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The increasing integration of renewable energy sources introduces severe intermittency in multi-
area power systems (MAPS), resulting in significant voltage and frequency fluctuations. This study 
addresses this problem by implementing an automatic generation control (AGC) framework for a 
two-area hybrid power system composed of solar, wind, and thermal units. Four types of controllers 
(PI, PIDn, fractional-order PI (FOPI), and predictive PIDn (PPIDn)) were optimized using four recent 
metaheuristic algorithms: golden jackal optimization (GJO), educational competition optimizer 
(ECO), escape algorithm (ESC), and the newly proposed Fata Morgana Algorithm (FATA). The results 
demonstrate that the FATA-optimized PIDn controller provides the best dynamic performance, 
achieving an ITAE value of 0.18676, which represents an improvement of over 4.6% compared to the 
best established optimizer (ESC). Real-time validation on the OPAL-RT OP5707 platform confirmed 
the practical feasibility of the proposed FATA-based control strategy, verifying its ability to enhance 
frequency stability. These findings highlight the novelty and efficiency of FATA in optimizing AGC 
parameters for renewable-based multi-area power systems.
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Abbreviations
2DOF	� PDNTwo degrees of freedom proportional derivative with filter
2DOFPID	� Two degrees of freedom FPID controller
3DOF-PDN	� Three degrees of freedom proportional derivative with filter
ACE	� Area control error
ACO	� Ant colony optimization
AHB	� Artificial humming bird
ALO	� Ant-lion optimization algorithm
ANFIS	� Artificial neuro fuzzy inference systems
ANN	� Artificial neural networks
 BB-BC	�  Big bang-big crunch
BOA	�  Bear optimization algorithm
 CBO	�  Chaotic butterfly optimization
 COA	�  Cuckoo optimization algorithm
 GOA	�  Grasshopper optimization algorithm 
 CSOA	�  Crow search optimization algorithm
 DOF-PDN	�  Degree of freedom proportional derivative with filter
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DRLB	�  Deep reinforcement learning based
DWCA	�  Discrete water cycle algorithm
ECO	�  Educational competition optimizer
ESC	�  Escape optimization algorithm
FATA	�  Fata morgana algorithm
 FHODFC	�  Fractional high order differential feedback controller
FLPID	�  Fuzzy logic integrated PID
FLC	�  Fuzzy logic controller
FOPI	�  Fractional order proportional-integral
FOPID	�  Fractional order proportional-integral-derivative
 FOPID-PR	�  Fractional order proportional integral derivative-proportional resonant
FOTID	�  Fractional order-based tilt-Integral-derivative 
FSO	�  Firebug swarm optimization
GA	�  Genetic algorithm
GJO	�  Golden jackal optimization
GWO	�  Grey wolf optimization
 hGWO-PS	�  Hybrid grey wolf optimization-pattern search
HODFC	�  High order differential feedback controller
HSCOA	�  COA into harmony search (hs) algorithm
IAE	�  Integral of absolute error
ISE	�  Integral square error
 ITAE	�  Integral of time weighted absolute error
ITSE	�  Integral of time square error
LMA	�  Levenberg marquardt algorithm
MAPS	�  Multi area power system
MFO	�  Moth flame optimizer
mMSA	�  Modified moth swarm algorithm
PDN	�  Proportional-derivative with filter
PI	�  Proportional-integral
PID	�  Proportional-integral-derivative
PIDn 	�  Proportional-integral-derivative with filter
PPIDn	�  Predictive PID with filter
PPIDn	�  Predictive proportional-integral-derivative with filter
PSO	�  Particle swarm optimization
PV 	�  Photovoltaic panel
SAR	�  Search and rescue
 SCA	�  Sine–cosine algorithm
SOA	�  Skill optimization algorithm
SSA	�  Salp swarm algorithm
TAPS	�  Two area power system
TIDDF	�  Tilt-integral-double derivative filter
TLBO	�  Teaching learning-based optimization
WCA	�  Water cycle algorithm
P_line12 	�  Power in the transmission line
 V1	� Voltage of area 1
V2	� Voltage of area 2
δ1	� Phase angle of area 1
δ2	� Phase angle of area 2
X12	�  Impedance of the transmission line
f  	� System frequency
ΔPL	�  Instantaneous load changes
Δf1	�  First area frequency change
Δf2	�  Second area frequency change
Δftie	� Connection point frequency change
N	�  Series cells per string
λ	�  Constant coefficient and depends upon the cell material
VPV	�  Cell output voltage
 ISC	�  Cell short circuit current
 IPV	�  Cell output current
 IPH	�  Photocurrent 
M	�  Parallel strings
I0	�  Reverse saturation current
RS	�  Series resistance of cell
a	�  negative value of zero in transfer function
b	�  Gain of PV system
c	�  Negative values of poles
d	�  Negative values of poles
Kgov	�  Governor gain
 Ktur	�  Turbine gain
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 Kreh	�  Reheater gain
 Kps	�  Power system gain
 Tgov	�  Governor time constant
 Ttur	�  Turbine time constant
 Treh	�  Reheater time constant
 Tps	�  Power system time constant
 Pwt	�  Wind turbine mechanical output power
ρ	�  Air density
as	�  Swept area
V	�  Wind speed
 Cp	�  Rotor efficiency
 TSR	�  Tip speed ratio
β	�  Pitch angle of the blade
 ωr	�  Rotor speed
D	�  Blade rotor diameter
 Kp1	�  Pitch control gain
 Kp2	�  Hydraulic pitch actuator gain
 Kp3	�  Data fit pitch gain
 Kfc	�  Fluid coupling gain
 Tp1	�  Pitch control time constant
 Tp2	�  Hydraulic pitch actuator time constant
 Tp3	�  Data fit pitch time constant
 Tw	�  Induction generator time constant
 KP	�  Proportional gain
 KD	�  Derivative gain
 KI	� Integral gain
 Kt	�  Tilt gain
 Kprd	�  Predictive term constant
 Kh	�  Delay time of the predictive term
 n	�  Derivative action filter constant
λ	�  Fractional integrator order
 t	�  Time
 s	� Second

Over the years, advancements in power systems have significantly increased their complexity compared to a 
century ago. Modern power systems operate at much higher power levels, making their control more challenging. 
The transition from megawatt (MW) to gigawatt (GW) power levels, the growing number and diversity of energy 
sources, the interconnection of regions through long transmission lines, unbalanced load distribution, voltage 
magnitude and phase differences between areas, fault conditions, and the integration of harmonic-generating 
systems such as electric vehicles have made power system operation increasingly complex1.

Furthermore, the intermittent nature of renewable energy sources, such as solar and wind, adds to these 
challenges. Since their power generation depends on environmental conditions, the output fluctuates 
continuously. This variability poses significant difficulties in maintaining system stability and ensuring that loads 
receive voltage and power at the desired frequency and amplitude. Therefore, precise voltage and frequency 
control is essential both within individual generation areas and across interconnected regions2,3.

In this study, automatic generation control (AGC), also referred to as load frequency control (LFC), is 
implemented in a two-area power system consisting of three different energy sources. Figure 1 illustrates the 
system structure, which integrates wind, solar, and thermal power generation.

In area-1, power is generated from solar energy, while area-2 consists of both wind and reheat-thermal power 
generation stations. The frequency deviation in area-1 is represented as Δf1, while in area-2, it is denoted as Δf2. 
The power deviation between the two areas is expressed as ΔPtie. The generated power is supplied to various 
energy consumers, such as industrial facilities and residential loads.

Each power generation area is controlled independently. If a region is not connected to another system, 
it can operate autonomously. However, when different energy generation systems are interconnected within 
a grid, they must remain balanced with respect to each other. To achieve this balance, various controllers are 
employed. Commonly used controllers include proportional-integral (PI), proportional-integral-derivative 
(PID)4, fractional order PID (FOPID)5, fuzzy logic controllers (FLC)6, and hybrid structures such as fuzzy logic 
integrated PID (FLPID) controllers7,8. The parameters of these controllers are typically tuned using different 
optimization algorithms. Several optimization techniques have been utilized, including the whale optimization 
algorithm (WOA)9, the gray wolf optimizer (GWO)10, genetic algorithm (GA) -based methods11, JAYA 
algorithm12, the water cycle algorithm (WCA)13, and chaotic butterfly optimization14. Intelligent and adaptive 
control approaches have recently gained attention for improving renewable-based power system performance. 
Neural network controllers have been applied for battery storage regulation under varying load profiles15, while 
hybrid energy management strategies integrating renewables and EV storage enhance grid flexibility16. Fuzzy-
assisted sliding mode and neuro-fuzzy repetitive control frameworks further strengthen frequency and current 
regulation in modern microgrid and inverter systems17,18.

To evaluate and compare the performance of the applied controllers, objective functions such as the integral 
of absolute error (IAE), integral of time-weighted absolute error (ITAE), integral of square error (ISE), and 
integral of time square error (ITSE) are employed19. Due to the practical challenges of experimental validation, 
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hardware platforms such as OPAL-RT have been developed. These devices enable experimental verification of 
simulation results and are highly effective in modeling power systems20.

A more comprehensive literature review is presented in the next section.

Literature review
In the literature, various aspects of multi-area systems—including the number and types of regions, the types 
of controllers used, the optimization algorithms applied for controller parameter tuning, and the objective 
functions employed—are summarized in Table 1.

As seen in Table 1, various controllers have been employed in multi-area power systems, including 
conventional PID21–23, PI-PD24, high-order differential feedback controller (HODFC) and fractional high-order 
differential feedback controller (FHODFC)25, series-connected controllers such as PI-PDN26, tilt-integral-
double derivative filter (TIDDF)27, fractional order proportional integral derivative (FOPID)28, fractional order 
proportional integral derivative-proportional resonant (FOPID-PR)29, and 2DOFPID30; three-network double-
delay actor-critic (TDAC)31, FLC of type 1 and 2, as well as PID-tuned FLC32, fractional order tilt-integral-
derivative (FOTID)33; artificial neuro-fuzzy inference systems (ANFIS) and artificial neural networks (ANN)34; 
DOF-PDN, 2DOF-PDN, 3DOF-PDN, Neuro-Fuzzy 3DOF-PDN23, and 3DOFPID-Fuzzy 3DOFPID35.

Regarding optimization algorithms, various techniques have been employed, including modified moth 
swarm algorithm (mMSA)21, GA, teaching learning-based optimization (TLBO)22, particle swarm optimization 
(PSO)25,26,34–36, crow search optimization algorithm (CSOA)27, cuckoo optimization algorithm (COA) and 
COA integrated with the harmony search algorithm (HSCOA)25, bear optimization algorithm (BOA), GWO26, 
artificial hummingbird algorithm (AHB)29, hybrid grey wolf optimization-pattern search (hGWO-PS)30, deep 
reinforcement learning-based optimization and DWCA32, search and rescue (SAR) Algorithm33, ant colony 
optimization (ACO)36, skill optimization algorithm (SOA)23, coot optimization algorithm28, moth flame 
optimizer (MFO), sine–cosine algorithm (SCA), salp swarm algorithm (SSA), PSO, ant-lion optimization 
algorithm (ALO)37, big bang-big crunch (BB-BC) optimization, firebug swarm optimization (FSO), levenberg-
marquardt algorithm (LMA), and PSO35. Additionally, numerous other optimization techniques have been 
explored in the literature.

The number of regions in the studies reviewed varies between two and five, with energy sources including 
thermal, photovoltaic, wind, hydro, and nuclear power. The number of energy generators in each region also 
differs depending on the system configuration.

Various controllers have been employed to regulate these systems. While PID-based controllers, different 
combinations of FOPID controllers, FLC, and DOFPID-based controllers are widely used, hybrid controllers 
such as Fuzzy-PID have also been commonly applied in load frequency control of multi-area power systems.

Finally, objective functions such as ITAE, IAE, ISE, and ITSE are frequently used for performance 
evaluation21–42. Among these, ITAE has been the most widely applied.

Motivation
The literature review indicates that various controllers and algorithms have been tested in different multi-area 
power system configurations, yet no definitive conclusion has been reached. Structural differences between 
systems lead to variations in controller parameters, making it necessary to design controllers specific to each 

Fig. 1.  Conceptual design for TAPS.
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system. This raises important questions regarding which controller should be selected and how its parameters 
should be determined.

Based on previous studies, it was considered important to choose a simple yet effective controller to achieve 
better results. This approach was expected to provide advantages in terms of settling time and maximum 
overshoot. Additionally, relatively new and less commonly used optimization algorithms were explored for 
parameter tuning. Finally, the aim was to validate the simulation results experimentally using the OPAL-RT 
OP5707 device.

Although numerous studies have applied various optimization algorithms and controllers for multi-area 
power systems, several limitations can still be observed. First, most existing research has primarily focused 
on conventional optimization algorithms such as PSO, GA, and GWO, while relatively few studies have 
explored newly emerging metaheuristic methods with enhanced convergence capability. Second, many studies 
concentrated only on simulation-based validation without real-time experimental verification, limiting their 
practical applicability. Third, most previous models considered systems with two homogeneous generation 
units, whereas highly renewable and hybrid configurations combining solar, wind, and thermal sources remain 
insufficiently explored.

These limitations motivate the present study, which addresses all of the above issues by (i) employing a novel 
optimization algorithm (FATA) with balanced exploration and exploitation mechanisms, (ii) validating the 

Year
Ref.
no

Number of area/
energy unit Type of energy production Controller type

Optimization
algorithm or method

Objective 
function

2024 17 5/10
Thermal Hydro/Thermal Wind/
Thermal Gas/
Hydro Diesel/
Hydro Wind

PID/FOFPID mMSA ITAE

2020 18
2/2 Non-reheat Thermal/Non-reheat Thermal

HODFC/FHODFC PSO/COA/HSCOA ITAE
2/3 Re-Heat Thermal/Hydro/Gas

2023 19 2/4 Thermal/Thermal PI/PID GA/PSO/TLBO ITAE

2023 20 2/4 Non-reheat Steam Power/PV/
Non-reheat Steam Power/Wind PI-PDN GWO/PSO/BOA ITAE

2024 21 2/2 Hydrothermal Power System/Hydrothermal Power System TIDDF CSOA ISE

2024 22 5/10

Hydro/Wind/
Hydro/Diesel/
Diesel/Wind/
Hydro/Thermal/
Diesel/Thermal

FOPID-PR AHB ITAE

2023 23 2/2 Thermal/Thermal 2DOFPID hGWO-PS ITAE

2020 24 2/2 Hydro/Hydro TDAC Deep Reinforcement 
Learning Based TDAC User Defined

2023 25 3/14 Multi Energy Production Gaussian Interval-Based 
Type-2 Fuzzy PID Controller

Discrete Water Cycle 
Algorithm (DWCA) ITAE

2024 26 2/6 Thermal/Hydro/Gas
Thermal/Hydro/Gas FOTID SAR ITAE

2023 27 2/2 Thermal/Thermal ANFIS/ANN PSO ISE

2024 28 3/3 Thermal/Nuclear/Hydro PID GA/PSO/ACO ITAE

2024 29 3/3 Thermal/Thermal/Thermal
DOF-PDN/
2DOF-PDN/3DOF-PDN/
Neuro Fuzzy-3DOF-PDN

SOA ISE

2023 30 2 Wind/PV PID/FOPID Coot Optimization 
Algorithm ISE

2023 31 3/3 Reheat/Hydro/Gas PI-PD --- ISE/IAE/ITAE

2023 32 3/3 Non-Reheated Thermal/Non-Reheated Thermal PID/FOPIDF/2DOFPID MFO/SCA/ALO/SSA ITAE

2024 33 3/6
Solar/Thermal
Ocean/Termal & Nuclear
Wind/Hydro

PID/Fuzzy 3DOFPID BB-BC/LMA/FSO/PSO ITSE

2021 34 3/3 Thermal/Thermal/Thermal + Flexible AC Transmission 
system PDF + (1 + PI) Grasshopper 

Optimization Algorithm ITAE

2021 35 2/Multi-Microgrid
Thermal/Diesel Engine Generator/Micro Turbine/FC Fuel 
Cell/Photovoltaic/Wind Turbine/Battery/Flywheel Energy 
Storage System

Cascade PDF (1 + PI) Imperialist Competitive 
Algorithm ITAE

2022 36 1/Multi-DG 
(Microgrid) PV/Wind/Diesel + EV/Battery FO-T2F-PID Improved Moth Swarm 

Algorithm ISE

2021 37 2/4 Photovoltaic/Wind Turbine/HT Hydrothermal Unit/
Hydrogen Aqua Equalizer–Fuel Cell

Fractional-Order Fuzzy PID 
(FOFPID) Sunflower Optimization ITAE

2024 38 1/Multi-DG 
(Microgrid) Solar/Wind/Diesel/Fuel Cell + Energy Storage Devices F-TIDF-2 Improved Equilibrium 

Optimization ISE

Table 1.  A brief literature survey of multi-area power systems, controller type, and optimization algorithms.
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results using an OPAL-RT real-time simulator, and (iii) considering a hybrid two-area system that integrates 
solar, wind, and thermal energy sources.

Contribution
The main contributions and novelties of this study are summarized as follows:

•	 A two-area highly renewable hybrid power system, integrating solar, wind, and thermal generation units, was 
considered and analyzed for the LFC problem.

•	 The study introduces a novel application of the FATA for optimizing AGC parameters. To the best of our 
knowledge, this is the first implementation of FATA validated through a real-time simulation load frequency 
control using the OPAL-RT platform.

•	 A comprehensive comparative framework was designed, combining four controller types (PI, PIDn, FOPI, 
and PPIDn) with four optimization algorithms (GJO, ECO, ESC, and FATA) to identify the most effective 
configuration for frequency stabilization.

•	 The proposed approach was experimentally validated on the OPAL-RT OP5707 real-time simulator, demon-
strating its practical feasibility and robustness under realistic operating conditions.

Article organization
This article consists of five sections. The first section includes the Introduction, Literature Review, and Motivation, 
followed by the Article Organization. In the second section, information is provided on multi-area power 
systems, the controllers used for their regulation, and the applied optimization algorithms. The third section 
presents simulation studies and experimental results. The fourth section analyzes the obtained results, while 
the final section provides a general evaluation of the study and its findings. Additionally, recommendations are 
offered to guide future research.

Figure 2 illustrates the organizational structure of the article.

Problem formulation
Figure 3 illustrates a two-area power system incorporating three different energy generation sources: solar, 
thermal, and wind. The system has been controlled using four different controllers (PI, PIDn, FOPI, and PPIDn). 
To optimize the parameters of each controller, four optimization algorithms (GJO, ECO, ESC, and FATA) were 
applied. The objective was to determine the most effective combination of controller and optimization algorithm 
for achieving optimal system performance.

The optimization algorithms adjusted the controller parameters based on the ITAE criterion, which is widely 
used in the literature for evaluating control performance. By minimizing ITAE, the controllers were fine-tuned 
to enhance system stability and dynamic response. The overall structure of the system, along with the interaction 
between controllers, energy sources, and optimization methods, is schematically presented in Fig. 3.

Two-area power system (TAPS)
In a two-area power system, the power transmitted through the transmission line is given by Eq. (1).

Fig. 2.  Organization of the paper.

 

Scientific Reports |        (2025) 15:43342 6| https://doi.org/10.1038/s41598-025-27191-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Pline12 = |V1| . |V2|

X12
sin (δ 1 − δ 2)� (1)

In this equation, V1​ (V) and V2 (V) represent the voltages of area-1 and area-2, respectively, while δ1​ (0) and δ2​ 
(0) correspond to their phase angles. The term Pline12 denotes the power flow through the transmission line, 
and X12​ represents the line impedance.

The rate of change of the phase angle in each area is given by Eq. (2), where f  (Hz) represents the system 
frequency.

	
∆ δ = 2π

ˆ
∆ fdt� (2)

	
∆ P 12 = |V1| . |V2|

X12
cos (δ 1 − δ 2) (∆ δ 1 − ∆ δ 2) = T12 (∆ δ 1 − ∆ δ 2)� (3)

	
T12 = |V1| . |V2|

X12
cos (δ 1 − δ 2)� (4)

	 ∆ P tie = T12 (∆ δ 1 − ∆ δ 2)� (5)

Fig. 3.  Two-area three power generation units power system and controller optimization.
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The exchange of power between the regions is represented by Eq. (3), while the synchronizing torque coefficient 
is formulated in Eq. (4). The variation in power flow through the transmission line is expressed in Eq. (5). 
Instantaneous load fluctuations (ΔPL) lead to frequency deviations in the system. Consequently, the power 
variation and the Area Control Error (ACE) are mathematically defined in Eqs. (6) and (7), where B denotes 
the frequency bias factor1,3.

	 ACE1 = −B∆ f1 − ∆ P tie� (6)

	 ACE2 = −B∆ f2 + ∆ P tie� (7)

The obtained values represent the error signals at the input of the controllers.
The TAPS system consists of three different energy generation units: a solar power system composed of 

photovoltaic (PV) panels, a thermal power generation station, and wind energy produced by wind turbines. The 
photovoltaic solar system constitutes area-1, while the thermal power station and wind turbines together form 
area-2.

In area-1, photovoltaic solar panels are semiconductor devices that convert sunlight into electrical energy. 
Figure 4 illustrates a simplified equivalent circuit of a solar cell. Equation (8) expresses the voltage generated by 
a solar cell. By connecting multiple solar cells in series and parallel, solar panels are formed43,44.

	
VP V = N

λ
ln

(
ISC − IP V + MI0

MI0

)
− N

M
RsIP V � (8)

The definitions and units of the PV variables are presented in Table 2.
The transfer function of the power generation system composed of solar panels is given in Eq.  (9). This 

transfer function represents the overall dynamics of the inverter, filters, and maximum power point tracking 
(MPPT) system.

	
PV System : GP V (s) = a + bs

s2 + cs + d
� (9)

where a corresponds to the negative value of the system’s zero, c and d represent the negative values of the poles, 
and b denotes the gain of the PV system45,46.

In area-2, two different power generation units are present: a thermal power plant and a wind energy system. 
The transfer functions of the thermal power system components, including the governor, reheat system, turbine, 
and power system, are expressed in Equations (10) to (13).

Expression Definition Unit

N : Series cells per string

λ : Constant coefficient and depends upon the cell material

VPV : Cell output voltage V

ISC : Cell short circuit current A

IPV : Cell output current A

IPH : Photocurrent A

M : Parallel strings

I0 : Reverse saturation current A

RS : Series resistance of cell Ω

Table 2.  The descriptions for PV cell.

 

Fig. 4.  Solar cell equivalent circuit.
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Governor : Ggov (s) = Kgov

sTgov + 1 � (10)

	
Turbine : Gtur (s) = Ktur

sTtur + 1 � (11)

	
Reheater : Greh (s) = sKrehTreh + 1

sTp + 1 � (12)

	
Power System : GP S (s) = KP S

sTP S + 1 � (13)

Table  3 provides definitions for the parameters used in the transfer functions of the thermal power system 
components, including the governor, reheater, turbine, and power system.

The second power generation system in area-2 is the wind energy system. Wind turbines harness the kinetic 
energy of the wind to rotate their blades. The rotor is connected to a shaft that drives a generator operating in 
motor-generator mode, converting mechanical energy into electrical power47.

The mathematical representation of the output power generated by a wind turbine is given in Equations (14) 
to (16).

	
Pwt = 1

2ρ a2
sV 3Cp (T SR, β )� (14)

	 Cp =
(
T SR − 0.022β 2 − 5.6

)
e−0.17T SR� (15)

	
T SR = wr.π D

60V
� (16)

The definitions of the terms used in the equations are provided in Table 4.
Based on these fundamental equations, the transfer functions of the wind turbine components have been 

derived and are presented in Equations (17) to (21)48.

	
Pitch Control : Gpc (s) = Kp1(sTp1 + 1)

s + 1
� (17)

	
Hydraulic Pitch Actuator : Ghpa (s) = Kp2

sTp2 + 1 � (18)

Expression Definition Unit

Pwt : Wind turbine mechanical output power W

ρ : Air density Kg/m3

as : Swept area m2

V : Wind speed m/s

Cp : Rotor efficiency

TSR : Tip speed ratio

β : Pitch angle of the blade Degree

ωr : Rotor speed rad/s

D : Blade rotor diameter m

Table 4.  Wind energy parameters.

 

Expression Definition Unit

Kgov : Governor gain p.u.

Ktur : Turbine gain p.u.

Kreh : Reheater gain p.u.

Kps : Power system gain p.u.

Tgov : Governor time constant s

Ttur : Turbine time constant s

Treh : Reheater time constant s

Tps : Power system time constant s

Table 3.  The descriptions for thermal energy production unit.
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Data Fit Pitch : Gdfp (s) = Kp3

sTp3 + 1 � (19)

	
Induction Generator : GIG (s) = 1

sTw + 1 � (20)

	 Output Wind Power Deviation : ∆ P wt (s) = KfcGIG (s)� (21)

The descriptions of the equations used in Equations (17) to (21) are provided in Table 5.

The controllers and performance indices
In this study, four different controllers were selected and their parameters were optimized. The selection was 
based on a comprehensive literature review, focusing on controllers expected to exhibit high performance. As a 
result, PI, PIDn, FOPI, and PPIDn controllers were chosen. The structural representations of these controllers 
are illustrated in Figs. 5, 6, 7 and 8, while their mathematical formulations are provided in Equations (22) to (25) 
where the ideal connection forms of the PIDn and PPIDn controllers are performed.

Fig. 7.  FOPI controller.

 

Fig. 6.  PIDn controller.

 

Fig. 5.  PI controller.

 

Expression Definition Unit

Kp1 : Pitch control gain p.u.

Kp2 : Hydraulic pitch actuator gain p.u.

Kp3 : Data fit pitch gain p.u.

Kfc : Fluid coupling gain p.u.

Tp1 : Pitch control time constant s

Tp2 : Hydraulic pitch actuator time constant s

Tp3 : Data fit pitch time constant s

Tw : Induction generator time constant s

Table 5.  Descriptions and units of the variables used in the transfer functions.
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)
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The descriptions of the terms used in Equations (22) to (25) are provided in Table 6.
To compare the performance of the controllers, error performance indices, as defined in Equations (26) to 

(29), were utilized. This approach is consistent with findings from the literature review. Typically, one of these 
indices is selected to evaluate control performance. In this study, ITAE was chosen due to its widespread use.

	

ISE =
∞̂

0

e2 (t) dt� (26)

	

IAE =
∞̂

0

|e (t)| dt� (27)

	

ITSE =
∞̂

0

te2 (t) dt� (28)

	

ITAE =
∞̂

0

t |e (t)| dt� (29)

Another reason to employ ITAE is that it provides a balanced trade-off between transient and steady-state 
responses. In LFC, long-term deviations are often more critical than short-term overshoots. Therefore, the 
time-weighting factor in ITAE effectively penalizes prolonged oscillations while ensuring faster settling with 
minimal steady-state error. This makes ITAE a more appropriate index for evaluating controller performance in 
interconnected power systems compared to other popular indices such as ISE, IAE, and ITSE.

Expression Definition

Kp : Proportional gain

KD : Derivative gain

KI : Integral gain

Kprd : Predictive term constant

Kh : Delay time of the predictive term

n : Derivative action filter constant

λ Fractional integrator order

Table 6.  The controller parameters.

 

Fig. 8.  PPIDn controller.
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In the simulation, the objective function, presented in Eq.  (30), was derived from the sum of the errors 
in each region and the interconnection point. The optimization algorithms were then evaluated based on this 
criterion. (st: simulation time)

	

OF IT AE =
stˆ

0

t |∆ f1| dt +
stˆ

0

t |∆ f2| dt +
stˆ

0

t |∆ P tie| dt� (30)

In this equation, Eq. (29) was applied based on the frequency deviations in each region and at the interconnection 
point49,50.

Proposed optimization algorithm
In this study, the parameters of four different controllers (PI, PIDn, FOPI, and PPIDn) were optimized using 
four optimization algorithms: GJO, ECO, ESC, and FATA. Each algorithm was selected based on its potential 
effectiveness in optimizing control parameters. A comparative analysis was conducted to evaluate their 
performance, with a particular emphasis on the FATA algorithm, which demonstrated superior results in this 
context.

Overview of the FATA
The Fata Morgana Algorithm (FATA) is a newly developed optimization technique inspired by the Fata Morgana 
optical phenomenon, a complex mirage effect caused by atmospheric refraction. This phenomenon creates 
illusions of floating landscapes or distorted images due to variations in air density and light refraction. By 
mimicking these principles, the FATA algorithm introduces a novel approach to balancing global exploration 
and local exploitation in optimization tasks.

Unlike conventional metaheuristic algorithms that rely on predefined search mechanisms, FATA dynamically 
adjusts its search behavior through two key principles:

	1.	 The mirage light filtering principle, which selectively refines the population based on an integral-based eval-
uation method, enhancing solution quality.

	2.	 The light propagation principle, which governs the movement and adaptation of solutions, ensuring efficient 
exploration and convergence.

By integrating these mechanisms, FATA provides a robust framework for solving complex optimization 
problems, effectively avoiding local optima while maintaining convergence efficiency. The following sections 
detail the inspiration behind FATA, its mathematical formulation, and its application in controller optimization.

Inspiration behind the Fata Morgana phenomenon
The fata morgana, or mirage, is a naturally occurring optical phenomenon. It arises due to the behavior of light 
as it propagates through an atmosphere with varying density, transitioning from an optically denser medium 
to a less dense one. This study investigates the formation of mirages by examining light rays emitted from 
underwater features. It also inspires the design depicted in Fig. 9. The figure demonstrates the optical path of 
light rays emitted from a ship at sea, which ultimately create a mirage. The formation of a mirage necessitates two 
conditions: a medium with non-uniform density and the propagation of light through this medium. Initially, 
solar heating induces temperature variations in the atmosphere, creating the required inhomogeneous density 
gradient. When light from the ship reflects into this medium, its refraction angle continuously changes during 

Fig. 9.  Mirage Formation Process51.
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propagation, culminating in total internal reflection, which produces the mirage effect. An observer (as shown 
by the Eye in Fig. 9) perceives this phenomenon when looking towards the sky in a specific direction (red)51.

  
As illustrated in Fig. 9, the formation of a mirage depends on the delicate balance between filtering mirage 

light and managing light refraction and reflection during propagation. Similarly, a parallel can be drawn to swarm 
intelligence algorithms, where achieving a balance between global exploration and local exploitation remains a 
challenge. Current algorithms, such as the Harris Hawks Optimization (HHO), sequentially implement global 
and local search strategies, using soft and hard besiege mechanisms inspired by hawk hunting. However, these 
strategies often lack the fine balance observed in the mirage phenomenon.

The mirage principle, illustrated in Fig. 9, offers an innovative approach to algorithm design by harmonizing 
global and local search strategies. In this figure, light emitted by a ship enters an atmosphere with a non-uniform 
density. As it transitions from an optically denser medium to a less dense one, the refractive index changes, 
causing the light to bend at progressively larger angles. Upon reaching the critical angle, total internal reflection 
occurs, resulting in the formation of a mirage. This dynamic balance between refraction and reflection processes 
serves as the conceptual foundation for a new optimization framework.

Building upon this concept, the paper introduces two key principles essential to the proposed FATA: the 
mirage light filtering principle and the light propagation principle. The former governs the selection process, 
allowing specific light waves to contribute to the mirage while excluding others, whereas the latter dictates how 
light adjusts its direction and intensity as it travels through a medium with varying density. These principles play 
a crucial role in shaping the behavior of swarm intelligence algorithms.

The FATA algorithm derives its global search strategy (mirage light filtering principle) from the light 
reflected by the ship into the medium, while its local search strategy (light propagation principle) is inspired 
by the refraction and total internal reflection of light. Together, these principles form the core of the algorithm, 
achieving a balance between exploration and exploitation.

By emulating the mirage formation process, FATA integrates these strategies seamlessly, creating a robust 
optimization framework. This alignment between the optical phenomenon and the algorithm’s design ensures 
consistency and effectiveness, establishing the FATA as a novel and balanced optimization tool.

Fata Morgana algorithm
As depicted in Fig. 10, the FATA represents the population as multiple light rays that contribute to forming a 
mirage, with each light ray ( x) representing an individual within the population. The mirage ( xbest) serves as 
the optimization target.

  
At the initial stage, the population of light rays undergoes a dynamic assessment based on the mirage light 

filtering principle, which is rooted in the definite integral concept. This process evaluates the light emitted from 
the hull, specifically located in the lower-left corner of Fig. 10. Within this population, some light rays undergo 
physical transformations to form the mirage ( xbest), while others, though similarly transformed, propagate in 
directions that do not contribute to forming the mirage.

In the second stage, the filtered light population undergoes the light propagation strategy, encompassing 
processes of refraction in the first and second stages and total internal reflection. The propagation of light 
through a medium with an inhomogeneous density mirrors the exchange of information between individuals 
in the algorithm. Through this process, the algorithm iteratively explores the solution space, leveraging physical 
changes in light propagation to identify the target mirage ( xbest), which corresponds to the optimal solution51.

The Mirage light filtering principle  This section outlines the population search mechanism of FATA, drawing 
inspiration from the definite integral principle. As shown in Fig. 10, the hull emits two different types of light 

Fig. 10.  FATA optimization process in three dimensions51.
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rays during the mirage formation process. The first type, labeled as ‘other light’ in Fig. 10, plays no role in form-
ing the mirage and dissipates without undergoing notable changes. The second type, termed “mirage light ( x),” 
undergoes physical changes, ultimately forming the mirage51.

In FATA, differentiating between these two light populations is essential to identifying the optimal solution, 
xbest​. To achieve this, FATA adopts a population quality evaluation mechanism grounded in the principle 
of definite integrals, enabling effective distinction and selection of relevant populations. Analogous to swarm 
intelligence algorithms, the quality of a population is measured by aggregating the fitness of individuals within it. 
As shown in Fig. 11a, ranking the fitness of individuals in a population creates a cumulative curve. To streamline 
the fitness computation of the two types of light populations (“other light” and “mirage light”), FATA applies 
definite integration to evaluate the area under this curve (Fig. 11b). The resulting integral value serves as an 
indicator of population fitness. Using this approach, FATA isolates the filtered mirage light population, which 
represents individuals selected based on their integral-based fitness evaluation.

  
This method enables FATA to efficiently balance exploration and exploitation by focusing on high-quality 

populations, ensuring robust optimization performance.
The FATA employs a fitness evaluation strategy to classify the population into two categories: “other light” 

and “mirage light,” based on population quality. The population quality refers to the overall performance or 
effectiveness of the population. In this strategy, the integrated area ( S) under the population fitness function 
( f (x)) curve is used as a measure of population quality. Figure  11a illustrates the curve representing the 
population fitness function, while Fig. 11b depicts the integrated area ( S) beneath this curve.

In swarm intelligence algorithms (SIAs), fitness typically represents the quality of individual solutions. 
However, evaluating the overall population quality becomes challenging when fitness values are discrete and 
high-dimensional. To address this, individual fitness values are approximated using a continuous function 
( f (x)). The FATA leverages the principle of definite integration to compute the integrated area ( S) of the 
population fitness function curve. This integrated area serves as a comprehensive metric to assess and compare 
the quality of different populations.

By quantifying population quality through definite integration, FATA ensures an efficient and reliable 
mechanism for distinguishing high-quality populations, enabling the application of appropriate search strategies 
tailored to either the “other light” or “mirage light” populations51.

	
xnext

i =

{
Lb + (Ub − Lb) • rand , rand > P
xbest + xi • P ara1 , rand ≤ P and rand < q

xrand + [0.5 • (α + 1) (Ub − Lb) − α xi] • P ara2 , rand ≤ P and rand ≥ q
� (31)

	
P = S − Sworst

Sbest − Sworst
� (32)

	
q = fiti − fitworst

fitbest − fitworst

� (33)

In the FATA, x represents an individual light, while xnext denotes the new individual generated during the 
optimization process. Algorithm 1 outlines the mirage light filtering principle employed by FATA. This filtering 
process includes three primary strategies: the first-half refraction strategy, the second-half refraction strategy, 
and the total internal reflection strategy, which are detailed sequentially in Sect. 3.2.

The population quality factor ( P ) is defined in Eq.  (31), where a smaller value of the integrated area 
( S) indicates a higher-quality population. Specifically, Sworst​ and Sbest​ represent the quality of the worst 
and best populations, respectively. Populations classified as mirage light populations exhibit superior quality, 
characterized by smaller S values.

Fig. 11.  Population fitness curve in FATA (a) Population fitness function curve (b) Integrated area (S) Under 
the curve51.
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In Eq. (31), the individual quality factor ( q) is introduced, which quantifies the performance of each 
individual within the population. Here, fiti ​ represents the fitness of the current individual ( x), fitworst 
corresponds to the fitness of the worst-performing individual, and fitbest​ represents the fitness of the best 
individual. By leveraging these fitness metrics and quality factors, FATA effectively identifies and prioritizes 
high-performing mirage light populations and individuals to guide the optimization process51.

Algorithm 1.  The mirage light filtering strategy

	
y = f (x) =

∑
n
j=0cjϕ jx� (34)
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S =

ˆ b

a

f (x) dx ≈ b − a

n
• (y0 + y1

2 + y1 + y2

2 + . . . + yn−1 + yn

2 )� (35)

Equations  (34–35) detail the process of calculating the area ( S) under the population fitness curve 
f (x) ( f (x1) < f (x2) . . . < f (xi) . . . < f (xn)) using the principle of definite integration. This principle 
leverages the concept of limits to compute the integrated area of f (x). Specifically, Eq.  (34) defines the 
population quality fitting function f (x), which represents the fitness curve using discrete points (xi, yi), 
where i ∈ [1, n]. The parameters cj  and ϕ j  are used within the fitting function to optimize the representation 
of the curve. This approach ensures accurate estimation of population quality by evaluating the overall fitness 
distribution within the population.

Light propagation principle  In FATA, the light propagation principle is applied following the mirage light 
filtering strategy. This mechanism functions as the algorithm’s local search approach, enhancing exploitation 
within the search space to identify minima. As shown in Fig. 12, the mirage light rays in FATA originate from a 
small boat positioned in the lower-left corner of the search space.

  
Initially, the light population undergoes the mirage light filtering process, where the population is evaluated 

and refined using calculus-based principles to identify individuals contributing to the mirage phenomenon. 
After this filtering, the refined mirage light population is subjected to sequential refraction and reflection 
processes. During these stages, the direction and size of the light rays adapt dynamically, as depicted in Fig. 12, 
showcasing their transformations. This iterative procedure allows the filtered light population to explore the 
local search space effectively, optimizing the chances of locating a local minimum.

FATA employs a distinct search strategy based on the light propagation principle, further refined using 
trigonometric functions. This approach consists of three sequential components: the refraction strategy in the 
initial phase, the reflection strategy in the subsequent phase, and a final refraction step. The application of these 
strategies is governed by the individual quality factor defined in Eq. (35).

Light Refraction (First Half Phase): In this phase, illustrated in Figure 13, light rays (denoted as x) enter a 
medium with varying density, transitioning from an optically denser medium to a less dense medium. During 
this transition, both the direction and size of the light rays are altered. The relationship between the angle of 
incidence (​i1) and the angle of refraction (i2) follows the principle that ​i1 < i2.

Figure 13 visually analyzes the process of refraction for the light individuals. The light ray is represented as 
x, and the refractive surface is labeled as the level. After undergoing the first half of the refraction process, a 
new individual,), xnext, is generated, as defined by Eq. (36). The relationship NO = C • OM , where C  is 

Fig. 12.  FATA algorithm and the mirage principle51.
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a constant, is assumed for this phase. The equations (Eqs. 36–38) govern the transformations in this strategy, 
guiding the propagation of light rays through the medium.

	 xnext = xbest + xz � (36) 

	 xz = x • P ara1� (37) 

	
P ara1 = sin (i1)

C • cos (i2) = tan (θ )� (38)
 

In the FATA, the propagation of light individuals involves dynamic adjustments during the first-half refraction 
strategy. Here, xnext denotes the newly generated individual, while xbest​ represents the current best individual. 
The refraction step is symbolized as xz ​, which describes the intermediate adjustment of the individual during 
the refraction process.

A key parameter in this strategy is P ara1​, the first-half refraction ratio, which dynamically changes during 
light propagation. This parameter regulates the degree of transformation the light individual undergoes when 
passing from one medium to another.

To simplify the measurement of the incident angle ( i1​) and the refraction angle ( i2​), the algorithm 
introduces the parameter θ , which substitutes the angle variation. In the algorithm, θ  is defined within the 
range [0,1], providing a normalized and efficient means to represent the angle change during the refraction 
process. Equation (38) encapsulates this relationship, ensuring accurate computation of the transformations 
during light propagation51.

Fig. 14.  Second refraction process of light.

 

Fig. 13.  First refraction process of light.
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Light Refraction (Second Half Phase): Following the first half refraction phase, the light enters the second 
half refraction phase, where it propagates through random points within the medium. As illustrated in Fig. 14, 
the process is characterized by the angle of incidence (i3) being smaller than the angle of refraction (i4). This 
occurs because the light travels through a medium with varying density, resulting in a continuously changing 
refractive index (P ara2 ​).

During this phase, the light individual ( xf ​) generates a new individual ( xnext) by incorporating 
information from random individuals ( xrand​) located within the search space. This random selection enhances 
the exploration capabilities of the algorithm. The transformations involved in this refraction process are 
mathematically described in Eqs. (41–43), which outline the systematic generation of new individuals in the 
context of FATA’s refraction strategy.

	 xnext = xrand + xs� (39) 

	 xs = xf • P ara2� (40) 

	
P ara2 = cos (i5)

C • sin (i6) = 1
tan (θ ) � (41)

 

In the second half refraction strategy, xs​ represents the refraction step, while xrand​ denotes a randomly 
selected individual from the population. The second refraction ratio, P ara2​, plays a key role in determining the 
behavior of light propagation during this phase.

As illustrated in Fig. 15a, the value of P ara1​ oscillates randomly within the range [−2,2] and converges 
toward zero as the number of iterations increases. Conversely, Fig.  15b shows that P ara2 exhibits random 
oscillations between [−150,150], with a general upward trend as iterations progress.

  
It is observed that both parameters initially have large values. To enhance the algorithm’s efficiency, these 

parameters are scaled to the standardized interval [0,1]. The oscillatory nature of P ara2​, particularly in 
the later stages of the FATA, improves its ability to escape local optima, thereby enhancing the robustness of 
the search process. Standardizing these parameters ensures smoother progression and better performance in 
optimization tasks.

The total internal reflection phase marks the culmination of the light propagation process in the formation 
of the mirage phenomenon. This stage occurs when the angle of refraction reaches a threshold where further 
refraction becomes impossible, causing the light to reflect entirely within the medium of inhomogeneous density.

This principle is implemented in the FATA as a total internal reflection strategy, which encourages the 
population to explore in the opposite direction, thereby enhancing diversity and exploration. As shown in 
Fig. 16, the angle of incidence ( i5​) equals the angle of reflection ( i6​), adhering to the laws of reflection.

  
In the Fig. 16:

•	 O (x0, 0) denotes the center point of the interval ( [Lb, Ub])., where Lb​ and Ub​ represent the lower and 
upper bounds of the search space.

•	 E and F  represent the vertical distances of the incident and refracted light rays from the horizontal plane, 
respectively.

The total internal reflection strategy modifies the light individual ( x) into a new individual ( xnext) that explores 
the search space in the reverse direction. This mechanism increases the algorithm’s ability to identify global 

Fig. 15.  Refraction parameters in the second half refraction strategy: (a)Trends of P ara1 (b) Trends of 
P ara251.
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optima by overcoming stagnation in local optima. Equations (14–17) detail the mathematical formulation of 
this strategy, ensuring precise adjustments based on the geometry of the light propagation and reflection process.

	 xnext = xf = 0.5 • (α + 1) (Ub + Lb) − α x� (42) 

	
α = F

E
� (43)

 

	
x0 − xf = F • (x − x0)

E
� (44)

 

	
x0 = Ub − Lb

2 + Lb = Ub + Lb

2
� (45)

 

The individual xf  is generated through the total internal reflection strategy. The parameter α  represents the 
reflectance of this strategy and governs the transformation pattern of the light individual. When α  exceeds 1, 
the new individual xnext crosses the defined boundary, with α  constrained to the interval [0,1]. The specifics 
of α  ‘s value will be explored further in Sect. 4.2. Here, Ub and Lb​ denote the upper and lower boundaries of 
the individual’s position, respectively.

To provide a comprehensive understanding of FATA, Algorithm 2 presents its pseudocode, while Fig. 17 
illustrates the workflow, highlighting the two core population updating mechanisms. The algorithm follows a 
structured process consisting of population initialization, parameter configuration, and an iterative evolution 
phase. Within this phase, the computational burden of both the mirage light filtering and light refraction strategies 
is primarily determined by the number of iterations, resulting in a time complexity of O (n( MaxF Es • d )).

Fig. 16.  Total internal reflection process of light51.
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Fig. 17.  The flowchart of the FATA51.
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Algorithm 2.  Pseudocode of FATA
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Simulation and experimental results
In this study, the control of a two-area power system powered by three different energy sources was investigated 
using PI, PIDn, FOPI, and PPIDn controllers. The parameters of these controllers were optimized using GJO, 
ECO, ESC, and FATA algorithms.

Subsequently, the obtained results were validated through OPAL-RT, and a comparative analysis was 
conducted between the simulation outcomes and experimental results. The simulated system is illustrated in 
Fig. 18.

The mapping of the controllers is defined as Controller 1 – PV system, Controller 2 – Wind system, and 
Controller 3 – Thermal system. This configuration ensures clear identification and consistency with the 
corresponding parameter tables (Tables 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16), where the same controller indices 
are used for comparative and optimization analyses.

Controller 2 Optimization Algorithms Kp2 Ki2 Kd2 n2

 PIDn

GJO 0.1865 5.8383e-04 −0.0010 1.5955

ECO −0.1158584 0.1360314 −0.8529435 2.419207

ESC 0.471755 −0.04236771 3.153995 105.7223

FATA 2.114036 −0.007076795 0.5647366 144.5859

Table 9.  PIDn controller 2 (Wind) parameters.

 

Controller 1 Optimization Algorithms Kp1 Ki1 Kd1 n1

 PIDn

GJO 2.9666 0.2723 2.4420 145.8440

ECO 0.9838682 0.3387465 0.4080806 194.7095

ESC 3.509963 0.2967109 1.076755 95.23372

FATA 3.72744 1.787188 1.018562 155.9837

Table 8.  PIDn controller 1(PV) parameters.

 

Controller Opt. Alg. Kp1 Ki1 Kp2 Ki2 Kp3 Ki3 ITAE

PI

GJO 0.5251 0.1310 3.9961 −0.0146 2.5244 0.1438 1.5849

ECO 0.49747 0.3525 3.3686 −0.021695 2.6645 0.71119 2.7082

ESC 0.66383 0.14652 3.9752 −0.0026187 2.4988 0.22543 1.7212

FATA 0.95732 0.082446 1.7621 −0.0072356 1.1953 1.1022 4.959

Table 7.  PI controller parameters with ITAE values.

 

Fig. 18.  Simulation system.
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Controller 3 Optimization algorithms Kp3 Ki3 Kd3 n3 Kprd3 Kh3

PPIDn

GJO 4 4 0.7174 10.9674 0 0.0063

ECO 3.608775 3.309643 0.5120614 152.9706 0.006157692 0.2757894

ESC 3.979733 3.990961 0.8278113 11.4859 0.07643719 1755.635e-6

FATA 1.633781 4 1.895669 193.2236 1.867529 0

Table 15.  PPIDn controller 3 (Thermal) parameters.

 

Controller 2 Optimization Algorithms Kp2 Ki2 Kd2 n2 Kprd2 Kh2

 PPIDn

GJO −0.0331 −0.0477 5.5685e-05 1.4783 2.0418 1.1120

ECO 4 0.006105196 −3.256132 99.70377 3.887082 0

ESC 3.992627 −0.01261917 3.945147 1.001308 0.01774135 0.0471736

FATA 1.184828 0.2753649 0.9450793 116.2314 4 1.745256

Table 14.  PPIDn controller 2 (Wind) parameters.

 

Controller 1 Optimization Algorithms Kp1 Ki1 Kd1 n1 Kprd1 Kh1

 PPIDn

GJO 0.9840 0.2482 3.0399 150.5947 0.0150 0.0299

ECO 4 1.599685 3.750207 108.2514 3.877172 0

ESC 3.924731 1.062002 3.218801 115.3733 0.0484639 0.1878636

FATA 1.170467 0.2721576 1.089585 53.07538 0 0

Table 13.  PPIDn controller 1(PV) parameters.

 

Controller Optimization Algorithms Kp3 Ki3 λ3 ITAE

FOPI

GJO 2.3013 0.2927 2.7284e-04 2.1444

ECO 3.8094 −0.83418 0.49918 2.0176

ESC 2.4733 −0.35033 0.52696 2.7095

FATA 0.38526 0.892 0.49146 7.4598

Table 12.  FOPI controller 3 parameters and ITAE values.

 

Controller Optimization Algorithms Kp1 Ki1 λ1 Kp2 Ki2 λ2

 FOPI

GJO −0.0027 0.8845 0.4591 3.0071 −0.2188 0.3792

ECO −0.39365 1.5131 0.29532 −1.2835 2.8498 0.0001

ESC 0.77817 0.51205 0.33906 2.3735 −0.2992 0.22255

FATA 0.33822 0.23075 0.40761 0.89628 0.0073297 0.54136

Table 11.  FOPI controller 1 and 2 parameters.

 

Controller 3 Optimization Algorithms Kp3 Ki3 Kd3 n3 ITAE

PIDn

GJO 4 4 0.4301 9.0091 0.1958

ECO 3.999821 3.999953 0.3454577 179.8215 0.2531

ESC 3.977549 3.928608 0.4525752 11.23297 0.19669

FATA 4 3.973674 0.524713 7.918286 0.18676

Table 10.  PIDn controller 3 (Thermal) parameters with ITAE values.
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Parameters
In this study, four different controllers were optimized using four distinct algorithms, resulting in a total of 16 
optimization scenarios. The optimization process was conducted with a population size of 50 and 100 iterations 
for each algorithm.The solar panel model was based on an ambient temperature of 27 °C and a solar irradiance 
of 1000 W/m². The wind energy system consisted of 55 wind turbines. The simulations were performed in the 
MATLAB/Simulink environment using transfer function-based modeling. Some of the wind turbine parameters 
listed in Table 17 are provided for informational purposes.

The values of the parameters used in the simulations are summarized in Table 17.
Here, R is the governor speed regulation constant and B shows the frequency bias parameter, H is hub height 

and Kpc is blade character43.

Variable Value Unit Unite

a −18 --- PV Solar Power

b 900 --- PV Solar Power

c 100 --- PV Solar Power

d 50 --- PV Solar Power

D 43 meter Wind Turbine

as 1452 m2 Wind Turbine

ρ 1.225 kg/m3 Wind Turbine

H 40 m Wind Turbine

ωr 27.2/18.1 rpm Wind Turbine

Pwt 600 kW Wind Turbine

CP 0.59 --- Wind Turbine

Kp1 1.25 p.u. MW Wind Energy

Kp2 1 p.u. MW Wind Energy

Kp3 1.4 p.u. MW Wind Energy

Kpc 0.08 --- Wind Energy

Kfc 1.494 --- Wind Energy

Tp1 0.6 s Wind Energy

Tp2 0.041 s Wind Energy

Tp3 1 s Wind Energy

Tw 4 s Wind Energy

PR 200 MW Thermal System

PL 100 MW Thermal System

R1 2.5 Hz/p.u. MW Thermal System

B 0.8 p.u. MW/Hz Thermal System

Kgov 1 p.u. MW Thermal System

Tgov 0.08 s Thermal System

Ktur 1 p.u. MW Thermal System

Ttur 0.3 s Thermal System

Kreh 0.33 p.u. MW Thermal System

Kps 120 Hz/p.u. ΜΩ Thermal System

Tps 20 s Thermal System

Treh 10 s Thermal System

2φT12 0.545 p.u. Thermal System

a12 −1 --- Thermal System

f 60 Hz Thermal System

Table 17.  System parameter values used in simulation43.

 

Controller Optimization algorithms ITAE

PPIDn

GJO 0.6218

ECO 0.60473

ESC 0.3896

FATA 1.6889

Table 16.  PPIDn controller ITAE parameters.
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The lower and upper limits of the controllers used in the study are presented in Table 18. The optimization 
algorithms search for optimal parameters within these predefined ranges.

To establish these limits, a preliminary analysis was conducted. Initially, the best possible values were 
determined using the Ziegler-Nichols method and trial-and-error approaches. The search range was then set to 
encompass these values. Additionally, parameter ranges from previous studies in the literature were considered 
when defining the search space.

The simulation was conducted by applying a 10% load increase to each region in the system.

Simulation
In the simulation studies, PI, PIDn, FOPI, and PPIDn controllers were implemented. The parameters of each 
controller were optimized using GJO, ECO, ESC, and FATA algorithms within the search space defined in 
Table 18, aiming to determine the best possible values. A total of 16 different simulations were conducted.

For each optimization algorithm, the population size was set to 50, and the number of iterations was fixed 
at 100. The performance of the optimization algorithms was evaluated using the ITAE criterion as a reference.

The best parameter values obtained for PI controllers using different optimization algorithms are presented 
in Table 7. The lowest ITAE value, 1.5849, was achieved using the GJO algorithm.

The optimization results for the PIDn controller are presented collectively in Tables 8, 9 and 10. The data is 
divided into three sections:

•	 Table 8 displays the results for the solar energy system controller.
•	 Table 9 presents the results for the thermal energy system controller.
•	 Table 10 provides the results for the wind energy system controller.

Among these, the best ITAE value was achieved using the FATA algorithm, with a value of 0.18676.
The optimization results for the FOPI controller are presented in Tables 11 and 12.

•	 Table 11 provides the optimized parameters for FOPI controllers 1 and 2.
•	 Table 12 lists the parameters for FOPI controller 3 along with the corresponding ITAE values.

Among the tested algorithms, the lowest ITAE value (2.0176) was obtained using the ECO algorithm.
The optimization results for the PPIDn controller are presented in Tables 13, 14, 15 and 16.

•	 Table 13 provides the optimized parameters for the solar energy system controller.
•	 Table 14 presents the parameters for the thermal energy system controller.
•	 Table 15 lists the parameters for the wind energy system controller.
•	 Table 16 summarizes the ITAE values obtained using different optimization algorithms for the PPIDn con-

troller.

Among the tested algorithms, the ESC algorithm achieved the lowest ITAE value of 0.3896.
The convergence curves of the PI, PIDn, FOPI, and PPIDn controllers are illustrated in Figs. 19, 20, 21 and 

22.

•	 Figures 20 and 22 provide a more detailed visualization of the curves for better clarity.
•	 Figs. 19 and 21 do not require detailed plotting, as the general trends are sufficiently visible.

In Fig. 19, the GJO algorithm achieved the lowest ITAE value, which, as shown in Table 7, is 1.5849.
Figure 20 presents the optimization results for the PIDn controller. Among the tested algorithms, the FATA 

algorithm achieved the lowest ITAE value of 0.18676, indicating superior performance. This trend is clearly 
observed in the magnified section of the figure and is further validated by the results in Table 10.

Figure 21 illustrates the optimization results for the FOPI controller using ECO, ESC, FATA, and GJO 
algorithms. The vertical axis represents the best fitness value, while the horizontal axis shows the number of 
iterations. Among the tested algorithms, ECO achieved the lowest ITAE value of 2.0176, indicating the best 
optimization performance for this controller. As seen in the figure, GJO (black) and ECO (blue) exhibit rapid 
initial convergence, whereas FATA (green) stagnates at a higher fitness level, suggesting ineffective parameter 
tuning. The ESC (red) algorithm shows a moderate convergence rate, stabilizing at a slightly higher ITAE value 
than ECO. The results indicate that ECO effectively balances exploration and exploitation, leading to faster 

Variable Lower Upper

KP −4 4

KI −4 4

KD −4 4

Kprd 0 4

Kh 0 2

n 1 200

λ 0.0001 1

Table 18.  The controller parameters limits.
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convergence and lower ITAE values. In contrast, FATA struggles to refine the solution after early iterations, 
possibly due to its search strategy. This finding aligns with previous studies where ECO has demonstrated robust 
performance in fine-tuning controller parameters.

Figure 22 illustrates the optimization results for the PPIDn controller using ECO, ESC, FATA, and GJO 
algorithms. The best fitness values are plotted against the number of iterations, with a zoomed-in section 
highlighting the finer details of the convergence behavior. Among the tested algorithms, ESC achieved the lowest 
ITAE value of 0.3896, indicating superior optimization performance. As seen in the figure, ESC (red) exhibits 
rapid convergence and stabilizes at a lower fitness value compared to the other algorithms. ECO (blue) and 
GJO (black) also show stable convergence, but at slightly higher ITAE values. FATA (green), on the other hand, 
stagnates at a higher fitness level, suggesting suboptimal tuning. The results suggest that ESC effectively balances 

Fig. 20.  Convergence curve for PIDn controller.

 

Fig. 19.  Convergence curve for PI controller.
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exploration and exploitation, allowing it to converge to an optimal solution more efficiently. The detailed section 
in Fig. 22 further highlights this advantage by showcasing the faster fitness improvement of ESC compared to 
the other methods. These findings reinforce the effectiveness of ESC in optimizing PPIDn controller parameters 
for this system.

Table  19 presents the optimized PIDn controller parameters obtained using the FATA algorithm, as 
demonstrated in Tables 8 and 9, and 10. These parameters were derived from 16 different simulation studies, 
where the FATA algorithm achieved the lowest ITAE value of 0.18676.

As seen in Table 19, the optimal values for Kp​, Ki, Kd, and n were determined for each region. These values 
were fine-tuned to enhance system performance, ensuring improved frequency stability and dynamic response. 
The low ITAE value indicates the effectiveness of FATA in optimizing PIDn controllers, making it a strong 
candidate for load frequency control in multi-area power systems.

Figure 23 presents the system responses obtained using the best-optimized parameters for each controller 
(PI, PIDn, FOPI, and PPIDn). The figure illustrates the frequency deviations in each region (Δf1​ and Δf2​) as 
well as the tie-line power deviation (ΔPtie) over the time. As shown, the PPIDn-ESC controller (red) provides 

Fig. 22.  Convergence curve for PPIDn controller.

 

Fig. 21.  Convergence curve for FOPI controller.
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the fastest settling time and minimal oscillations, indicating superior performance in stabilizing frequency 
fluctuations. The PIDn-FATA (green) and FOPI-ECO (blue) controllers exhibit relatively higher oscillations 
but still converge to a stable state. In contrast, the PI-GJO controller (black) shows the largest initial deviations 
and prolonged oscillations, suggesting slower stabilization. These results confirm that ESC-optimized PPIDn 
achieves the best dynamic response, effectively minimizing frequency deviations and ensuring system stability 
in a multi-area power system.

Figure 24 provides a more detailed view of the system responses, illustrating the frequency deviations Δf1​ and 
Δf2​ in each region and the tie-line power deviation ΔPtie over a shorter time interval.

Compared to Fig.  23, this zoomed-in representation allows for a clearer analysis of the initial transient 
behavior and oscillatory characteristics of each controller. The differences in settling time, peak overshoot, 
and damping performance among the PI-GJO, PIDn-FATA, FOPI-ECO, and PPIDn-ESC controllers can be 
observed more precisely.

Table 19 presents a comparative analysis of the settling time (TS), undershoot (US), and overshoot (OS) values 
for the frequency deviations shown in Fig. 24, based on the optimized parameters of each controller.

Among the tested controllers, the PIDn controller optimized with FATA achieved the best results in terms 
of settling time and undershoot, demonstrating faster stabilization and minimal deviations. On the other hand, 
the PPIDn controller optimized with ESC exhibited the lowest overshoot values, indicating superior damping 
performance. The FOPI controller optimized with ECO provided the best overshoot performance only for the 
first region’s frequency deviation. Meanwhile, the PI controller failed to achieve competitive results across any of 
the evaluated criteria, performing worse than the other controllers.

Experimental results
The OPAL-RT OP5707 platform was utilized to validate the real-time performance of the proposed controllers. 
This hardware-based environment allows the assessment of control algorithms under realistic conditions, 
including finite sampling intervals, communication delays, and numerical precision effects that are not fully 
captured in offline simulations. Such validation ensures that the proposed FATA-optimized controller is not only 
theoretically efficient but also practically reliable for real-world power system applications.

Fig. 23.  System responses with the best-tuned parameters for PI, PIDn, FOPI, and PPIDn controllers.

 

Cont. Alg.

TS (Settling 
Time) US (Undershoot) OS (Overshoot)

Δf1 Δf2 Δftie Δf1 Δf2 Δftie Δf1 Δf2 Δftie

PI GJO 12 13 12 −0.13 −0.18 −0.0285 0.0139 0.0345 0.014

PIDn FATA 4 4 4 −0.09 −0.09 −0.0023 0.05 0.0384 0.00153

FOPI ECO 11 12 --- −0.11 −0.165 −0.0215 0.011 0.0283 0.01

PPIDn ESC 6 6 4 −0.12 −0.12 −0.0025 0.02 0.018 0.00077

Table 19.  Comparison of the best results obtained with optimization algorithms for all controllers in terms of 
TS, US, and OS.
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Among all the evaluated controllers, the PIDn controller achieved the best performance. Its parameters 
were optimized using the FATA algorithm, as presented in Table  7. To verify the reliability of these results, 
the optimized parameters were implemented on the OPAL-RT platform, and the experimental outcomes were 
compared with the simulation results. The experimental setup used for real-time validation is shown in Fig. 25.

The objective of this section is to validate the simulation outcomes Matlab/Simulink program in the context 
of real-time implementation of the proposed approach. For this purpose, this process is illustrated as shown 

Fig. 25.  OPAL-RT experimental setup.

 

Fig. 24.  Detailed system responses with the best-tuned parameters for PI, PIDn, FOPI, and PPIDn controllers.
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in Fig. 25. It is imperative to acknowledge that the outcomes of the OPAL-RT investigations are influenced by 
intrinsic delay and error components that are not present in conventional offline implementations. As shown in 
Figs. 26 and 27, and 28, the time domain responses of the Δf1​, Δf2​, and ΔPtie based on the FATA-PIDn controller 
are depicted, with these responses being based on the real-time simulator OPAL-RT. As evidenced by Fig. 25, 
the results obtained from the MATLAB simulation software demonstrate a notable degree of similarity to those 
produced by the OPAL-RT real-time simulator.

Figures 26 and 27, and 28 present the experimental and simulation results obtained using the PIDn controller 
optimized with the FATA algorithm. These figures compare the real-time performance of the controller, 
demonstrating its effectiveness in practical implementation.

In Fig.  26, the Δf1​ in area-1 is depicted. The results from the OPAL-RT experimental setup and Matlab/
Simulink simulation are shown together, indicating a strong correlation between the experimental and simulation 
data. This consistency validates the accuracy and reliability of the proposed control approach.

Figure 27 illustrates the Δf2 ​in Area 2. The experimental results obtained from the OPAL-RT platform and 
the Matlab/Simulink simulation show an almost identical response, as the curves overlap perfectly. This strong 
agreement confirms the accuracy and reliability of the proposed PIDn controller optimized with the FATA 
algorithm in real-time implementation.

Figure 28 illustrates the power deviation at the tie-line between the two areas. The experimental results 
from the OPAL-RT platform and the Matlab/Simulink simulation are perfectly aligned, demonstrating an exact 

Fig. 27.  OPAL-RT result of Δf2.

 

Fig. 26.  OPAL-RT result of Δf1.
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match. This strong correlation confirms the accuracy and reliability of the proposed PIDn controller optimized 
with the FATA algorithm in maintaining frequency stability across interconnected regions.

It is again noteworthy that the OPAL-RT hardware inherently involves minor latency and dead-time effects 
caused by real-time signal processing and data communication. Despite these practical nonlinearities, the 
experimental results obtained from the OPAL-RT platform closely matched the MATLAB/Simulink simulations. 
Therefore, the proposed model and controller design are considered sufficiently accurate and robust for realistic 
operating conditions.

Discussion
In this study, PI, PIDn, FOPI, and PPIDn controllers were implemented to regulate frequency in a two-area 
power system with three different energy sources. The parameters of these controllers were optimized using 
GJO, ECO, ESC, and FATA algorithms. Among the 16 different optimization scenarios, the PIDn controller 
optimized with the FATA algorithm demonstrated the best performance in simulation studies.

To validate these results, the optimized parameters were tested on the OPAL-RT real-time simulation 
platform. The experimental results closely matched the simulation outcomes, with overlapping response curves 
confirming the accuracy and reliability of the proposed control strategy.

Based on the findings, the following key conclusions can be drawn:

•	 Despite its more complex structure, the PPIDn controller did not outperform the PIDn controller, which 
achieved the best results among the tested controllers.

•	 The selected optimization algorithms were chosen based on their potential to effectively address frequency 
deviation issues in a two-area power system.

•	 Simulation runtime influences optimization performance, and a population size of 50 with 100 iterations was 
considered sufficient for the optimization process.

•	 Since ITAE values change over time, longer simulation durations result in higher ITAE values. Therefore, the 
simulation time must be carefully selected to ensure a meaningful comparison.

•	 The experimental validation of the results confirms the accuracy and correctness of the optimization process, 
demonstrating the practical applicability of the proposed method.

When the obtained results are compared with similar studies in the literature, it is observed that in the study 
where PI/PID/PDn-PI cascade controllers were tested, the controller parameters were optimized using the 
Coyote optimization algorithm. During a 30-second simulation period, the ITAE value was measured, and 
the best result of 1.935 was achieved with the PDn-PI controller. In the present study, however, a significantly 
improved ITAE value of 0.18676 was obtained48.

In conclusion, for the considered power system, the PIDn controller optimized with FATA exhibited the best 
overall performance, effectively improving frequency stability and system response.

Conclusion and recommendations
Based on this study, the following recommendations are provided for researchers conducting similar work:

•	 The most effective controller cannot always be predicted in advance. In some cases, even the simplest control-
lers may yield the best results.

Fig. 28.  OPAL-RT result of ΔPtie.
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•	 Exploring different optimization algorithms may lead to improved outcomes. Testing alternative methods 
could further enhance performance.

•	 Increasing the population size and the number of iterations can improve optimization results. However, this 
also increases computational time. Therefore, unnecessary simulation time should be avoided, particularly by 
considering the settling time as a critical factor.

•	 Utilizing more advanced computing systems can significantly reduce processing time, enabling more efficient 
optimization.

•	 Additionally, the findings from the simulation study validate the effectiveness of the FATA-PIDn controller 
developed for a two-area, three-source LFC system. This conclusion is supported by real-time OPAL-RT-
based simulations, confirming the practical applicability of the proposed method in a realistic operational 
environment.

•	 Although the present study focused on validating the performance of the FATA-based controllers, future 
research will include a detailed computational complexity assessment, sensitivity and stability analyses to 
provide a more comprehensive understanding of system behavior.

Data availability
All relevant data are within the manuscript. The collection and analysis method complied with the terms and 
conditions for the source of the data.
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