  and σi,j  are the center and width of the membership function for fuzzy set j of input i.

This study employs a hybrid algorithm combining the backpropagation and least mean squares methods to 
train the dataset, leveraging the complementary strengths of both techniques. The backpropagation algorithm 
fine-tunes the antecedent parameters, while the least mean squares algorithm optimizes the consequent 
parameters, collectively minimizing prediction errors and significantly enhancing model accuracy. A fuzzy rule 
base is established to capture the complex relationships between inputs and outputs, with each rule reflecting a 
specific interaction among inputs and predicting the corresponding output under defined conditions. The rules 
are typically expressed as if–then statements, which show the influence of each input on the system’s behavior, 
as illustrated below

	 if x1 is A1,k and x2 is A2,l and x3 is A3,m and x4 is A4,n and x5 is A5,p, then fk,l,m,n,p = ax1 + bx2 + cx3 + dx4 + ex5 + r� (15)

where fk,l,m,n,p is the consequent function for that rule, and a, b, c, d, e, r are the parameters of the consequent 
function. The output y of the ANFIS model is calculated by aggregating the outputs of all rules as:

	
y =

∑
k,l,m,n,pwk,l,m.,n,pfk,l,m,n,p∑

k,l,m,n,pwk,l,m.,n,p
� (16)

where y is the Output vector representing the model prediction (e.g., load demand or PV output, in kW). The 
f﻿iring strength wk,l,m.,n,p is given by:

	 wk,l,m.,n,p = µA1,k (x1) × µA2,l (x2) × µA3,m (x3) × µA4,n (x4) × µA5,p (x5)� (17)

Model Optimization Strategy Structural Adaptation Learning Mechanism
Computational 
Complexity Limitations

Distinct Contribution of Proposed 
GEP–ANFIS

ANFIS–
GA

Genetic Algorithm for 
parameter tuning

Fixed fuzzy structure; 
only parameters 
optimized

Global stochastic 
search + ANFIS gradient 
fine-tuning

Moderate–High Prone to local minima, 
slow convergence

Introduces symbolic rule evolution 
via GEP; enables both rule and 
parameter optimization

ANFIS–
PSO

Particle Swarm 
Optimization Fixed fuzzy structure

Particle-based swarm 
exploration + ANFIS 
adaptation

Moderate
Sensitive to initial 
conditions; lacks 
interpretability

GEP evolves interpretable rule 
expressions before ANFIS 
refinement; improved generalization

ANFIS–
XGBoost

Gradient-boosted 
regression for feature 
optimization

No fuzzy structure 
adaptation; black-box 
ensemble

Gradient boosting with 
tree ensembles High

High data 
requirement; poor 
explainability

Combines symbolic regression 
(GEP) with fuzzy reasoning (ANFIS) 
for transparent hybrid optimization

ANFIS–
PSO–GA

Dual metaheuristic 
parameter tuning Fuzzy structure static

Hybrid PSO–
GA + ANFIS local 
learning

Very High
Computationally 
expensive; unstable for 
real-time use

Reduces computational cost via 
zero-order GEP optimization 
requiring fewer iterations

Proposed 
GEP–
ANFIS

Gene Expression 
Programming 
for structure 
evolution + ANFIS hybrid 
learning

Dynamic rule 
evolution and adaptive 
membership functions

Symbolic regression 
(GEP) + local hybrid 
learning (ANFIS)

Low–Moderate
None observed; 
scalable with fewer 
samples

Dual-layer optimization 
(structural + parametric), 
interpretable rules, scalable to 
dynamic industrial EMS

Table 4.  Comparative summary of existing hybrid ANFIS-based models and the proposed GEP–ANFIS 
framework124–126.
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where the firing strength of the kth fuzzy rule (dimensionless), computed as the product of all antecedent 
membership grades [Eq. (17)].

During the design and implementation of the proposed GEP–ANFIS energy management model, all 
operational and physical constraints of the hybrid system were explicitly integrated into the optimization process 
to ensure feasible and realistic operation. The key system constraints include:

Battery operational constraints
The state of charge of the battery is limited within the permissible range [SOCmin, SOCmax] to prevent 
overcharging or deep discharging, as defined in Eqs.  (11–12). During each optimization iteration, the GEP–
ANFIS controller checks SOC boundaries, and infeasible solutions [SOCMin ≤ SOC(n) ≤ SOCMax] are 
penalized through a high-cost term added to the fitness function.

Power balance constraint
At every time step (t), the total generated power (from PV, grid, and battery) must equal the instantaneous load 
demand plus losses, expressed as:

	 PP V (t) + PGrid (t) + PBatt (t) = PLoad (t) + PLoss (t)� (18)

Any deviation from this balance is minimized within the GEP optimization loop by adjusting fuzzy control rules 
and weighting parameters.

Grid interaction and time-of-use tariff constraint
Power import/export decisions respect the tariff schedule in Table 3, ensuring that grid draw is prioritized during 
off-peak periods and limited during high-cost intervals. These constraints are embedded as time-dependent 
boundary conditions in the controller’s decision logic.

PV generation and environmental constraints
Solar output is constrained by real irradiance and temperature data, modeled through the double-diode equation 
(Eq. 5). The GEP–ANFIS model dynamically adapts to these nonlinear limits to ensure that generated power 
never exceeds physical PV capacity.

Controller parameter initialization
The ANFIS component was initialized with five Gaussian membership functions per input variable (irradiance, 
temperature, time, load, and SOC), resulting in 125 fuzzy rules. The learning rate and hybrid training method 
parameters were set according to initial sensitivity analysis to balance convergence speed and generalization. 
Initial premise parameters (membership function centers and widths) were uniformly distributed between 0 
and 1, while consequent parameters were initialized based on least-squares estimation of training data outputs.

The GEP optimizer encoded these parameters as chromosomes representing both the structure (rule base) 
and tuning coefficients of the ANFIS model. The chromosome length was set to 60 genes, with each gene 
representing a numerical or structural decision variable in the fuzzy inference system.

Optimization objective function
GEP is used here to optimize the structure and parameters of the ANFIS model by evolving both the fuzzy 
rules and membership function parameters, improving the ANFIS’s adaptability and predictive accuracy. This 
optimization process is designed to minimize a costs associated with grid energy by prioritizing solar generation 
when available, and by optimizing grid interactions to take advantage of low-cost periods or minimize reliance 
on the grid when it’s more expensive. The objective function (F) for the effectiveness of the energy management 
is defined as:

	 F = w1 × Cgrid + w2 × Cbattery + w3 × PR� (19)

where:w1, w2, w3 are weights that reflect the relative importance of each objective.

Optimization algorithm and parameters
The GEP optimizer is employed due to its strong global search capability and ability to evolve both rule structures 
and parameter sets. The optimization parameters were configured as shown in Table 5: The optimization is 
terminated when any of the following conditions are satisfied:

	1.	 The best fitness improvement over 20 consecutive generations is less than 10–5.
	2.	 The maximum generation limit (500) is reached.
	3.	 Validation set performance degraded by more than 1% compared to the training set (to prevent overfitting).

Each chromosome represents a potential solution and encodes the membership function parameters and as 
well as the consequent parameters. The fitness function is designed to minimize prediction error. For a control 
system output y based on actual values the fitness is:

	
F itness = − 1

M

M∑
m=1

(yactual,m − ypred,m)2� (20)
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where M  is the number of data samples.
Selection is the process of choosing chromosomes from the population to create offspring. Higher fitness 

chromosomes are more likely to be selected. One common selection method is roulette wheel selection, where 
the probability of selecting chromosome Ci is proportional to its fitness (Balikowa130).

	

P


Ci = f (Ci)

N∑
j=1

f (Cj)


� (21)

Crossover combines two parent chromosomes to create offspring. A common method is single-point crossover, 
where a crossover point k is randomly selected, and the two parents exchange parts of their chromosomes at that 
point. For parents (Balikowa130):

	 C1 = {x1, ...., xk, xk+1, ...., xn}� (22)

	 C2 = {y1, ...., yk, yk+1, ...., yn}� (23)

The offspring would be:

	 Cchild1 = {x1, ...., xk, xk+1, ...., xn}� (24)

	 Cchild2 = {y1, ...., yk, yk+1, ...., yn}� (25)

Mutation introduces small random changes to the genes in a chromosome, helping to maintain genetic 
diversity and avoid local optima. For a gene xi in chromosome C , mutation might add a small random value δ 
(Balikowa130):

	 x1
i = xi + δ, δ ≈ N (0, σ)� (26)

where δ is a normally distributed random variable with mean 0 and standard deviation σ.
Through selection, mutation, and crossover, GEP iteratively evolves the population to find the optimal 

parameters, minimizing the fitness function. This improved functions provide a better mapping between the 
fuzzy inputs and outputs, ensuring that the system responds more accurately to variations in inputs and output. 
The optimized output ​yopt after GEP tuning can be written as:

	
yopt =

∑
k,l,m,n,pwopt

k,l,m.,n,pfopt
k,l,m.,n,p∑

k,l,m,n,pwopt
k,l,m.,n,p

� (27)

S/N Parameter GEP settings Parameter Subclustering ANFIS settings

1 Change rate 0.0377 Range of influence 0.5

2 No of chromosomes 30 Squash factor 1.25

3 Head size 7 Accept factor 0.5

4 No of genes 3 Reject ratio 0.15

5 Linking function Addition Epochs 1000

6 Maximum arity 2 Error tolerance 0

7 Program size 42 Input 4

8 Used variable 2 Output 1

9 Addition literals 8 MF 3

10 Function sets +, ×, ÷, 3√xx

11 No of run 1

12 Problem type Regression

13 No of generation 1000

14 Crossover type Uniform

15 Inversion rate 0.00567

16 RIS transportation rate 0.00567

17 Upper and lower bounds ±10
18 Gene recombination rate 0.00755

19 Gene transportation rate 0.00277

20 Constants per gene 10

Table 5.  The optimization parameters for GEP and clustering ANFIS65,128,129.
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where wopt
k,l,m.,n,p and fopt

k,l,m.,n,p are the optimized firing strengths and consequent functions determined 
by GEP. This model provides an adaptive, precise control strategy for the hybrid energy management system, 
optimizing battery usage and grid interactions based on real-time conditions from the all inputs (Table 6).

Hybrid GEP-ANFIS based MPPT
The initial step in designing a GEP-ANFIS-based MPPT controller involves begins with data collection, focusing 
on hourly temperature and solar irradiation specific to the case study’s geographical location. Irradiation data 
from 9 PM to 6 AM, which provides negligible power, was excluded from the analysis. The screened dataset 

BEGIN
    # Step 1: Initialize Parameters
    Initialize population size (P), number of generations (G), mutation rate (m), crossover rate (c)

    Define input and output datasets (X, Y)

    Set ANFIS structure (e.g., number of input membership functions (MFs), type of MFs)

# Step 2: Generate Initial Population
    Generate initial population of chromosomes (GEP individuals) representing ANFIS rules

    Each chromosome encodes fuzzy rules (e.g., antecedents, consequents)

    # Step 3: Evaluate Fitness of Population
FOR each chromosome in the population DO

        Decode the chromosome into ANFIS parameters

        Train ANFIS using the training dataset (X_train, Y_train) with the decoded parameters

        Compute fitness of the chromosome based on ANFIS prediction accuracy

    END FOR

    # Step 4: GEP Evolutionary Process
FOR generation = 1 TO G DO

        # Step 4.1: Selection
        Select parents based on fitness (e.g., roulette wheel or tournament selection)

        # Step 4.2: Crossover
        Apply crossover to selected parents to produce offspring

        Maintain a balance between exploration and exploitation

        # Step 4.3: Mutation
        Mutate offspring chromosomes with probability m to introduce diversity

        # Step 4.4: Evaluate New Population
        FOR each offspring chromosome DO
            Decode the chromosome into ANFIS parameters

            Train ANFIS and compute fitness

END FOR
        # Step 4.5: Replace Old Population
        Replace the old population with the new population

        # Step 4.6: Track Best Solution
        Update the best chromosome if a better solution is found

    END FOR
    # Step 5: Decode Best Chromosome
    Decode the best chromosome from the final generation into ANFIS parameters

    Train and finalize the ANFIS model using the best parameters and the full dataset

# Step 6: Test and Validate Model
    Test the final ANFIS model on the test dataset (X_test, Y_test)

    Compute performance metrics (e.g., RMSE, MAE, R²)

    # Step 7: Output Results
    Output the best chromosome, optimized ANFIS model, and performance metrics

END

Table 6.  Pseudocode for GEP-ANFIS Algorithm.
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is used in the MATLAB/Simulink PV model to generate outputs, forming the training dataset for the ANFIS. 
The GEP-ANFIS-based controller was integrated into the solar energy system to optimize performance under 
varying environmental conditions. This controller dynamically adjusts the duty cycle of a DC-DC converter 
to ensure the PV system operates at maximum efficiency. The integration process involved simulating the PV 
system in MATLAB/Simulink, leveraging real-time sensor feedback to maintain optimal power output and 
system efficiency. The performance of the hybrid model is rigorously evaluated using efficiency equation given 
below:

	
η = Pmppt

Ppv
× 100� (28)

where Pmppt = the maximum output power that can be extracted from a PV system when employing an MPPT 
controller. On the other hand, Ppv  = the real power produced by the solar PV system without the use of an MPPT 
controller.

Hybrid GEP-ANFIS Based load and solar PV forecasting
Accurate forecasting of industrial load demand profiles is essential for efficient energy system operation, 
particularly given the increasing complexity of consumption patterns. Similarly, precise predictions of solar 
PV output are critical to achieving operational and sustainability goals. However, uncertainties such as 
inaccuracies in weather forecasting can significantly impact optimization processes and disrupt optimal energy 
scheduling65,131,132. In this study, historical data on load, time, temperature, and solar irradiation are analyzed 
to forecast both load demand and solar PV power generation, supporting long-term and short-term energy 
planning. The analysis identifies trends, seasonal variations, and growth patterns in energy consumption, which 
are instrumental for optimizing supply strategies and ensuring energy system reliability.

The performance of the predictive models is evaluated using metrics such as RMSE, Mean Absolute Deviation 
(MAD), and MAPE, as outlined in Eqs.  (29) – (31). These metrics provide a comprehensive assessment 
framework, capturing different dimensions of prediction accuracy across diverse operational scenarios133. By 
addressing the challenges of forecasting with advanced modeling techniques, this study contributes to enhancing 
energy management strategies, emphasizing the role of precise predictions in optimizing industrial energy 
consumption and effectively integrating RESs.

	
MAD = 1

N

N∑
i=1

|Xi − Xi′|� (29)

	

RMSE =

√√√√ 1
N

N∑
i=1

(Xi′ − Xi)2� (30)

	
MAP E = 100

N

N∑
i=1

|Xi − Xi′|
Xi′

� (31)

Hybrid GEP-ANFIS Based energy management system
This study proposes a hierarchical controller designed to optimize energy production and consumption in grid-
connected PV-battery systems. The system efficiently manages energy flow between the grid, solar PV arrays, 
and battery storage while considering dynamic load demands. This strategy ensures efficient energy utilization, 
significantly reducing peak demand charges and operational costs in industrial settings. The hybrid GEP-ANFIS 
model enhances energy management by balancing supply and demand, integrating renewable energy sources, 
and employing real-time adaptive control to minimize operational expenses.

The proposed GEP-ANFIS model leverages grid data, time of day, battery status, forecasted load, and solar 
PV data as inputs to optimize system performance. By combining the adaptability of GEP with the uncertainty-
handling capability of ANFIS, the model delivers exceptional efficiency and precision. Performance metrics such 
as peak demand and cost reduction are used to evaluate the predictive capabilities of the model. Additionally, 
HOMER software serves as a baseline for long-term planning, providing a benchmark to justify the viability 
and superiority of the developed hybrid model. This approach represents a significant advancement in energy 
management for industrial-scale applications.

	
P eak reduction = P eak demand (Baseline) − P eak demand (optimized)

P eak demand (Baseline) × 100� (32)

	
Cost reduction = Baseline cos t − Optimized cos t

Baseline cos t
× 100� (33)

Simulation results and discussion
Optimized ANFIS based MPPT results
The results of the optimized ANFIS-based MPPT model reveal its superior performance across three distinct 
scenarios: varying solar irradiation and temperature, varying solar irradiation with constant temperature, and 
constant solar irradiation with varying temperature. In the first scenario, the GEP-ANFIS double-diode model 
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outperformed all other configurations, generating 250.1567512 kW of daily power, which is 41.1% higher than 
conventional MPPT methods as illustrated in Fig. 4. This consistent improvement highlights the model’s ability 
to accurately track the maximum power point under fluctuating environmental conditions, leveraging the 
enhanced complexity and precision of the double-diode configuration.

In the second scenario, under constant solar irradiation (1000 W/m2) and varying temperatures, the GEP-
ANFIS double-diode model maintained the highest efficiency, achieving 99.84% at 15 °C with an output power 
of 249.6 W and 94.72% at 55 °C with an output power of 236.8 kW, as illustrated in Fig. 5a. Similarly, in the 
third scenario, with constant temperature (25 °C) and varying solar irradiation, the GEP-ANFIS double-diode 
model consistently achieved the highest efficiency, ranging from 48.38% with an output power of 151.91 kW 
at 200 W/m2 to 97% with an output power of 242.5 kW at 1000 W/m2 as illustrated in Fig. 5b. It is important 
to note that the dynamic performance of the proposed GEP–ANFIS MPPT under fluctuating irradiance and 
was comprehensively validated in our earlier study129, conducted according to the EN 50,530 test standard. 
Hence, the present work focuses on system-level techno-economic integration rather than re-evaluating MPPT 
dynamics. These results underscore the hybrid model’s exceptional adaptability to changing environmental 
conditions, maximizing energy capture and consistently surpassing the efficiency and output power of its 
ANFIS counterparts. The findings conclusively demonstrate the GEP-ANFIS double-diode model’s significant 
advantages in efficiency and reliability, making it a robust solution for optimizing renewable energy systems.

Predictive Analytics for Load and Solar PV Forecasting
The comparative analysis of forecasting models for both solar PV output and load demand in Table 7 reveals 
a consistent superiority of the hybrid GEP-ANFIS framework over standalone GEP and ANFIS models. In the 
context of solar PV forecasting, GEP-ANFIS2 achieved the lowest short-term error metrics, with a MAD of 2.91%, 
MAPE of 5.31%, and RMSE of 8.41%, significantly reducing prediction errors compared to GEP1 (MAD = 16.06%, 
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Fig. 5.  Power output characteristics of the PV module for single and proposed double-diode models at (a) 
different temperatures with constant solar irradiation of 1000 W/m2, and (b) varying solar irradiation with a 
constant temperature of 25 °C.

 

Fig. 4.  Power output characteristic of PV module with varying solar irradiation and temperature.
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MAPE = 24.62%, RMSE = 19.63%) and ANFIS1 (MAD = 15.25%, MAPE = 12.11%, RMSE = 19.63%). Long-term 
forecasting performance remained consistent, where GEP-ANFIS2 achieved a MAD of 5.82%, MAPE of 7.566%, 
and RMSE of 15.138%, showcasing its robustness over extended horizons. These improvements emphasize the 
model’s superior capacity to adapt to the nonlinearity and intermittency of solar irradiance data, particularly 
under region-specific climatic variability.

In load demand forecasting, the advantage of the hybrid model is even more prominent. GEP-ANFIS achieved 
a short-term MAD of 0.13%, MAPE of 2.24%, and RMSE of 0.18%, indicating high precision in capturing short-
duration load fluctuations. For long-term projections, the model sustained performance with MAD of 0.156%, 
MAPE of 3.472%, and RMSE of 0.2196%, substantially outperforming GEP (MAD = 3.165, MAPE = 6.045%) 
and ANFIS (MAD = 2.912%, MAPE = 5.921%). This demonstrates the model’s effectiveness in learning temporal 
dependencies in electrical consumption trends, critical for planning and stability of power systems. The 
substantial reductions in MAD, MAPE, and RMSE across both short- and long-term scenarios validate the 
hybrid model’s utility in developing predictive analytics frameworks for intelligent grid management, especially 
in environments characterized by high variability and data nonlinearity.

Predictive cases of scheduling generation
Case one: grid only
The comparative evaluation of predictive energy scheduling using GEP-ANFIS and conventional ANFIS models, 
under the operational constraint of serving industrial loads exclusively from the grid, demonstrates a high 
degree of alignment across most time intervals as shown in Fig. 6. From 1:00 to 16:00, the predicted energy 
consumption values between the two models exhibit minimal variance generally within ± 0.1 kWh indicating 
that both systems maintain high accuracy in modeling energy demands during stable or baseline operational 
periods. This narrow deviation underscores the robustness of both models in forecasting under deterministic 

Fig. 6.  Predictive energy scheduling of grid.

 

Models

Short term error metrics Long term error metrics

MAD MAPE RSME R2 MAD MAPE RSME R2

Solar PV forecasting

GEP1 16.06 24.62 19.63 0.79 44.968 49.24 35.334 0.72

GEP2 16.06 24.61 8.36 0.90 41.756 46.759 15.048 0.75

ANFIS1 15.25 12.11 19.63 0.85 38.125 20.587 35.334 0.88

ANFIS2 4.17 9.65 19.13 0.87 8.757 15.44 34.434 0.91

GEP-ANFIS1 2.95 7.25 10 0.93 5.9 14 18 0.94

GEP-ANFIS2 2.91 5.31 8.41 0.96 5.82 7.566 15.138 0.97

Load demand forecasting

GEP 2.11 3.9 3.24 0.81 3.165 6.045 4.6656 0.8133

ANFIS 2.08 3.82 3.23 0.93 2.912 5.921 4.199 0.9746

GEP-ANFIS 0.13 2.24 0.18 0.985 0.156 3.472 0.2196 0.9833

Table 7.  Comparative analysis of different error metric solar PV and load forecasting.
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or low-volatility industrial load conditions. Notably, time steps such as 1:00–16:00 reveal identical outputs, 
suggesting convergence in predictive logic under steady-state loads.

However, post-Time 16, a significant divergence in prediction emerges, particularly between 17:00 to 24:00, 
where GEP-ANFIS consistently predicts lower energy consumption compared to standard ANFIS. For instance, 
at 17:00, GEP-ANFIS forecasts 43 kWh, whereas ANFIS estimates 67.39 kWh a discrepancy of over 24 kWh, or 
approximately 35.6% lower. This pattern is recurrent in all subsequent time steps, indicating that GEP-ANFIS 
has superior adaptability in identifying latent load reductions or off-peak operational efficiencies due to its 
enhanced learning capability derived from the genetic algorithm’s optimization layer. Such improved accuracy 
during off-peak hours, when industrial load dynamics are highly nonlinear or influenced by ancillary systems, 
reinforces the suitability of GEP-ANFIS for energy-efficient, intelligent scheduling in grid-constrained industrial 
environments. This finding supports its application in real-time demand-side management, where predictive 
precision is crucial for optimizing operational costs and grid stability.

Case two: Solar PV and battery only
The predictive scheduling results, under the operational constraint of using solar PV and battery storage 
exclusively to serve industrial loads, indicate a significant performance advantage of the GEP-ANFIS hybrid 
model over the conventional ANFIS controller as shown in Fig.  7. During the early 1:00–8:00, when solar 
input is negligible or minimal, both models rely entirely on battery discharge to meet industrial load demands. 
However, GEP-ANFIS consistently maintains higher SOC margins preserving an average of 6–10% more SOC 
than ANFIS thereby avoiding deep discharge conditions which typically accelerate battery degradation. Notably, 
at 4:00, ANFIS approaches its critical SOC threshold of 27% while GEP-ANFIS sustains a safer margin at 30%, 
successfully meeting the full load without shedding. This reflects the GEP optimizer’s ability to fine-tune fuzzy 
rules, favoring long-term SOC stability over aggressive discharge strategies.

In the midday period 9:00–15:00, when solar irradiation is abundant, both systems engage in strategic 
recharging of the battery. GEP-ANFIS, however, exhibits superior charging efficiency, replenishing battery 
reserves 10–15% faster than ANFIS. This is evident in the faster SOC ramp-up, where GEP-ANFIS achieves 
a SOC of 46.0% by 15:00, compared to ANFIS’s 41.5%. These gains are attributed to GEP’s optimization of 
membership functions, particularly through narrowing the “Low SOC” trigger band, which prompts earlier 
and more assertive charging behavior. This strategic utilization of peak solar generation not only ensures that 
the battery reaches a higher charge level but also positions the system to handle evening loads more effectively.

During the evening discharge period (17:00–24:00), GEP-ANFIS outperforms ANFIS by deploying a more 
conservative discharge pattern, reducing battery output by 10–25%. This slower depletion rate not only meets 
industrial load demand without deficit but also culminates in a final SOC of 41.5%, compared to 38.5% in the 
ANFIS scenario providing greater energy reserve for early morning operations of the next day. Additionally, the 
hybrid system eliminates all load deficits, whereas ANFIS fails to meet approximately 11% of the load between 
5:00 and 8:00, totaling a shortfall of 2,155 kWh. In essence, GEP-ANFIS achieves 100% load coverage, reduces 
battery cycling by 12%, and improves lifecycle sustainability underscoring its robustness for predictive energy 
scheduling in renewable-integrated, grid-independent industrial energy systems.

Case three: Grid connected Solar PV and battery only
The results from the predictive scheduling of generation using a grid-connected solar PV and battery system 
designed exclusively to serve industrial loads demonstrate clear performance advantages of the GEP-ANFIS 
hybrid controller over the standalone ANFIS model, particularly in terms of battery usage optimization and 

Fig. 7.  Predictive energy scheduling of solar PV and battery systems.
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SOC management as shown in Fig. 8. During off-peak hours (1:00–6:00), where solar irradiance is negligible, 
the grid supplies 100% of the industrial load demand, totaling 2,016 kWh, thereby conserving battery resources. 
Both controllers maintain battery SOC at a constant 40% during this period, reflecting a successful strategy of 
grid prioritization for early-morning loads, which not only ensures full load coverage but also preserves battery 
health by avoiding unnecessary discharge cycles.

As solar generation ramps up from 7:00 onwards, the battery begins to support load supply and engage 
in recharging. From 9:00–16:00, both systems leverage PV surpluses to recharge the battery, but GEP-ANFIS 
exhibits more aggressive charging behavior, consistently storing more energy per hour and achieving a peak SOC 
of 68.0% at Hour 16, compared to 65.0% under ANFIS. This indicates improved energy harvesting and charge 
scheduling, due to GEP-optimized rule tuning, which enhances the responsiveness of the fuzzy inference system 
to solar fluctuations. This performance is particularly beneficial during transitional solar periods (e.g.,17:00–
20:00), where GEP-ANFIS maintains higher SOC margins and discharges 20–30% less than ANFIS, thereby 
reducing depth of discharge and extending battery lifespan.

In the final discharge period (17:00–24:00), the superiority of GEP-ANFIS becomes more evident. While 
both controllers maintain 100% load coverage GEP-ANFIS ends the day with a higher final SOC of 52% versus 
ANFIS’s 50%, preserving critical reserve capacity for early next-day operations. Additionally, by reducing 
total discharge cycles by 25%, ANFIS-PSO effectively mitigates battery stress, making it a more sustainable 
and lifecycle-conscious choice for industrial microgrid applications. Overall, the integration of GEP within 
the ANFIS framework provides enhanced energy scheduling, minimizes battery wear, and ensures optimal 
coordination between grid support and renewable generation, aligning with the performance and longevity 
goals of grid-tied industrial energy systems.

Optimized sizing of solar PV and battery storage for industrial user
The system sizing analysis for a grid-connected solar PV and battery configuration designed exclusively to 
support industrial load requirements reveals the substantial scale of energy infrastructure needed to sustain 
a daily consumption of 4,269.14 kWh/day without compromise in reliability. To meet this load, a solar PV 
array of 776.21 kW is required, corresponding to 2,588 panels rated at 300 W each. This configuration ensures 
that sufficient solar energy can be harvested during peak sun hours to both serve real-time industrial demand 
and recharge the battery bank for use during non-generating periods. The chosen PV capacity reflects careful 
consideration of load factor, solar insolation profiles, and system losses, ensuring optimal utilization of solar 
resources under a hybrid grid-supportive environment.

On the storage side, the system requires a battery capacity of approximately 12.56 MWh (1,046,356.81 Ah 
at 12 V) to maintain full autonomy during periods of low or no solar availability. This equates to 5,232 units 
of 200Ah, 12 V batteries, translating to a total battery power capacity of 12.56 MW. Such a large-scale battery 
bank is not only essential to ensure round-the-clock load support but also acts as a buffer to smoothen the 
intermittency of PV generation. The sizing strategy ensures that the system can reliably manage peak demands, 
prevent battery deep discharge which degrades performance, and reduce dependence on the grid to emergency 
or backup use only enhancing both operational autonomy and cost-efficiency.

Furthermore, the integrated sizing of PV and battery systems reflects a well-optimized energy architecture 
for industrial microgrid applications, where high load continuity and power quality are non-negotiable. By 
leveraging grid connectivity strategically, the proposed system reduces battery cycling frequency and enables 
peak shaving, thereby extending battery lifespan and improving lifecycle economics. This level of technical sizing 
underscores the feasibility of transitioning industrial loads to low-carbon, resilient hybrid systems, offering a 
replicable model for sustainable energy integration in energy-intensive industrial zones.

Fig. 8.  Predictive energy scheduling of grid connected solar PV and battery systems.
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Sensitivity analysis
The capacity reduction scenarios (20%, 40%, 60%, and 80%) presented in Tables 8 and 9 are designed to represent 
practical degradations or operational limitations that may occur in industrial hybrid PV–battery systems over 
time. These reductions emulate several real-world phenomena that affect both renewable generation and energy 
storage performance:

	1.	 Battery Capacity Degradation: Over its operational lifetime, a lithium-ion or lead-acid battery typically loses 
between 10 and 20% of its nominal capacity every 3–5 years, depending on depth of discharge (DoD) and 
temperature conditions. Hence, a 20–80% capacity reduction corresponds to approximately 4–20 years of 
cumulative degradation, covering early, mid, and end-of-life battery performance.

	2.	 PV Module Aging and Fouling: Photovoltaic panels experience an average 0.5–0.8% efficiency loss per year 
due to material degradation, dirt accumulation, and micro-cracking. The higher capacity reduction scenar-
ios (e.g., 60–80%) therefore mimic conditions where partial shading, soiling, or inverter derating further 
reduce available generation capacity.

	3.	 Industrial Load Curtailment or Equipment Downtime: In industrial facilities, partial operational loads or 
equipment maintenance shutdowns can temporarily reduce total system capacity utilization. These condi-
tions are approximated by 20–60% capacity reductions in the simulation.

Thus, each reduction scenario models a progressive decline in system performance that may result from 
component wear, maintenance constraints, or environmental stressors. Analyzing these conditions allows the 
model to evaluate the resilience and adaptability of the proposed GEP–ANFIS control strategy under realistic 
degradation and operational uncertainty.

The sensitivity analysis reveals that the GEP-ANFIS controller consistently outperforms the conventional 
ANFIS model in terms of unmet load reduction, SOC preservation, and grid dependence mitigation. At a 20% 
battery capacity reduction (near baseline), both controllers maintain full load coverage; however, GEP-ANFIS 
achieves a higher final SOC of 52% versus 50%, indicating better energy conservation. As battery capacity is 
further reduced to 40%, ANFIS begins to show vulnerabilities, with 2% unmet load and increased grid reliance, 
while GEP-ANFIS still maintains zero load deficits and avoids additional grid demand, thereby demonstrating 
superior adaptability to constrained storage conditions.

Under more critical reductions 60% and 80% the performance divergence becomes more pronounced. At 
60% reduction, ANFIS incurs a 5% unmet load and increases grid usage to 2,196 kWh, compared to GEP-
ANFIS’s lower unmet load of 2% and a reduced grid draw of 2,106 kWh. In the most extreme case (80% capacity 
cut), ANFIS’s performance deteriorates significantly, resulting in 12% unmet load and a critically low final SOC 
of 25%, whereas GEP-ANFIS caps unmet load at 8%, maintains a final SOC of 28%, and reduces grid dependence 
by approximately 33%.

PV Reduction Controller Final SOC (%) Unmet Load (%) Grid Use (kWh) Key Insight

20% ANFIS 50 0 2,016 Baseline performance

GEP-ANFIS 55 0 2,016  + 5% SOC preservation

40% ANFIS 40 0 2,016 Vulnerable to deficits

GEP-ANFIS 45 0 2,016  + 5% SOC preservation

60% ANFIS 15 5 2,216 High grid reliance

GEP-ANFIS 20 2 2,116 Halves grid use

80% ANFIS 5 12 2,816 Severe degradation

GEP-ANFIS 10 8 2,516 Reduces grid use by 38%

Table 9.  Solar PV Sensitivity Analysis for Industrial Load Support under GEP-ANFIS and ANFIS Control.

 

Battery
Reduction Controller Unmet Load (%) Grid Use (kWh) Final SOC (%) Key Insight

20%
ANFIS 0 2,016 50 Baseline performance

GEP-ANFIS 0 2,016 52  + 3% SOC preservation

40%
ANFIS 2 2,038 45 Vulnerable to deficits

GEP-ANFIS 0 2,016 48 Avoids unmet load

60%
ANFIS 5 2,196 35 High grid reliance

GEP-ANFIS 2 2,106 38 Halves grid use

80%
ANFIS 12 2,496 25 Severe degradation

GEP-ANFIS 8 2,336 28 Reduces grid use by 33%

Table 8.  Battery Capacity Sensitivity Analysis for Industrial Load Support under GEP-ANFIS and ANFIS 
Control.
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At moderate PV reductions of 20% and 40%, both controllers successfully maintain zero unmet load, but 
GEP-ANFIS consistently delivers higher final SOC levels (+ 5%), indicating more effective energy conservation 
and better preparation for subsequent low-generation periods. At higher PV reduction levels (60% and 80%), the 
performance divergence becomes more significant. Under a 60% PV shortfall, ANFIS incurs a 5% unmet load and 
raises grid dependency to 2,216 kWh, whereas GEP-ANFIS reduces the unmet load to 2% and cuts grid reliance 
by 100 kWh. The disparity is more pronounced at 80% reduction, where ANFIS fails to meet 12% of the load, 
requiring 2,816 kWh from the grid, while GEP-ANFIS caps unmet load at 8% and limits grid usage to 2,516 kWh 
a 38% reduction in emergency energy imports. Additionally, GEP-ANFIS avoids deep discharge by maintaining 
SOC levels above 10%, which enhances battery longevity. These findings demonstrate the robustness, efficiency, 
and scalability of the GEP-ANFIS controller, especially in resource-constrained, PV-dominated microgrids, 
making it a strategic solution for sustainable industrial energy management while preserving battery longevity 
by avoiding deep discharge scenarios.

The superior performance of the proposed GEP–ANFIS framework extends beyond its low forecasting errors 
and high cost efficiency it is fundamentally rooted in the model’s structural adaptability, dual-layer optimization, 
and robustness to variability. Unlike conventional or PSO–ANFIS models, GEP–ANFIS dynamically evolves 
its fuzzy rule base through symbolic regression, allowing it to capture complex nonlinear relationships among 
variables such as solar irradiance, temperature, and battery state of charge. This adaptive rule evolution enhances 
generalization and minimizes overfitting, enabling the model to perform reliably under fluctuating weather and 
load conditions.

Furthermore, the integration of GEP’s global search with ANFIS’s local parameter tuning creates a powerful 
dual-layer optimization mechanism. GEP explores a wide solution space to identify effective rule structures, 
while ANFIS fine-tunes these configurations for precise learning and faster convergence. This synergy ensures 
stability, improved learning efficiency, and effective management of trade-offs between accuracy and cost 
optimization. Combined with its resilience to data noise and operational uncertainty demonstrated in the 
sensitivity analyses (Tables 8, 9) the GEP–ANFIS framework represents not only a numerically superior but also 
a structurally and adaptively intelligent advancement in hybrid energy management systems.

Economic analysis
Daily energy economic analysis
The comparative analysis of daily energy cost across three predictive generation scheduling configurations Grid-
only, PV and Battery, and Grid-connected PV and Battery demonstrates a consistent cost advantage when using 
the GEP-ANFIS controller over the conventional ANFIS system as shown in Fig. 9. In the Grid-only scenario, 
the energy cost under ANFIS is 1,440,139 UGX/day, while GEP-ANFIS achieves a 7.4% reduction, lowering it to 
1,332,081 UGX/day. This margin becomes more pronounced in hybrid configurations: when operating with PV 
and battery only, GEP-ANFIS cuts energy cost to 1,214,656 UGX/day, representing a 6.5% improvement over 
ANFIS. The most cost-effective outcome is observed under the Grid-connected PV and Battery scheme, where 
GEP-ANFIS achieves a daily cost of 1,093,643 UGX, outperforming ANFIS by 6.3%, and yielding the lowest 
operational cost across all tested strategies.

These findings confirm the economic superiority of hybrid generation scheduling with intelligent 
control optimization. The cost-saving trends across all configurations indicate that GEP-ANFIS, through its 
evolutionary rule refinement and adaptive decision-making, significantly improves generation dispatch and 
resource utilization. The hybrid grid-PV-battery scheme emerges as the optimal configuration, minimizing 
reliance on high-cost grid energy during peak hours while effectively leveraging renewable generation and 
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Fig. 9.  Daily cost of energy.
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storage flexibility. Therefore, GEP-ANFIS not only enhances operational efficiency but also provides substantial 
economic benefits, making it highly suitable for cost-sensitive, energy-intensive industrial applications in grid-
constrained environments.

Long term economic analysis
To enhance techno-economic realism, the life-cycle cost model was expanded to include battery degradation, 
maintenance, and component replacement effects. Battery degradation was modeled using a state-of-health 
(SOH) decay rate of 2% per year, while O&M costs were set at 2% of the total capital cost for PV and storage 
systems. Battery replacement is assumed at 50% of the initial cost at mid-life (year 5), and a salvage value of 10% 
was applied to the PV array at the end of the 20-year horizon.

The long-term cost analysis over a 20-year planning horizon reveals a significant reduction in total energy 
system expenditure when advanced predictive scheduling models ANFIS and GEP-ANFIS are employed 
compared to the baseline HOMER optimization framework as illustrated in Fig.  10. The HOMER-based 
configuration, widely recognized for its deterministic optimization capabilities, yields a total system cost of 12.81 
billion UGX. In contrast, the ANFIS-based model reduces this cost to 8.53 billion UGX, representing a 33.5% 
reduction, primarily due to enhanced flexibility in load forecasting and real-time scheduling, which limits over-
provisioning of grid and storage resources.

More notably, the GEP-ANFIS model further improves economic performance, achieving a total cost of 7.98 
billion UGX, which is 6.5% lower than ANFIS and 37.7% lower than HOMER. This superior cost efficiency 
stems from GEP’s evolutionary tuning of fuzzy inference rules, enabling optimal utilization of renewable energy 
and battery dispatch strategies under varying load and generation profiles. The results underscore the potential 
of hybrid intelligent scheduling algorithms to outperform traditional static optimizers over long operational 
lifespans, making GEP-ANFIS a strategically advantageous tool for cost-minimized, future-ready energy 
planning in industrial microgrid environments.

Conclusion
This study presents a comprehensive exploration of an intelligent EMS framework designed to optimize 
predictive scheduling for hybrid renewable energy systems, specifically under scenarios where grid usage is 
restricted to serving industrial loads. By integrating advanced soft computing techniques particularly, a hybrid 
GEP-ANFIS the proposed system demonstrated significant improvements in forecasting precision for both 
solar PV generation and industrial load demand. The results validate the GEP-ANFIS model’s superiority in 
terms of lower prediction error (MAD, MAPE, RMSE) and its responsiveness to dynamic operational scenarios, 
compared to traditional ANFIS and GEP models. Additionally, when applied to practical energy scheduling, the 
hybrid model achieved more efficient allocation of energy resources, particularly during low-load conditions, 
thus improving system responsiveness and reducing unnecessary energy draw from the grid.

This work not only affirms the viability of hybrid intelligent forecasting models in complex industrial energy 
systems but also lays a robust foundation for data-driven EMS architectures capable of supporting demand-side 
management, real-time optimization, and cost-effective renewable energy integration. The study’s contributions 
are especially pertinent in energy-critical regions, where managing grid constraints while maintaining industrial 
productivity is of strategic importance.
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Recommendations and future research
Although the GEP–ANFIS framework effectively addresses the multi-objective optimization of forecasting 
accuracy and energy cost, its reliance on heuristic evolution entails a relatively high computational burden 
and the need for well-characterized system data. Future work will explore the integration of zero-order and 
derivative-free optimization schemes to reduce this dependency. Such methods can provide adequate controller 
tuning with a significantly smaller number of simulation or experimental evaluations, thus broadening the 
applicability of the model in cases where digital twins or extensive datasets are unavailable.

Furthermore, real-time implementation of the GEP-ANFIS-based forecasting model in live industrial 
microgrids should be pursued to validate its computational efficiency and robustness under real-world operating 
conditions. This includes integration with smart metering infrastructure and Internet of Things (IoT)-enabled 
sensors for continuous data acquisition.

Additionally, future studies should incorporate multi-objective optimization, taking into account not 
only cost and energy efficiency but also carbon footprint, system degradation, and energy storage dynamics. 
Furthermore, the inclusion of demand response strategies and market-based pricing models could enhance the 
economic sustainability of the system, especially in deregulated power markets.

Finally, an important direction is the development of a scalable EMS platform using cloud-edge architectures, 
enabling seamless deployment across different industrial sectors and geographies. Such frameworks would 
benefit from incorporating explainable AI features to improve stakeholder trust and interpretability of the 
decision-making process, thereby promoting widespread adoption in industrial energy systems.

Data availability
The datasets used and/or analyses during the current study are available from the corresponding author on 
reasonable request.
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