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Unraveling the genetic architecture
of anti-nutritional factors in
soybean (Glycine max.) for
nutritional enhancement
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Anti-nutritional factors (ANFs) can reduce nutrient bioavailability for monogastric animals. Therefore,
this study aimed to understand the genetic architecture underlying ANF accumulation in soybean.
Diversity arrays technology and a spectrophotometric method were employed to generate genotypic
and phenotypic data, respectively, and gene mining was performed within 100-kb genomic window.
A significant difference was found regarding ANFs content in the genotypes (p <0.001). Significant
SNP markers for phytate were identified on chromosomes 3, 4, 13, and 20 by FarmCPU, and for total
trypsin inhibitors (TTI) on 6, 12, and 14 by CMLM models, whereas mrMLM model detected markers
on chromosome 3, 12 and 15 for phytate, 4, 9, 13, 17 and 18 for TTI. Genes associated with phytate
content include Glyma.03G001600, Glyma.04G194600, Glyma.13G128200, Glyma.20G118700,
Glyma.14G213400, and Glyma.16G126400. For TTI, the genes are Glyma.06G074700,
Glyma.12G241600, Glyma.14G176700, Glyma.13G052700, and Glyma.18G050400. These genes

are primarily linked to plant defense and substrate interactions. Most promising SNP markers for
marker-assisted selection aimed at reducing phytate levels include Soy_3_218818 (218,818 bp),
Soy_3_241209 (241,209 bp), Soy_4_45462019 (45,462,019 bp), Soy_14_ 48672982 (48,672,982 bp),
and Soy_6_5695090 (5,695,090 bp). For TTI, key markers include Soy_14_43649238 (43,649,238 bp),
Soy_12 41339023 (41,339,023 bp), Soy_18_4301721 (4,301,721 bp), and Soy_13_14029215
(14,029,215 bp). These findings offer a valuable foundation for marker-assisted breeding aimed at
improving soybean nutritional quality.
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Soybean [(Glycine max.), 2n=40)] is a preferred crop for addressing nutritional deficiencies in developing
countries due to its rich content of protein (40-50%), lipids (20-30%), carbohydrates (26-30%)'~%, and
micronutrients®. In addition to these primary metabolites, soybeans produce various secondary metabolites
known for their biological roles such as enhancing stress resilience®, conferring disease resistance’. Despite their
benefits in plants, secondary metabolites may exert anti-nutritional effects when consumed by monogastric
animals depending on the concentrations. Anti-nutritional factors (ANFs) reduce soybean nutritional value by
hindering nutrient digestion and absorption?®, thereby affecting human and animal growth’. The most important
ANFs in legumes include phytate, proteinase inhibitors, tannins, saponins, oligosaccharides, and antigenic
factors like oxalate. Among these, proteinase inhibitors (trypsin inhibitors), metal chelates (such as phytate),
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oligosaccharides, and antigenic factors are typically the most abundant in soybean seeds’. Apart from the negative
effect of ANFs, it has been reported reduction of nutrient intake and absorption may prevent development of
certain diseases. For instance, chelating important cations for glucose transporters such Ca?* jons, a co-factor of
a-amylase, phytate (IP6) reduces the rate of starch digestion in humans and animals, preventing diabetes!'® and
cancer!!. The IP6 can also bind directly to starch or to proteins reducing its digestibility, bioavailability, and affect
glycemic index value!. On the other hand, trypsin or chymotrypsin-inhibitors complexes with enzyme’s active
site inhibiting their catalytic activity’, thus, preventing protein breakdown. The protease inhibitors reduce the
function of all four classes of proteolytic enzymes, including, serine, cysteine, aspartyl, and metalloproteinases
in the gastrointestinal tract of animals'?, affecting growth and triggering pancreas hypertrophy!®. A study
on gene regulatory network aiming to develop low and normal phytate soybean seeds revealed differentially
expressed genes in the phytate biosynthetic pathways including Glyma.11G238800'15, Glyma.01G016700,
Glyma.09G206100, Glyma.11G218500, Glyma.18G038800, Glyma.11G218500, Glyma.18G03880015. One QTL
with a peak close to Gm08_44814503 in chromosome 8 was identified using IciMapping analysis. A QTL located
between single nucleotide polymorphisms (SNPs) Gm08_44814503 and Gm08_45270892 was reported to confer
low Kunitz trypsin inhibitor (KTI) concentration in soybean?®.

Several processing methods have been employed to reduce or eliminate ANFs in crops due to their negative
impact on animal nutrition. Among the methods, physical, chemical and enzymatic have largely been applied
in soybean. Physical and chemical techniques include soaking, cooking, autoclaving, microwave cooking,
extrusion, germination, irradiation'’, debranning'® and dehulling'®, roasting, sprouting!®, whereas enzymatic
methods involve fermentation and acetic acid—catalyzed processing!®. These techniques may be used singly or
in combination. Microwaving stands out as a quick, reliable, safe, effective, and environmentally friendly method
of lowering ANFs. However, the intensity and length of microwave processing have a considerable impact on
ANFs inactivation, and their use needs to be carefully considered!”. Additionally, though these techniques have
proved useful for long, they are costly, time-consuming®, and some may require technical expertise or generate
waste during processing!’. To overcome these limitations, different breeding strategies are employed to develop
soybean cultivars with low anti-nutritional content, including backcrossing?!, mutation breeding??, molecular
markers?, and genome editing??.

Traditional breeding systemsare often time-consuming, lacks specificity, and ultimately delays variety release?.
To accelerate genetic gains, a paradigm shift in breeding strategies was necessary. Over the years, morphological
and biochemical markers have been widely employed to select genotypes based on traits including yield and
quality traits?*~2°. Despite their utility, these markers often show instability due to environmental influences?®. As
a result, molecular markers have opened new avenues for more effective genotype selection. Molecular markers
serve as powerful tools for tracking and manipulating genes in both plant and animal breeding>**!. More recently,
marker-assisted selection (MAS) has gained prominence in soybean improvement programs, offering faster and
more precise means of incorporating desirable traits. MAS has been successfully used to develop plants resistant
to soybean cyst nematode??, transfer disease resistance alleles among individuals, and pyramiding resistance
alleles®. Additionally, MAS has proven useful in the genetic elimination of the Kunitz trypsin inhibitors (KTI)
and lectin in soybean seeds®*. Globally, MAS has been employed in soybean breeding for traits such as sucrose
content>?, salt tolerance, insect resistance, agronomic characteristics¢, and pod shattering resistance®’. Recent
advances in gene editing have enabled the development of mutant alleles and molecular markers for KTII and
KTI3 through CRISPR/Cas9-mediated mutagenesis, effectively reducing trypsin inhibitor content and activity
in soybean seeds, with no observable difference regarding plant growth or maturity days of kti1/3 transgenic and
wild type plants®®. Marker efficiency of discovering marker-trait associations has progressively improved from
restriction fragment-length polymorphism (RFLP) to single-sequence repeat (SSR)*!. SSR markers are relatively
recent and they have been use to explore genetic diversity in soybean®*-%’, and genotyping of Chinese cabbage
varieties'>*. Though SSRs have contributed to progress in trait diversity and mapping studies, they are regarded
to be numerous and polymorphic’. Therefore, high-throughput SNP marker genotyping technologies are being
extensively adopted to provide genome-wide markers that increase the precision of mapping quantitative
trait loci (QTL)*. Genome-wide association study (GWAS) has emerged as powerful tool for understanding
the genetic basis of phenotypic variance and architecture in crops owing to its capability on the remarkable
allele diversity present in natural populations and their historical recombination events. Historically recorded
recombination events and rich allele diversity allow for better mapping resolution and causal gene discovery
compared to genetic linkage mapping which relies on recent and artificial population with narrow gene pool
and low recombination rate*!. Single nucleotide polymorphism-based genome association study has helped to
identify QTLs and genes linked to disease resistance?>*? in Ugandan soybean accessions. However, no GWAS
have been conducted to identify SNP markers linked to anti-nutritional factors (ANFs), despite their negative
effect on soybean nutritional quality and contribution to high production costs of soybean meal. Against this
background, the study aimed to understand the genetic architecture underlying ANF accumulation in 308
soybean accessions. Addressing this gap is crucial for developing molecular markers to support breeding
programs for low-ANF soybean, thereby improving nutritional value and reducing processing costs for food
and feed.

Results

Variability of phytate and total trypsin inhibitors

There was significant variation regarding phytate and total trypsin inhibitors content among the genotypes
(p<0.001). Mean phytate content was 1756.9 mg/kg [min. 14.8 mg/kg (BSPS 48A-6-3) and max. 6928.8 mg/kg
(NGDT 2.15-7)]. For total trypsin inhibitors (TTI) was 850.3 mg/kg [min. 10.9 (DN 16_N); max. 1538.5 mg/kg
(Duiker)] (Table 1). The observed variation in the genotypes reflect the broad genetic variability of the evaluated
population and suggest a genetic control of anti-nutritional factors.
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Trait | Min (mg/kg) | Max (mg/kg) | Mean |H? |SD | CV (%)
Phytate | 14.8 6928.8 17569 | 0.68 | 11.7 | 0.68
TTI 14.7 1538.5 850.3 10.84 | 54 [0.34

Table 1. Summary statistics for phytate and total trypsin inhibitors. H2, broad sense heritability; SD, standard
deviation; CV, coefficient of variation; Min, minimum; Max, maximum; TTI, total trypsin inhibitors.

Fig. 1. (a): Number of SNPs per soybean chromosome. Chromosome 12 and 18 harbor the lowest and highest
number of SNPs, respectively. Panel (b) shows the SNP density across soybean genome, where the vertical

axis displays the chromosome number, horizontal axis displays chromosome length (1 Mb window), and the
various colors represent SNP density or total number of SNPs per window. Chromosomes with high SNP
density—such as Chr7, Chr9, Chrl6, and Chr18—highlight regions of high genetic variation. These SNP-rich
zones (in red) are useful for association mapping, diversity studies, and marker development. Conversely,
SNP-poor chromosomes, including Chr2, Chr3, and Chr4, as well as relatively low-density regions on Chrl,
Chr10, and Chrl1 (green zones), suggest more conserved genomic segments. These regions may reflect low
recombination or evolutionary conservation.
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Marker distribution across chromosomes

The initial marker size was 17,300 SNPs. Upon SNP duplicates removal and filtering, 11,804 quality SNPs (68.2%)
were retained for further analysis. SNPs were distributed fairly evenly along the 20 soybean chromosomes with
chromosome 18 having the highest number of markers (824 SNPs) and 12, the lowest (422 SNPs). SNP markers
across 20 chromosomes showed variable spacing, with average inter-marker distances ranging from~40 kb
(chromosome 16) to ~ 81 kb (chromosome 1). Maximum distances between adjacent SNPs ranged from ~ 951 kb
to~2.67 Mb. Chromosomes with greater number of SNPs, such as chromosomes 6, 8, 9, 13, and 18 in soybean,
often reflect regions of higher historical recombination or genetic diversity. These regions are beneficial for GWAS
as denser SNP coverage improves the ability to detect and fine-map trait-associated loci. In contrast, relatively
SNP-poor regions (chromosomes 1, 5, 10, 11, 12, 17, 19 and 20) are often less informative for association studies,
though can be biologically important due to their conserved nature (Fig. 1).

Linkage disequilibrium, principal component analysis (PCA) and population statistics

Pairwise correlation estimates between filtered SNPs were performed to assess the rate of linkage disequilibrium
(LD) decay. Average LD peaked at r?=0.2 and then decayed gradually below r?=0.1 at a genetic distance of 50-
kb (Fig. 2 a and b), suggesting moderate recombination and genetic diversity in Ugandan germplasm, or the
genotypes may have shared common ancestry at some point in time.

The first two principal components (PC1 +PC2) cumulatively explain approximately 15% variation in the
population, whereas the first 10 PCs explained up to 31.71% total variation (Fig. 3a). Hierarchical clustering
analysis grouped the genotypes into four clusters, reflecting underlying genetic diversity within the soybean
germplasm. Cluster 1 comprised 77 genotypes, cluster 2 had the highest representation with 107 genotypes,
cluster 3 included 93 genotypes, and cluster 4 contained 31 genotypes. Genotype clusters show distinct
geographic compositions. Cluster 1, is the smallest group with 77 genotypes, dominated by genotypes from the
USA, accounting for 97.4%, with only one genotype each from Nigeria and Uganda. Cluster 2, the largest with
107 genotypes, is more diverse, including 33.6% from Uganda, 23.4% from Taiwan, 14% from Japan, 13.1%
from Nigeria, 11.2% from Zimbabwe, and a small proportion (4.7%) from the USA. Cluster 3 consists mostly
of Ugandan genotypes (90.3%), alongside small contributions from Nigeria, Japan, and Zimbabwe. Finally,
cluster 4, with 31 genotypes, is primarily Ugandan (58.1%), followed by Nigerian genotypes at 25.8%, and
minor representation from Japan and Taiwan (Fig. 3b). The population distribution reflects the genetic diversity
and potential regional structuring within the germplasm, with some clusters dominated by specific sources,
while others show more admixed origins, highlighting important considerations for breeding and conservation
strategies.
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Fig. 2. (a)- Average linkage disequilibrium rate. The x-axis shows the distance (kilo base pairs) between
SNPs, and the y-axis, the LD value (r%). Panel (b) represents an amplified region from the averaged linkage
disequilibrium (a) of ~ 1500 kb. LD decay is shown at around 50-kb at r>=0.2 and the LD becomes obsolete at
around 100-kb.
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Fig. 3. Principal component analysis (PCA) showing trends of population distribution (a) and phylogenetic
tree (b). The quadrants show a trend of stratification among the genotypes. Numbers 1, 2, 3 and 4 represent
four distinct clusters in the population.

The means for genetic diversity (GD), polymorphism information content (PIC), minor allele frequency
(MAF), observed heterozygosity (Ho) and inbreeding coefficient (F) were 0.3, 0.25, 0.21 and 0.18, respectively
(Table 2). The Ugandan soybean population shows moderate genetic diversity, favorable for breeding and
association studies. Moderate PIC and MAF values indicate that the markers are informative. The low observed
heterozygosity (Ho) and positive inbreeding coeflicient (F) are consistent with soybean’s self-pollinating nature.

Marker-trait association

Manhattan plots show the significant SNPs associated with phytate and total trypsin inhibitors. The QQ plots
reveal a good control of population parameters, and thus, minimum false positive and negative associations.
SNPs above the threshold deviate significantly from the diagonal indicating true associations with the evaluated
traits (Fig. 4a-d). Based on the FarmCPU model, phytate accumulation was found to be associated with
SNPs located on chromosomes 3 (pos 218,818 bp), 4 (pos 45,462,019 bp), 13 (pos 23,167,455 bp, and 20 (pos
35,904,989 bp) (Fig. 4a). The CMLM model revealed SNPs significantly associated with total trypsin inhibitors
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Pop stat® | Mean | Lower | Upper
GD® 0.3 0.09 | 0.5
PIC® 0.25 0.09 |0.38
MAF 0.21 0.05 | 0.5
Ho® 0.18 0.06 |0.87
Ff 0.4 -1.88 |0.79

Table 2. Summary of population statistics showing the means, lower and upper values. *Population statistics,
bGenetic diversity; “Polymorphism information content; {Minor allele frequency; observed heterozygosity; f
inbreeding coefficient.
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Fig. 4. Manhattan and QQ plots for phytate and total trypsin inhibitors. Significant SNPs have hit the
threshold and respective QQ-plot depicts the distribution of observed versus expected p-values and the genetic
associations (a—d). Among the models tested in GAPIT, FarmCPU and CMLM were the most effective in
detecting significant SNP markers for phytate and TTI, respectively. No common markers were identified
between GAPIT models. To assess marker detection power and consistency, six mrMLM methods were also
applied to the same dataset. From an inter-model perspective, in general, no overlapping SNPs were detected
between GAPIT and mrMLM outputs. However, an intra-model comparison revealed that two SNPs were
consistently identified by multiple mrMLM methods (SNPs Soy_14_48672982 and Soy_16_26978144 for
phytate; and Soy_13_14029215 and Soy_18_4301721 for T'TT) suggesting a higher detection consistency and
potential sensitivity of mrMLM methods in capturing trait-associated loci compared to the GAPIT models.

on chromosomes 6 (pos 5,695,090 bp), 12 (pos 41,339,023 bp), and 14 (pos 43,649,238 bp) (Fig. 4c). The SNP
marker validation performed using mrMLM confirmed hit for phytate on chromosome 3 (pos 241,209 bp)
(Fig. 4b). SNP markers located on chromosomes 14 and 16 were detected by at least two methods including
mrMLM and FASTmrMLM for phytate. For total trypsin inhibitors, the mrMLM and FASTmrEMMA methods
detected SNPs on chromosome 13; mrMLM, pLARmEB and ISIS EM-BLASSO, on chromosome 18 (Fig. 4d).
Markers detected by at least two methods were ranked as significantly associated with the trait. Therefore,
markers such as Soy_14_48672982 (methods 1 and 2), Soy_16_26978144 (methods 1 and 2), Soy_13_14029215
(methods 1 and 3) and Soy_18_4301721 (methods 1, 4, and 6) were considered most significant and used for
gene annotation (Table 3).

Allelic effects of significant SNP markers on phytate and TTI expression

Contribution of phenotypic variation explained by significant SNP markers is illustrated in Figs. 5a—c and 6a-d.
Marker-trait association analysis revealed that the expression of phytate and TTI is genotype-dependent. For
phytate, SNP Soy_14 46872882 showed significant differences among genotypes (F(2, 283) =16.72, p<0.0001,
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Phytate Content

Trait ‘ Method SNP ID?* ‘ Chr? ‘ Position (bp) ‘ Alleles | p-value ‘ Effect ‘ PVE (%)¢
Genome association and prediction integrated tool (GAPIT)
Soy_3_218818 3 218,818 C/A 4.56E-08 | —5.53556 | 11.3461
Soy_4_45462019 |4 45,462,019 G/T 9.77E-08 | —3.755 24.9232

Phytate | FarmCPU

Soy_13_23167455 | 13 23,167,455 C/A 2.61E-08 | -3.97445 | 9.0706

Soy_20_35904989 | 20 35,904,989 C/A 1.40E-06 | 3.01311 0

Soy_6_5695090 6 5,695,090 C/T 1.14E-21 | 3.74803 1.3583

TTH CMLM Soy_12_41339023 | 12 41,339,023 G/A 9.58E-25 | 3.84849 7.1343

Soy_14_43649238 | 14 43,649,238 A/G 1.56E-20 | 3.30279 |0

Genome association and prediction integrated tool (GAPIT)

mrMLM, FASTmrMLM Soy_14_48672982 | 14 48,672,982 G/A 4.0345 —2.4226 | 5.7881
mrMLM Soy_15_21856770 | 15 21,856,770 T/A 7.3747 —3.5413 | 7.9818
Phytate mrMLM, FASTmrMLM Soy_16_26978144 | 16 26,978,144 T/C 3.9594 3.1498 5.4889
FASTmrMLM Soy_3_241209 3 241,209 T/C 5.6341 -1.9019 | 3.8632
mrMLM, FASTmrEMMA Soy_13_14029215 | 13 14,029,215 C/T 4.4703 -1.1927 | 5.0811
mrMLM, pLARmEB, ISIS EM-BLASSO | Soy_18_4301721 |18 4,301,721 A/G 5.6126 2.5593 7.2634
TTI FASTmrEMMA Soy_9_4284965 9 4,284,965 C/T 4.249 1.8677 2.706
pLARmMEB Soy_17_38803367 | 17 38,803,367 C/A 3.8335 -0.7015 | 1.6504
pLARmEB Soy_4_50691237 |4 50,691,237 AA 4.0484 -0.9902 | 5.0311

Table 3. Significant SNPs identified for phytate and total trypsin inhibitors. #*Significant SNPs identified

for phytate and total trypsin inhibitors; P\Chromosome; “Phenotypic variation explained; ¢ total trypsin
inhibitors. Lower explained variation indicates that the SNPs play no significant role in determining the

target trait. Negative SNP effects are more promising, as they suggest alleles associated with reduced ANF
content. Based on GAPIT tool, SNPs with effects —5.54 (Soy_3_218818), —3.76 (Soy_4_45462019), and —3.97
(Soy_13_23167455) for phytate and 3.30 (Soy_14_43649238) for TTI are particularly favorable. Similarly,

for mrMLM results, SNPs with effects of —3.54 (Soy_15_21856770), —2.42 (Soy_14_48672982), and — 1.90
(Soy_3_241209) for phytate and —0.7015 (Soy_17_38803367), —0.9902 (Soy_4_50691237) stand out. These
SNPs are ideal targets for marker-assisted selection in breeding programs.

Anova, F(2,296) =6.74, p = 0.001 |1§;004 b Anova, F(2,304) =313, p = 0.045, niAOO? Cc Anova, F(2,302)=4.23,p =0015 |1§7003
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Fig. 5. Allelic effects on SNPs for phytate and TTI accumulation. Marker effect evaluated based on the
genotypes of each marker exhibiting significant p-values, as identified through GAPIT models are presented in

the boxplot “a” for phytate, “b” and “c” for TTT traits.

n2=0.11), with GA genotypes exhibiting the highest levels and GG, lowest. SNP Soy_16_26978144 also showed a
significant effect (F(2, 293) =8.27, p=0.00032, n2=0.05), where TT genotypes controlling higher phytate content
than CC. Additionally, Soy_4_45462019 was significant (F(2, 296) =6.74, p=0.001, n>=0.04), with TC and TT
genotypes exhibiting higher phytate control than CC.
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Anova, F(2,283) = 16.72, p = <0.0001, 1, = 0.1 Anova, F(2,293) = 8.27, p = 0.00032, n, = 0.05
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Fig. 6. Allelic effects on SNPs for phytate and TTI accumulation for each marker exhibiting significant p-

values, as identified by mrMLM methods are presented in boxplots “a” and “b” for phytate, whereas “c” and
“d” for TTI traits.

Another significant marker, Soy_14_43649238, showed a moderate genotype effect (F(2, 302) =4.23, p=0.015,
n2=0.03), where GG genotypes were associated with increased phytate compared to AA. Soy_12_41339023 also
reached significance (F(2, 304) =0.045, p=0.045, n2=0.02), with TC and TT genotypes having slightly higher
phytate control than CC, suggesting a subtle allelic effect.

For TTI, SNP Soy_13_14025215 showed higher expression in CT genotypes compared to TT (F(2,282) =6.14,
p=0.002, r]2 =0.04), and Soy_18_4301721 revealed increased TTI in GG over AA genotypes (F(2, 263)=10.31,
P<0.0001, n2=0.07). These findings confirm that allelic variation at specific SNP loci significantly influences
phytate and TTI content in soybean.

Candidate genes identification

To investigate the genetic basis of phytate and trypsin inhibitors accumulation, significant SNP markers were
identified through GWAS. Gene mining within the 100-kb genomic window revealed genes potentially linked to
the targeted traits. The gene functions are classified into major categories including plant defense, gene regulation,
substrate-substrate interactions. Glyma.03G001600 is potential candidate gene for SNP Soy_3_218818. The
gene Glyma.03G001600 codes for acid phosphatases, which in gene ontology (GO) is categorized as molecular
function. This class of enzyme is involved in several enzymatic activities transferring phosphate between groups.
Phosphate groups can be attached to inositol forming phytate (myo-inositol hexakisphosphate or inositol
hexaphosphate (IP6)). Phytate (IP6) can act as a precursor in the biosynthetic pathway of diphosphoinositol
polyphosphates, a reaction controlled by the gene Glyma.14G213400 (GO: molecular function) which is linked
to Soy_14_48672982. Diphosphoinositol is a precursor for phytate biosynthesis. The phytate six-carbon ring
substrate can be supplied by hydrolysis of sugars mediated by glycosyl hydrolases family 38 C encoded by the
gene Glyma.16G126400 (GO: molecular function) linked to the SNP Soy_16_26978144. SNP Soy_4_45462019 is
linked to the gene Glyma.04G194600 coding for metallo-beta-lactamase superfamily (GO: molecular function)
involved in hydrolysis of beta-lactam antibiotics. Both phytate and beta-lactamases play a role in plant health.
On the other hand, gene Glyma.18G050400 (GO: molecular function) linked to Soy_18_430172, codes for cation
efflux proteins, which are found to increase tolerance to divalent metal ions such as cadmium, zinc, and cobalt.
The gene Glyma.13G128200 linked to Soy_13_23167455, codes for protein phosphorylation enzyme family (GO:
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biological process) involved in substrate phosphorylation. In such reactions, phytate can act as phosphorus donor,
implying a switch of protein function. SNP Soy_20_35904989 is linked to the gene Glyma.20G118700 coding
for glycerophosphodiester phosphodiesterase (GO: molecular function). These enzymes catalyze the hydrolysis
of glycerophosphodiesters to produce free alcohol and glycerol 3-phosphate. Depending on the cellular state,
glycerol 3-phosphate can be directed to inositol biosynthetic pathway. Trypsin inhibitors are proteins by nature.
Gene Glyma.06G074700 (GO: molecular function) linked to Soy_6_5695090 codes for serine protease inhibitor
domain. The domain inhibits serine proteases activity by slicing peptide bonds in proteins. Translation initiation
factor 2D (EIF2D) is encoded by the gene Glyma.12G241600 (GO: molecular function) linked to the SNP
Soy_12_41339023. The EIF2D is involved in the recruitment and delivery of aminoacyl-tRNAs to the P-site
of the eukaryotic ribosome in a GTP-independent manner. Gene Glyma.14G176700 (GO: molecular function)
linked to Soy_14_43649238 codes for protein kinase domain. The domain contains the catalytic function
of protein kinases involved in phosphorylation reactions. Phosphorylation plays a crucial role in regulating
transcription, cell cycle progression, and apoptosis. Another transcription factor (TFs), K-box region encoded
by Glyma.13G052700 gene (GO: molecular function) linked to the SNP Soy_13_14029215, is a key component
of gene regulation through protein-protein interactions. TFs control gene expression related to developmental
processes, and the gene Glyma.13G052700 is expressed in seeds during seeds development (Table 4).

Discussion

Anti-nutritional factors (ANFs) play crucial roles in plant defense’. These biologically active compounds are
distributed across plant organs including grains, and nuts, leaves, roots, and fruits”®. However, ANFs may have
either positive or negative effect in monogastric animals including humans®*#! depending on their concentrations
in food. ANFs negatively affect nutrient digestibility and absorption by binding to proteins, carbohydrates, lipids
and minerals. This study aimed to unveil the genetic basis of two ANFs including phytate and trypsin inhibitors
in Ugandan soybean accessions. The observed variability (p <0.001) in ANFs content among the genotypes can
be attributed to differences in their genetic background and geographical origin, providing a broad genetic
diversity, ideal for selection in breeding programs. Similar studies have reported differences in ANFs in self-
pollinated plants at F, ;, commercial germplasm, and food-grade soybean lines”®2.

Higher recombination events were detected on chromosome 18, whereas chromosome 12 exhibited greater
conservativeness. A study carried out to reveal the genetic basis for resistance to Coniothyrium glycines in the
same population (~ 10% difference in size) reported similar recombination patterns*?. Genetic regions with high
recombination rates offer potential opportunity for studies to disclose more biological functions associated with
the region. High rates of recombination break down linkage disequilibrium (LD). Thus, genetic architecture of
complex traits are better investigated using LD analysis®. In this study, LD decay rate was estimated at r>=0.10
for a genetic distance of 50-kb. For self-pollinated crops including soybean the LD decay rate is generally low at
around r2=0.1034. However, LD decay at r>=0.2 within approximately 200-kb has also been reported®. The low
LD in this study indicate a weak association between the markers, implying high recombination rate leading to
independent segregation of alleles. This recombination rate may explain the separation of the population into
distinct groups in the phylogenetic tree, which can be beneficial for breeding purposes.

Molecular markers are more powerful tools for assessing genetic diversity (GD) compared to phenotypic
markers. The genetic diversity value of 0.3 and a polymorphism information content (PIC) value of 0.25 suggest
moderate genetic variability and marker informativeness in the population. Similar GD and PIC values of 0.34
and 0.27, respectively, has been reported in soybean cultivars and advanced breeding lines from the U.S. and
China®. Conversely, a slightly lower PIC of 0.22 was reported in a study using Korea, Japan, China, and the
U.S populations®’, whereas, studies in soybean novel germplasm, advanced lines and cultivars released for
commercial cultivation in Sub-Saharan Africa detected higher PIC=0.38", GD of 0.70 and PIC of 0.71%. These
differences may be explained by the population size and background, continuous selection for specific trait
in breeding programs, along with the number and diversity index of markers, and geographic dispersion of
accessions®’.

The smaller minor allele frequency (MAF) captured in this study suggest that most of the loci are nearly fixed,
different from the higher MAF (MAF=0.29) reported in the same population (with smaller size)*?.

Unlike in this study, quantitative trait loci (QTL) for Kunitz trypsin inhibitor (KTI) have been reported on
chromosome 8%, whereas SNP markers for phytate was identified on chromosomes 1,9, 11, and 18 in soybeanlS.
These discrepancies in SNP markers detection can be attributed to differences in phenotyping, population type
and association tools.

Gene mining within the 100-kb range revealed 45 genes potentially linked to the targeted traits. The
genes are associated with plant defense, gene regulation, and substrate-substrate interactions. For instance,
phytate is linked to biosynthesis of abscisic acid (ABA) and gibberellins, two phytohormones involved in seed
germinationsg. Resistance to disease has been associated with chromosome 132 resistance to abiotic stress
to chromosome 1°°. Genes on chromosome 19 has been associated with gene regulation*?, and PHD finger
transcription factors were reported to be located on chromosome 12°!. Transcription factors regulate gene
expression during protein biosynthesis. Trypsin inhibitors, which are proteins by nature, play a critical role
in plant defense and overall metabolism. Post-translational regulation can occur through phosphorylation or
dephosphorylation of enzymes. The gene Glyma.03G001600 encodes acid phosphatases involved in breaking
down adenosine triphosphate (ATP) to release phosphate groups as sub-product***>. Phosphate kinases
(encoded by Glyma.14G214700) can be involved in phytate biosynthesis by incorporating phosphate groups into
inositol in the 1L-myo-inositol-1,2,3,4,5,6-hexakis (dihydrogen phosphate)®?, whereas the Glyma.16G126400,
a glycosyl hydrolases gene, supply sugar backbone for inositol biosynthesis. These metabolic pathways are
interconnected and together contribute to phytate biosynthesis in plants. On the other hand, metallo-beta-
lactamase superfamily encoded by the gene Glyma.04G194600* is involved in plant immunological responses,
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Trait Method ‘ SNP ID ‘ Chr ‘ Pos (Mb) | Gene ID Functional annotation ‘ PFAM ‘ Reference
Genome association and prediction integrated tool (GAPIT)
Gmo03 Glyma.03G001600 | Acid phosphatases PF03767 | 4445
Gm03 Glyma.03G009000 | Phosphatidylinositol N-Acetylglucosaminyltransferase | PF12552 | 4
Soy_3_218818 Gm03 | 218,818 Glyma.03G010200 | Plant phosphoribosyltransferase C-terminal (PRT_C) | PF08372 | *°
Gmo03 Glyma.03G002200 | Protein kinases PF00069 | 47
Gmo03 Glyma.03G002000 | O-Glycosyl hydrolases PF16499 | 4
GmO04 Glyma.04G194600 | Metallo-beta-lactamase superfamily PF00753 | %
Gmo04 Glyma.04G195633 | Lycopene epsilon-cyclase PF05834 | *°
GmO04 Glyma.04G206100 | Phosphatidylinositol 4-phosphate 5-kinase 1-related PF01504 | °!
Soy_4_45462019 | Gmo04 | 45,462,019 | Glyma.04G203600 | Protein Suppressor of Gene Silencing 3 (SGS3) PF03468 | *2
Phytate | FarmCPU Gm4 Glyma.04G205200 | Defensin-like protein 6 (DEFL6) PF00304 | 535
Gm4 Glyma.04G196900 | F-box domain PF00646 | >
Gm4 Glyma.04G194600 | Beta-lactamase PF00753 | %
Gml3 Glyma.13G128200 | Protein phosphorylation PF07714 | °¢
Soy_13_23167455 Gml3 23.167.455 Glyma.13G127800 | Tetratricopeptide repeat PF07719 f7
Gm13 Glyma.13G132400 | Inorganic pyrophosphatase PF00719 | 8
Gml3 Glyma.13G132700 | Phosphatidylinositol-bisphosphatase PF03372 | 4
Glyma.20G118700 | Glycerophosphodiester phosphodiesterase PF00069 | >
Soy_20_35904989 | Gm20 | 35,904,989 | Glyma.20G118000 | Metallo-beta-lactamases PF00753 | ¥
Glyma.20G119100 | Protein phosphatase 2C 5-related PF00481 | 47
Glyma.06G074700 | Serine protease inhibitor domain PF00067 | °%€0
Glyma.06G074300 gsrrrlli;izr/lBovine pancreatic trypsin inhibitor (BPTI) PE13639 | 5
Soy_6.5695090 | Gm06 | 5,695,090 Glyma.06G077400 | WRKY transcription factor 11-related PF10533 | ¢!
Glyma.06G078100 | Thioredoxin isoform B-related PF07649 | ¢
Glyma.06G074300 | Ring-Type Zinc finger PF00010 | %
TTI CMIM Glyma.12G241600 | Translation initiation factor 2D PF01253 | ¢
Soy_12_41339023 | Gm12 | 41,339,023 | Glyma.12G241600 | Translation initiation factor SUT1 PF01253 | ¢
Glyma.12G240800 | Ring finger domain PF13920 | 6566
Glyma.14G176700 | Protein kinase domain PF00069 | ¥
Soy_14_43649238 | Gm14 | 43,649,238 | Glyma.14G178200 | Ring finger domain PF13639 | %
Glyma.14G185100 | Helix-loop-helix DNA-binding domain PF00010 | ¢
Multi-locus random-SNP-effect mixed linear model (mrMLM)
Glyma.14G213400 | Diphosphoinositol Polyphosphate Phosphohydrolase | PF00293 | 5667
gé\{lfl;nhfli/ILM Soy_14_48672982 | Gm14 | 48,672,982 | Glyma.14G214700 | Protein kinase domain PF00069 | 8
Phytate Glyma.14G224300 | Cyclin, N-terminal domain PF00134 | 689
Glyma.16G126400 | Glycosyl hydrolases family 38 C-terminal domains PF07748 | 7°
IF]Xé\AT%ﬂI\fMLM S0y-16_26978144 | Gml16 | 26,978,144 Gl;mu.166128300 TSYL-KiYnas}; interacting p::)tein 1 PF00249 | 7!
Glyma.13G052700 | K-box region PF01486 | ¢
Glyma.13G053600 | Protein tyrosine kinase (Pkinase_Tyr) PF07714 | 72
g/l-\ré\{[['%nl\fﬁMMA Soy_13_14029215 | Gm13 | 14,029,215 | Glyma.13G053733 | U-Box domain-containing protein 50-related NA
Glyma.13G055200 | Eukaryotic translation initiation factor 3 subunit M PF01399 | 73
- Glyma.13G055400 | protein SPIRALI and related proteins (SPR1) NA
Glyma.18G050400 | Cation efflux family PF01545 | 7
Glyma.18G051500 | AP2 domain (transcription factors) PF00847 | 7°
;‘S‘QAELI\IXI_’];’LL:S}%EB’ Soy_18 4301721 | Gm18 | 4,301,721 | Glyma.18G051600 | KIP1-like protein PF07765 | 76
Glyma.18G050300 | Homodimerization region of STAR domain protein PF16544 |77
Glyma.18G050600 | Ribosomal protein L16p/L10e PF00252 | 78

Table 4. Gene annotation for the significant SNPs linked to phytate, trypsin inhibitors in the soybean.
Candidate genes along with their functions are detailed below. #SNP ID, single nucleotide polymorphism
identifier; Chr, chromosome; Pos, position in megabytes; Gene ID, gene identifier; PFAM, protein families.

suggesting its connection with phytate role. Protein kinases encoded by Glyma.13G128200 gene are alternatively
involved in phytate biosynthetic, whereas Glyma.20G118700 encodes glycerophosphodiester phosphodiesterase
involved in glycerol esters hydrolysis®. This pathway provides glycerol to the inositol biosynthesis®?. Protein
kinase domain encoded by Glyma.14G176700 plays a pivotal role in cellular regulation of phosphorus?’. Thus,

Scientific Reports |

(2025) 15:42787

| https://doi.org/10.1038/541598-025-27132-4 natureportfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

the interplay between phosphorylation and dephosphorylation determine the levels of phytate or inositol
available in plants cells.

Protein inhibitors are classes of serine proteases encoded by the gene Glyma.06G074700. Protein biosynthesis
can be regulated by K-box domain, encoded by Glyma.13G052700 or translation initiation factor 2D encoded by
Glyma.12G241600%. These domains ensure accurate tRNA placement during translation or post-translational
modifications. Cation efflux family encoded by Glyma.18G050400 export or redistribute positively charged ions
across the cell membrane determining protein biosynthesis efficiency. Protease inhibitors block digestive enzyme
activity by competing with substrates for the active site. This enzyme-inhibitor complex affects the ability of
animals to break down ingested proteins. Undigested proteins are unable to be absorbed by the intestinal tract,
thereby affecting animal growth.

Among the GAPIT models tested, FarmCPU% and CMLM** were most effective for detecting significant
SNPs. The power of FarmCPU has previously been reported in a study comparing multiple GWAS models in
soybean and maize. FarmCPU performed better than single-locus models by reducing false positives and false
negatives”. The mrMLM methods showed higher detection consistency and potential sensitivity in capturing
trait-associated loci compared to the GAPIT models. The potential of mrMLM methods was also reported
applying 3VmrMLM (Three Variance components multi-locus random-SNP-effect Mixed Linear Model) aiming
to dissect the genetic mechanism in rice®.

To support these findings for MAS, further studies with larger populations across environments are needed
to fully validate the discovered SNP markers. Following proteomic studies to validate the marker expression, the
annotated genes can be used for achieving faster genetic progress for low anti-nutritional.

Conclusion

This study identified SNPs and candidate genes linked to phytate and total trypsin inhibitors (TTI) in soybean.
Potential marker for low phytate content, include Soy_14_46872882, where the GG genotype consistently
exhibited the lowest phytate levels. Likewise, Soy_16_26978144 and Soy_4_45462019 were associated with lower
phytate accumulation in genotypes carrying the CC allele. Although Soy_12_41339023 showed a marginal effect,
the CC genotype still demonstrated comparatively reduced phytate levels, and may offer value when combined
with other markers in a selection strategy. For TTI, Soy_13_14025215 was linked to lower TTI levels in TT
genotypes, while Soy_18_4301721 showed AA genotype as favorable effect in reducing TTI. Another promising
marker, Soy_14_43649238, showed genotype-specific influence, with one genotype group presenting lower TTI
levels. The identified markers and genotypes can be useful for marker-assisted selection (MAS) in breeding
programs aiming to develop soybean varieties with reduced anti-nutritional content. However, validation
across larger populations and environments, combined with proteomic studies, are essential to confirm marker
effectiveness. By enhancing our understanding of the genetic basis of ANFs, this research paves the way for
the development of nutritionally superior soybean cultivars that contribute to sustainable agriculture and food
security.

Methods

Plant materials

A set of 308 soybean germplasm was obtained from the Makerere University Centre for Soybean Improvement
and Development (MAKCSID) program. The collection is composed of lines sourced from Uganda (136), the
United States (80), Taiwan (27), Japan (19), Zimbabwe (13), and Nigeria (33). To standardize the conditions and
ensure consistent seed multiplication in this exploratory assay, genotypes were planted in 2023B at Makerere
University Agricultural Research Institute Kabanyolo (MUARIK). Kabanyolo is geographically located in the
Central Region of Uganda at the coordinates 0° 28’ N, 32° 36’ E, altitude of 1180 m above sea level. The mean
annual temperature is 21.4 °C, and the mean annual rainfall is 1234 mm®”.The experiment was laid out in an
augmented design with 31 blocks, each containing 10 plots consisting of three rows. Surfaces of young and
apparently healthy leaves were cleaned with 70% ethanol and eight leaf discs obtained using a punch gun.
Samples were incubated under 37 °C until they were sent to SEQART AFRICA located at International Livestock
Research Institute in Nairobi for genotyping.

DNA extraction and diversity arrays technology “genotyping-by-sequencing” (DArTseq)

DNA extraction was performed using Nucleomag plant Kit, with concentrations of genomic DNA in the range
of 50-100 ng/pl. DNA quality and quantity were checked on 0.8% gel agarose®®. The DArTSeq complexity
reduction method was used through the digestion of genomic DNA using a combination of PstI and Msel
enzymes and ligation of barcoded adapters and common adapter followed by PCR amplification of adapter-
ligated fragments®. Libraries were constructed through Single Read sequencing runs for 77 bases. Next-
generation sequencing was carried out using Illumina the HiSeq 2500 platform (Illumina, Inc., Model HiSeq
2500, Rapid Run Mode). Genome profiling was conducted by Genotyping by Sequencing (GBS) DArTseq™
technology (Canberra, ACT, Australia). DArTseq markers scoring was achieved using DArTsoft14 which is an
in-house marker scoring pipeline based on algorithms. Two types of DArTseq markers were scored, SilicoDArT
markers and SNP markers which were both scored as binary 1 for presence and 0 absence of the restriction
fragment with the marker sequence in the genomic representation of the sample. Both SilicoDArT markers and
SNP markers were aligned to soybean- Wm82-al-v4 reference genome to identify chromosome positions®~10!,

Biochemical analysis
Soybean seeds were ground using a food processor grinder (FOSS, Brook Crompton Laboratory mill, type
2-TDABO03], England, 2014) at the Nutritional and Biochemical Laboratory of the National Crops Resources
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Research Institute (NaCRRI) in Uganda. The fine ground samples were further used to determine phytate and
total trypsin inhibitors content.

Phytate phenotyping

Phytate extraction followed an acidic method as described by Israel'?2, with slight modifications on the sample
initial volume and refrigeration during centrifugation. Briefly, 20 ml of 0.5 M HCI was added to 0.5 g of finely
powdered soybean sample. The mixture was vortexed and shaken for 1 h at room temperature, then centrifuged
at 4000 rpm for 30 min at 4 °C using a HERMLE 300 K centrifuge (Germany). For each sample, 5 ml of the
supernatant containing the soluble fraction was transferred into three new 50 ml Falcon tubes, and the pH
was adjusted by adding an equal volume of 0.5 M NaOH. To stop the reaction, equal volume 5 ml of NaCl was
added to the system. Samples were filtered, and 2 ml of a chromogenic solution (ferric chloride III, FeCl,) was
added for spectrophotometric reading at 492 nm absorbance (Ledetect96 Microplate Reader, 2017, A-5020,
EU). The optical densities (OD) from the readings were used to calculate the concentration of phytate in the
samples, using a linear regression curve obtained from serial dilutions of standard solution of sodium phytate.
The controls were similarly prepared, except addition of the analyte and used as subtraction term to obtain final
concentration (mg/kg) of phytate in the sample.

Total trypsin inhibitor phenotyping

Total trypsin inhibitors (TTI) were extracted using a neutral method with slight modifications on the sample
size, volume and refrigeration during centrifugation'®. Briefly, 0.05 g of powdered soybean sample was placed in
a clean centrifuge tube and homogenized with 5 ml of phosphate buffered saline (PBS). The mixture was vortexed
and shaken on an orbital shaker for 1 h, then centrifuged at 10,000 rpm for 10 min at 4 °C using a HERMLE
300 K centrifuge (Germany). A 0.1 ml aliquot of the supernatant was transferred into micro centrifuge tubes and
mixed with equal volume of 1 mg/ml trypsin solution, followed by incubation at 0 °C for 10 min. Then, 0.3 ml of
2% casein substrate was added, and mixture was incubated in a water bath for 20 min at 37 °C19*194, The reaction
was stopped by adding 0.2 ml of 10% trichloroacetic acid (TCA), and centrifuged at 10,000 rpm for 5 min to
remove undigested casein, larger inhibitor fragments, and enzyme protein. All extraction steps were performed
in triplicate. Two control samples were set, one without any inhibitor addition (Blank 1), other with addition
casein only (Blank 2). Sample readings were performed using a spectrophotometer at 410 nm absorbance
(Ledetect96 Microplate Reader, 2017, A-5020, EU). Trypsin inhibition activity (TIA) was calculated!®® and the
inhibitory activity percentage was converted into concentration of total trypsin inhibitor (T'TT) expressed in mg/
kg:

test sample — blank2
blankl — blank2

Y%inhibition = * 100

Data analysis

Best Linear Unbiased predictions (BLUPs) were computed using Ime4 R package'’> considering genotype as fixed
and block as random effects as follow: Yij = pn + Bi + Gj 4+ G : Bij + eij; where: where Yij=phenotypic
observation for a trait, p=grand mean, B=random effect of block (j), G=fixed effect of genotype (i),
G:B =interaction effect between genotype (i), and € ¢j = random residual term. The resulting BLUPs were then
used for association analysis'®. Heritability was calculated for phytate and trypsin inhibitors as follow: H2=V /
(Vg+Ve); where: H? is the broad sense heritability, Vg is the genotypic variance, and V, is the error (residua%)
variance.

105

Linkage disequilibrium (LD)

The extent of linkage disequilibrium (LD) was determined as the pairwise correlations between each pair of
SNPs using LDcorSV package in R version 4.3.0 (Zhang et al., 2023). Pairwise correlation coefficients among
markers were then plotted against genetic distances in kilobases (kb). The genetic distance at which average LD
decayed below r?=0.1 was taken as the window for searching of putative genes within 100-kb genomic region
of significant SNP markers on Phytozome database, version 13.0 (https://phytozome-next.jgi.doe.gov/) accessed
on 11 June, 2024, using soybean- Wm82-a4.v1 as reference genome. Gene functions were found using InterPro
database hosted by the European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI)
and National Center for Biotechnology Information (NCBI).

Principal component analysis

Principal Component Analysis (PCA) and hierarchical clustering were performed using tidyverse, factoextra,
and ggtree R packages. SNP data were cleaned and imputed using the dplyr package, replacing missing values
with marker-wise means. PCA was executed using prcomp, with scaling and centering applied. The proportion
of variance explained by PC1 and PC2 was extracted and used for axis labeling. Euclidean distances among
genotypes were calculated, and hierarchical clustering was conducted using the Ward.D2 method via hclust.
A circular dendrogram was constructed using ggtree, and genotype clusters were colored accordingly. These
visualizations revealed population structure and genetic diversity patterns.

GWAS analysis, linkage disequilibrium and candidate genes identification

Data filtration was performed with a threshold of 95% reproducibility and 95% call rate, 0.05 minor allele
frequencies (MAF<0.05) and imputation through k-nearest neighbor imputation (knni) using snpReady
package in R version 4.3.0. Duplicates were removed from filtered SNP data using the duplicated function of
dplyr package in R. Genome-wide association study (GWAS) was performed using Genome Association and
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Prediction Integrated Tool (GAPIT) models, including Fixed and random model Circulating Probability
Unification (FarmCPU) for phytate and compressed mixed linear model (CMLM)**%* for TTI. Furthermore,
to assess models robustness in detecting SNP markers, multi-locus random-SNP-effect mixed linear model
(mrMLM) methods including mrMLM!%7, FASTmrMLM!%, FASTmrEMMA!%®, pLARmEB!?, pKWmEB!!!
and ISIS EM-BLASSO!!? were used for marker-trait association using mrMLM package in R!'3. These methods
are reported to maintain computational advantage and increases statistical power. The GAPIT models were fitted
with varying numbers of PCs and without any PC to teste for correction of spurious associations which could
potentially arise due to population structure. Correction for kinship was performed using the VanRaden method,
andManhattan and quantile-quantile (QQ) plots were generated to visualize outputs of the analysis. Boxplots
were generated to visualize the allelic effects. The ggpubr package was used to display group comparisons, with
Holm-adjusted p-values and 95% confidence intervals annotated on the plots.

Data availability

The phenotypic and genotypic datasets generated and/or analyzed during the current study are available from
the corresponding author on reasonable request. Candidate genes were identified using publicly available infor-
mation from the Phytozome database (https://phytozome-next.jgi.doe.gov/), NCBI https://www.ncbi.nlm.nih.g
ov/, and EMBL-EBI (https://www.ebi.ac.uk/).
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