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Optimization of automatic
generation controllers in renewable
multi-area power systems using
the Fata Morgana algorithm
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The increasing integration of renewable energy sources introduces severe intermittency in multi-
area power systems (MAPS), resulting in significant voltage and frequency fluctuations. This study
addresses this problem by implementing an automatic generation control (AGC) framework for a
two-area hybrid power system composed of solar, wind, and thermal units. Four types of controllers
(PI, PIDn, fractional-order PI (FOPI), and predictive PIDn (PPIDn)) were optimized using four recent
metaheuristic algorithms: golden jackal optimization (GJO), educational competition optimizer
(ECO), escape algorithm (ESC), and the newly proposed Fata Morgana Algorithm (FATA). The results
demonstrate that the FATA-optimized PIDn controller provides the best dynamic performance,
achieving an ITAE value of 0.18676, which represents an improvement of over 4.6% compared to the
best established optimizer (ESC). Real-time validation on the OPAL-RT OP5707 platform confirmed
the practical feasibility of the proposed FATA-based control strategy, verifying its ability to enhance
frequency stability. These findings highlight the novelty and efficiency of FATA in optimizing AGC
parameters for renewable-based multi-area power systems.
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Abbreviations

2DOF PDNTwo degrees of freedom proportional derivative with filter
2DOFPID Two degrees of freedom FPID controller

3DOF-PDN  Three degrees of freedom proportional derivative with filter

ACE Area control error
ACO Ant colony optimization
AHB Artificial humming bird
ALO Ant-lion optimization algorithm
ANFIS Artificial neuro fuzzy inference systems
ANN Artificial neural networks
BB-BC Big bang-big crunch
BOA Bear optimization algorithm
CBO Chaotic butterfly optimization
CoA Cuckoo optimization algorithm
GOA Grasshopper optimization algorithm
CSOA Crow search optimization algorithm

DOF-PDN Degree of freedom proportional derivative with filter
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DRLB Deep reinforcement learning based

DWCA Discrete water cycle algorithm

ECO Educational competition optimizer

ESC Escape optimization algorithm

FATA Fata morgana algorithm

FHODEFC Fractional high order differential feedback controller
FLPID Fuzzy logic integrated PID

FLC Fuzzy logic controller

FOPI Fractional order proportional-integral
FOPID Fractional order proportional-integral-derivative
FOPID-PR Fractional order proportional integral derivative-proportional resonant
FOTID Fractional order-based tilt-Integral-derivative
FSO Firebug swarm optimization

GA Genetic algorithm

GJO Golden jackal optimization

GWO Grey wolf optimization

hGWO-PS Hybrid grey wolf optimization-pattern search
HODEFC High order differential feedback controller
HSCOA COA into harmony search (hs) algorithm
IAE Integral of absolute error

ISE Integral square error

ITAE Integral of time weighted absolute error

ITSE Integral of time square error

LMA Levenberg marquardt algorithm

MAPS Multi area power system

MFO Moth flame optimizer

mMSA Modified moth swarm algorithm

PDN Proportional-derivative with filter

PI Proportional-integral

PID Proportional-integral-derivative

PIDn Proportional-integral-derivative with filter
PPIDn Predictive PID with filter

PPIDn Predictive proportional-integral-derivative with filter
PSO Particle swarm optimization

PV Photovoltaic panel

SAR Search and rescue

SCA Sine-cosine algorithm

SOA Skill optimization algorithm

SSA Salp swarm algorithm

TAPS Two area power system

TIDDF Tilt-integral-double derivative filter

TLBO Teaching learning-based optimization

WCA Water cycle algorithm

P_linel2 Power in the transmission line

v, Voltage of area 1

v, Voltage of area 2

S, Phase angle of area 1

5, Phase angle of area 2

X, Impedance of the transmission line

f System frequency

AP, Instantaneous load changes

Af, First area frequency change

Af, Second area frequency change

Af,, Connection point frequency change

N Series cells per string

A Constant coeflicient and depends upon the cell material
Vv Cell output voltage

Lo Cell short circuit current

Loy Cell output current

Ly Photocurrent

M Parallel strings

I, Reverse saturation current

R Series resistance of cell

a negative value of zero in transfer function

b Gain of PV system

c Negative values of poles

d Negative values of poles

K., Governor gain

Ifmr Turbine gain
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Reheater gain

Kreh .

Kps Power system gain

Tgov Governor time constant
T Turbine time constant

T Reheater time constant

TPS Power system time constant
P, Wind turbine mechanical output power
P Air density

a Swept area

\% Wind speed

C Rotor efficiency

TSR Tip speed ratio

B Pitch angle of the blade

w Rotor speed

Blade rotor diameter

Pitch control gain

Hydraulic pitch actuator gain

Data fit pitch gain

Fluid coupling gain

Pitch control time constant

Hydraulic pitch actuator time constant
Data fit pitch time constant

Induction generator time constant

A

@
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Kv; Proportional gain

Ky Derivative gain

K, Integral gain

K, Tilt gain

K4 Predictive term constant

Ki Delay time of the predictive term
n Derivative action filter constant
A Fractional integrator order

t Time

s Second

Over the years, advancements in power systems have significantly increased their complexity compared to a
century ago. Modern power systems operate at much higher power levels, making their control more challenging.
The transition from megawatt (MW) to gigawatt (GW) power levels, the growing number and diversity of energy
sources, the interconnection of regions through long transmission lines, unbalanced load distribution, voltage
magnitude and phase differences between areas, fault conditions, and the integration of harmonic-generating
systems such as electric vehicles have made power system operation increasingly complex'.

Furthermore, the intermittent nature of renewable energy sources, such as solar and wind, adds to these
challenges. Since their power generation depends on environmental conditions, the output fluctuates
continuously. This variability poses significant difficulties in maintaining system stability and ensuring that loads
receive voltage and power at the desired frequency and amplitude. Therefore, precise voltage and frequency
control is essential both within individual generation areas and across interconnected regions*>.

In this study, automatic generation control (AGC), also referred to as load frequency control (LFC), is
implemented in a two-area power system consisting of three different energy sources. Figure 1 illustrates the
system structure, which integrates wind, solar, and thermal power generation.

In area-1, power is generated from solar energy, while area-2 consists of both wind and reheat-thermal power
generation stations. The frequency deviation in area-1 is represented as Af|, while in area-2, it is denoted as Af,.
The power deviation between the two areas is expressed as AP, . The generated power is supplied to various
energy consumers, such as industrial facilities and residential loads.

Each power generation area is controlled independently. If a region is not connected to another system,
it can operate autonomously. However, when different energy generation systems are interconnected within
a grid, they must remain balanced with respect to each other. To achieve this balance, various controllers are
employed. Commonly used controllers include proportional-integral (PI), proportional-integral-derivative
(PID), fractional order PID (FOPID)?, fuzzy logic controllers (FLC)®, and hybrid structures such as fuzzy logic
integrated PID (FLPID) controllers”®. The parameters of these controllers are typically tuned using different
optimization algorithms. Several optimization techniques have been utilized, including the whale optimization
algorithm (WOA)®, the gray wolf optimizer (GWO)!, genetic algorithm (GA) -based methods!!, JAYA
algorithm!?, the water cycle algorithm (WCA)'3, and chaotic butterfly optimization'. Intelligent and adaptive
control approaches have recently gained attention for improving renewable-based power system performance.
Neural network controllers have been applied for battery storage regulation under varying load profiles'®, while
hybrid energy management strategies integrating renewables and EV storage enhance grid flexibility'®. Fuzzy-
assisted sliding mode and neuro-fuzzy repetitive control frameworks further strengthen frequency and current
regulation in modern microgrid and inverter systems!”:'%,

To evaluate and compare the performance of the applied controllers, objective functions such as the integral
of absolute error (IAE), integral of time-weighted absolute error (ITAE), integral of square error (ISE), and
integral of time square error (ITSE) are employed!’. Due to the practical challenges of experimental validation,
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Fig. 1. Conceptual design for TAPS.

hardware platforms such as OPAL-RT have been developed. These devices enable experimental verification of
simulation results and are highly effective in modeling power systems®.
A more comprehensive literature review is presented in the next section.

Literature review

In the literature, various aspects of multi-area systems—including the number and types of regions, the types
of controllers used, the optimization algorithms applied for controller parameter tuning, and the objective
functions employed—are summarized in Table 1.

As seen in Table 1, various controllers have been employed in multi-area power systems, including
conventional PID?!-23 PI-PD?4, high-order differential feedback controller (HODFC) and fractional high-order
differential feedback controller (FHODFC)%, series-connected controllers such as PI-PDN?, tilt-integral-
double derivative filter (TIDDF)?, fractional order proportional integral derivative (FOPID)?, fractional order
proportional integral derivative-proportional resonant (FOPID-PR)?, and 2DOFPID; three-network double-
delay actor-critic (TDAC)?!, FLC of type 1 and 2, as well as PID-tuned FLC*, fractional order tilt-integral-
derivative (FOTID)??; artificial neuro-fuzzy inference systems (ANFIS) and artificial neural networks (ANN)3%;
DOF-PDN, 2DOF-PDN, 3DOF-PDN, Neuro-Fuzzy 3DOF-PDN?, and 3DOFPID-Fuzzy 3DOFPID%*.

Regarding optimization algorithms, various techniques have been employed, including modified moth
swarm algorithm (mMSA)?!, GA, teaching learning-based optimization (TLBO)?, particle swarm optimization
(PSO)?>26:34-36 " crow search optimization algorithm (CSOA)%, cuckoo optimization algorithm (COA) and
COA integrated with the harmony search algorithm (HSCOA)?, bear optimization algorithm (BOA), GWO?,
artificial hummingbird algorithm (AHB)?, hybrid grey wolf optimization-pattern search (\GWO-PS)*’, deep
reinforcement learning-based optimization and DWCA?32, search and rescue (SAR) Algorithm??, ant colony
optimization (ACO)®, skill optimization algorithm (SOA)?, coot optimization algorithm?®, moth flame
optimizer (MFO), sine-cosine algorithm (SCA), salp swarm algorithm (SSA), PSO, ant-lion optimization
algorithm (ALO)*’, big bang-big crunch (BB-BC) optimization, firebug swarm optimization (FSO), levenberg-
marquardt algorithm (LMA), and PSO**. Additionally, numerous other optimization techniques have been
explored in the literature.

The number of regions in the studies reviewed varies between two and five, with energy sources including
thermal, photovoltaic, wind, hydro, and nuclear power. The number of energy generators in each region also
differs depending on the system configuration.

Various controllers have been employed to regulate these systems. While PID-based controllers, different
combinations of FOPID controllers, FLC, and DOFPID-based controllers are widely used, hybrid controllers
such as Fuzzy-PID have also been commonly applied in load frequency control of multi-area power systems.

Finally, objective functions such as ITAE, IAE, ISE, and ITSE are frequently used for performance
evaluation?!~#2, Among these, ITAE has been the most widely applied.

Motivation

The literature review indicates that various controllers and algorithms have been tested in different multi-area
power system configurations, yet no definitive conclusion has been reached. Structural differences between
systems lead to variations in controller parameters, making it necessary to design controllers specific to each
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Ref. | Number of area/ Optimization Objective
Year | no | energy unit Type of energy production Controller type algorithm or method function
Thermal Hydro/Thermal Wind/
2024 |7 | 5/10 germal Gas/ PID/FOFPID mMSA ITAE
ydro Diesel/
Hydro Wind
2/2 Non-reheat Thermal/Non-reheat Thermal
2020 | 18 HODFC/FHODFC PSO/COA/HSCOA ITAE
2/3 Re-Heat Thermal/Hydro/Gas
2023 | ¥ 2/4 Thermal/Thermal PI/PID GA/PSO/TLBO ITAE
20 Non-reheat Steam Power/PV/
2023 2/4 Non-reheat Steamn Power/Wind PI-PDN GWO/PSO/BOA ITAE
2024 | 2! 2/2 Hydrothermal Power System/Hydrothermal Power System | TIDDF CSOA ISE
Hydro/Wind/
Hydro/Diesel/
2024 | 2 5/10 Diesel/Wind/ FOPID-PR AHB ITAE
Hydro/Thermal/
Diesel/Thermal
2023 | % 2/2 Thermal/Thermal 2DOFPID hGWO-PS ITAE
24 Deep Reinforcement
2020 2/2 Hydro/Hydro TDAC Learning Based TDAC User Defined
25 . . Gaussian Interval-Based Discrete Water Cycle
2023 34 Multi Energy Production Type-2 Fuzzy PID Controller | Algorithm (DWCA) ITAE
Thermal/Hydro/Gas
26
2024 2/6 Thermal/Hydro/Gas FOTID SAR ITAE
2023 | ¥ 2/2 Thermal/Thermal ANFIS/ANN PSO ISE
2024 | 8 3/3 Thermal/Nuclear/Hydro PID GA/PSO/ACO ITAE
DOEF-PDN/
2024 | ¥ 3/3 Thermal/Thermal/Thermal 2DOF-PDN/3DOF-PDN/ SOA ISE
Neuro Fuzzy-3DOF-PDN
2023 | |2 Wind/PV PID/FOPID Coot Optimization ISE
Algorithm
2023 |3t 3/3 Reheat/Hydro/Gas PI-PD - ISE/IAE/ITAE
2023 | 3/3 Non-Reheated Thermal/Non-Reheated Thermal PID/FOPIDF/2DOFPID MFO/SCA/ALO/SSA ITAE
Solar/Thermal
2024 | ¥ 3/6 Ocean/Termal & Nuclear PID/Fuzzy 3DOFPID BB-BC/LMA/FSO/PSO | ITSE
Wind/Hydro
2021 | 34 33 Thgrmal/Thermal/Thermal + Flexible AC Transmission PDE + (1+PI) Gra§shppper ) ITAE
system Optimization Algorithm
Thermal/Diesel Engine Generator/Micro Turbine/FC Fuel Imperialist Competitive
2021 | ¥ 2/Multi-Microgrid | Cell/Photovoltaic/Wind Turbine/Battery/Flywheel Energy | Cascade PDF (1 +PI) Al porith:n PEUVE | 1TAE
Storage System 8
2022 |3 | L/Multi-DG PV/Wind/Diesel + EV/Battery FO-T2F-PID Improved Moth Swarm | 1p
(Microgrid) Algorithm
37 Photovoltaic/Wind Turbine/HT Hydrothermal Unit/ Fractional-Order Fuzzy PID Lo
2021 24 Hydrogen Aqua Equalizer-Fuel Cell (FOFPID) Sunflower Optimization | ITAE
2024 | 8 1/Multi-DG Solar/Wind/Diesel/Fuel Cell + Energy Storage Devices F-TIDF-2 Improved Equilibrium | 1o
(Microgrid) Optimization

Table 1. A brief literature survey of multi-area power systems, controller type, and optimization algorithms.

system. This raises important questions regarding which controller should be selected and how its parameters
should be determined.

Based on previous studies, it was considered important to choose a simple yet effective controller to achieve
better results. This approach was expected to provide advantages in terms of settling time and maximum
overshoot. Additionally, relatively new and less commonly used optimization algorithms were explored for
parameter tuning. Finally, the aim was to validate the simulation results experimentally using the OPAL-RT
OP5707 device.

Although numerous studies have applied various optimization algorithms and controllers for multi-area
power systems, several limitations can still be observed. First, most existing research has primarily focused
on conventional optimization algorithms such as PSO, GA, and GWO, while relatively few studies have
explored newly emerging metaheuristic methods with enhanced convergence capability. Second, many studies
concentrated only on simulation-based validation without real-time experimental verification, limiting their
practical applicability. Third, most previous models considered systems with two homogeneous generation
units, whereas highly renewable and hybrid configurations combining solar, wind, and thermal sources remain
insufficiently explored.

These limitations motivate the present study, which addresses all of the above issues by (i) employing a novel
optimization algorithm (FATA) with balanced exploration and exploitation mechanisms, (ii) validating the
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results using an OPAL-RT real-time simulator, and (iii) considering a hybrid two-area system that integrates
solar, wind, and thermal energy sources.

Contribution
The main contributions and novelties of this study are summarized as follows:

o A two-area highly renewable hybrid power system, integrating solar, wind, and thermal generation units, was
considered and analyzed for the LFC problem.

« The study introduces a novel application of the FATA for optimizing AGC parameters. To the best of our
knowledge, this is the first implementation of FATA validated through a real-time simulation load frequency
control using the OPAL-RT platform.

o A comprehensive comparative framework was designed, combining four controller types (PI, PIDn, FOP],
and PPIDn) with four optimization algorithms (GJO, ECO, ESC, and FATA) to identify the most effective
configuration for frequency stabilization.

« The proposed approach was experimentally validated on the OPAL-RT OP5707 real-time simulator, demon-
strating its practical feasibility and robustness under realistic operating conditions.

Article organization

This article consists of five sections. The first section includes the Introduction, Literature Review, and Motivation,
followed by the Article Organization. In the second section, information is provided on multi-area power
systems, the controllers used for their regulation, and the applied optimization algorithms. The third section
presents simulation studies and experimental results. The fourth section analyzes the obtained results, while
the final section provides a general evaluation of the study and its findings. Additionally, recommendations are
offered to guide future research.

Figure 2 illustrates the organizational structure of the article.

Problem formulation

Figure 3 illustrates a two-area power system incorporating three different energy generation sources: solar,
thermal, and wind. The system has been controlled using four different controllers (PI, PIDn, FOPI, and PPIDn).
To optimize the parameters of each controller, four optimization algorithms (GJO, ECO, ESC, and FATA) were
applied. The objective was to determine the most effective combination of controller and optimization algorithm
for achieving optimal system performance.

The optimization algorithms adjusted the controller parameters based on the ITAE criterion, which is widely
used in the literature for evaluating control performance. By minimizing ITAE, the controllers were fine-tuned
to enhance system stability and dynamic response. The overall structure of the system, along with the interaction
between controllers, energy sources, and optimization methods, is schematically presented in Fig. 3.

Two-area power system (TAPS)
In a two-area power system, the power transmitted through the transmission line is given by Eq. (1).

Organization of the Article

A4 A 4 A4 ‘1’ A 4 v
ADotract Section ‘l. Section II. A Section III. Section IV. Section V.
Introduction Problem Formulation Sim. and Exp. Results Discussion Conc. and Recom.
> HR[;lvtlL::lurL > IS)I\)I\L%;A(EFZ [f)’s;vcr F»13.1. Parameters
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Fig. 2. Organization of the paper.
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Fig. 3. Two-area three power generation units power system and controller optimization.

Vil [Vl
12

Pline12 = sin(d1—02) (1)

In this equation, V, (V) and V, (V) represent the voltages of area-1 and area-2, respectively, while &, (°) and 4,
(%) correspond to their phase angles. The term Pjine12 denotes the power flow through the transmission line,
and X2 represents the line impedance.

The rate of change of the phase angle in each area is given by Eq. (2), where f (Hz) represents the system

frequency.
A6:27T/Afdt (2)
Vil|.|Vs
AP12=%008(51—52)(A51—A(52)=T12(A51—A52) (3)
12
Vi|.|Vs
Tio = MCOS (61—02) (4)
12
APye =Ti2(Ad1— Ad2) (5)
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Fig. 4. Solar cell equivalent circuit.
Expression Definition Unit
N : | Series cells per string
A : | Constant coefficient and depends upon the cell material
Vv : | Cell output voltage \4
I Cell short circuit current A
I, Cell output current A
Ly Photocurrent A
M : | Parallel strings
I, Reverse saturation current A
R Series resistance of cell Q

Table 2. The descriptions for PV cell.

The exchange of power between the regions is represented by Eq. (3), while the synchronizing torque coeflicient
is formulated in Eq. (4). The variation in power flow through the transmission line is expressed in Eq. (5).
Instantaneous load fluctuations (AP)) lead to frequency deviations in the system. Consequently, the power
variation and the Area Control Error (ACE) are mathematically defined in Egs. (6) and (7), where B denotes
the frequency bias factor!>.

ACE, = —BA fi — A Pye (6)
ACE; = —BA fo + A Py (7)

The obtained values represent the error signals at the input of the controllers.

The TAPS system consists of three different energy generation units: a solar power system composed of
photovoltaic (PV) panels, a thermal power generation station, and wind energy produced by wind turbines. The
photovoltaic solar system constitutes area-1, while the thermal power station and wind turbines together form
area-2.

In area-1, photovoltaic solar panels are semiconductor devices that convert sunlight into electrical energy.
Figure 4 illustrates a simplified equivalent circuit of a solar cell. Equation (8) expresses the voltage generated by
a solar cell. By connecting multiple solar cells in series and parallel, solar panels are formed?>4.

Isc — Ipv +Mfo>

N
Mo — —RsIpv (8

N
VPV = Yln ( M
The definitions and units of the PV variables are presented in Table 2.
The transfer function of the power generation system composed of solar panels is given in Eq. (9). This
transfer function represents the overall dynamics of the inverter, filters, and maximum power point tracking
(MPPT) system.

a+ bs

PV System : Gpv (s) = 2tes+d

)

where a corresponds to the negative value of the system’s zero, ¢ and d represent the negative values of the poles,
and b denotes the gain of the PV system*>6.

In area-2, two different power generation units are present: a thermal power plant and a wind energy system.
The transfer functions of the thermal power system components, including the governor, reheat system, turbine,
and power system, are expressed in Equations (10) to (13).
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Expression Definition Unit
o Governor gain p-u.
K., : | Turbine gain p.u.
K., Reheater gain p-u.
KPS Power system gain pu.
Tgw Governor time constant s
T,. : | Turbine time constant s
T, : | Reheater time constant s
Tps Power system time constant | s

Table 3. The descriptions for thermal energy production unit.

Expression Definition Unit
P, Wind turbine mechanical output power | W

P : | Air density Kg/m?
a, Swept area m?

\%4 : | Wind speed m/s

C Rotor efficiency

TSR : | Tip speed ratio

B : | Pitch angle of the blade Degree
w, : | Rotor speed rad/s
D : | Blade rotor diameter m

Table 4. Wind energy parameters.

Governor : Ggov (8) = Szﬂi’% (10)
Turbine : Giur (s) = sTitﬁ (11)
Reheater : Grep (s) = % (12)
Power System : Gps (s) = STIP(S% (13)

Table 3 provides definitions for the parameters used in the transfer functions of the thermal power system
components, including the governor, reheater, turbine, and power system.

The second power generation system in area-2 is the wind energy system. Wind turbines harness the kinetic
energy of the wind to rotate their blades. The rotor is connected to a shaft that drives a generator operating in
motor-generator mode, converting mechanical energy into electrical power?’.

The mathematical representation of the output power generated by a wind turbine is given in Equations (14)

to (16).
1 2v,3
Put = 5paiVCy (TSR, ) (14)
Cp = (TSR —0.02287% —5.6) e 1775 (15)
wy.m D
TSR == (16)

The definitions of the terms used in the equations are provided in Table 4.
Based on these fundamental equations, the transfer functions of the wind turbine components have been
derived and are presented in Equations (17) to (21)%.

Kpl(STp1 + 1)

Pitch Control : G (s) = 1
s

(17)

Kpa

Hydraulic Pitch Actuator : Ghpa () = Tt l
p2

(18)

Scientific Reports |

(2025) 15:43342 | https://doi.org/10.1038/s41598-025-27191-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Expression Definition Unit
K, Pitch control gain p-u.
K, : | Hydraulic pitch actuator gain p.u.
K, : | Data fit pitch gain p-u.
Kf[ Fluid coupling gain p-u.
T, Pitch control time constant s

T, : | Hydraulic pitch actuator time constant | s

Tp3 Data fit pitch time constant s

T, Induction generator time constant s

Table 5. Descriptions and units of the variables used in the transfer functions.

—— — — — — —

Fig. 5. PI controller.

\

Fig. 7. FOPI controller.

-—_—_—_J

D . _ Kps
Data Fit Pitch : Ggpp (s) = Ty 1 1 (19)
. 1
Induction Generator : G (s) = T (20)
Output Wind Power Deviation : A Pyt (s) = Kf.Gr1a (s) (21)

The descriptions of the equations used in Equations (17) to (21) are provided in Table 5.

The controllers and performance indices

In this study, four different controllers were selected and their parameters were optimized. The selection was
based on a comprehensive literature review, focusing on controllers expected to exhibit high performance. As a
result, PI, PIDn, FOPI, and PPIDn controllers were chosen. The structural representations of these controllers
are illustrated in Figs. 5, 6, 7 and 8, while their mathematical formulations are provided in Equations (22) to (25)
where the ideal connection forms of the PIDn and PPIDn controllers are performed.
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Fig. 8. PPIDn controller.
Expression Definition
KP Proportional gain
K, Derivative gain
K, Integral gain
pr ” Predictive term constant
K, Delay time of the predictive term
Derivative action filter constant
Fractional integrator order
Table 6. The controller parameters.
u (s K
B¢ ke (22)
e(s) PID
u (s) 1 ns
e =Kp(1l4+ = +Kp (23)
e(s) PIDn s s+n
u (s K
" =Kp+— (24)
e(s) FOPID §
K n Kpra —sK
U :(K — K*)E — P2 (1—e ") U 25
() = (Ko + = +sKp— ) E(s) = == (1=e ") U (s) (25)

The descriptions of the terms used in Equations (22) to (25) are provided in Table 6.

To compare the performance of the controllers, error performance indices, as defined in Equations (26) to
(29), were utilized. This approach is consistent with findings from the literature review. Typically, one of these
indices is selected to evaluate control performance. In this study, ITAE was chosen due to its widespread use.

oo

ISE = / e (t)dt (26)

0

IAE = [ |e(t)dt 27)
/

ITSE = /te2 (t) dt (28)
0
ITAE = /t|e(t)|dt (29)

0

Another reason to employ ITAE is that it provides a balanced trade-off between transient and steady-state
responses. In LFC, long-term deviations are often more critical than short-term overshoots. Therefore, the
time-weighting factor in ITAE effectively penalizes prolonged oscillations while ensuring faster settling with
minimal steady-state error. This makes ITAE a more appropriate index for evaluating controller performance in
interconnected power systems compared to other popular indices such as ISE, IAE, and ITSE.
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In the simulation, the objective function, presented in Eq. (30), was derived from the sum of the errors
in each region and the interconnection point. The optimization algorithms were then evaluated based on this
criterion. (st: simulation time)

st st st
OF]TAE:/t|Af1|dt+/t‘Af2|dt+/t|APtie|dt (30)
0 0 0

In this equation, Eq. (29) was applied based on the frequency deviations in each region and at the interconnection
q q PP q Y £
+12449,50
point™>".

Proposed optimization algorithm

In this study, the parameters of four different controllers (PI, PIDn, FOPI, and PPIDn) were optimized using
four optimization algorithms: GJO, ECO, ESC, and FATA. Each algorithm was selected based on its potential
effectiveness in optimizing control parameters. A comparative analysis was conducted to evaluate their
performance, with a particular emphasis on the FATA algorithm, which demonstrated superior results in this
context.

Overview of the FATA
The Fata Morgana Algorithm (FATA) is a newly developed optimization technique inspired by the Fata Morgana
optical phenomenon, a complex mirage effect caused by atmospheric refraction. This phenomenon creates
illusions of floating landscapes or distorted images due to variations in air density and light refraction. By
mimicking these principles, the FATA algorithm introduces a novel approach to balancing global exploration
and local exploitation in optimization tasks.

Unlike conventional metaheuristic algorithms that rely on predefined search mechanisms, FATA dynamically
adjusts its search behavior through two key principles:

1. The mirage light filtering principle, which selectively refines the population based on an integral-based eval-
uation method, enhancing solution quality.

2. The light propagation principle, which governs the movement and adaptation of solutions, ensuring efficient
exploration and convergence.

By integrating these mechanisms, FATA provides a robust framework for solving complex optimization
problems, effectively avoiding local optima while maintaining convergence efficiency. The following sections
detail the inspiration behind FATA, its mathematical formulation, and its application in controller optimization.

Inspiration behind the Fata Morgana phenomenon

The fata morgana, or mirage, is a naturally occurring optical phenomenon. It arises due to the behavior of light
as it propagates through an atmosphere with varying density, transitioning from an optically denser medium
to a less dense one. This study investigates the formation of mirages by examining light rays emitted from
underwater features. It also inspires the design depicted in Fig. 9. The figure demonstrates the optical path of
light rays emitted from a ship at sea, which ultimately create a mirage. The formation of a mirage necessitates two
conditions: a medium with non-uniform density and the propagation of light through this medium. Initially,
solar heating induces temperature variations in the atmosphere, creating the required inhomogeneous density
gradient. When light from the ship reflects into this medium, its refraction angle continuously changes during

£ > Mirage

(r
~
~

~ < ~ Optical thinning medium

Eye

Optically denser medium

Fig. 9. Mirage Formation Process.
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propagation, culminating in total internal reflection, which produces the mirage effect. An observer (as shown
by the Eye in Fig. 9) perceives this phenomenon when looking towards the sky in a specific direction (red)!.

As illustrated in Fig. 9, the formation of a mirage depends on the delicate balance between filtering mirage
light and managing light refraction and reflection during propagation. Similarly, a parallel can be drawn to swarm
intelligence algorithms, where achieving a balance between global exploration and local exploitation remains a
challenge. Current algorithms, such as the Harris Hawks Optimization (HHO), sequentially implement global
and local search strategies, using soft and hard besiege mechanisms inspired by hawk hunting. However, these
strategies often lack the fine balance observed in the mirage phenomenon.

The mirage principle, illustrated in Fig. 9, offers an innovative approach to algorithm design by harmonizing
global and local search strategies. In this figure, light emitted by a ship enters an atmosphere with a non-uniform
density. As it transitions from an optically denser medium to a less dense one, the refractive index changes,
causing the light to bend at progressively larger angles. Upon reaching the critical angle, total internal reflection
occurs, resulting in the formation of a mirage. This dynamic balance between refraction and reflection processes
serves as the conceptual foundation for a new optimization framework.

Building upon this concept, the paper introduces two key principles essential to the proposed FATA: the
mirage light filtering principle and the light propagation principle. The former governs the selection process,
allowing specific light waves to contribute to the mirage while excluding others, whereas the latter dictates how
light adjusts its direction and intensity as it travels through a medium with varying density. These principles play
a crucial role in shaping the behavior of swarm intelligence algorithms.

The FATA algorithm derives its global search strategy (mirage light filtering principle) from the light
reflected by the ship into the medium, while its local search strategy (light propagation principle) is inspired
by the refraction and total internal reflection of light. Together, these principles form the core of the algorithm,
achieving a balance between exploration and exploitation.

By emulating the mirage formation process, FATA integrates these strategies seamlessly, creating a robust
optimization framework. This alignment between the optical phenomenon and the algorithm’s design ensures
consistency and effectiveness, establishing the FATA as a novel and balanced optimization tool.

Fata Morgana algorithm
As depicted in Fig. 10, the FATA represents the population as multiple light rays that contribute to forming a
mirage, with each light ray ( z) representing an individual within the population. The mirage ( Zsest) serves as
the optimization target.

At the initial stage, the population of light rays undergoes a dynamic assessment based on the mirage light
filtering principle, which is rooted in the definite integral concept. This process evaluates the light emitted from
the hull, specifically located in the lower-left corner of Fig. 10. Within this population, some light rays undergo
physical transformations to form the mirage ( Zses¢), while others, though similarly transformed, propagate in
directions that do not contribute to forming the mirage.

In the second stage, the filtered light population undergoes the light propagation strategy, encompassing
processes of refraction in the first and second stages and total internal reflection. The propagation of light
through a medium with an inhomogeneous density mirrors the exchange of information between individuals
in the algorithm. Through this process, the algorithm iteratively explores the solution space, leveraging physical

changes in light propagation to identify the target mirage ( Tpest), which corresponds to the optimal solution®!.

The Mirage light filtering principle ~This section outlines the population search mechanism of FATA, drawing
inspiration from the definite integral principle. As shown in Fig. 10, the hull emits two different types of light

xbest
‘ ~
\":Z xrand+[0.5-(6-+1)-(Ub-Lb)-a-x]-Para2
Other light E

7
Sxbest+x-Paral

(..-.-..

Xnext

Fig. 10. FATA optimization process in three dimensions®!.
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rays during the mirage formation process. The first type, labeled as ‘other light’ in Fig. 10, plays no role in form-
ing the mirage and dissipates without undergoing notable changes. The second type, termed “mirage light ( x),
undergoes physical changes, ultimately forming the mirage’'.

In FATA, differentiating between these two light populations is essential to identifying the optimal solution,
Tpest. To achieve this, FATA adopts a population quality evaluation mechanism grounded in the principle
of definite integrals, enabling effective distinction and selection of relevant populations. Analogous to swarm
intelligence algorithms, the quality of a population is measured by aggregating the fitness of individuals within it.
As shown in Fig. 11a, ranking the fitness of individuals in a population creates a cumulative curve. To streamline
the fitness computation of the two types of light populations (“other light” and “mirage light”), FATA applies
definite integration to evaluate the area under this curve (Fig. 11b). The resulting integral value serves as an
indicator of population fitness. Using this approach, FATA isolates the filtered mirage light population, which
represents individuals selected based on their integral-based fitness evaluation.

This method enables FATA to efficiently balance exploration and exploitation by focusing on high-quality
populations, ensuring robust optimization performance.

The FATA employs a fitness evaluation strategy to classify the population into two categories: “other light”
and “mirage light,” based on population quality. The population quality refers to the overall performance or
effectiveness of the population. In this strategy, the integrated area (.S) under the population fitness function
(f (z)) curve is used as a measure of population quality. Figure 11a illustrates the curve representing the
population fitness function, while Fig. 11b depicts the integrated area ( S) beneath this curve.

In swarm intelligence algorithms (SIAs), fitness typically represents the quality of individual solutions.
However, evaluating the overall population quality becomes challenging when fitness values are discrete and
high-dimensional. To address this, individual fitness values are approximated using a continuous function
( f (z)). The FATA leverages the principle of definite integration to compute the integrated area (.S) of the
population fitness function curve. This integrated area serves as a comprehensive metric to assess and compare
the quality of different populations.

By quantifying population quality through definite integration, FATA ensures an efficient and reliable
mechanism for distinguishing high-quality populations, enabling the application of appropriate search strategies
tailored to either the “other light” or “mirage light” populations®!.

Ly + (Uy — Lp) ® rand ,rand > P
nest _ Thess 4 i ® Paras , rand < P and rand < q (31)
Zrand + [0.5 e (o +1) (Up — L) — az;] ® Paraz , rand < P and rand > q

S - Sonst
p = 2 “worst 32
Sbest - Swo’r'st ( )

it, — fit

M (33)

q = - 3
fltbest - thworst

In the FATA, = represents an individual light, while 2™“** denotes the new individual generated during the
optimization process. Algorithm 1 outlines the mirage light filtering principle employed by FATA. This filtering
process includes three primary strategies: the first-half refraction strategy, the second-half refraction strategy,
and the total internal reflection strategy, which are detailed sequentially in Sect. 3.2.

The population quality factor ( P) is defined in Eq. (31), where a smaller value of the integrated area
(S) indicates a higher-quality population. Specifically, Sworst and Spes: represent the quality of the worst
and best populations, respectively. Populations classified as mirage light populations exhibit superior quality,
characterized by smaller S values.

fitness Jfitness
Jtx) A fix)

0 a Xixz Xn-1 h X 0 a xXixe Xn-l b >l'

@) (b)

Fig. 11. Population fitness curve in FATA (a) Population fitness function curve (b) Integrated area (S) Under

the curve’l.
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In Eq. (31), the individual quality factor (¢) is introduced, which quantifies the performance of each
individual within the population. Here, fit, represents the fitness of the current individual (z), fit,,, ..
corresponds to the fitness of the worst-performing individual, and fit,,, represents the fitness of the best
individual. By leveraging these fitness metrics and quality factors, FATA effectively identifies and prioritizes
high-performing mirage light populations and individuals to guide the optimization process®'.

Input: light individual x;
Fit the population quality function f(x) according to the fitness of the
individuals;
Calculate the integrated area S of the f(x) based on the principle of definite
integration;
Update the optimal area S,,;; and the worst area S,,,,; ;
Calculate the population quality factor P by Eq. (32);
If rand > P

The population is the light rays directed towards a medium with
inhomogeneous density populations;

The population performs Eq. (31) to initialize the population randomly;
Else

The population is the light rays not directed towards a medium with
inhomogeneous density populations;

The population executes the search strategy (Egs. (31));
End If

Return new individual x™¢*t ;

Algorithm 1. The mirage light filtering strategy

y=1r@) =Y focié,a (34)
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Equations (34-35) detail the process of calculating the area (S) under the population fitness curve
f@) (f(z1) < f(z2)... < f(xi)... < f(zn)) using the principle of definite integration. This principle
leverages the concept of limits to compute the integrated area of f (). Specifically, Eq. (34) defines the
population quality fitting function f (z), which represents the fitness curve using discrete points (x;,y:),
where i € [1,n]. The parameters c; and ¢ ; are used within the fitting function to optimize the representation
of the curve. This approach ensures accurate estimation of population quality by evaluating the overall fitness
distribution within the population.

Light propagation principle In FATA, the light propagation principle is applied following the mirage light
filtering strategy. This mechanism functions as the algorithm’s local search approach, enhancing exploitation
within the search space to identify minima. As shown in Fig. 12, the mirage light rays in FATA originate from a
small boat positioned in the lower-left corner of the search space.

Initially, the light population undergoes the mirage light filtering process, where the population is evaluated
and refined using calculus-based principles to identify individuals contributing to the mirage phenomenon.
After this filtering, the refined mirage light population is subjected to sequential refraction and reflection
processes. During these stages, the direction and size of the light rays adapt dynamically, as depicted in Fig. 12,
showcasing their transformations. This iterative procedure allows the filtered light population to explore the
local search space effectively, optimizing the chances of locating a local minimum.

FATA employs a distinct search strategy based on the light propagation principle, further refined using
trigonometric functions. This approach consists of three sequential components: the refraction strategy in the
initial phase, the reflection strategy in the subsequent phase, and a final refraction step. The application of these
strategies is governed by the individual quality factor defined in Eq. (35).

Light Refraction (First Half Phase): In this phase, illustrated in Figure 13, light rays (denoted as x) enter a
medium with varying density, transitioning from an optically denser medium to a less dense medium. During
this transition, both the direction and size of the light rays are altered. The relationship between the angle of
incidence (41) and the angle of refraction (i2) follows the principle that i < 42.

Figure 13 visually analyzes the process of refraction for the light individuals. The light ray is represented as
x, and the refractive surface is labeled as the level. After undergoing the first half of the refraction process, a
new individual,), "°**, is generated, as defined by Eq. (36). The relationship NO = C e OM, where C is

Sm——

xbhest

reflection

Light refraction (the
first half phase)

Light refraction (the
second half phase

Fig. 12. FATA algorithm and the mirage principle’.
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Fig. 14. Second refraction process of light.

a constant, is assumed for this phase. The equations (Eqs. 36-38) govern the transformations in this strategy,
guiding the propagation of light rays through the medium.

mnext = Tpest + Tz (36)
r, =xe Para; (37)
sin (41)
P =——~7/— =tan (0
= Ce cos (i2) an (6) (38)

In the FATA, the propagation of light individuals involves dynamic adjustments during the first-half refraction
strategy. Here, ™%t denotes the newly generated individual, while @yes: represents the current best individual.
The refraction step is symbolized as ., which describes the intermediate adjustment of the individual during
the refraction process.

A key parameter in this strategy is Paraz, the first-half refraction ratio, which dynamically changes during
light propagation. This parameter regulates the degree of transformation the light individual undergoes when
passing from one medium to another.

To simplify the measurement of the incident angle (71) and the refraction angle (7z2), the algorithm
introduces the parameter 0, which substitutes the angle variation. In the algorithm, 6 is defined within the
range [0,1], providing a normalized and efficient means to represent the angle change during the refraction
process. Equation (38) encapsulates this relationship, ensuring accurate computation of the transformations
during light propagation®'.
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Light Refraction (Second Half Phase): Following the first half refraction phase, the light enters the second
half refraction phase, where it propagates through random points within the medium. As illustrated in Fig. 14,
the process is characterized by the angle of incidence (i3) being smaller than the angle of refraction (i4). This
occurs because the light travels through a medium with varying density, resulting in a continuously changing
refractive index (Paraz ).

During this phase, the light individual (zy) generates a new individual (z™**) by incorporating
information from random individuals ( Zrqrnq) located within the search space. This random selection enhances
the exploration capabilities of the algorithm. The transformations involved in this refraction process are
mathematically described in Eqgs. (41-43), which outline the systematic generation of new individuals in the
context of FATA’s refraction strategy.

:L’HEZt = Zrand + Ts (39)
s =x5 o Paras (40)
cos(is) 1

Paras = (41)

Ce sin(ic) tan(f)

In the second half refraction strategy, xs represents the refraction step, while Z,qna denotes a randomly
selected individual from the population. The second refraction ratio, Paraz, plays a key role in determining the
behavior of light propagation during this phase.

As illustrated in Fig. 15a, the value of Para; oscillates randomly within the range [—2,2] and converges
toward zero as the number of iterations increases. Conversely, Fig. 15b shows that Para. exhibits random
oscillations between [—150,150], with a general upward trend as iterations progress.

It is observed that both parameters initially have large values. To enhance the algorithm’s efficiency, these
parameters are scaled to the standardized interval [0,1]. The oscillatory nature of Paras, particularly in
the later stages of the FATA, improves its ability to escape local optima, thereby enhancing the robustness of
the search process. Standardizing these parameters ensures smoother progression and better performance in
optimization tasks.

The total internal reflection phase marks the culmination of the light propagation process in the formation
of the mirage phenomenon. This stage occurs when the angle of refraction reaches a threshold where further
refraction becomes impossible, causing the light to reflect entirely within the medium of inhomogeneous density.

This principle is implemented in the FATA as a total internal reflection strategy, which encourages the
population to explore in the opposite direction, thereby enhancing diversity and exploration. As shown in
Fig. 16, the angle of incidence ( i5) equals the angle of reflection ( is), adhering to the laws of reflection.

In the Fig. 16:

e O (x0,0) denotes the center point of the interval ( [Ls, Up])., where Ly and U, represent the lower and
upper bounds of the search space.

o FEand F represent the vertical distances of the incident and refracted light rays from the horizontal plane,
respectively.

The total internal reflection strategy modifies the light individual ( «) into a new individual ( x™"") that explores
the search space in the reverse direction. This mechanism increases the algorithm’s ability to identify global
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Fig. 15. Refraction parameters in the second half refraction strategy: (a)Trends of Parai (b) Trends of
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Fig. 16. Total internal reflection process of light®!.

optima by overcoming stagnation in local optima. Equations (14-17) detail the mathematical formulation of
this strategy, ensuring precise adjustments based on the geometry of the light propagation and reflection process.

" =z =050 (a +1)(Up+ L) — (42)
F
_F 43
=4 (43)
moﬂf:w (44)
Uy—L Uy+ L
To = b2 b+Lb:% (45)

The individual x; is generated through the total internal reflection strategy. The parameter o represents the
reflectance of this strategy and governs the transformation pattern of the light individual. When « exceeds 1,
the new individual z™** crosses the defined boundary, with o constrained to the interval [0,1]. The specifics
of o ‘s value will be explored further in Sect. 4.2. Here, Uy and L denote the upper and lower boundaries of
the individual’s position, respectively.

To provide a comprehensive understanding of FATA, Algorithm 2 presents its pseudocode, while Fig. 17
illustrates the workflow, highlighting the two core population updating mechanisms. The algorithm follows a
structured process consisting of population initialization, parameter configuration, and an iterative evolution
phase. Within this phase, the computational burden of both the mirage light filtering and light refraction strategies
is primarily determined by the number of iterations, resulting in a time complexity of O (n( MaxFEs o d)).
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Input: parameters n, d, MaxFEs;
Output: optimal Individual;
Initialize parameters Para,, Para,, «;
Generate an initial population x of size n;
Evaluate the fitness of each individual,
While (FEs < MaxFEs) do
Update the best fitness value and store the best individual best fitness, Xp.s ;
Compute weight factors P using Eq. (34);
Determine Para; and Para, using Eq. (40) and Eq. (47);
For each individuali =1 to n do
Apply Algorithm 1 to implement the mirage light filtering mechanism;
If rand > P, initialize the population randomly using Eq. (31).
Else
If rand < q, Update x; based on the first-phase light refraction strategy using
Eq. (38).
Else
Adjust x; according to the second-phase light refraction strategy (Eq. 41).
Further refine x; using the total internal reflection mechanism (Eq. 44).
End If
End If
End For

t=t+1;

Algorithm 2. Pseudocode of FATA
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Fig. 18. Simulation system.

GJO 0.5251 | 0.1310 3.9961 | -0.0146 2.5244 | 0.1438 | 1.5849
- ECO 0.49747 | 0.3525 3.3686 | —0.021695 | 2.6645 | 0.71119 | 2.7082

ESC 0.66383 | 0.14652 | 3.9752 | —0.0026187 | 2.4988 | 0.22543 | 1.7212

FATA 0.95732 | 0.082446 | 1.7621 | —0.0072356 | 1.1953 | 1.1022 | 4.959

Table 7. PI controller parameters with ITAE values.

GJO 2.9666 0.2723 2.4420 145.8440
ECO 0.9838682 | 0.3387465 | 0.4080806 | 194.7095
Fibn ESC 3.509963 | 0.2967109 | 1.076755 | 95.23372
FATA 3.72744 1.787188 | 1.018562 | 155.9837

Table 8. PIDn controller 1(PV) parameters.

GJO 0.1865 5.8383e-04 -0.0010 1.5955

ECO —0.1158584 | 0.1360314 —0.8529435 | 2.419207
pibn ESC 0.471755 | -0.04236771 3.153995 | 105.7223

FATA 2.114036 | -0.007076795 | 0.5647366 | 144.5859

Table 9. PIDn controller 2 (Wind) parameters.

Simulation and experimental results
In this study, the control of a two-area power system powered by three different energy sources was investigated
using PI, PIDn, FOPI, and PPIDn controllers. The parameters of these controllers were optimized using GJO,
ECO, ESC, and FATA algorithms.

Subsequently, the obtained results were validated through OPAL-RT, and a comparative analysis was
conducted between the simulation outcomes and experimental results. The simulated system is illustrated in

Fig. 18.

The mapping of the controllers is defined as Controller 1 — PV system, Controller 2 - Wind system, and
Controller 3 - Thermal system. This configuration ensures clear identification and consistency with the
corresponding parameter tables (Tables 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16), where the same controller indices
are used for comparative and optimization analyses.
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Controller 3 | Optimization Algorithms K K, Ky, n, ITAE
GJO 4 4 0.4301 9.0091 | 0.1958

PIDn ECO 3.999821 | 3.999953 | 0.3454577 | 179.8215 | 0.2531
ESC 3.977549 | 3.928608 | 0.4525752 | 11.23297 | 0.19669
FATA 4 3.973674 | 0.524713 | 7.918286 | 0.18676

Table 10. PIDn controller 3 (Thermal) parameters with ITAE values.

Controller | Optimization Algorithms | K | K, A K, K, A,
GJO —-0.0027 | 0.8845 | 0.4591 3.0071 | -0.2188 0.3792
ECO —-0.39365 | 1.5131 | 0.29532 | —1.2835 | 2.8498 0.0001
FOPI ESC 0.77817 | 0.51205 | 0.33906 | 2.3735 | —0.2992 0.22255
FATA 0.33822 | 0.23075 | 0.40761 | 0.89628 | 0.0073297 | 0.54136

Table 11. FOPI controller 1 and 2 parameters.

Controller | Optimization Algorithms K K, A, ITAE
GJO 2.3013 0.2927 | 2.7284e-04 | 2.1444
ECO 3.8094 | -0.83418 | 0.49918 2.0176
FOPI
ESC 24733 | -0.35033 | 0.52696 2.7095
FATA 0.38526 | 0.892 | 0.49146 7.4598
Table 12. FOPI controller 3 parameters and ITAE values.
Controller 1 | Optimization Algorithms K, K, K, n Kot Kh,
GJO 0.9840 0.2482 3.0399 150.5947 | 0.0150 0.0299
PPID ECO 4 1.599685 | 3.750207 | 108.2514 | 3.877172 |0
n
ESC 3.924731 | 1.062002 | 3.218801 | 115.3733 | 0.0484639 | 0.1878636
FATA 1.170467 | 0.2721576 | 1.089585 | 53.07538 | O 0
Table 13. PPIDn controller 1(PV) parameters.
Controller 2 | Optimization Algorithms | K, K, Ky, n, Koa Kh,
GJO —-0.0331 | —0.0477 5.5685e-05 1.4783 | 2.0418 1.1120
PPID ECO 4 0.006105196 | —3.256132 | 99.70377 | 3.887082 0
n
ESC 3.992627 | -0.01261917 | 3.945147 1.001308 | 0.01774135 | 0.0471736
FATA 1.184828 0.2753649 | 0.9450793 | 116.2314 | 4 1.745256
Table 14. PPIDn controller 2 (Wind) parameters.
Controller 3 | Optimization algorithms K K, Ky n, Koras Kh,
GJO 4 4 0.7174 10.9674 | 0 0.0063
PPID ECO 3.608775 | 3.309643 | 0.5120614 | 152.9706 | 0.006157692 | 0.2757894
n
ESC 3.979733 | 3.990961 | 0.8278113 | 11.4859 |0.07643719 | 1755.635e-6
FATA 1.633781 | 4 1.895669 | 193.2236 | 1.867529 0

Table 15. PPIDn controller 3 (Thermal) parameters.
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Controller | Optimization algorithms | ITAE
GJO 0.6218
ECO 0.60473
PPIDn
ESC 0.3896
FATA 1.6889

Table 16. PPIDn controller ITAE parameters.

Variable | Value Unit Unite

a -18 - PV Solar Power
b 900 --- PV Solar Power
c 100 - PV Solar Power
d 50 - PV Solar Power
D 43 meter Wind Turbine
a 1452 m? Wind Turbine

P 1.225 kg/m? Wind Turbine
H 40 m Wind Turbine
w, 27.2/18.1 | rpm Wind Turbine
P, 600 kw Wind Turbine
G, 0.59 - Wind Turbine
K, 1.25 p.u. MW Wind Energy
K, 1 p.u. MW Wind Energy
KP3 1.4 p.u. MW Wind Energy
KPC 0.08 - Wind Energy
K 1.494 - Wind Energy
sz 0.6 s Wind Energy
sz 0.041 s Wind Energy
T 1 s Wind Energy
T, 4 s Wind Energy
Py 200 MW Thermal System
P, 100 MW Thermal System
R, 2.5 Hz/p.u. MW | Thermal System
B 0.8 p-u. MW/Hz | Thermal System
Ky, 1 p.u. MW Thermal System
T 0.08 s Thermal System
K, 1 p.u. MW Thermal System
Ty 0.3 s Thermal System
K., 0.33 p.u. MW Thermal System
K 120 Hz/p.u. MQ | Thermal System
Ty 20 s Thermal System
T 10 s Thermal System
2¢T,, 0.545 p-u. Thermal System
a, -1 - Thermal System
f 60 Hz Thermal System

Table 17. System parameter values used in simulation??.

Parameters
In this study, four different controllers were optimized using four distinct algorithms, resulting in a total of 16
optimization scenarios. The optimization process was conducted with a population size of 50 and 100 iterations
for each algorithm.The solar panel model was based on an ambient temperature of 27 °C and a solar irradiance
of 1000 W/m?. The wind energy system consisted of 55 wind turbines. The simulations were performed in the
MATLAB/Simulink environment using transfer function-based modeling. Some of the wind turbine parameters
listed in Table 17 are provided for informational purposes.

The values of the parameters used in the simulations are summarized in Table 17.

Here, R is the governor speed regulation constant and B shows the frequency bias parameter, H is hub height
and K_is blade character®.
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Variable | Lower | Upper
K, -4 4
K, -4 4
K, -4 4
K, 0 4
K, 0 2

1 200

0.0001 1

Table 18. The controller parameters limits.

The lower and upper limits of the controllers used in the study are presented in Table 18. The optimization
algorithms search for optimal parameters within these predefined ranges.

To establish these limits, a preliminary analysis was conducted. Initially, the best possible values were
determined using the Ziegler-Nichols method and trial-and-error approaches. The search range was then set to
encompass these values. Additionally, parameter ranges from previous studies in the literature were considered
when defining the search space.

The simulation was conducted by applying a 10% load increase to each region in the system.

Simulation
In the simulation studies, PI, PIDn, FOPI, and PPIDn controllers were implemented. The parameters of each
controller were optimized using GJO, ECO, ESC, and FATA algorithms within the search space defined in
Table 18, aiming to determine the best possible values. A total of 16 different simulations were conducted.

For each optimization algorithm, the population size was set to 50, and the number of iterations was fixed
at 100. The performance of the optimization algorithms was evaluated using the ITAE criterion as a reference.

The best parameter values obtained for PI controllers using different optimization algorithms are presented
in Table 7. The lowest ITAE value, 1.5849, was achieved using the GJO algorithm.

The optimization results for the PIDn controller are presented collectively in Tables 8, 9 and 10. The data is
divided into three sections:

« Table 8 displays the results for the solar energy system controller.
« Table 9 presents the results for the thermal energy system controller.
o Table 10 provides the results for the wind energy system controller.

Among these, the best ITAE value was achieved using the FATA algorithm, with a value of 0.18676.
The optimization results for the FOPI controller are presented in Tables 11 and 12.

« Table 11 provides the optimized parameters for FOPI controllers 1 and 2.
o Table 12 lists the parameters for FOPI controller 3 along with the corresponding ITAE values.

Among the tested algorithms, the lowest ITAE value (2.0176) was obtained using the ECO algorithm.
The optimization results for the PPIDn controller are presented in Tables 13, 14, 15 and 16.

o Table 13 provides the optimized parameters for the solar energy system controller.

o Table 14 presents the parameters for the thermal energy system controller.

o Table 15 lists the parameters for the wind energy system controller.

o Table 16 summarizes the ITAE values obtained using different optimization algorithms for the PPIDn con-
troller.

Among the tested algorithms, the ESC algorithm achieved the lowest ITAE value of 0.3896.
The convergence curves of the PI, PIDn, FOPI, and PPIDn controllers are illustrated in Figs. 19, 20, 21 and
22.

« Figures 20 and 22 provide a more detailed visualization of the curves for better clarity.
o Figs. 19 and 21 do not require detailed plotting, as the general trends are sufficiently visible.

In Fig. 19, the GJO algorithm achieved the lowest ITAE value, which, as shown in Table 7, is 1.5849.

Figure 20 presents the optimization results for the PIDn controller. Among the tested algorithms, the FATA
algorithm achieved the lowest ITAE value of 0.18676, indicating superior performance. This trend is clearly
observed in the magnified section of the figure and is further validated by the results in Table 10.

Figure 21 illustrates the optimization results for the FOPI controller using ECO, ESC, FATA, and GJO
algorithms. The vertical axis represents the best fitness value, while the horizontal axis shows the number of
iterations. Among the tested algorithms, ECO achieved the lowest ITAE value of 2.0176, indicating the best
optimization performance for this controller. As seen in the figure, GJO (black) and ECO (blue) exhibit rapid
initial convergence, whereas FATA (green) stagnates at a higher fitness level, suggesting ineffective parameter
tuning. The ESC (red) algorithm shows a moderate convergence rate, stabilizing at a slightly higher ITAE value
than ECO. The results indicate that ECO effectively balances exploration and exploitation, leading to faster

Scientific Reports|  (2025) 15:43342 | https://doi.org/10.1038/s41598-025-27191-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

PI Controller

Best Fitness

10~ \

s R
—

0
0 10 20 30 40 50 60 70 80 90 100
Iterations
Fig. 19. Convergence curve for PI controller.
PIDn Controller
25
201
715
@
S
[
2
m 10
e
of
PR NN E R R TR R R AT TR R T
0 10 20 30 40 50 60 70 80 90 100
Iterations

Fig. 20. Convergence curve for PIDn controller.

convergence and lower ITAE values. In contrast, FATA struggles to refine the solution after early iterations,
possibly due to its search strategy. This finding aligns with previous studies where ECO has demonstrated robust

performance in fine-tuning controller parameters.
Figure 22 illustrates the optimization results for the PPIDn controller using ECO, ESC, FATA, and GJO

algorithms. The best fitness values are plotted against the number of iterations, with a zoomed-in section
highlighting the finer details of the convergence behavior. Among the tested algorithms, ESC achieved the lowest
ITAE value of 0.3896, indicating superior optimization performance. As seen in the figure, ESC (red) exhibits
rapid convergence and stabilizes at a lower fitness value compared to the other algorithms. ECO (blue) and
GJO (black) also show stable convergence, but at slightly higher ITAE values. FATA (green), on the other hand,
stagnates at a higher fitness level, suggesting suboptimal tuning. The results suggest that ESC effectively balances
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Fig. 22. Convergence curve for PPIDn controller.

exploration and exploitation, allowing it to converge to an optimal solution more efficiently. The detailed section
in Fig. 22 further highlights this advantage by showcasing the faster fitness improvement of ESC compared to
the other methods. These findings reinforce the effectiveness of ESC in optimizing PPIDn controller parameters
for this system.

Table 19 presents the optimized PIDn controller parameters obtained using the FATA algorithm, as
demonstrated in Tables 8 and 9, and 10. These parameters were derived from 16 different simulation studies,
where the FATA algorithm achieved the lowest ITAE value of 0.18676.

As seen in Table 19, the optimal values for Kp, K, K, and n were determined for each region. These values
were fine-tuned to enhance system performance, ensuring improved frequency stability and dynamic response.
The low ITAE value indicates the effectiveness of FATA in optimizing PIDn controllers, making it a strong
candidate for load frequency control in multi-area power systems.

Figure 23 presents the system responses obtained using the best-optimized parameters for each controller
(P1, PIDn, FOPI, and PPIDn). The figure illustrates the frequency deviations in each region (Af, and Af)) as

well as the tie-line power deviation (AP,,) over the time. As shown, the PPIDn-ESC controller (red) provides

Scientific Reports |

(2025) 15:43342 | https://doi.org/10.1038/s41598-025-27191-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

T (Settling

Time) Ug (Undershoot) O, (Overshoot)
Cont. | Alg. | Af, | Af, | Af,, | Af) Af, Af, Af, Af, Af,
PI GJO 12 |13 |12 -0.13 | -0.18 | —0.0285 | 0.0139 | 0.0345 | 0.014
PIDn FATA | 4 4 |4 -0.09 | -0.09 | -0.0023 | 0.05 0.0384 | 0.00153
FOPI ECO |11 12 | --- -0.11 | -0.165 | —=0.0215 | 0.011 | 0.0283 | 0.01
PPIDn | ESC 6 6 |4 -0.12 | -0.12 | -0.0025 | 0.02 0.018 | 0.00077

Table 19. Comparison of the best results obtained with optimization algorithms for all controllers in terms of

TS, U, and O,
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Fig. 23. System responses with the best-tuned parameters for PI, PIDn, FOPI, and PPIDn controllers.

the fastest settling time and minimal oscillations, indicating superior performance in stabilizing frequency
fluctuations. The PIDn-FATA (green) and FOPI-ECO (blue) controllers exhibit relatively higher oscillations
but still converge to a stable state. In contrast, the PI-GJO controller (black) shows the largest initial deviations
and prolonged oscillations, suggesting slower stabilization. These results confirm that ESC-optimized PPIDn
achieves the best dynamic response, effectively minimizing frequency deviations and ensuring system stability
in a multi-area power system.

Figure 24 provides a more detailed view of the system responses, illustrating the frequency deviations Af, and
Af, in each region and the tie-line power deviation AP, over a shorter time interval.

Compared to Fig. 23, this zoomed-in representation allows for a clearer analysis of the initial transient
behavior and oscillatory characteristics of each controller. The differences in settling time, peak overshoot,
and damping performance among the PI-GJO, PIDn-FATA, FOPI-ECO, and PPIDn-ESC controllers can be
observed more precisely.

Table 19 presents a comparative analysis of the settling time (T,), undershoot (Uy), and overshoot (O;) values
for the frequency deviations shown in Fig. 24, based on the optimized parameters of each controller.

Among the tested controllers, the PIDn controller optimized with FATA achieved the best results in terms
of settling time and undershoot, demonstrating faster stabilization and minimal deviations. On the other hand,
the PPIDn controller optimized with ESC exhibited the lowest overshoot values, indicating superior damping
performance. The FOPI controller optimized with ECO provided the best overshoot performance only for the
first region’s frequency deviation. Meanwhile, the PI controller failed to achieve competitive results across any of
the evaluated criteria, performing worse than the other controllers.

Experimental results

The OPAL-RT OP5707 platform was utilized to validate the real-time performance of the proposed controllers.
This hardware-based environment allows the assessment of control algorithms under realistic conditions,
including finite sampling intervals, communication delays, and numerical precision effects that are not fully
captured in offline simulations. Such validation ensures that the proposed FATA-optimized controller is not only
theoretically efficient but also practically reliable for real-world power system applications.
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Fig. 24. Detailed system responses with the best-tuned parameters for PI, PIDn, FOPI, and PPIDn controllers.

Fig. 25. OPAL-RT experimental setup.

Among all the evaluated controllers, the PIDn controller achieved the best performance. Its parameters
were optimized using the FATA algorithm, as presented in Table 7. To verify the reliability of these results,
the optimized parameters were implemented on the OPAL-RT platform, and the experimental outcomes were
compared with the simulation results. The experimental setup used for real-time validation is shown in Fig. 25.

The objective of this section is to validate the simulation outcomes Matlab/Simulink program in the context
of real-time implementation of the proposed approach. For this purpose, this process is illustrated as shown
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Fig. 27. OPAL-RT result of Af,.

in Fig. 25. It is imperative to acknowledge that the outcomes of the OPAL-RT investigations are influenced by
intrinsic delay and error components that are not present in conventional offline implementations. As shown in
Figs. 26 and 27, and 28, the time domain responses of the Afl, Afz, and AP, based on the FATA-PIDn controller
are depicted, with these responses being based on the real-time simulator OPAL-RT. As evidenced by Fig. 25,
the results obtained from the MATLAB simulation software demonstrate a notable degree of similarity to those
produced by the OPAL-RT real-time simulator.

Figures 26 and 27, and 28 present the experimental and simulation results obtained using the PIDn controller
optimized with the FATA algorithm. These figures compare the real-time performance of the controller,
demonstrating its effectiveness in practical implementation.

In Fig. 26, the Af| in area-1 is depicted. The results from the OPAL-RT experimental setup and Matlab/
Simulink simulation are shown together, indicating a strong correlation between the experimental and simulation
data. This consistency validates the accuracy and reliability of the proposed control approach.

Figure 27 illustrates the Af, in Area 2. The experimental results obtained from the OPAL-RT platform and
the Matlab/Simulink simulation show an almost identical response, as the curves overlap perfectly. This strong
agreement confirms the accuracy and reliability of the proposed PIDn controller optimized with the FATA
algorithm in real-time implementation.

Figure 28 illustrates the power deviation at the tie-line between the two areas. The experimental results
from the OPAL-RT platform and the Matlab/Simulink simulation are perfectly aligned, demonstrating an exact
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match. This strong correlation confirms the accuracy and reliability of the proposed PIDn controller optimized
with the FATA algorithm in maintaining frequency stability across interconnected regions.

It is again noteworthy that the OPAL-RT hardware inherently involves minor latency and dead-time effects
caused by real-time signal processing and data communication. Despite these practical nonlinearities, the
experimental results obtained from the OPAL-RT platform closely matched the MATLAB/Simulink simulations.
Therefore, the proposed model and controller design are considered sufficiently accurate and robust for realistic
operating conditions.

Discussion

In this study, PI, PIDn, FOPI, and PPIDn controllers were implemented to regulate frequency in a two-area
power system with three different energy sources. The parameters of these controllers were optimized using
GJO, ECO, ESC, and FATA algorithms. Among the 16 different optimization scenarios, the PIDn controller
optimized with the FATA algorithm demonstrated the best performance in simulation studies.

To validate these results, the optimized parameters were tested on the OPAL-RT real-time simulation
platform. The experimental results closely matched the simulation outcomes, with overlapping response curves
confirming the accuracy and reliability of the proposed control strategy.

Based on the findings, the following key conclusions can be drawn:

« Despite its more complex structure, the PPIDn controller did not outperform the PIDn controller, which
achieved the best results among the tested controllers.

o The selected optimization algorithms were chosen based on their potential to effectively address frequency
deviation issues in a two-area power system.

« Simulation runtime influences optimization performance, and a population size of 50 with 100 iterations was
considered sufficient for the optimization process.

« Since ITAE values change over time, longer simulation durations result in higher ITAE values. Therefore, the
simulation time must be carefully selected to ensure a meaningful comparison.

« The experimental validation of the results confirms the accuracy and correctness of the optimization process,
demonstrating the practical applicability of the proposed method.

When the obtained results are compared with similar studies in the literature, it is observed that in the study
where PI/PID/PDn-PI cascade controllers were tested, the controller parameters were optimized using the
Coyote optimization algorithm. During a 30-second simulation period, the ITAE value was measured, and
the best result of 1.935 was achieved with the PDn-PI controller. In the present study, however, a significantly
improved ITAE value of 0.18676 was obtained*®.

In conclusion, for the considered power system, the PIDn controller optimized with FATA exhibited the best
overall performance, effectively improving frequency stability and system response.

Conclusion and recommendations
Based on this study, the following recommendations are provided for researchers conducting similar work:

« The most effective controller cannot always be predicted in advance. In some cases, even the simplest control-
lers may yield the best results.
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Exploring different optimization algorithms may lead to improved outcomes. Testing alternative methods
could further enhance performance.

Increasing the population size and the number of iterations can improve optimization results. However, this
also increases computational time. Therefore, unnecessary simulation time should be avoided, particularly by
considering the settling time as a critical factor.

Utilizing more advanced computing systems can significantly reduce processing time, enabling more efficient
optimization.

Additionally, the findings from the simulation study validate the effectiveness of the FATA-PIDn controller
developed for a two-area, three-source LFC system. This conclusion is supported by real-time OPAL-RT-
based simulations, confirming the practical applicability of the proposed method in a realistic operational
environment.

Although the present study focused on validating the performance of the FATA-based controllers, future
research will include a detailed computational complexity assessment, sensitivity and stability analyses to
provide a more comprehensive understanding of system behavior.

Data availability
All relevant data are within the manuscript. The collection and analysis method complied with the terms and
conditions for the source of the data.
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