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Urban air pollution poses a considerable risk to both public health and environmental sustainability, 
highlighting the importance of precise, low-latency forecasting systems that can be integrated 
into real-world infrastructures. This research presents the Urban Air Quality Forecasting with Grid-
Embedded Recurrent MLP Model (AiM), a hybrid model that merges a recurrent Multi-Layer Perceptron 
(R-MLP) with a Grid-Embedded framework that takes spatial factors into account, aiming to improve 
air quality predictions across space and time. It employs a grid-based partitioning strategy for urban 
monitoring areas, allowing it to effectively capture localized patterns in pollutant dispersion, while 
the R-MLP aspect addresses the complex temporal dependencies found in multi-pollutant and 
meteorological time series data. A customized feature engineering pipeline is designed to incorporate 
pollutant interactions, meteorological variability, and grid adjacency relationships, facilitating the 
robust learning of cross-regional correlations. Experiments conducted on multi-season, multi-station 
datasets reveal that AiM achieves superior forecasting accuracy compared to conventional LSTM, 
GRU, and CNN-RNN hybrids, reducing RMSE by as much as 12.4% and inference latency by 35% on 
edge devices. Furthermore, the architecture demonstrates high scalability, accommodating dynamic 
grid reconfiguration and integration with low-power IoT nodes, making it well-suited for real-time 
deployment in smart city air quality management systems.
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Air pollution stands as one of the most urgent environmental and public health challenges facing modern urban 
centers1. This issue is primarily driven by rapid industrialization, increasing vehicular traffic2, and changing 
climatic conditions3,4. Fine particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), carbon monoxide 
(CO), and other pollutants have been directly associated with respiratory illnesses, cardiovascular diseases, 
and diminished life expectancy5,6. The intricate dynamics of pollutant dispersion, influenced by meteorological 
factors such as temperature, humidity, wind speed, and atmospheric pressure, require sophisticated forecasting 
models that can effectively capture non-linear spatiotemporal patterns.

Traditional statistical forecasting techniques7–9 are often computationally efficient but typically struggle 
to accurately capture the complex dependencies inherent in urban air quality data. In contrast, deep learning 
(DL) architectures such as Long Short-Term Memory (LSTM) networks10, Gated Recurrent Units (GRUs)11, 
Convolutional Neural Networks (CNNs)12, and Graph Neural Networks (GNNs)13–15 have shown superior 
performance. However, these models frequently face challenges related to high computational complexity, 
limited edge-deployability, and inadequate modeling of fine-grained spatial heterogeneity, which is crucial for 
effective urban interventions16–20.

1Computer Science & Engineering, Nalla Malla Reddy Engineering College, Hyderabad, Telangana 500088, India. 
2Department of Computer Science, College of Computer Science, Applied College Tanumah, King Khalid University, 
P.O. Box 960, Abha 61421, Saudi Arabia. 3Department of Information Technology, Telangana University, Nizamabad, 
Telangana 503322, India. 4Department of Information Technology, Lords Institute of Engineering and Technology, 
Hyderabad, Telangana, India. 5Information Systems Department, College of Computer and Information Sciences, 
Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia. 6Site Reliability Engineer, 
Cubic transportation systems, Hyderabad, Telangana, India. 7Senior Data Scientist, Toyota Motor, North America, 
Plano, Texas, USA. 8Disability Research Institute, Health Sector, King Abdulaziz City for Science and Technology, 
Riyadh, Kingdom of Saudi Arabia. 9Department of Computer Science & Engineering, MJPTBCWRDC, Mahabubabad, 
Warangal, India. email: mkmiyob@kku.edu.sa

OPEN

Scientific Reports |        (2025) 15:42812 1| https://doi.org/10.1038/s41598-025-27073-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-27073-y&domain=pdf&date_stamp=2025-11-11


To address these limitations, we introduce AiM, an innovative hybrid framework that combines a grid-
based spatial embedding mechanism with a recurrent Multi-Layer Perceptron (R-MLP) architecture. The grid 
embedding divides the urban landscape into spatial cells, allowing for the effective capture of localized pollutant 
patterns and cross-regional dependencies through adjacency-aware feature integration. Meanwhile, the 
recurrent MLP efficiently models temporal dynamics and maintains a lightweight structure, making it suitable 
for deployment on low-power IoT devices.

Research gaps

•	 Limited Utilization of Spatial Heterogeneity: Many existing approaches21 primarily frame air quality pre-
diction as a temporal issue, often neglecting the spatial variability present across different urban zones.

•	 High Computational Complexity: While state-of-the-art deep learning architectures (such as LSTM, CNN-
LSTM, and Transformers) achieve impressive accuracy, they demand substantial computational resources, 
which restricts their practical deployment in real-world IoT scenarios22.

•	 Insufficient Spatiotemporal Feature Fusion: Current models frequently struggle to integrate pollutant inter-
actions, meteorological conditions, and spatial relationships into a unified representation, thereby hampering 
their ability to effectively capture complex dispersion dynamics23.

•	 Lack of Grid-based Environmental Modeling: There is a scarcity of methods employing structured spatial 
partitioning (grid embedding) to illustrate urban pollutant dynamics, which results in underutilizing the 
effects of neighboring areas.

•	 Challenges in Generalization Across Heterogeneous Conditions: Models trained on datasets from a single 
location10,24 often exhibit a lack of robustness when applied to different cities, seasons, and pollution scenar-
ios.

Key challenges

•	 Balancing Accuracy and Efficiency: Striving for exceptional predictive performance while minimizing 
memory consumption and inference latency, ideally suited for edge deployment.

•	 Dynamic Spatial Correlations: Capturing time-varying dependencies among grid cells that are influenced 
by factors such as wind, traffic, and meteorological conditions.

•	 Multi-Scale Temporal Modeling: Effectively learning both short-term fluctuations and long-term trends 
while avoiding issues related to noise and seasonal biases.

•	 Data Sparsity and Irregularity: Addressing the challenges of missing sensor readings, irregular sampling 
intervals, and noisy measurements prevalent in real-world IoT networks.

•	 Scalability and Adaptability: Ensuring the model can scale to accommodate larger grids and additional 
sensors without the need for complete retraining.

Addressing these gaps is essential for the development of a forecasting framework that is both accurate and 
computationally efficient. The proposed AiM model directly confronts these challenges by incorporating 
spatial grids within a recurrent MLP structure, thereby enhancing the learning of spatiotemporal features while 
maintaining a lightweight design suitable for edge deployment.

Motivation
Urban air pollution remains a critical environmental and public health issue, with PM2.5, PM10, NO2, and CO 
identified as key pollutants associated with respiratory and cardiovascular diseases, as well as decreased life 
expectancy5,6. The rapid pace of urbanization, coupled with increasing vehicular traffic and industrial activities, 
has heightened the demand for accurate, timely, and location-specific air quality forecasts to facilitate proactive 
mitigation strategies.

Although deep learning techniques such as LSTM10, GRU11, and hybrid CNN-RNN models25 have 
demonstrated potential, they encounter several limitations. Specifically, they often overlook fine-grained spatial 
heterogeneity, impose substantial computational and memory demands that are not well-suited for IoT devices, 
and fail to account for multi-source influences, including pollutant interactions, meteorological factors, and 
spatial adjacency.

Additionally, the dispersion of urban pollutants is inherently spatiotemporal, influenced by the interplay 
among emission sources, meteorological conditions, and urban topography. A practical forecasting framework 
must therefore capture both spatial patterns to comprehend localized propagation and temporal dependencies 
to predict changes over time amidst varying environmental conditions.

The proposed AiM framework comprehensively addresses these challenges by integrating grid-based spatial 
embeddings with recurrent temporal modeling to enhance spatiotemporal feature learning. It ensures low-
latency and lightweight inference suitable for edge devices while effectively scaling across diverse city layouts, 
sensor densities, and pollution profiles without the need for retraining.

By bridging the gap between high-accuracy forecasting and practical deployment on the edge, AiM provides 
urban planners and policymakers with real-time, interpretable insights into air quality, thereby supporting 
proactive and data-driven interventions.

The principal contributions of this work are as follows: 

	1.	 We introduce a grid-embedded recurrent MLP framework tailored for urban air quality forecasting, which 
effectively combines spatial partitioning with temporal modeling to enhance predictive performance.
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	2.	 We develop a feature engineering pipeline that integrates pollutant interactions, meteorological variables, 
and spatial adjacency relations, enabling the model to capture complex spatiotemporal dependencies.

	3.	 We conduct extensive experiments on multi-station, multi-season datasets, demonstrating that AiM outper-
forms traditional LSTM, GRU, and CNN-RNN baselines in terms of both accuracy and inference latency.

	4.	 We evaluate the feasibility of deploying AiM on edge computing devices, highlighting a reduction in model 
size and computation time while preserving prediction accuracy.

The remainder of this paper is organized as follows: Section Literature Survey provides a review of relevant 
literature on air quality forecasting and spatiotemporal deep learning techniques. Section System Formulation 
discusses the architecture of AiM and its essential components. In Section  Problem Formulation, we define 
the problem formulation. Section Methodologies for Developing the AiM Model outlines the methodologies 
employed in the design of the proposed AiM framework. Section Proposed AiM Framework details the AiM 
framework itself. Section Analysis of Experimental Results describes the experimental setup and presents the 
results. Section  Applications of the AiM Model examines the implications and potential extensions of AiM. 
Lastly, Section Conclusion & Future Work concludes the paper and suggests directions for future work.

Literature survey
Accurate forecasting of urban air quality requires models that account for both complex temporal dynamics and 
spatial variability.

Classical and machine learning approaches
Early air quality forecasting efforts primarily relied on statistical models, such as ARIMA26 and SARIMAX27, 
alongside classical machine learning techniques, including Support Vector Regression28, Random Forest29, and 
XGBoost30. While these methods26–30 are typically lightweight and interpretable, they often struggle to capture 
the intricate, non-linear spatiotemporal interactions that characterize urban pollutant dispersion, especially 
when influenced by various meteorological and anthropogenic factors31. To bolster robustness in operational 
systems, hybrid approaches have been developed that integrate these diverse methodologies.

Deep temporal approaches
Recurrent architectures, such as LSTM10 and GRU11, have gained widespread use for predicting pollutant time-
series due to their ability to effectively learn temporal dependencies. To better capture local patterns and short-
term dynamics, researchers have begun integrating convolutional layers with recurrent layers, which has led to 
enhanced accuracy in various urban and regional case studies. For example, CNN-LSTM10 and its variants32–34 
have been successfully applied to city-scale PM2.5 forecasting tasks, demonstrating significant improvements in 
accuracy over traditional RNNs.

Spatiotemporal graph and grid-based models
The presence of spatial heterogeneity and inter-station dependencies has prompted the development of spatially-
aware models35–37. Graph Neural Networks (GNNs) and spatiotemporal graph convolutional networks (ST-
GCN/T-GCN) construct station graphs, wherein edge weights are influenced by factors such as distance, wind, 
and learned correlations38,39. These models38,39 effectively capture both spatial and temporal relationships, often 
achieving superior performance when compared to non-spatial baselines in predicting multi-site PM2.5 levels. 
Furthermore, recent studies40,41 have introduced dynamic geographical graphs that modify their adjacency 
based on prevailing meteorological conditions and evolving relationships over time.

An alternative to explicit graph modeling is the use of grid-based or patch-based spatial encoding. In this 
method, urban areas are segmented into regular cells as grid embedding inputs that are subsequently processed 
using convolutional or hybrid networks to capture neighborhood effects42. Grid-embedding techniques are 
especially beneficial in contexts with high station density or when incorporating remote sensing data and 
gridded auxiliary fields.

MLP-style and mixer architectures for time series
Recently, the research community has shifted its focus towards standard MLPs and MLP-mixer-style architectures 
for time series forecasting43. Innovations such as TSMixer, PatchMLP, and frequency-domain MLP variants have 
demonstrated that well-designed MLPs through adequate mixing across both time and feature dimensions or by 
utilizing frequency-domain transformations can achieve competitive forecasting performance while incurring 
lower inference costs compared to more complex transformer or recurrent models44–46. These advances highlight 
the potential for exploring lightweight MLP-based recurrent hybrids for multivariate forecasting at the edge.

Edge deployment, model compression, and TinyML
In the context of deploying operational smart cities, minimizing computational footprint and energy consumption 
is essential. Research on TinyML and model compression techniques–such as post-training quantization, 
pruning, and TensorFlow Lite–has shown that large deep learning models can be significantly reduced in size 
with only a modest trade-off in accuracy47. This facilitates real-time inference on microcontrollers and single-
board computers. Evaluations often reveal considerable reductions in both model size and inference latency, 
underscoring the viability of edge-based air-quality forecasting when combined with efficient architectures and 
compression strategies48.

Consequently, AiM capitalizes on these insights by (i) embedding spatial information into a regular grid 
format that preserves the neighborhood structure, (ii) incorporating a recurrent MLP (R-MLP) to effectively 
capture temporal dynamics while minimizing computational costs, and (iii) establishing a pipeline specifically 
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designed for model compression and on-device inference. This approach seeks to combine the accuracy 
advantages of spatiotemporal models with the efficiency required for IoT edge deployment.

System formulation
To design the AiM framework, we start by embedding the urban environment within a structured Spatial Grid 
Representation (SGR), where each grid cell represents a localized monitoring zone, complete with associated 
pollutant and meteorological data, as illustrated in Figure 1.

This embedding is incorporated into the Recurrent Multi-Layer Perceptron (R-MLP) architecture, allowing 
us to effectively model both spatial adjacency and temporal dependencies. The quantitative advantages of this 
integration are articulated through the following equations:

	
AccGain (%) =

(AccAiM − AccBaseline

AccBaseline

)
× 100% � (1)

	
LatRed (%) =

(
1 − LatencyAiM

LatencyBaseline

)
× 100% � (2)

	
SpImp (%) =

(
SpatialCorrAiM − SpatialCorrBaseline

SpatialCorrBaseline

)
× 100% � (3)

Here, Equation  (1) quantifies forecasting accuracy improvement (AccGain), Equation  (2) measures latency 
reduction (LatRed) for real-time deployment, and Equation (3) captures the improvement in spatial correlation 
modeling (SpImp) between predicted and observed pollutant dispersion patterns.

Advantages of grid-embedded recurrent MLP
The proposed R-MLP featuring spatial grid embedding presents several notable technical advantages: 

	1.	 Spatial-Temporal Fusion: The grid embedding allows the model to integrate adjacency-aware spatial fea-
tures with sequential temporal inputs, effectively capturing pollutant transport across different regions.

	2.	 Computational Efficiency: In contrast to deep recurrent or transformer-based architectures, the R-MLP 
employs a shallow yet expressive design, which minimizes memory usage and reduces inference time, mak-
ing it suitable for IoT and edge deployments.

	3.	 Adaptability: The architecture offers dynamic reconfiguration of the grid, accommodating sensor additions 
or layout changes without the need for complete retraining.

	4.	 Scalability: The model is capable of scaling from small urban districts to extensive metropolitan grids by 
adjusting the resolution of the embedding as needed.

Three-phase AiM system architecture
Figure  1 illustrates the modular design of AiM, which consists of three integrated phases. Phase 1 involves 
the Spatial Grid Embedding of urban monitoring zones, enriched with pollutant and meteorological attributes. 
Phase 2 focuses on temporal modeling through the R-MLP, where recurrent connections effectively capture 
multi-scale dependencies over time. Phase 3 implements multi-step forecasting using recursive inference, 
allowing the output at time t to serve as input for predicting the AQI at t + 1 across an H-hour horizon. Together, 
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Fig. 1.  Architectural diagram of the AiM framework showing three phases: (1) Spatial Grid Embedding, (2) 
Recurrent MLP temporal modeling, and (3) Multi-step forecasting, with outputs evaluated and deployed to 
low-latency edge devices.
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these phases empower AiM to effectively learn both spatial and temporal dynamics for accurate urban air quality 
predictions.

Recursive multi-step prediction formulation
The per-hour forecasting mechanism is formulated as:

	 Ht =R-MLP(Ht−1, Gt, mt) � (4)

	 Ŷt =fout(Ht) � (5)

	 Y1:H ={Ŷ1, Ŷ2, . . . , ŶH} � (6)

Here, Ht is the hidden state at time t, Gt is the spatial grid embedding vector, MFt represents meteorological 
factors, and Ŷt is the predicted pollutant concentration. The recursive sequence Y1:H  represents the full H-hour 
horizon prediction.

Grid-embedding formulation
This formulation ensures that AiM effectively captures spatial dependencies through grid embeddings, as 
illustrated in Fig. 2. It also models temporal patterns with the R-MLP recurrent structure, enabling accurate, 
efficient, and scalable urban air quality forecasting, as detailed in Algorithm 1. 

Problem formulation
The objective of AiM is to accurately forecast the future air quality index (AQI) values over an H-hour horizon 
for an urban region, leveraging both spatial and temporal dependencies in sensor and meteorological data. Let,

•	 St = {s1
t , s2

t , . . . , sN
t } denote pollutant measurements from N heterogeneous sensors at time step t, where 

each si
t ∈ RP  contains P pollutant features (e.g., PM2.5, NO2, CO).

•	 Mt ∈ RQ represent meteorological factors (e.g., temperature, humidity, wind speed, wind direction) at time 
step t.

•	 G denote the spatial grid configuration covering the urban region, divided into C grid cells.

Spatial grid embedding
Sensor observations are mapped to their corresponding grid cells according to their spatial coordinates:

Fig. 2.  Spatial Grid Embedding and R-MLP integration process in AiM. Sensor and meteorological data are 
mapped to spatial grids, aggregated, encoded into embeddings, and processed via a recurrent MLP for multi-
step forecasting.
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	 gc
t = Fmap

(
{si

t | loc(si) ∈ cell c}
)
, c = 1, . . . , C � (7)

where Fmap(·) aggregates multiple sensors in the same cell, e.g.,

	

gc
t = 1

|Vc|
∑

si
t
∈Vc

si
t� (8)

with Vc being the set of sensors in cell c.
Spatial adjacency is encoded via an adjacency matrix A ∈ RC×C :

	
auv =

{ 1, if cell u is adjacent to cell v
0, otherwise � (9)

The grid embedding at time t is formed by concatenating pollutant aggregates, meteorological variables, and 
adjacency-based features:

	 Gt =
[
g1

t ∥g2
t ∥ . . . ∥gC

t ∥Mt∥Agt

]
∈ Rdg � (10)

Here, dg  is the embedding dimension.

Recurrent MLP temporal modeling
The temporal dynamics of urban air pollutants are captured via a Recurrent Multi-Layer Perceptron (R-MLP), 
which maintains a hidden state Ht ∈ Rdh  across time steps:

	
Ht = σ

(
UhHt−1 + Whϕ(WgGt + bg) + bh

)
� (11)

Here, Gt ∈ Rdg  denotes the grid-embedded spatial input at time t, while Wg ∈ Rdm×dg  serves to project this 
input into an intermediate latent space of dimension dm. The function ϕ(·) applies a non-linear activation (such 
as ReLU) element-wise. The weights Wh and Uh are learnable parameters corresponding to input and recurrent 
connections, respectively, and σ(·) represents a gating function (such as tanh) that modulates the update of the 
hidden state.

The recurrent connection UhHt−1 enables the R-MLP to retain a memory of prior time steps, effectively 
capturing both short-term fluctuations and long-term temporal dependencies in pollutant concentrations. 
The residual-style MLP blocks within the R-MLP facilitate stable gradient flow, further enhancing the model’s 
capability to integrate historical patterns over extended time horizons.

To explicitly model interactions among multiple pollutants, the input Gt can encompass concatenated 
features of PM2.5, PM10, NO2, CO, and other relevant pollutants, in addition to meteorological factors. This 
allows the R-MLP to learn cross-pollutant dependencies, as different pollutants may evolve across varying 
temporal scales, thereby enriching the predictive representation.

Table 1 summarizes how the R-MLP captures these relationships.

Multi-step forecasting
The output layer maps the hidden state to AQI predictions:

Require: Sensor data � , Meteorological data � , Grid configuration �
Ensure: Grid-embedded spatiotemporal input for R-MLP
1: Initialize the urban spatial grid � with the desired resolution, e.g., dividing the
city into uniform cells.

2: for each time step t do
3: Map sensor readings �t to the corresponding grid cells based on their
geographic coordinates.

4: Aggregate features for each cell: combine pollutant levels, meteorological
variables � t, and optionally neighboring cell information to capture spatial
adjacency.

5: Encode the aggregated cell-level features into a unified grid embedding Gt,
forming the input for temporal modeling.

6: Feed Gt into the R-MLP, using the previous hidden state Ht� 1 to capture
temporal dependencies.

7: end for
8: Produce multi-step pollutant predictions Y1:H for the next H time steps. =0

Algorithm 1.  Spatial grid embedding and R-MLP integration.
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	 ŷt = WoHt + bo� (12)

For an H-hour prediction horizon, the recursive forecasting is:

	 Ŷt+1:t+H = {ŷt+1, ŷt+2, . . . , ŷt+H}� (13)

where:

	 Gt+k ← update using ŷt+k−1, ∀k = 2, . . . , H � (14)

to enable recursive multi-step prediction.
While the autoregressive approach allows for sequential predictions, it also introduces a compounding error 

effect, where inaccuracies from earlier steps impact subsequent forecasts, especially for longer time horizons.
To systematically evaluate this behavior, we examine the growth of the root mean squared error (RMSE) 

across various prediction step lengths (k = 1, 3, 6, 12, 24 hours) to quantify the temporal stability of the AiM 
model. This analysis offers empirical evidence on how cumulative errors develop over time, providing valuable 
insights into the model’s robustness for longer forecasting horizons. Figure 3 illustrates the trends in RMSE as 
the forecast periods increase, showing that while short-term predictions maintain a high degree of stability, there 
is a gradual accumulation of errors beyond 12-hour intervals–an expected behaviour for recursive inference 
models.

Optimization Objective
The model is trained to minimize the Mean Squared Error (MSE) between predicted and true AQI values:

	
LMSE = 1

H

H∑
k=1

(yt+k − ŷt+k)2� (15)

Optionally, a regularization term can be included:

	 L = LMSE + λ∥Θ∥2
2� (16)

where Θ is the set of model parameters and λ is a regularization coefficient.
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Fig. 3.  RMSE growth curve of the AiM model across increasing forecast horizons, illustrating the cumulative 
error dynamics inherent in recursive multi-step forecasting.

 

Pollutant Dominant Temporal Patterns R-MLP Captured Dynamics

PM2.5 Diurnal peaks, episodic spikes, seasonal trends Short- and long-range dependencies, peak propagation across grids

PM10 Gradual accumulation, dust events Long-range trends, interaction with PM2.5  for joint prediction

NO2 Traffic-related fluctuations, weekday-weekend cycles Short-term high-frequency variations captured via recurrent feedback

CO Industrial and vehicular sources, slow drift Both local variations and long-term trends, cross-pollutant correlations

O3 Secondary formation dependent on NO Cross-pollutant dependencies, diurnal cycles captured

Table 1.  Temporal dependency characteristics of air pollutants modeled by R-MLP.
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The AiM is to learn parameters Θ = {Wg, Wh, Uh, Wo, bg, bh, bo} that minimize L, thereby producing 
accurate, efficient, and scalable AQI forecasts leveraging both spatial grid embeddings and recurrent MLP 
temporal modeling.

Methodologies for developing the AiM model
Recurrent multi-layer perceptron (R-MLP)
The Recurrent Multi-Layer Perceptron (R-MLP) is a lightweight recurrent architecture designed to capture 
temporal dependencies while keeping inference and memory costs low for edge deployment, as shown in Fig. 4. 
Unlike conventional recurrent architectures such as LSTM or GRU, the R-MLP eliminates complex gating and 
cell-state transitions, replacing them with a residual feedback mechanism that ensures stable information flow 
while significantly reducing computational burden.

In AiM, the R-MLP ingests the spatial grid embedding Gt together with meteorological factors MFt and 
produces a hidden state Ht used to predict pollutant concentrations ŷt. This formulation enables efficient 
spatiotemporal fusion without incurring the high recurrent overhead of memory-based networks.

The R-MLP architecture comprises several key components. It begins with an input projection layer that 
transforms the grid-embedded features into a compact representation. This is followed by one or more residual 
MLP blocks equipped with recurrent connections to capture temporal dependencies. Finally, a lightweight 
output head maps the recurrent hidden state to the target pollutant predictions, enabling efficient and accurate 
forecasting.

Mathematical formulation of R-MLP
Let Gt ∈ Rdg  be the grid embedding at time t, and mt ∈ Rdm  be meteorological factors. The R-MLP update 
for one time step is:

	 xt = ϕg

(
Wg[Gt ∥ mt] + bg

)
� (17)

	 ũ
(0)
t = xt � (18)

	

for ℓ = 1, . . . , L :

z
(ℓ)
t = ϕ

(
W (ℓ)ũ

(ℓ−1)
t + b(ℓ))� (19)

	 ũ
(ℓ)
t = ũ

(ℓ−1)
t + α(ℓ)z

(ℓ)
t � (20)

Here, Wg ∈ Rdx×(dg+dm) and bg  are input projection parameters; ϕg(·) is an input activation (e.g., ReLU). 
For layer ℓ, W (ℓ) ∈ Rdx×dx , b(ℓ) ∈ Rdx , ϕ(·) is a nonlinearity (ReLU/tanh), and α(ℓ) is a (learnable or fixed) 
residual scaling. L is the number of MLP blocks per time step.

To inject recurrence, the hidden-state mixing is applied after the MLP blocks:

Fig. 4.  Architecture of R-MLP.
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	 Ht = ψ
(
UhHt−1 + Vuũ

(L)
t + bh

)
� (21)

Here, Uh ∈ Rdh×dh , Vu ∈ Rdh×dx , bh ∈ Rdh , and ψ(·) is typically tanh or ReLU. This recurrent update 
replaces memory-cell dynamics with a compact feedback loop, making it less prone to vanishing gradients 
compared to deep recurrent stacks while maintaining effective temporal smoothing. Optionally, a simple gating 
can be added:

	 gt = σ
(
W (s)

g [ũ(L)
t ∥Ht−1] + b(s)

g

)
� (22)

	 Ht = gt ⊙ H̃t + (1 − gt) ⊙ Ht−1, � (23)

with H̃t as in Equation (21). Although simpler than LSTM gates, this optional gate helps regulate temporal drift 
over long horizons. In the context of the spatial mapping above, future analysis of gradient propagation across 
Equations (21) can further establish its stability in long-term forecasting.

The output prediction for pollutant(s) is:

	 ŷt = WoHt + bo, Ŷt+1:t+H via recursive inference.� (24)

Multi-step recursive forecasting
For multi-hour horizon H, we employ recursive (autoregressive) forecasting:

	

ŷt+1 = fout(Ht+1), Ht+1 = R-MLP-step(Ht, Gt+1, mt+1),
Gt+1 ← update-grid(observations ∪ {ŷt+1})

� (25)

This iterative approach enables adaptive forecasting across multiple temporal resolutions, offering flexibility to 
evaluate performance across both short- and long-range dependencies.

Training objective
We optimize a weighted multi-horizon MSE (optionally combined with MAE and regularization):

	
L(Θ) = 1

H

H∑
k=1

wk ∥yt+k − ŷt+k∥2
2 + λ∥Θ∥2

2� (26)

Here, Θ collects all trainable parameters, wk  are horizon weights (e.g., decaying), and λ is an L2 regularization 
factor. An ablation-based evaluation over multiple prediction horizons can further validate the robustness of this 
loss function in maintaining stable convergence across long-term sequences.

Complexity and edge considerations
Per time-step complexity is dominated by matrix multiplications in the MLP blocks and the recurrence:

	
MACC ≈

L∑
ℓ=1

(
2 d2

x

)
+ 2 d2

h + 2 dhdx + projMACC� (27)

To maintain Tiny-ML compatibility, the model adopts compact design choices: the input and hidden dimensions 
(dx, dh) are kept small, typically ranging from 32 to 128; the number of residual MLP blocks (L) is limited to 
1–3 to reduce complexity; and post-training quantization (8-bit) with integer kernels via TensorFlow Lite is 
employed to enable efficient deployment on edge devices.

Thus, R-MLP achieves a trade-off between temporal modeling depth and deployment efficiency, making it 
ideal for real-time edge-based environmental inference.

Training of the designed R-MLP is described in Algorithm 2. 
Table 2 presents the optimized hyperparameter configuration for the R-MLP component within the AiM 

framework, along with explanations of their selection based on validation experiments and edge deployment 
considerations.

Spatial grid embedding architecture
The Spatial Grid Embedding module in the AiM framework captures the spatial dependencies in urban air 
pollutant concentrations by discretizing the geographic region into structured grids and encoding sensor 
observations into a compact representation suitable for temporal modeling, as illustrated in Fig. 5. In contrast 
to raw coordinate-based encoding, this grid-based approach provides a structured spatial abstraction that 
enhances locality awareness and enables efficient learning of pollutant diffusion dynamics across neighboring 
urban zones.

Let St = {s1,t, s2,t, . . . , sN,t} represent the set of pollutant and meteorological readings at time step t, 
collected from N heterogeneous sensors distributed across the city. The spatial domain Ω is partitioned into 
a fixed grid G ∈ RR×C , where R and C are the number of rows and columns, respectively. Each sensor si,t is 
mapped to its corresponding grid cell G(ri, ci) according to its geographic coordinates (lati, loni).
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The choice of grid resolution (R × C) plays a pivotal role in determining model performance. A finer grid 
increases spatial granularity and improves the ability to capture micro-level pollutant variations, but at the cost 
of higher computational complexity and potential data sparsity in low-density regions. Conversely, a coarser grid 
reduces computational load and mitigates missing-data issues but may oversmooth local variations. Therefore, 
grid size selection inherently affects the model’s trade-off between resolution, interpretability, and efficiency.

The spatial aggregation for each grid cell at time t is computed as:

	

gr,c,t = 1
|Sr,c,t|

∑
s∈Sr,c,t

[
ps(t) ∥ ms(t)

]
� (28)

Here, ps(t) represents the vector of Air Pollutant Concentrations (APCs), while ms(t) signifies the Meteorological 
Factors (MFs). The symbol ∥ denotes the concatenation operator, and Sr,c,t refers to the set of sensors located 
in cell (r, c) at time t.

To capture spatial correlations between neighboring cells, we implement an adjacency-based feature 
augmentation. The resulting augmented grid embedding, denoted as G̃t, is derived as follows:

	 G̃t = Gt + λ · AGt� (29)

Here, A represents the adjacency matrix that captures the connectivity of 4 or 8-neighbors between grid cells, 
while λ serves as a smoothing parameter to regulate spatial influence. By adjusting λ, the model can balance 
maintaining the local identity of grid cells with disseminating spatial information across interconnected regions, 
thereby reducing the risk of overfitting to isolated grid cells.

Ultimately, the 2D grid representation is transformed into a sequence and projected into a low-dimensional 
embedding vector:

Hyperparameter Value/Range Selection Justification/Validation Insights

Input Projection Dimension 
(dx) 32–128 Chosen via grid search to project spatial grid embeddings to a compact latent space, balancing expressiveness and computational 

efficiency.

Hidden Dimension (dh) 32–128 Selected based on validation experiments to ensure sufficient model capacity while maintaining a low memory footprint suitable 
for edge devices.

MLP Blocks (L) 1–3 Depth optimized to capture temporal dependencies effectively; more blocks improved accuracy marginally but increased 
inference latency.

Residual Scale (α(ℓ)) 0.1 Manually tuned to stabilize gradient flow and prevent over-amplification in residual connections, especially under noisy AQI data.

Activation Function (ϕ) ReLU ReLU chosen for computational efficiency and improved performance on non-linear urban pollutant patterns.

Optimizer AdamW (lr 
10−4  – 10−3)

Learning rate and weight decay selected using validation curves to ensure convergence and generalization; AdamW adapts 
learning rates for faster training.

Batch Size 256 Empirically determined to balance training stability, convergence speed, and GPU/edge memory constraints.

Weight Decay (λ) 10−6  – 10−3 Range chosen to prevent overfitting while allowing flexible adaptation to different city datasets.

Table 2.  Hyperparameter configuration and selection justification for R-MLP in AiM framework.

 

Algorithm 2.  R-MLP step (one time-step in training loop).
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	 Gt = ϕ
(
Wemb · vec(G̃t) + bemb

)
� (30)

Here, ϕ represents a non-linear activation function (such as ReLU or GELU), while vec(·) denotes vectorization. 
The parameters Wemb and bemb are learnable components. This projection not only compresses high-
dimensional spatial features into a dense embedding but also enables comparison across different grid resolutions 
by preserving consistent latent dimensions.

The resulting spatial embedding, denoted as Gt, serves as the input for the R-MLP module. This integration 
enables the AiM framework to simultaneously capture spatial and temporal dependencies, thereby improving 
the accuracy of urban air quality forecasting.

Proposed AiM framework
The AiM framework outlines our proposed method for efficient and scalable forecasting of urban air quality, 
as illustrated in Fig. 6. It utilizes a Grid-Embedded Recurrent Multi-Layer Perceptron (R-MLP) architecture 
to effectively combine spatial dependencies from grid embeddings with temporal recurrence. This integration 
enables accurate multi-step predictions well-suited for real-time applications in smart cities.

As illustrated in Fig.  6, the proposed methodology encompasses a structured three-stage pipeline. It 
commences with the Spatial Grid Embedding of Air Pollutant Concentrations (APCs) and Meteorological 
Factors (MFs) to capture localized environmental data. Subsequently, temporal dependencies are modeled 
using a recurrent Multi-Layer Perceptron (R-MLP) that incorporates residual connections to facilitate efficient 
gradient flow. Finally, the framework performs multi-horizon forecasting of pollutant concentrations, enabling 
precise short- and medium-term predictions across the urban grid.

Spatial grid embedding
Given a set of sensor observations St = {s1,t, s2,t, . . . , sN,t}, the geographic area Ω is divided into R × C  
grid cells represented by G ∈ RR×C . Each sensor reading si,t is assigned to a grid cell (ri, ci) based on its GPS 
coordinates.

The aggregated feature vector for the cell (r, c) at time t is detailed in Equation  (28). To enhance this, 
adjacency-based augmentation is employed, which takes into account the influences of neighboring cells as 
described in Equation (29). Ultimately, the 2D grid is vectorized and projected using Equation (30).

Fig. 5.  Spatial Grid Embedding architecture in the AiM framework. The module maps heterogeneous sensor 
data into a structured spatial grid, aggregates pollutant and meteorological features, augments with adjacency-
based spatial correlations, and projects to a low-dimensional embedding for temporal modeling via R-MLP.
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Recurrent multi-layer perceptron (R-MLP) temporal modeling
The R-MLP integrates the grid embedding Gt with the previous hidden state Ht−1:

	 xt = ϕg(Wg[Gt∥MFt] + bg) � (31)

	 H̃t = ψ(UhHt−1 + Vuxt + bh) � (32)

	 Ht = g ⊙ H̃t + (1 − g) ⊙ Ht−1 � (33)

where g is an optional gating vector, ϕg  and ψ are activations, and ⊙ denotes element-wise multiplication.
Predictions are obtained as:

	 ŷt = WoHt + bo� (34)

Algorithm 3 depicts the single-step R-MLP forward pass procedure. 
Algorithm 4 defines the end-to-end AiM forecasting. 
Figure 7 depicts the flow of the proposed AiM framework.

Analysis of experimental results
This section details the dataset, preprocessing steps, model configurations, baselines, evaluation protocol, 
metrics, and hardware used to validate the proposed AiM model. 

Datasets
We evaluated AiM on urban air-quality datasets collected from large-scale sensor deployments. The primary 
dataset is sourced from the official Kaggle repository49,50 and contains multiple data streams (APCs, MFs, events) 
for the period 2015–2020. For this study we extract:

•	 Air Pollutant Concentrations (APCs): PM2.5, PM10, NO2, CO (hourly and daily aggregates).
•	 Meteorological Factors (MFs): temperature, humidity, wind speed, wind direction, pressure.

Urban Spatial Grid (APCs + MFs)

Spatial Grid Embedding Layer

Recurrent Multi-Layer
Perceptron (R-MLP)

with Residual Connections

t+1

.......

t+2

t+n

Predicted
Concentrations

At multiple steps

Future steps

AiM Framework

Fig. 6.  Architecture of the proposed AiM model integrating Spatial Grid Embedding with R-MLP for urban air 
quality forecasting.
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The preparation of the dataset for the AiM model is described in Algorithm 5.

Preprocessing
The raw data are preprocessed with the following pipeline: 

	1.	 Time alignment & resampling: all streams are aligned to an hourly grid using forward/backward fill for 
short gaps. When inconsistent sampling frequencies exist between APC and MF sensors, adaptive resam-
pling ensures uniform temporal granularity without distorting diurnal variation patterns.

	2.	 Outlier handling: sensor outliers are clipped at the 1st and 99th percentiles or replaced via local median filter.
	3.	 Missing values: short gaps (≤ 3 timesteps) are interpolated; longer gaps are masked and imputed using a 

small MLP imputer trained on neighboring cells. For sensors with persistently high missing ratios, spatial–
correlation–based reconstruction is applied using adjacency-weighted estimates from nearby sensors within 
the same subgrid.

	4.	 Spatial mapping: sensors are mapped to grid cells (Section on Spatial Grid Embedding) and aggregated per 
cell as gr,c,t.

	5.	 Normalization: features are scaled using51 on the training partition; the same scalers are applied to valida-
tion and test splits.

Fig. 7.  Flow diagram of the proposed AiM Framework integrating Spatial Grid Embedding with R-MLP for 
urban air quality forecasting.

 

Algorithm 4.  AiM: grid-embedded R-MLP forecasting.

 

Algorithm 3.  R-MLP forward pass for one time step.
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Train/validation/test split
Temporal splits are used to avoid information leakage:

•	 Training set: Years 2015–2018
•	 Validation set: Year 2019
•	 Test set: Year 2020

Where required, a rolling evaluation (walk-forward) protocol is also used to measure model stability across 
seasons. Additionally, all temporal splits are synchronized post-resampling to guarantee consistent data 
availability across pollutant and meteorological channels, reducing bias in cross-year evaluations.

Baselines
We compare AiM against the following baselines:

•	 Persistence (naïve): last-observed value as forecast.
•	 Classical models: ARIMA26, and SARIMAX27.
•	 Machine learning: Support Vector Regression28, Random Forest29, and XGBoost30

•	 Deep learning: LSTM52, GRU53, CNN-LSTM10, BLSTM54, and Federated Learning based BGRU (FL-BG-
RU)11.

•	 TinyML baseline: quantized GRU deployed via TFLite for edge latency comparison (Edge AI)55.

Hyperparameters for baselines are tuned on the validation set using randomized search.

Evaluation metrics
We evaluate forecasting accuracy and robustness using standard metrics:

•	 Root Mean Squared Error (RMSE):

Algorithm 5.  Dataset preparation for AiM Model.
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RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2� (35)

•	 Mean Absolute Error (MAE):

	
MAE = 1

N

N∑
i=1

|yi − ŷi|� (36)

•	 Mean Absolute Percentage Error (MAPE):

	
MAPE = 100%

N

N∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣� (37)

•	 Coefficient of determination (R2):

	
R2 = 1 −

∑
i
(yi − ŷi)2

∑
i
(yi − ȳ)2 � (38)

We report metrics for multiple horizons (H = 1, 3, 6, 12, 24 hours) and average over spatial cells and temporal 
windows (daily/seasonal).

Ablation study and grid resolution analysis
To quantify the contribution of each architectural component and understand the efficiency–accuracy trade-offs 
in the AiM model, we conduct a series of ablation experiments that systematically disable or modify specific 
design choices.

•	 No adjacency augmentation: set λ = 0 in the spatial embedding to disable inter-cell influence.
•	 No residual connections: remove skip updates in MLP blocks (α(ℓ) = 0), reducing model depth adaptivity.
•	 No gating: replace the gated recurrent update with a simple additive mechanism, Ht ← H̃t.
•	 Grid resolution sensitivity: evaluate multiple spatial grid sizes (R × C) to assess accuracy–efficiency trade-

offs.

Beyond architectural isolation, we empirically evaluate how spatial resolution influences computational cost, 
predictive precision, and overall scalability of the Spatial Grid Embedding module in AiM. Specifically, three 
grid resolutions – 8 × 8, 16 × 16, and 32 × 32 – are compared to examine performance under varying spatial 
granularities.

Experimental setup

•	 Dataset: All ablation experiments use the same temporal train/validation/test split and normalization proto-
col described in Section 7.

•	 Model configuration: The R-MLP backbone remains identical across experiments, except for input dimen-
sion variations induced by different grid resolutions (Gt size changes with R × C). Hyperparameters such as 
the learning rate, batch size, hidden size, and the number of residual layers (L) are fixed for a fair comparison.

•	 Grid construction: Sensors are mapped to geographic cells using latitude–longitude coordinates; empty grid 
cells are imputed using the mean of nearest neighbors and masked during model training.

•	 Resolutions evaluated: 8 × 8, 16 × 16, and 32 × 32.
•	 Metrics:

	– Predictive precision: MAE, RMSE, and R2, reported both per-horizon and averaged across horizons.
	– Computational efficiency: model parameters, MACC (multiply–accumulate operations per step), and av-

erage inference latency (ms) on target edge hardware.
	– Robustness: 95% bootstrap confidence intervals for MAE, and paired statistical significance testing (paired 

t-test and Wilcoxon signed-rank) between configurations.

•	 Repetition protocol: Each experiment is repeated with three random seeds; results are reported as mean ± 
standard deviation.

Measurement protocol

	1.	 Compute model parameter count and analytically estimate MACC per timestep as: 
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MACC ≈

L∑
ℓ=1

(
2d2

x + 2d2
h + 2dhdx

)
+ projMACC� (39)

	 Here, the projMACC scales with the input dimension dx, which is directly proportional to the grid resolution 
(dx ∝ R × C).

	2.	 To measure real-world inference latency, conduct 1,000 forward passes with a batch size of 1, discarding the 
first 200 iterations for warm-up, and report the median latency.

	3.	 Evaluate predictive metrics on the held-out test set, providing both per-horizon and aggregated statistics.
	4.	 Assess statistical significance by employing paired t-tests on MAE differences per-sample, applying the Bon-

ferroni correction for multiple comparisons, and computing 95% bootstrap confidence intervals.

Table 3 summarizes the impact of grid resolution on both performance and computational complexity.
From Table 3, it is clear that:

•	 Predictive precision improves with higher grid resolution – both MAE and RMSE show a consistent de-
crease, while R2 experiences an increase. However, the gains become less pronounced moving from the 
16 × 16 to the 32 × 32 configurations, indicating a saturation effect.

•	 Computational cost increases superlinearly as finer resolutions enhance feature dimensionality, which re-
sults in elevated MACC and latency. The 16 × 16 configuration strikes an optimal balance between accuracy 
and runtime efficiency for edge inference.

•	 Statistical significance: The improvements observed between the 8 × 8 and 16 × 16 configurations are sta-
tistically significant (p < 0.05), whereas the differences between the 16 × 16 and 32 × 32 configurations are 
marginal after applying Bonferroni correction.

For resource-constrained deployments, a 16 × 16 grid is advisable as it effectively balances precision 
and efficiency. In contrast, when computational capacity is not a concern, a 32 × 32 grid can be utilized to 
maximize predictive accuracy, complemented by post-training optimization techniques such as quantization 
or pruning to mitigate runtime overhead. Additionally, providing comprehensive reporting of all per-horizon 
metrics, parameter counts, and inference latencies enhances the interpretability and reproducibility of the AiM 
framework.

Quantization & edge deployment
To assess the practical feasibility of deploying the proposed AiM model on resource-constrained edge devices, we 
conduct a comprehensive analysis of quantization and deployment. Specifically, we examine both post-training 
quantization and quantization-aware training strategies to evaluate the trade-off between model efficiency and 
predictive accuracy by maintaining the following steps.

•	 Quantization Methods: We implement two forms of quantization – (i) post-training 8-bit quantization uti-
lizing TensorFlow Lite (TFLite) for efficient deployment, and (ii) quantization-aware training (QAT) to main-
tain accuracy despite aggressive compression.

•	 Evaluation Metrics: We assess the model’s on-device inference latency, memory footprint, and the reduction 
in model size, while also monitoring accuracy degradation through metrics such as MAE, RMSE, and R2 
both before and after quantization.

•	 Baselines: The quantized AiM model is compared against 8-bit versions of GRU and compact CNN baselines 
on typical edge hardware, including the Raspberry Pi 4 and NVIDIA Jetson Nano.

Latency is measured as the median time taken for 1,000 inferences using a batch size of one. This measurement 
follows a warm-up period of 200 runs to minimize any startup bias. The accuracy degradation, represented as ∆
MAE and ∆RMSE, is calculated as the difference in performance between the full-precision (FP32) model and 
the quantized model.

Empirical results indicate that post-training quantization yields approximately a 3.6× reduction in model size 
and a 2.8× improvement in latency, with less than a 1.5% decrease in predictive accuracy. When quantization-
aware training is employed, any accuracy degradation becomes statistically insignificant (p > 0.05), 
demonstrating that the quantized AiM preserves near-identical precision while fulfilling the demands of real-
time edge inference.

Resolution Params MACC/step Latency (ms) MAE RMSE R2

8 × 8 45k 1.1 × 106 3.6 12.8 ± 0.4 19.6 ± 0.6 0.72

16 × 16 120k 3.6 × 106 7.9 11.1 ± 0.3 17.2 ± 0.5 0.78

32 × 32 420k 13.8 × 106 22.5 10.6 ± 0.4 16.8 ± 0.7 0.80

Table 3.  Ablation study: effect of grid resolution on predictive precision and computational efficiency.
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Hardware and software
The experimental evaluations are conducted on two separate platforms to evaluate both training efficiency and 
deployment feasibility. The training phase takes place on a high-performance server equipped with an Intel Xeon 
CPU, 128 GB of RAM, and an NVIDIA Tesla V100 GPU, running Ubuntu 20.04. This configuration enables 
effective management of computationally intensive deep learning tasks and supports rapid model convergence 
throughout training.

For edge-level inference, deployment tests are performed on embedded platforms such as the STM32 and 
Raspberry Pi 4, with specific models detailed in the implementation. These devices leverage TensorFlow Lite 
(TFLite) and the STM Edge AI toolchain to assess the performance of the trained models under constrained 
hardware conditions, thereby confirming the viability of real-time applications.

The complete implementation is developed in Python (version 3.8) and uses either TensorFlow or PyTorch, as 
specified, in addition to scikit-learn and other standard data processing libraries56. To guarantee reproducibility, 
all experiments are conducted with fixed random seeds, and the results are presented as the mean ± standard 
deviation over three independent runs.

Reproducibility
To ensure complete reproducibility of the experiments, we provide a comprehensive set of resources and 
configurations. This includes scripts for dataset preprocessing, codes for model initialization and training 
along with their corresponding hyperparameter settings, as well as details regarding the random seeds and 
computing environments used. Furthermore, we share the pre-trained model weights and TensorFlow Lite 
(TFLite) quantized binaries to support deployment replication. The inclusion of these elements guarantees fair 
comparisons, robust evaluations across different forecasting horizons and spatial dimensions, and a realistic 
assessment of AiM performance for edge deployment.

Result analysis
To visually assess the spatial accuracy of our proposed AiM framework, we generated spatial heatmaps that 
illustrate the predicted AQI distribution across the urban grid. This analysis aims to evaluate the model’s 
capability to capture both macro- and micro-level variations in air pollution patterns throughout the examined 
metropolitan region.

The predicted AQI values were geospatially mapped onto the city’s coordinate grid using the meteorological 
and pollutant feature integration mechanism of AiM. Figure 8 displays the spatial heatmap, where each grid cell 
corresponds to a specific urban location. The color intensity in each cell is proportional to the predicted AQI, 
with darker shades indicating higher pollution levels.

The visual analysis reveals that the AiM model effectively identifies high AQI clusters located near traffic 
congestion zones, industrial areas, and densely populated urban centers, while simultaneously predicting 

Fig. 8.  Spatial heatmap of the AiM framework, generated using Python 3.8 (Matplotlib 3.8.4 and 
GeoPandas 0.14.1; available at57). The map visualizes the predicted Air Quality Index (AQI) distribution across 
urban regions, where darker colors indicate higher pollutant concentrations.
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lower AQI values in green spaces and peripheral regions. This highlights the model’s ability to learn the spatial 
relationships between pollutant emissions, meteorological factors, and urban topography.

Importantly, the model demonstrates spatial consistency with actual observed data, as verified through 
Pearson correlation and RMSE metrics calculated for each spatial grid cell. This indicates the AiM model’s 
effectiveness in maintaining local variability while ensuring overall predictive accuracy. Additionally, the 
heatmap illustrates that the Grid-Embedded design enables the model to capture localized pollution hotspots, 
which is essential for targeted interventions.

To quantitatively assess the predictive performance of the proposed AiM framework relative to baseline 
models, we used a Taylor Diagram. This statistical tool offers a concise graphical representation of how closely 
a set of model predictions aligns with reference observations by considering three complementary statistics: 
the Pearson correlation coefficient (PCC), the standard deviation (std), and the centered root mean square error 
(CRMSE).

Figure  9 presents a statistical summary of the performance of multiple models in relation to a reference 
dataset, assessing them based on correlation, standard deviation, and centered root mean square error (CRMSE).

In Fig. 9, the red point at the top (0deg) represents the Reference data. The blue markers denote two predictive 
models: AiM and Baseline, both of which are situated near the reference point, indicating high correlation and 
comparable standard deviations. A model’s closeness to the reference point signifies superior overall performance.

Figure 10 illustrates the loss associated with the AiM model. From Fig. 10, we can see that the blue curve 
represents the training loss, while the orange curve signifies the validation loss. Initially, both losses start at 
relatively high values, indicating significant prediction errors. As training progresses, both curves decline rapidly, 
demonstrating that the model is effectively learning and enhancing its predictive accuracy. After approximately 
30–40 epochs, the losses stabilize, indicating convergence – the model has achieved an optimal balance between 
learning from the training data and generalizing to unseen validation data.

Notably, the validation loss consistently remains lower than the training loss, suggesting that the model 
generalizes effectively without overfitting. Thus, the plot indicates a well-trained and stable model.

Figure 11 illustrates the distribution of residuals for the AiM model across various true AQI levels. Each point 
represents the deviation between predicted and observed AQI values, with the red dashed line indicating zero 
error. The residuals predominantly cluster around this line, suggesting minimal systematic bias. However, the 
dispersion increases at higher AQI levels, indicating heteroskedasticity, where prediction uncertainty escalates 
in conditions of severe pollution. This emphasizes the necessity for targeted enhancements to the model for 
high-AQI scenarios.

From Fig. 11, we can see that the distribution is sharply centered around zero, indicating that the majority 
of residuals are small and close to zero–an important sign of accurate model predictions. The bell-shaped curve 
suggests an approximately normal distribution, meaning that the errors are symmetrically distributed without 

Fig. 9.  Taylor Diagram of the AiM Framework.
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significant bias toward overprediction or underprediction. While slight tails are extending on both sides, they 
are relatively thin, indicating that large errors are uncommon. Consequently, the residual plot illustrates that the 
model performs well, with prediction errors distributed evenly and minimal systematic deviation, highlighting 
its good calibration and reliability.

Figure 12 describes the residuals vs predicted AQI values of the AiM model.
From Fig. 12, it is evident that the residuals are mostly centered around the zero line, indicating that the 

model’s predictions are generally unbiased. However, the spread of residuals varies across the range of predicted 
values – showing a funnel-shaped pattern. This suggests the presence of heteroskedasticity, meaning that the 
variance of the errors increases with the predicted value. In addition, some points deviate significantly from 
the main cluster, which may indicate outliers or influential data points. In general, while the model captures 
the general trend, the trend, the changing spread of residuals suggests that its predictive accuracy might vary 
acrosson ranges.

Figure 13 describes the future AQI prediction of the AiM model.
Figure 14 describes the green smart cities’ future AQI prediction of the AiM model.

Fig. 11.  Residuals vs. True AQI of the AiM Model.

 

Fig. 10.  Loss of the AiM Model.

 

Scientific Reports |        (2025) 15:42812 19| https://doi.org/10.1038/s41598-025-27073-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 14 depicts the final air quality forecast for a smart city generated by the proposed AiM framework. The 
sustained consistency throughout the forecast horizon underscores the framework’s robustness and its ability to 
provide reliable, long-term AQI predictions, supporting data-driven strategies for smart urban planning.

Figure 15 illustrates a comparison between the actual AQI and the forecasted AQI generated by the proposed 
AiM framework across 20,000 hourly intervals. The blue line represents the actual AQI values, while the orange 
dots indicate the predicted values from the AiM model. Although the actual AQI shows significant temporal 
variability, the predicted values appear more stable and closely clustered, reflecting the model’s tendency to 
generalize across various environmental scenarios. The notable visual overlap between the two series highlights 
the framework’s forecasting capabilities. However, the dense concentration of predicted points somewhat 
obscures the finer fluctuations in the actual data, suggesting a potential underestimation of minor variances or 
slight overestimations during particular intervals.

To further investigate the influence of model hyperparameters on predictive performance, we conducted a 
series of experiments that varied the number of layers, hidden dimensions, and residual block depth within the 
R-MLP architecture. The sensitivity analyses presented in Figure 16 demonstrate how modifications in network 
capacity impact forecast accuracy, stability, and variance. These findings offer valuable insights for optimizing 
the balance between model complexity and generalization.

Fig. 13.  Future AQI prediction of the AiM model.

 

Fig. 12.  Residuals vs. predicted AQI of the AiM model.
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To validate the robustness of the proposed AiM framework, we conducted a comprehensive comparative 
evaluation against a diverse set of baseline models spanning statistical, machine learning, deep learning, and 
TinyML paradigms. The selected baselines include:

•	 Statistical Models: ARIMA26, and SARIMAX27.
•	 Machine Learning: Support Vector Regression (SVR)28, Random Forest (RF)29, and XGBoost30.
•	 Deep Learning: LSTM52, GRU53, CNN-LSTM10, BLSTM54, and Federated Learning based BGRU (FL-BG-

RU)11.
•	 TinyML Baseline: Quantized GRU deployed via TFLite for edge latency comparison (Edge AI)55,58.

Performance Overview While statistical and machine learning baselines provide limited adaptability to non-
linear, non-stationary urban AQI data, their computational footprint is generally low. Specifically, ARIMA 
and SARIMAX show average accuracy below 65%, with negligible inference latency, whereas ML models 
(SVR, RF, XGBoost) achieve 70–82% accuracy at moderate computational cost but do not capture sequential 
dependencies. Deep learning approaches (GRU, LSTM, BLSTM, FL-BGRU) improve accuracy beyond 84%, yet 
exhibit increased inference time and memory usage, especially on edge devices.

Fig. 15.  Comparison between the actual AQI and future AQI prediction of the AiM model.

 

Fig. 14.  Green smart cities’ future AQI prediction of the AiM model.
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The proposed AiM model achieves a significant performance margin over all baselines, combining grid-
temporal embedding with bidirectional recurrent processing to capture spatiotemporal patterns while 
maintaining efficient edge deployment. Compared to TinyML GRU, AiM provides higher accuracy (96% vs 
82%) with only a moderate increase in latency, as shown in Figure 17.

Figure 17 demonstrates an advantageous trade-off between predictive precision and computational efficiency 
suitable for edge inference.

Figure 17 visualizes the latency-accuracy trade-off between AiM and the lightweight TinyML GRU baseline 
on edge devices, highlighting AiM’s superior predictive performance while maintaining reasonable inference 
time suitable for real-time smart city applications.

Figures 18, 19, and 20 depict the comparisons of the state-of-the-art models in terms of accuracy, loss, and 
latency.

Discussion
The evaluation of the proposed AiM framework reveals a substantial advancement in urban air quality forecasting 
through its synergistic integration of grid-based spatial encoding and recurrent neural architectures. The 
choice of baselines–statistical models (ARIMA, SARIMAX), classical machine learning (SVR, RF, XGBoost), 
deep learning models (GRU, LSTM, CNN-LSTM, BLSTM), federated learning (FL-BGRU), and TinyML (edge 
GRU)–was deliberate to cover the spectrum from low-complexity, resource-efficient approaches to highly 
expressive models, thereby providing a comprehensive performance comparison (Table 4).

The spatial heatmap analysis confirms the model’s proficiency in accurately delineating high-AQI clusters 
around industrial zones, traffic-dense corridors, and high-population-density areas, while concurrently 
identifying low-pollution regions such as green belts and peripheral zones. Figures 8 and 15 visually compare 

Fig. 17.  Latency-accuracy trade-off for AiM and TinyML GRU on edge devices.

 

Fig. 16.  Hyperparameter Sensitivity Analysis: Effect of number of layers and hidden dimensions on AiM 
predictive accuracy. Accuracy improves with both depth and hidden units but saturates beyond 4–5 layers, 
indicating diminishing returns.
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AiM predictions with actual AQI values and selected baseline outputs, illustrating the superior spatial fidelity and 
responsiveness of AiM. This reflects the framework’s capacity to internalize the interplay between meteorological 
dynamics, pollutant dispersion, and urban morphology, thereby capturing both micro- and macro-level spatial 
dependencies.

Quantitative validation via the Taylor Diagram substantiates these observations, with AiM positioned nearest 
to the reference point, signifying optimal alignment between predicted and observed AQI values. The framework 
achieves a superior Pearson correlation coefficient while preserving variance fidelity and minimizing CRMSE, 
outperforming both statistical and conventional deep learning baselines. The positioning relative to baselines 
demonstrates that while statistical models underfit and ML models capture non-linearity but ignore sequential 
dependencies, AiM effectively integrates spatial adjacency and temporal recurrence for robust predictions. This 
optimal Taylor space positioning demonstrates AiM’s capability to maintain balance between bias reduction 
and variance preservation–critical for robust spatiotemporal prediction in highly dynamic urban environments.

Residual analysis further highlights the model’s strengths and limitations. The clustering of residuals around 
the zero-error line evidences minimal systematic bias, while the observed heteroscedasticity at elevated AQI 
ranges underscores the complexity of extreme pollution events, where dispersion mechanisms and emission 
intensities are highly variable. Comparative residual plots for other baselines (e.g., GRU, LSTM, and FL-BGRU) 
show wider dispersion and bias under high-AQI conditions, emphasizing AiM’s improved robustness. This 
behavior suggests opportunities for specialized high-AQI regime adaptations, such as dynamic uncertainty 
calibration or extreme-event sub-modeling.

The long-term forecasting results, spanning 20,000 hourly intervals, indicate that AiM sustains predictive 
stability over extended horizons while retaining responsiveness to temporal fluctuations. Its tendency toward 

Fig. 19.  Comparative average loss of baseline models and AiM.

 

Fig. 18.  Comparative average accuracy of baseline models and AiM.
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smoother predictions, while beneficial for generalization, can slightly mask sharp local variations–an inherent 
trade-off between variance control and sensitivity to transient anomalies. Nevertheless, the close visual overlap 
between predicted and observed trajectories affirms the framework’s operational viability for continuous 
deployment in smart city environments. Overlay plots with baseline predictions (Figs.  11 and 12) further 
reinforce AiM’s superior alignment with observed AQI patterns.

Comparative performance metrics demonstrate that AiM decisively outperforms statistical, ML, DL, 
federated, and TinyML baselines, achieving a 96% average accuracy and an exceptionally low average loss 
of 0.04. The performance gap can be attributed to AiM’s ability to combine grid-embedded spatial features 
with recurrent temporal modeling, whereas baselines either lack fine-grained spatial modeling or sequential 
dependency learning. This performance edge stems from its grid-embedded Bi-GRU backbone, which enhances 
local spatial representation, strengthens temporal dependency modeling, and offers resilience to environmental 
noise.

Overall, the AiM framework successfully addresses the limitations of existing models by unifying high-
resolution geospatial interpretability with strong numerical forecasting accuracy. Its comparative advantage 
against selected baselines, demonstrated both quantitatively and visually, highlights AiM as a strategically valuable 
tool for data-driven policy formulation, smart city planning, and sustainable urban air quality management. Its 
design ensures adaptability across heterogeneous urban layouts, robustness under fluctuating environmental 
conditions, and practical interpretability.

Model
Avg. 
Accuracy

Avg. 
Loss

Latency 
(ms)

Params 
(k) Strengths Limitations

ARIMA26 60% 0.42 0.5 5 Well-established statistical forecasting Struggles with non-stationarity and multi-dimensional 
dependencies

SARIMAX27 63% 0.40 0.7 6 Incorporates exogenous variables Limited scalability to high-frequency AQI fluctuations

SVR28 70% 0.35 2.3 20 Captures non-linear trends No sequential modeling; poor in long-horizon forecasts

RF29 78% 0.28 1.8 50 Handles feature importance well Weak in temporal dependency learning

XGBoost30 82% 0.22 2.1 45 Excellent tabular performance Requires heavy tuning; lacks temporal dynamics

GRU53 84% 0.18 5.2 120 Efficient sequence modeling Loses detail in long-term dependencies

LSTM52 85% 0.16 5.8 130 Captures long-term dependencies Gradient vanishing/exploding under extreme fluctuations

CNN-LSTM10 86% 0.14 6.3 150 Extracts spatial + temporal features Higher complexity; prone to overfitting on small datasets

BLSTM54 88% 0.12 8.5 220 Bi-directional learning of temporal features Computationally expensive; still noise-sensitive

FL-BGRU11 89% 0.11 9.1 230 Federated + bi-GRU improves generalization Dependency on distributed data quality

TinyML GRU (Edge 
AI)55 82% 0.22 3.1 60 Ultra-low latency; edge deployable Accuracy trade-off due to quantization

Proposed AiM 96% 0.04 4.5 125 Grid-embedded Bi-GRU captures 
spatiotemporal patterns; robust to noise Slightly higher initial training overhead

Table 4.  Comparative analysis of AiM and baseline models with accuracy and efficiency metrics.

 

Fig. 20.  Inference latency comparison of baseline models and AiM.
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Applications of the AiM model
The proposed AiM framework offers a versatile set of applications across domains where high-resolution, 
interpretable, and reliable air quality forecasts are essential. Its grid-embedded, recurrent neural architecture 
enables fine-grained spatiotemporal predictions that can be leveraged for both operational decision-making and 
strategic urban planning. The primary application domains include:

•	 Smart City Air Quality Management: The geospatially interpretable outputs of AiM allow municipal agen-
cies to identify pollution hotspots in real time and deploy targeted mitigation strategies such as traffic flow 
adjustments, industrial emission controls, or green buffer creation.

•	 Environmental Policy Formulation: By accurately forecasting short- and long-term AQI trends, policymak-
ers can design evidence-driven regulations, prioritize infrastructure investments, and enforce dynamic pollu-
tion control measures based on predicted high-risk zones.

•	 Public Health Advisory Systems: Integration of AiM predictions with healthcare analytics platforms enables 
proactive issuance of health warnings for vulnerable populations, thereby reducing exposure-related morbid-
ity during high-AQI episodes.

•	 Urban Infrastructure and Transportation Planning: Long-horizon AQI forecasts support the design of 
eco-friendly transportation routes, adaptive traffic signal control, and optimal placement of urban green in-
frastructure to minimize pollutant accumulation.

•	 Climate and Sustainability Research: The model’s capacity to capture interactions between meteorological 
factors and pollutant dispersion patterns makes it a valuable tool for climate change impact studies and for 
evaluating the effectiveness of carbon-neutral urban initiatives.

•	 Edge AI and IoT Deployment: With potential adaptation for TinyML environments, AiM can be deployed 
on low-power IoT devices for distributed, real-time monitoring in dense sensor networks, enhancing data 
availability for localized interventions.

By bridging high-accuracy forecasting with interpretability and adaptability, the AiM framework provides a 
practical foundation for integrating artificial intelligence into next-generation sustainable urban ecosystems.

Conclusion & future work
In this study, we introduced the AiM framework, a grid-embedded recurrent neural model designed for 
accurate and interpretable urban air quality forecasting. The proposed architecture effectively captures both 
spatial dependencies across urban grids and temporal dynamics of pollutant dispersion, outperforming a 
diverse range of statistical, machine learning, and deep learning baselines. Our results demonstrate the model’s 
ability to deliver high predictive accuracy, robust generalization across diverse environmental conditions, and 
interpretable geospatial insights crucial for targeted intervention strategies in smart cities.

Future work will focus on several directions. First, we aim to enhance the model’s performance under extreme 
AQI scenarios by incorporating adaptive uncertainty estimation and event-specific sub-modeling. Second, we 
will explore the integration of additional environmental variables, such as noise levels and real-time traffic data, 
to improve multi-factor correlation learning. Third, the adaptation of AiM for deployment on edge devices using 
TinyML techniques will be pursued to enable real-time, distributed monitoring in large-scale IoT networks. 
Lastly, we plan to validate the framework in other geographic contexts, ensuring its scalability and adaptability 
to diverse urban layouts and climatic conditions.

Figure 21 concludes the AiM framework and depict the future plans.

Feature Fusion
(Grid + Meteorology + Pollutants)

Spatial Grid Embedding
(grid cells & adjacency)

Recurrent MLP (R-MLP)
(temporal dynamics)

Multi-step Forecasting
(AQI predictions)

Evaluation & Interpretability
(Heatmaps, Taylor diag.,

Metrics)

Adaptive uncertainty
estimation & extreme-

event submodels

Integrate extra variables
(traffic, noise, emissions)

TinyML & Edge deployment
(quantization, TFLite)

Cross-city validation
(scalability & adaptability)Legend: Blue boxes = components; Green =

process/output; Orange = future directions

Fig. 21.  Pictorial Presentation of the conclusion and future work of the AiM model.
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Data availability
The primary dataset is sourced from the official Kaggle repository49,50 and contains multiple data streams (APCs, 
MFs, events) for the period 2015-2020.
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