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Anti-nutritional factors (ANFs) can reduce nutrient bioavailability for monogastric animals. Therefore, 
this study aimed to understand the genetic architecture underlying ANF accumulation in soybean. 
Diversity arrays technology and a spectrophotometric method were employed to generate genotypic 
and phenotypic data, respectively, and gene mining was performed within 100-kb genomic window. 
A significant difference was found regarding ANFs content in the genotypes (p < 0.001). Significant 
SNP markers for phytate were identified on chromosomes 3, 4, 13, and 20 by FarmCPU, and for total 
trypsin inhibitors (TTI) on 6, 12, and 14 by CMLM models, whereas mrMLM model detected markers 
on chromosome 3, 12 and 15 for phytate, 4, 9, 13, 17 and 18 for TTI. Genes associated with phytate 
content include Glyma.03G001600, Glyma.04G194600, Glyma.13G128200, Glyma.20G118700, 
Glyma.14G213400, and Glyma.16G126400. For TTI, the genes are Glyma.06G074700, 
Glyma.12G241600, Glyma.14G176700, Glyma.13G052700, and Glyma.18G050400. These genes 
are primarily linked to plant defense and substrate interactions. Most promising SNP markers for 
marker-assisted selection aimed at reducing phytate levels include Soy_3_218818 (218,818 bp), 
Soy_3_241209 (241,209 bp), Soy_4_45462019 (45,462,019 bp), Soy_14_48672982 (48,672,982 bp), 
and Soy_6_5695090 (5,695,090 bp). For TTI, key markers include Soy_14_43649238 (43,649,238 bp), 
Soy_12_41339023 (41,339,023 bp), Soy_18_4301721 (4,301,721 bp), and Soy_13_14029215 
(14,029,215 bp). These findings offer a valuable foundation for marker-assisted breeding aimed at 
improving soybean nutritional quality.
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Soybean [(Glycine max.), 2n = 40)] is a preferred crop for addressing nutritional deficiencies in developing 
countries due to its rich content of protein (40–50%), lipids (20–30%), carbohydrates (26–30%)1–4, and 
micronutrients5. In addition to these primary metabolites, soybeans produce various secondary metabolites 
known for their biological roles such as enhancing stress resilience6, conferring disease resistance7. Despite their 
benefits in plants, secondary metabolites may exert anti-nutritional effects when consumed by monogastric 
animals depending on the concentrations. Anti-nutritional factors (ANFs) reduce soybean nutritional value by 
hindering nutrient digestion and absorption8, thereby affecting human and animal growth7. The most important 
ANFs in legumes include phytate, proteinase inhibitors, tannins, saponins, oligosaccharides, and antigenic 
factors like oxalate. Among these, proteinase inhibitors (trypsin inhibitors), metal chelates (such as phytate), 
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oligosaccharides, and antigenic factors are typically the most abundant in soybean seeds9. Apart from the negative 
effect of ANFs, it has been reported reduction of nutrient intake and absorption may prevent development of 
certain diseases. For instance, chelating important cations for glucose transporters such Ca2+ ions, a co-factor of 
α-amylase, phytate (IP6) reduces the rate of starch digestion in humans and animals, preventing diabetes10 and 
cancer11. The IP6 can also bind directly to starch or to proteins reducing its digestibility, bioavailability, and affect 
glycemic index value10. On the other hand, trypsin or chymotrypsin-inhibitors complexes with enzyme’s active 
site inhibiting their catalytic activity9, thus, preventing protein breakdown. The protease inhibitors reduce the 
function of all four classes of proteolytic enzymes, including, serine, cysteine, aspartyl, and metalloproteinases 
in the gastrointestinal tract of animals12, affecting growth and triggering pancreas hypertrophy13. A study 
on gene regulatory network aiming to develop low and normal phytate soybean seeds revealed differentially 
expressed genes in the phytate biosynthetic pathways including Glyma.11G23880014,15, Glyma.01G016700, 
Glyma.09G206100, Glyma.11G218500, Glyma.18G038800, Glyma.11G218500, Glyma.18G03880015. One QTL 
with a peak close to Gm08_44814503 in chromosome 8 was identified using IciMapping analysis. A QTL located 
between single nucleotide polymorphisms (SNPs) Gm08_44814503 and Gm08_45270892 was reported to confer 
low Kunitz trypsin inhibitor (KTI) concentration in soybean16.

Several processing methods have been employed to reduce or eliminate ANFs in crops due to their negative 
impact on animal nutrition. Among the methods, physical, chemical and enzymatic have largely been applied 
in soybean. Physical and chemical techniques include soaking, cooking, autoclaving, microwave cooking, 
extrusion, germination, irradiation17, debranning18 and dehulling16, roasting, sprouting10, whereas enzymatic 
methods involve fermentation and acetic acid—catalyzed processing19. These techniques may be used singly or 
in combination. Microwaving stands out as a quick, reliable, safe, effective, and environmentally friendly method 
of lowering ANFs. However, the intensity and length of microwave processing have a considerable impact on 
ANFs inactivation, and their use needs to be carefully considered17. Additionally, though these techniques have 
proved useful for long, they are costly, time-consuming20, and some may require technical expertise or generate 
waste during processing17. To overcome these limitations, different breeding strategies are employed to develop 
soybean cultivars with low anti-nutritional content, including backcrossing21, mutation breeding22, molecular 
markers23, and genome editing24.

Traditional breeding systems are often time-consuming, lacks specificity, and ultimately delays variety release25. 
To accelerate genetic gains, a paradigm shift in breeding strategies was necessary. Over the years, morphological 
and biochemical markers have been widely employed to select genotypes based on traits including yield and 
quality traits26–29. Despite their utility, these markers often show instability due to environmental influences26. As 
a result, molecular markers have opened new avenues for more effective genotype selection. Molecular markers 
serve as powerful tools for tracking and manipulating genes in both plant and animal breeding30,31. More recently, 
marker-assisted selection (MAS) has gained prominence in soybean improvement programs, offering faster and 
more precise means of incorporating desirable traits. MAS has been successfully used to develop plants resistant 
to soybean cyst nematode32, transfer disease resistance alleles among individuals, and pyramiding resistance 
alleles33. Additionally, MAS has proven useful in the genetic elimination of the Kunitz trypsin inhibitors (KTI) 
and lectin in soybean seeds34. Globally, MAS has been employed in soybean breeding for traits such as sucrose 
content35, salt tolerance, insect resistance, agronomic characteristics36, and pod shattering resistance37. Recent 
advances in gene editing have enabled the development of mutant alleles and molecular markers for KTI1 and 
KTI3 through CRISPR/Cas9-mediated mutagenesis, effectively reducing trypsin inhibitor content and activity 
in soybean seeds, with no observable difference regarding plant growth or maturity days of kti1/3 transgenic and 
wild type plants38. Marker efficiency of discovering marker-trait associations has progressively improved from 
restriction fragment-length polymorphism (RFLP) to single-sequence repeat (SSR)31. SSR markers are relatively 
recent and they have been use to explore genetic diversity in soybean35–37, and genotyping of Chinese cabbage 
varieties13,39. Though SSRs have contributed to progress in trait diversity and mapping studies, they are regarded 
to be numerous and polymorphic9. Therefore, high-throughput SNP marker genotyping technologies are being 
extensively adopted to provide genome-wide markers that increase the precision of mapping quantitative 
trait loci (QTL)40. Genome-wide association study (GWAS) has emerged as powerful tool for understanding 
the genetic basis of phenotypic variance and architecture in crops owing to its capability on the remarkable 
allele diversity present in natural populations and their historical recombination events. Historically recorded 
recombination events and rich allele diversity allow for better mapping resolution and causal gene discovery 
compared to genetic linkage mapping which relies on recent and artificial population with narrow gene pool 
and low recombination rate41. Single nucleotide polymorphism-based genome association study has helped to 
identify QTLs and genes linked to disease resistance42,43 in Ugandan soybean accessions. However, no GWAS 
have been conducted to identify SNP markers linked to anti-nutritional factors (ANFs), despite their negative 
effect on soybean nutritional quality and contribution to high production costs of soybean meal. Against this 
background, the study aimed to understand the genetic architecture underlying ANF accumulation in 308 
soybean accessions. Addressing this gap is crucial for developing molecular markers to support breeding 
programs for low-ANF soybean, thereby improving nutritional value and reducing processing costs for food 
and feed.

Results
Variability of phytate and total trypsin inhibitors
There was significant variation regarding phytate and total trypsin inhibitors content among the genotypes 
(p < 0.001). Mean phytate content was 1756.9 mg/kg [min. 14.8 mg/kg (BSPS 48A-6-3) and max. 6928.8 mg/kg 
(NGDT 2.15–7)]. For total trypsin inhibitors (TTI) was 850.3 mg/kg [min. 10.9 (DN 16_N); max. 1538.5 mg/kg 
(Duiker)] (Table 1). The observed variation in the genotypes reflect the broad genetic variability of the evaluated 
population and suggest a genetic control of anti-nutritional factors.
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Marker distribution across chromosomes
The initial marker size was 17,300 SNPs. Upon SNP duplicates removal and filtering, 11,804 quality SNPs (68.2%) 
were retained for further analysis. SNPs were distributed fairly evenly along the 20 soybean chromosomes with 
chromosome 18 having the highest number of markers (824 SNPs) and 12, the lowest (422 SNPs). SNP markers 
across 20 chromosomes showed variable spacing, with average inter-marker distances ranging from ~ 40  kb 
(chromosome 16) to ~ 81 kb (chromosome 1). Maximum distances between adjacent SNPs ranged from ~ 951 kb 
to ~ 2.67 Mb. Chromosomes with greater number of SNPs, such as chromosomes 6, 8, 9, 13, and 18 in soybean, 
often reflect regions of higher historical recombination or genetic diversity. These regions are beneficial for GWAS 
as denser SNP coverage improves the ability to detect and fine-map trait-associated loci. In contrast, relatively 
SNP-poor regions (chromosomes 1, 5, 10, 11, 12, 17, 19 and 20) are often less informative for association studies, 
though can be biologically important due to their conserved nature (Fig. 1).

Linkage disequilibrium, principal component analysis (PCA) and population statistics
Pairwise correlation estimates between filtered SNPs were performed to assess the rate of linkage disequilibrium 
(LD) decay. Average LD peaked at r2 = 0.2 and then decayed gradually below r2 = 0.1 at a genetic distance of 50-
kb (Fig. 2 a and b), suggesting moderate recombination and genetic diversity in Ugandan germplasm, or the 
genotypes may have shared common ancestry at some point in time.

The first two principal components (PC1 + PC2) cumulatively explain approximately 15% variation in the 
population, whereas the first 10 PCs explained up to 31.71% total variation (Fig. 3a). Hierarchical clustering 
analysis grouped the genotypes into four clusters, reflecting underlying genetic diversity within the soybean 
germplasm. Cluster 1 comprised 77 genotypes, cluster 2 had the highest representation with 107 genotypes, 
cluster 3 included 93 genotypes, and cluster 4 contained 31 genotypes. Genotype clusters show distinct 
geographic compositions. Cluster 1, is the smallest group with 77 genotypes, dominated by genotypes from the 
USA, accounting for 97.4%, with only one genotype each from Nigeria and Uganda. Cluster 2, the largest with 
107 genotypes, is more diverse, including 33.6% from Uganda, 23.4% from Taiwan, 14% from Japan, 13.1% 
from Nigeria, 11.2% from Zimbabwe, and a small proportion (4.7%) from the USA. Cluster 3 consists mostly 
of Ugandan genotypes (90.3%), alongside small contributions from Nigeria, Japan, and Zimbabwe. Finally, 
cluster 4, with 31 genotypes, is primarily Ugandan (58.1%), followed by Nigerian genotypes at 25.8%, and 
minor representation from Japan and Taiwan (Fig. 3b). The population distribution reflects the genetic diversity 
and potential regional structuring within the germplasm, with some clusters dominated by specific sources, 
while others show more admixed origins, highlighting important considerations for breeding and conservation 
strategies.

Fig. 1.  (a): Number of SNPs per soybean chromosome. Chromosome 12 and 18 harbor the lowest and highest 
number of SNPs, respectively. Panel (b) shows the SNP density across soybean genome, where the vertical 
axis displays the chromosome number, horizontal axis displays chromosome length (1 Mb window), and the 
various colors represent SNP density or total number of SNPs per window. Chromosomes with high SNP 
density—such as Chr7, Chr9, Chr16, and Chr18—highlight regions of high genetic variation. These SNP-rich 
zones (in red) are useful for association mapping, diversity studies, and marker development. Conversely, 
SNP-poor chromosomes, including Chr2, Chr3, and Chr4, as well as relatively low-density regions on Chr1, 
Chr10, and Chr11 (green zones), suggest more conserved genomic segments. These regions may reflect low 
recombination or evolutionary conservation.

 

Trait Min (mg/kg) Max (mg/kg) Mean H2 SD CV (%)

Phytate 14.8 6928.8 1756.9 0.68 11.7 0.68

TTI 14.7 1538.5 850.3 0.84 5.4 0.34

Table 1.  Summary statistics for phytate and total trypsin inhibitors. H2, broad sense heritability; SD, standard 
deviation; CV, coefficient of variation; Min, minimum; Max, maximum; TTI, total trypsin inhibitors.
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The means for genetic diversity (GD), polymorphism information content (PIC), minor allele frequency 
(MAF), observed heterozygosity (Ho) and inbreeding coefficient (F) were 0.3, 0.25, 0.21 and 0.18, respectively 
(Table 2). The Ugandan soybean population shows moderate genetic diversity, favorable for breeding and 
association studies. Moderate PIC and MAF values indicate that the markers are informative. The low observed 
heterozygosity (Ho) and positive inbreeding coefficient (F) are consistent with soybean’s self-pollinating nature.

Marker-trait association
Manhattan plots show the significant SNPs associated with phytate and total trypsin inhibitors. The QQ plots 
reveal a good control of population parameters, and thus, minimum false positive and negative associations. 
SNPs above the threshold deviate significantly from the diagonal indicating true associations with the evaluated 
traits (Fig.  4a–d). Based on the FarmCPU model, phytate accumulation was found to be associated with 
SNPs located on chromosomes 3 (pos 218,818 bp), 4 (pos 45,462,019 bp), 13 (pos 23,167,455 bp, and 20 (pos 
35,904,989 bp) (Fig. 4a). The CMLM model revealed SNPs significantly associated with total trypsin inhibitors 

Fig. 3.  Principal component analysis (PCA) showing trends of population distribution (a) and phylogenetic 
tree (b). The quadrants show a trend of stratification among the genotypes. Numbers 1, 2, 3 and 4 represent 
four distinct clusters in the population.

 

Fig. 2.  (a)- Average linkage disequilibrium rate. The x-axis shows the distance (kilo base pairs) between 
SNPs, and the y-axis, the LD value (r2). Panel (b) represents an amplified region from the averaged linkage 
disequilibrium (a) of ~ 1500 kb. LD decay is shown at around 50-kb at r2 = 0.2 and the LD becomes obsolete at 
around 100-kb.
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on chromosomes 6 (pos 5,695,090 bp), 12 (pos 41,339,023 bp), and 14 (pos 43,649,238 bp) (Fig. 4c). The SNP 
marker validation performed using mrMLM confirmed hit for phytate on chromosome 3 (pos 241,209  bp) 
(Fig. 4b). SNP markers located on chromosomes 14 and 16 were detected by at least two methods including 
mrMLM and FASTmrMLM for phytate. For total trypsin inhibitors, the mrMLM and FASTmrEMMA methods 
detected SNPs on chromosome 13; mrMLM, pLARmEB and ISIS EM-BLASSO, on chromosome 18 (Fig. 4d). 
Markers detected by at least two methods were ranked as significantly associated with the trait. Therefore, 
markers such as Soy_14_48672982 (methods 1 and 2), Soy_16_26978144 (methods 1 and 2), Soy_13_14029215 
(methods 1 and 3) and Soy_18_4301721 (methods 1, 4, and 6) were considered most significant and used for 
gene annotation (Table 3).

Allelic effects of significant SNP markers on phytate and TTI expression
Contribution of phenotypic variation explained by significant SNP markers is illustrated in Figs. 5a–c and 6a–d. 
Marker–trait association analysis revealed that the expression of phytate and TTI is genotype-dependent. For 
phytate, SNP Soy_14_46872882 showed significant differences among genotypes (F(2, 283) = 16.72, p < 0.0001, 

Fig. 4.  Manhattan and QQ plots for phytate and total trypsin inhibitors. Significant SNPs have hit the 
threshold and respective QQ-plot depicts the distribution of observed versus expected p-values and the genetic 
associations (a–d). Among the models tested in GAPIT, FarmCPU and CMLM were the most effective in 
detecting significant SNP markers for phytate and TTI, respectively. No common markers were identified 
between GAPIT models. To assess marker detection power and consistency, six mrMLM methods were also 
applied to the same dataset. From an inter-model perspective, in general, no overlapping SNPs were detected 
between GAPIT and mrMLM outputs. However, an intra-model comparison revealed that two SNPs were 
consistently identified by multiple mrMLM methods (SNPs Soy_14_48672982 and Soy_16_26978144 for 
phytate; and Soy_13_14029215 and Soy_18_4301721 for TTI) suggesting a higher detection consistency and 
potential sensitivity of mrMLM methods in capturing trait-associated loci compared to the GAPIT models.

 

Pop stata Mean Lower Upper

GDb 0.3 0.09 0.5

PICc 0.25 0.09 0.38

MAFd 0.21 0.05 0.5

Hoe 0.18 0.06 0.87

Ff 0.4 − 1.88 0.79

Table 2.  Summary of population statistics showing the means, lower and upper values. aPopulation statistics, 
bGenetic diversity; cPolymorphism information content; dMinor allele frequency; eobserved heterozygosity; f 
inbreeding coefficient.
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η2 = 0.11), with GA genotypes exhibiting the highest levels and GG, lowest. SNP Soy_16_26978144 also showed a 
significant effect (F(2, 293) = 8.27, p = 0.00032, η2 = 0.05), where TT genotypes controlling higher phytate content 
than CC. Additionally, Soy_4_45462019 was significant (F(2, 296) = 6.74, p = 0.001, η2 = 0.04), with TC and TT 
genotypes exhibiting higher phytate control than CC.

Fig. 5.  Allelic effects on SNPs for phytate and TTI accumulation. Marker effect evaluated based on the 
genotypes of each marker exhibiting significant p-values, as identified through GAPIT models are presented in 
the boxplot “a” for phytate, “b” and “c” for TTI traits.

 

Trait Method SNP IDa Chrb Position (bp) Alleles p-value Effect PVE (%)c

Genome association and prediction integrated tool (GAPIT)

  Phytate FarmCPU

Soy_3_218818 3 218,818 C/A 4.56E-08 − 5.53556 11.3461

Soy_4_45462019 4 45,462,019 G/T 9.77E-08 − 3.755 24.9232

Soy_13_23167455 13 23,167,455 C/A 2.61E-08 − 3.97445 9.0706

Soy_20_35904989 20 35,904,989 C/A 1.40E-06 3.01311 0

  TTId CMLM

Soy_6_5695090 6 5,695,090 C/T 1.14E-21 3.74803 1.3583

Soy_12_41339023 12 41,339,023 G/A 9.58E-25 3.84849 7.1343

Soy_14_43649238 14 43,649,238 A/G 1.56E-20 3.30279 0

Genome association and prediction integrated tool (GAPIT)

  Phytate

mrMLM, FASTmrMLM Soy_14_48672982 14 48,672,982 G/A 4.0345 − 2.4226 5.7881

mrMLM Soy_15_21856770 15 21,856,770 T/A 7.3747 − 3.5413 7.9818

mrMLM, FASTmrMLM Soy_16_26978144 16 26,978,144 T/C 3.9594 3.1498 5.4889

FASTmrMLM Soy_3_241209 3 241,209 T/C 5.6341 − 1.9019 3.8632

  TTI

mrMLM, FASTmrEMMA Soy_13_14029215 13 14,029,215 C/T 4.4703 − 1.1927 5.0811

mrMLM, pLARmEB, ISIS EM-BLASSO Soy_18_4301721 18 4,301,721 A/G 5.6126 2.5593 7.2634

FASTmrEMMA Soy_9_4284965 9 4,284,965 C/T 4.249 1.8677 2.706

pLARmEB Soy_17_38803367 17 38,803,367 C/A 3.8335 − 0.7015 1.6504

pLARmEB Soy_4_50691237 4 50,691,237 AA 4.0484 − 0.9902 5.0311

Table 3.  Significant SNPs identified for phytate and total trypsin inhibitors. #aSignificant SNPs identified 
for phytate and total trypsin inhibitors; bChromosome; cPhenotypic variation explained; d total trypsin 
inhibitors. Lower explained variation indicates that the SNPs play no significant role in determining the 
target trait. Negative SNP effects are more promising, as they suggest alleles associated with reduced ANF 
content. Based on GAPIT tool, SNPs with effects − 5.54 (Soy_3_218818), − 3.76 (Soy_4_45462019), and − 3.97 
(Soy_13_23167455) for phytate and 3.30 (Soy_14_43649238) for TTI are particularly favorable. Similarly, 
for mrMLM results, SNPs with effects of − 3.54 (Soy_15_21856770), − 2.42 (Soy_14_48672982), and − 1.90 
(Soy_3_241209) for phytate and − 0.7015 (Soy_17_38803367), − 0.9902 (Soy_4_50691237) stand out. These 
SNPs are ideal targets for marker-assisted selection in breeding programs.
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Another significant marker, Soy_14_43649238, showed a moderate genotype effect (F(2, 302) = 4.23, p = 0.015, 
η2 = 0.03), where GG genotypes were associated with increased phytate compared to AA. Soy_12_41339023 also 
reached significance (F(2, 304) = 0.045, p = 0.045, η2 = 0.02), with TC and TT genotypes having slightly higher 
phytate control than CC, suggesting a subtle allelic effect.

For TTI, SNP Soy_13_14025215 showed higher expression in CT genotypes compared to TT (F(2, 282) = 6.14, 
p = 0.002, η2 = 0.04), and Soy_18_4301721 revealed increased TTI in GG over AA genotypes (F(2, 263) = 10.31, 
p < 0.0001, η2 = 0.07). These findings confirm that allelic variation at specific SNP loci significantly influences 
phytate and TTI content in soybean.

Candidate genes identification
To investigate the genetic basis of phytate and trypsin inhibitors accumulation, significant SNP markers were 
identified through GWAS. Gene mining within the 100-kb genomic window revealed genes potentially linked to 
the targeted traits. The gene functions are classified into major categories including plant defense, gene regulation, 
substrate–substrate interactions. Glyma.03G001600 is potential candidate gene for SNP Soy_3_218818. The 
gene Glyma.03G001600 codes for acid phosphatases, which in gene ontology (GO) is categorized as molecular 
function. This class of enzyme is involved in several enzymatic activities transferring phosphate between groups. 
Phosphate groups can be attached to inositol forming phytate (myo-inositol hexakisphosphate or inositol 
hexaphosphate (IP6)). Phytate (IP6) can act as a precursor in the biosynthetic pathway of diphosphoinositol 
polyphosphates, a reaction controlled by the gene Glyma.14G213400 (GO: molecular function) which is linked 
to Soy_14_48672982. Diphosphoinositol is a precursor for phytate biosynthesis. The phytate six-carbon ring 
substrate can be supplied by hydrolysis of sugars mediated by glycosyl hydrolases family 38 C encoded by the 
gene Glyma.16G126400 (GO: molecular function) linked to the SNP Soy_16_26978144. SNP Soy_4_45462019 is 
linked to the gene Glyma.04G194600 coding for metallo-beta-lactamase superfamily (GO: molecular function) 
involved in hydrolysis of beta-lactam antibiotics. Both phytate and beta-lactamases play a role in plant health. 
On the other hand, gene Glyma.18G050400 (GO: molecular function) linked to Soy_18_430172, codes for cation 
efflux proteins, which are found to increase tolerance to divalent metal ions such as cadmium, zinc, and cobalt. 
The gene Glyma.13G128200 linked to Soy_13_23167455, codes for protein phosphorylation enzyme family (GO: 

Fig. 6.  Allelic effects on SNPs for phytate and TTI accumulation for each marker exhibiting significant p-
values, as identified by mrMLM methods are presented in boxplots “a” and “b” for phytate, whereas “c” and 
“d” for TTI traits.
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biological process) involved in substrate phosphorylation. In such reactions, phytate can act as phosphorus donor, 
implying a switch of protein function. SNP Soy_20_35904989 is linked to the gene Glyma.20G118700 coding 
for glycerophosphodiester phosphodiesterase (GO: molecular function). These enzymes catalyze the hydrolysis 
of glycerophosphodiesters to produce free alcohol and glycerol 3-phosphate. Depending on the cellular state, 
glycerol 3-phosphate can be directed to inositol biosynthetic pathway. Trypsin inhibitors are proteins by nature. 
Gene Glyma.06G074700 (GO: molecular function) linked to Soy_6_5695090 codes for serine protease inhibitor 
domain. The domain inhibits serine proteases activity by slicing peptide bonds in proteins. Translation initiation 
factor 2D (EIF2D) is encoded by the gene Glyma.12G241600 (GO: molecular function) linked to the SNP 
Soy_12_41339023. The EIF2D is involved in the recruitment and delivery of aminoacyl-tRNAs to the P-site 
of the eukaryotic ribosome in a GTP-independent manner. Gene Glyma.14G176700 (GO: molecular function) 
linked to Soy_14_43649238 codes for protein kinase domain. The domain contains the catalytic function 
of protein kinases involved in phosphorylation reactions. Phosphorylation plays a crucial role in regulating 
transcription, cell cycle progression, and apoptosis. Another transcription factor (TFs), K-box region encoded 
by Glyma.13G052700 gene (GO: molecular function) linked to the SNP Soy_13_14029215, is a key component 
of gene regulation through protein–protein interactions. TFs control gene expression related to developmental 
processes, and the gene Glyma.13G052700 is expressed in seeds during seeds development (Table 4).

Discussion
Anti-nutritional factors (ANFs) play crucial roles in plant defense7. These biologically active compounds are 
distributed across plant organs including grains, and nuts, leaves, roots, and fruits79. However, ANFs may have 
either positive or negative effect in monogastric animals including humans80,81 depending on their concentrations 
in food. ANFs negatively affect nutrient digestibility and absorption by binding to proteins, carbohydrates, lipids 
and minerals. This study aimed to unveil the genetic basis of two ANFs including phytate and trypsin inhibitors 
in Ugandan soybean accessions. The observed variability (p < 0.001) in ANFs content among the genotypes can 
be attributed to differences in their genetic background and geographical origin, providing a broad genetic 
diversity, ideal for selection in breeding programs. Similar studies have reported differences in ANFs in self-
pollinated plants at F3:5, commercial germplasm, and food-grade soybean lines9,82.

Higher recombination events were detected on chromosome 18, whereas chromosome 12 exhibited greater 
conservativeness. A study carried out to reveal the genetic basis for resistance to Coniothyrium glycines in the 
same population (~ 10% difference in size) reported similar recombination patterns42. Genetic regions with high 
recombination rates offer potential opportunity for studies to disclose more biological functions associated with 
the region. High rates of recombination break down linkage disequilibrium (LD). Thus, genetic architecture of 
complex traits are better investigated using LD analysis83. In this study, LD decay rate was estimated at r2 = 0.10 
for a genetic distance of 50-kb. For self-pollinated crops including soybean the LD decay rate is generally low at 
around r2 = 0.1084. However, LD decay at r2 = 0.2 within approximately 200-kb has also been reported85. The low 
LD in this study indicate a weak association between the markers, implying high recombination rate leading to 
independent segregation of alleles. This recombination rate may explain the separation of the population into 
distinct groups in the phylogenetic tree, which can be beneficial for breeding purposes.

Molecular markers are more powerful tools for assessing genetic diversity (GD) compared to phenotypic 
markers. The genetic diversity value of 0.3 and a polymorphism information content (PIC) value of 0.25 suggest 
moderate genetic variability and marker informativeness in the population. Similar GD and PIC values of 0.34 
and 0.27, respectively, has been reported in soybean cultivars and advanced breeding lines from the U.S. and 
China86. Conversely, a slightly lower PIC of 0.22 was reported in a study using Korea, Japan, China, and the 
U.S populations87, whereas, studies in soybean novel germplasm, advanced lines and cultivars released for 
commercial cultivation in Sub-Saharan Africa detected higher PIC = 0.3840, GD of 0.70 and PIC of 0.7188. These 
differences may be explained by the population size and background, continuous selection for specific trait 
in breeding programs, along with the number and diversity index of markers,  and geographic dispersion of 
accessions87.

The smaller minor allele frequency (MAF) captured in this study suggest that most of the loci are nearly fixed, 
different from the higher MAF (MAF = 0.29)  reported in the same population (with smaller size)42.

Unlike in this study, quantitative trait loci (QTL) for Kunitz trypsin inhibitor (KTI) have been reported on 
chromosome 89, whereas SNP markers for phytate was identified on chromosomes 1, 9, 11, and 18 in soybean15. 
These discrepancies in SNP markers detection can be attributed to differences in phenotyping, population type 
and association tools.

Gene mining within the 100-kb range revealed 45 genes potentially linked to the targeted traits. The 
genes are associated with plant defense, gene regulation, and substrate–substrate interactions. For instance, 
phytate is linked to biosynthesis of abscisic acid (ABA) and gibberellins, two phytohormones involved in seed 
germination89. Resistance to disease has been associated with chromosome 1342, resistance to abiotic stress 
to chromosome 190. Genes on chromosome 19 has been associated with gene regulation42, and PHD finger 
transcription factors were reported to be located on chromosome 1291. Transcription factors regulate gene 
expression during protein biosynthesis. Trypsin inhibitors, which are proteins by nature, play a critical role 
in plant defense and overall metabolism. Post-translational regulation can occur through phosphorylation or 
dephosphorylation of enzymes. The gene Glyma.03G001600 encodes acid phosphatases involved in breaking 
down adenosine triphosphate (ATP) to release phosphate groups as sub-product44,45. Phosphate kinases 
(encoded by Glyma.14G214700) can be involved in phytate biosynthesis by incorporating phosphate groups into 
inositol in the 1L-myo-inositol-1,2,3,4,5,6-hexakis (dihydrogen phosphate)92, whereas the Glyma.16G126400, 
a glycosyl hydrolases gene, supply sugar backbone for inositol biosynthesis. These metabolic pathways are 
interconnected and together contribute to phytate biosynthesis in plants. On the other hand, metallo-beta-
lactamase superfamily encoded by the gene Glyma.04G19460049 is involved in plant immunological responses, 
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suggesting its connection with phytate role. Protein kinases encoded by Glyma.13G128200 gene are alternatively 
involved in phytate biosynthetic, whereas Glyma.20G118700 encodes glycerophosphodiester phosphodiesterase 
involved in glycerol esters hydrolysis56. This pathway provides glycerol to the inositol biosynthesis92. Protein 
kinase domain encoded by Glyma.14G176700 plays a pivotal role in cellular regulation of phosphorus47. Thus, 

Trait Method SNP ID Chr Pos (Mb) Gene ID Functional annotation PFAM Reference

Genome association and prediction integrated tool (GAPIT)

  Phytate FarmCPU

Soy_3_218818

Gm03

218,818

Glyma.03G001600 Acid phosphatases PF03767 44,45

Gm03 Glyma.03G009000 Phosphatidylinositol N-Acetylglucosaminyltransferase PF12552 46

Gm03 Glyma.03G010200 Plant phosphoribosyltransferase C-terminal (PRT_C) PF08372 45

Gm03 Glyma.03G002200 Protein kinases PF00069 47

Gm03 Glyma.03G002000 O-Glycosyl hydrolases PF16499 48

Soy_4_45462019

Gm04

45,462,019

Glyma.04G194600 Metallo-beta-lactamase superfamily PF00753 49

Gm04 Glyma.04G195633 Lycopene epsilon-cyclase PF05834 50

Gm04 Glyma.04G206100 Phosphatidylinositol 4-phosphate 5-kinase 1-related PF01504 51

Gm04 Glyma.04G203600 Protein Suppressor of Gene Silencing 3 (SGS3) PF03468 52

Gm4 Glyma.04G205200 Defensin-like protein 6 (DEFL6) PF00304 53,54

Gm4 Glyma.04G196900 F-box domain PF00646 55

Gm4 Glyma.04G194600 Beta-lactamase PF00753 49

Soy_13_23167455

Gm13

23,167,455

Glyma.13G128200 Protein phosphorylation PF07714 56

Gm13 Glyma.13G127800 Tetratricopeptide repeat PF07719 57

Gm13 Glyma.13G132400 Inorganic pyrophosphatase PF00719 58

Gm13 Glyma.13G132700 Phosphatidylinositol-bisphosphatase PF03372 46

Soy_20_35904989 Gm20 35,904,989

Glyma.20G118700 Glycerophosphodiester phosphodiesterase PF00069 56

Glyma.20G118000 Metallo-beta-lactamases PF00753 49

Glyma.20G119100 Protein phosphatase 2C 5-related PF00481 47

  TTI
CMLM

Soy_6_5695090 Gm06 5,695,090

Glyma.06G074700 Serine protease inhibitor domain PF00067 59,60

Glyma.06G074300 Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) 
domain PF13639 59

Glyma.06G077400 WRKY transcription factor 11-related PF10533 61

Glyma.06G078100 Thioredoxin isoform B-related PF07649 62

Glyma.06G074300 Ring-Type Zinc finger PF00010 63

Soy_12_41339023 Gm12 41,339,023

Glyma.12G241600 Translation initiation factor 2D PF01253 64

Glyma.12G241600 Translation initiation factor SUI1 PF01253 64

Glyma.12G240800 Ring finger domain PF13920 65,66

Soy_14_43649238 Gm14 43,649,238

Glyma.14G176700 Protein kinase domain PF00069 47

Glyma.14G178200 Ring finger domain PF13639 66

Glyma.14G185100 Helix-loop-helix DNA-binding domain PF00010 63

Multi-locus random-SNP-effect mixed linear model (mrMLM)

  Phytate

mrMLM, 
FASTmrMLM Soy_14_48672982 Gm14 48,672,982

Glyma.14G213400 Diphosphoinositol Polyphosphate Phosphohydrolase PF00293 56,67

Glyma.14G214700 Protein kinase domain PF00069 68

Glyma.14G224300 Cyclin, N-terminal domain PF00134 68,69

mrMLM, 
FASTmrMLM Soy_16_26978144 Gm16 26,978,144

Glyma.16G126400 Glycosyl hydrolases family 38 C-terminal domains PF07748 70

Glyma.16G128300 TSL-Kinase interacting protein 1 PF00249 71

  TTI

mrMLM, 
FASTmrEMMA Soy_13_14029215 Gm13 14,029,215

Glyma.13G052700 K-box region PF01486 56

Glyma.13G053600 Protein tyrosine kinase (Pkinase_Tyr) PF07714 72

Glyma.13G053733 U-Box domain-containing protein 50-related NA

Glyma.13G055200 Eukaryotic translation initiation factor 3 subunit M PF01399 73

Glyma.13G055400 protein SPIRAL1 and related proteins (SPR1) NA

mrMLM, pLARmEB, 
ISIS EM-BLASSO Soy_18_4301721 Gm18 4,301,721

Glyma.18G050400 Cation efflux family PF01545 74

Glyma.18G051500 AP2 domain (transcription factors) PF00847 75

Glyma.18G051600 KIP1-like protein PF07765 76

Glyma.18G050300 Homodimerization region of STAR domain protein PF16544 77

Glyma.18G050600 Ribosomal protein L16p/L10e PF00252 78

Table 4.  Gene annotation for the significant SNPs linked to phytate, trypsin inhibitors in the soybean. 
Candidate genes along with their functions are detailed below. #SNP ID, single nucleotide polymorphism 
identifier; Chr, chromosome; Pos, position in megabytes; Gene ID, gene identifier; PFAM, protein families.
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the interplay between phosphorylation and dephosphorylation determine the levels of phytate or inositol 
available in plants cells.

Protein inhibitors are classes of serine proteases encoded by the gene Glyma.06G074700. Protein biosynthesis 
can be regulated by K-box domain, encoded by Glyma.13G052700 or translation initiation factor 2D encoded by 
Glyma.12G24160064. These domains ensure accurate tRNA placement during translation or post-translational 
modifications. Cation efflux family encoded by Glyma.18G050400 export or redistribute positively charged ions 
across the cell membrane determining protein biosynthesis efficiency. Protease inhibitors block digestive enzyme 
activity by competing with substrates for the active site. This enzyme-inhibitor complex affects the ability of 
animals to break down ingested proteins. Undigested proteins are unable to be absorbed by the intestinal tract, 
thereby affecting animal growth.

Among the GAPIT models tested, FarmCPU93 and CMLM94 were most effective for detecting significant 
SNPs. The power of FarmCPU has previously been reported in a study comparing multiple GWAS models in 
soybean and maize. FarmCPU performed better than single-locus models by reducing false positives and false 
negatives95. The mrMLM methods showed higher detection consistency and potential sensitivity in capturing 
trait-associated loci compared to the GAPIT models. The potential of mrMLM methods was also reported 
applying 3VmrMLM (Three Variance components multi-locus random-SNP-effect Mixed Linear Model) aiming 
to dissect the genetic mechanism in rice96.

To support these findings for MAS, further studies with larger populations across environments are needed 
to fully validate the discovered SNP markers. Following proteomic studies to validate the marker expression, the 
annotated genes can be used for achieving faster genetic progress for low anti-nutritional.

Conclusion
This study identified SNPs and candidate genes linked to phytate and total trypsin inhibitors (TTI) in soybean. 
Potential marker for low phytate content, include Soy_14_46872882, where the GG genotype consistently 
exhibited the lowest phytate levels. Likewise, Soy_16_26978144 and Soy_4_45462019 were associated with lower 
phytate accumulation in genotypes carrying the CC allele. Although Soy_12_41339023 showed a marginal effect, 
the CC genotype still demonstrated comparatively reduced phytate levels, and may offer value when combined 
with other markers in a selection strategy. For TTI, Soy_13_14025215 was linked to lower TTI levels in TT 
genotypes, while Soy_18_4301721 showed AA genotype as favorable effect in reducing TTI. Another promising 
marker, Soy_14_43649238,  showed genotype-specific influence, with one genotype group presenting lower TTI 
levels. The identified markers and genotypes can be useful for marker-assisted selection (MAS) in breeding 
programs aiming to develop soybean varieties with reduced anti-nutritional content. However, validation 
across larger populations and environments, combined with proteomic studies, are essential to confirm marker 
effectiveness. By enhancing our understanding of the genetic basis of ANFs, this research paves the way for 
the development of nutritionally superior soybean cultivars that contribute to sustainable agriculture and food 
security.

Methods
Plant materials
A set of 308 soybean germplasm was obtained from the Makerere University Centre for Soybean Improvement 
and Development (MAKCSID) program. The collection is composed of lines sourced from Uganda (136), the 
United States (80), Taiwan (27), Japan (19), Zimbabwe (13), and Nigeria (33). To standardize the conditions and 
ensure consistent seed multiplication in this exploratory assay, genotypes were planted in 2023B at Makerere 
University Agricultural Research Institute Kabanyolo (MUARIK). Kabanyolo is geographically located in the 
Central Region of Uganda at the coordinates 0° 28′ N, 32° 36′ E, altitude of 1180 m above sea level. The mean 
annual temperature is 21.4 °C, and the mean annual rainfall is 1234 mm97.The experiment was laid out in an 
augmented design with 31 blocks, each containing 10 plots consisting of three rows. Surfaces of young and 
apparently healthy leaves were cleaned with 70% ethanol and eight leaf discs obtained using a punch gun. 
Samples were incubated under 37 °C until they were sent to SEQART AFRICA located at International Livestock 
Research Institute in Nairobi for genotyping.

DNA extraction and diversity arrays technology “genotyping-by-sequencing” (DArTseq)
DNA extraction was performed using Nucleomag plant Kit, with concentrations of genomic DNA in the range 
of 50–100  ng/µl. DNA quality and quantity were checked on 0.8% gel agarose98. The DArTSeq complexity 
reduction method was used through the digestion of genomic DNA using a combination of PstI and MseI 
enzymes and ligation of barcoded adapters and common adapter followed by PCR amplification of adapter-
ligated fragments99. Libraries were constructed through Single Read sequencing runs for 77 bases. Next-
generation sequencing was carried out using Illumina the HiSeq 2500 platform (Illumina, Inc., Model HiSeq 
2500, Rapid Run Mode). Genome profiling was conducted by Genotyping by Sequencing (GBS) DArTseq™ 
technology (Canberra, ACT, Australia). DArTseq markers scoring was achieved using DArTsoft14 which is an 
in-house marker scoring pipeline based on algorithms. Two types of DArTseq markers were scored, SilicoDArT 
markers and SNP markers which were both scored as binary 1 for presence and 0 absence of the restriction 
fragment with the marker sequence in the genomic representation of the sample. Both SilicoDArT markers and 
SNP markers were aligned to soybean- Wm82-a1-v4 reference genome to identify chromosome positions99–101.

Biochemical analysis
Soybean seeds were ground using a food processor grinder (FOSS, Brook Crompton Laboratory mill, type 
2-TDAB03J, England, 2014) at the Nutritional and Biochemical Laboratory of the National Crops Resources 
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Research Institute (NaCRRI) in Uganda. The fine ground samples were further used to determine phytate and 
total trypsin inhibitors content.

Phytate phenotyping
Phytate extraction followed an acidic method as described by Israel102, with slight modifications on the sample 
initial volume and refrigeration during centrifugation. Briefly, 20 ml of 0.5 M HCl was added to 0.5 g of finely 
powdered soybean sample. The mixture was vortexed and shaken for 1 h at room temperature, then centrifuged 
at 4000 rpm for 30 min at 4 °C using a HERMLE 300 K centrifuge (Germany). For each sample, 5 ml of the 
supernatant containing the soluble fraction was transferred into three new 50  ml Falcon tubes, and the pH 
was adjusted by adding an equal volume of 0.5 M NaOH. To stop the reaction, equal volume 5 ml of NaCl was 
added to the system. Samples were filtered, and 2 ml of a chromogenic solution (ferric chloride III, FeCl3) was 
added for spectrophotometric reading at 492  nm absorbance (Ledetect96 Microplate Reader, 2017, A-5020, 
EU). The optical densities (OD) from the readings were used to calculate the concentration of phytate in the 
samples, using a linear regression curve obtained from serial dilutions of standard solution of sodium phytate. 
The controls were similarly prepared, except addition of the analyte and used as subtraction term to obtain final 
concentration (mg/kg) of phytate in the sample.

Total trypsin inhibitor phenotyping
Total trypsin inhibitors (TTI) were extracted using a neutral method with slight modifications on the sample 
size, volume and refrigeration during centrifugation103. Briefly, 0.05 g of powdered soybean sample was placed in 
a clean centrifuge tube and homogenized with 5 ml of phosphate buffered saline (PBS). The mixture was vortexed 
and shaken on an orbital shaker for 1 h, then centrifuged at 10,000 rpm for 10 min at 4 °C using a HERMLE 
300 K centrifuge (Germany). A 0.1 ml aliquot of the supernatant was transferred into micro centrifuge tubes and 
mixed with equal volume of 1 mg/ml trypsin solution, followed by incubation at 0 °C for 10 min. Then, 0.3 ml of 
2% casein substrate was added, and mixture was incubated in a water bath for 20 min at 37 °C103,104. The reaction 
was stopped by adding 0.2 ml of 10% trichloroacetic acid (TCA), and centrifuged at 10,000 rpm for 5 min to 
remove undigested casein, larger inhibitor fragments, and enzyme protein. All extraction steps were performed 
in triplicate. Two control samples were set, one without any inhibitor addition (Blank 1), other with addition 
casein only (Blank 2). Sample readings were performed using a spectrophotometer at 410  nm absorbance 
(Ledetect96 Microplate Reader, 2017, A-5020, EU). Trypsin inhibition activity (TIA) was calculated103 and the 
inhibitory activity percentage was converted into concentration of total trypsin inhibitor (TTI) expressed in mg/
kg:

	
%inhibition = test sample − blank2

blank1 − blank2 ∗ 100

Data analysis
Best Linear Unbiased predictions (BLUPs)  were computed using lme4 R package105 considering genotype as fixed 
and block as random effects as follow: Y ij = µ + Bi + Gj + G : Bij + εij; where: where Yij = phenotypic 
observation for a trait, µ = grand mean, B = random effect of block (j), G = fixed effect of genotype (i), 
G:B = interaction effect between genotype (i), and ε ij = random residual term. The resulting BLUPs were then 
used for association analysis106. Heritability was calculated for phytate and trypsin inhibitors as follow: H2 = Vg/
(Vg + Ve); where: H2 is the broad sense heritability, Vg is the genotypic variance, and Ve is the error (residual) 
variance.

Linkage disequilibrium (LD)
The extent of linkage disequilibrium (LD) was determined as the pairwise correlations between each pair of 
SNPs using LDcorSV package in R version 4.3.0 (Zhang et al., 2023). Pairwise correlation coefficients among 
markers were then plotted against genetic distances in kilobases (kb). The genetic distance at which average LD 
decayed below r2 = 0.1 was taken as the window for searching of putative genes within 100-kb genomic region 
of significant SNP markers on Phytozome database, version 13.0 (https://phytozome-next.jgi.doe.gov/) accessed 
on 11 June, 2024, using soybean-Wm82-a4.v1 as reference genome. Gene functions were found using InterPro 
database hosted by the European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI) 
and National Center for Biotechnology Information (NCBI).

Principal component analysis
Principal Component Analysis (PCA) and hierarchical clustering were performed using tidyverse, factoextra, 
and ggtree R packages. SNP data were cleaned and imputed using the dplyr package, replacing missing values 
with marker-wise means. PCA was executed using prcomp, with scaling and centering applied. The proportion 
of variance explained by PC1 and PC2 was extracted and used for axis labeling. Euclidean distances among 
genotypes were calculated, and hierarchical clustering was conducted using the Ward.D2 method via hclust. 
A circular dendrogram was constructed using ggtree, and genotype clusters were colored accordingly. These 
visualizations revealed population structure and genetic diversity patterns.

GWAS analysis, linkage disequilibrium and candidate genes identification
Data filtration was performed with a threshold of 95% reproducibility and 95% call rate, 0.05 minor allele 
frequencies (MAF < 0.05) and imputation through k-nearest neighbor imputation (knni) using snpReady 
package in R version 4.3.0. Duplicates were removed from filtered SNP data using the duplicated function of 
dplyr package in R. Genome-wide association study (GWAS) was performed using Genome Association and 
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Prediction Integrated Tool (GAPIT) models, including Fixed and random model Circulating Probability 
Unification (FarmCPU) for phytate and compressed mixed linear model (CMLM)93,94 for TTI. Furthermore, 
to assess models robustness in detecting SNP markers, multi-locus random-SNP-effect mixed linear model 
(mrMLM) methods including mrMLM107, FASTmrMLM108, FASTmrEMMA109, pLARmEB110, pKWmEB111 
and ISIS EM-BLASSO112 were used for marker-trait association using mrMLM package in R113. These methods 
are reported to maintain computational advantage and increases statistical power. The GAPIT models were fitted 
with varying numbers of PCs and without any PC to teste for correction of spurious associations which could 
potentially arise due to population structure. Correction for kinship was performed using the VanRaden method, 
andManhattan and quantile–quantile (QQ) plots were generated to visualize outputs of the analysis. Boxplots 
were generated to visualize the allelic effects. The ggpubr package was used to display group comparisons, with 
Holm-adjusted p-values and 95% confidence intervals annotated on the plots.

Data availability
The phenotypic and genotypic datasets generated and/or analyzed during the current study are available from 
the corresponding author on reasonable request. Candidate genes were identified using publicly available infor-
mation from the Phytozome database (https://phytozome-next.jgi.doe.gov/), NCBI ​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​
o​v​/​, and EMBL-EBI (https://www.ebi.ac.uk/).
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