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Intervertebral disc degeneration (IDD) severely impacts patients’ quality of life. Elucidating IDD’s 
molecular mechanisms is crucial for developing effective diagnostics and therapeutics. Integrating 
multiple IDD gene expression datasets using bioinformatics identified 25 glycosylation-related 
differentially expressed genes (GRDEGs). We analyzed their biological functions and regulatory 
networks in IDD using GO, KEGG, GSEA, and WGCNA. An IDD diagnostic LASSO regression model 
was constructed and validated. Immune cell infiltration analysis using CIBERSORT/ssGSEA divided 
IDD samples into subtypes based on glycosylation scores, exploring the immune microenvironment’s 
influence on heterogeneity. We explored regulatory networks involving transcription factors, 
miRNAs, RNA-binding proteins, and drugs affecting key genes. 25 GRDEGs were identified from 625 
glycosylation-related genes (GRGs), and 9 hub genes were further screened by WGCNA to clarify their 
biological functions and regulatory networks. The diagnostic model based on 7 key genes performed 
well in the training and validation sets. In addition, Spearman correlation analysis showed that 6 
key genes (MAN2B2, MAN1A1, CHI3L1, PLOD2, RAPGEF5, GLA) were significantly associated with 
immune cell infiltration, including Eosinophils, Dendritic cells, Macrophages M0, and T regulatory 
cells. Three key genes (MAN2B2, GLA, CHI3L1) significantly affected the differences between high and 
low glycosylation score subtypes in the immune microenvironment. In addition, regulatory networks, 
including 49 transcription factors, 32 miRNAs, 116 RNA-binding proteins, and 20 potential drugs, 
were identified. This study explored the characteristics of glycosylation-related genes in IDD and their 
potential association with immune infiltration, providing preliminary insights that may inform future 
research on diagnostic biomarkers and therapeutic targets.
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Intervertebral disc degeneration (IDD) is a common chronic degenerative disease and one of the main causes 
of low back pain1. Epidemiological studies have shown that the global prevalence of IDD ranges from 50% to 
90%, significantly affecting patients’ quality of life2. Although current evidence-based medicine has identified 
IDD as a result of multiple factors, including genetics, trauma, inflammation, lifestyle, and aging, the pathogenic 
processes involved in IDD development remain unclear3. In recent years, the development of genomics and 
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bioinformatics technologies has provided new ideas for in-depth exploration of the molecular mechanisms of 
IDD4.

Glycosylation, an important modification that occurs after proteins and lipids have been translated, is vital 
for many biological functions, including cell adhesion and the transmission of signals5,6. Previous studies have 
indicated that the occurrence of multiple degenerative diseases, such as osteoarthritis and Alzheimer’s disease, is 
closely related to abnormal glycosylation7,8. However, the impact of glycosylation-related genes (GRGs) on the 
progression of IDD is still not well understood. Therefore, this study aims to screen and validate IDD-related 
glycosylation genes through bioinformatic methods, providing new ideas for understanding the molecular 
mechanisms of IDD and exploring potential therapeutic targets.

Currently, multiple studies9–12 have reported biological markers and pathogenic mechanisms related to 
IDD, but most are limited to the protein level, and the regulatory mechanisms at the gene level have not been 
thoroughly explored. In recent years, with the development of omics technologies, researchers have begun 
to focus on the screening and functional analysis of IDD-related genes13,14. However, these studies mainly 
concentrate on the identification of differentially expressed genes (DEGs), with relatively less research on their 
functions and regulatory mechanisms. Moreover, IDD is a complex disease involving multiple pathological 
processes, and single omics analysis may not fully reveal its pathogenesis.

Zhu et al. demonstrated the significant contribution of genes related to mitochondrial dysfunction to the 
advancement of IDD through an extensive bioinformatics investigation15. Another study utilized genome-wide 
analysis of DNA methylation profiles to identify differentially methylated sites associated with human IDD16. 
However, there are few reports on the use of multi-omics methods to study IDD-related glycosylation genes.

This study intends to integrate multiple IDD gene expression profile datasets, taking GRGs as a starting 
point, and comprehensively apply various bioinformatic methods such as differential analysis, Weighted 
Gene Co-Expression Network Analysis (WGCNA), and Gene Set Enrichment Analysis (GSEA) to analyze 
the molecular mechanisms of IDD development from the perspectives of gene co-expression networks and 
pathway enrichment, screening potential markers and therapeutic targets. At the same time, a diagnostic model 
for IDD based on Least Absolute Shrinkage and Selection Operator (LASSO) regression was developed and 
tested for reliability and accuracy. The study also investigated the correlation between critical genes and immune 
infiltration using CIBERSORT and single sample gene set enrichment analysis (ssGSEA). By categorizing IDD 
samples into immune subtypes, the research highlighted the important role of immune microenvironment 
changes in IDD heterogeneity. Additionally, the study delved into the regulatory networks of transcription 
factors, miRNAs, RNA-binding proteins, and drugs on essential genes.This research is crucial for elucidating 
IDD pathophysiology and guiding the enhancement of clinical diagnosis and treatment strategies. Furthermore, 
the research may serve as a valuable reference for exploring mechanisms of other degenerative diseases.

Materials and methods
Data collection and downloading
Figure 1 showed the workflow chart of the present study. The IDD datasets GSE3409517, GSE7036218, and 
GSE14738319 were downloaded from the GEO database20 using the R package GEO query21. The samples in 
these datasets were all human, derived from intervertebral disc nucleus pulposus tissue. The datasets GSE34095, 
GSE70362, and GSE147383 used the chip platforms GPL96, GPL17810, and GPL570, respectively. GSE34095 
included 3 IDD samples and 3 control samples; GSE70362 included 16 IDD samples and 8 control samples; 
GSE147383 included 2 IDD samples and 2 control samples. GRGs were collected using the GeneCards22 and 
MSigDB23 databases and published literature24, obtaining a total of 625 unique genes (Supplementary Table S1). 
The R package sva24 was used for batch effect removal, and the integrated dataset contained 21 IDD samples and 
13 control samples (see Table 1 for details). The R package limma24 was used for data normalization and batch 
effect removal, and principal component analysis (PCA)25 was performed to verify the batch effect removal (Fig. 
2).

IDD-related glycosylation-related differentially expressed genes
In the integrated GEO dataset, samples were categorized into the IDD group and the Control group. Differential 
gene analysis was performed using the R package limma, with the threshold set at |logFC| > 0.3 and p-value 0.3 
were considered upregulated, while those with logFC < – 0.3 were deemed downregulated. The results of the 
analysis were visualized using a volcano plot generated with the R package ggplot2. Intersection of all DEGs with 
GRGs yielded IDD-related glycosylation-related differentially expressed genes (GRDEGs). The expression levels 
of GRDEGs were compared between groups using the Mann-Whitney U test, and a heatmap was constructed 
using the R package pheatmap. Chromosomal locations of GRDEGs were visualized using the R package 
RCircos26.

Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment 
analysis
GO analysis, as referenced by27, is a technique employed for conducting functional enrichment studies across 
biological processes (BP), cellular components (CC), and molecular functions (MF). KEGG was also utilized as 
a database delineating information on genomes, biological pathways, diseases, and drugs28–30. The R package 
clusterProfiler facilitated the GO and KEGG enrichment analysis of GRDEGs28. To ensure statistical significance, 
the Benjamini-Hochberg method was employed for p-value correction, with screening criteria set at adj. p < 0.05 
and FDR < 0.25.
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GSEA between IDD and control groups
GSEA31 was conducted to assess the distribution of predefined gene sets within the gene table and their impact 
on the phenotype. The genes from the integrated GEO dataset were arranged based on logFC values, and GSEA 
analysis was performed using the R package clusterProfiler. The analysis was carried out with specific parameters, 
including a seed of 2022, 1000 permutations, and gene set sizes ranging from 10 to 500 genes. The gene set c2.all.
v2022.1.Hs.symbols.GMT [Curated/Pathway] (6449) from the MSigDB32 database was utilized for the analysis. 

Fig. 1.  Technology roadmap. IDD, Intervertebral Disc Degeneration; DEG, Differentially Expressed Genes; 
GRGs, Glycosylation-Related Genes; GRDEGs, Glycosylation Related Differentially Expressed Genes; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; 
ssGSEA, Single-Sample Gene-Set Enrichment Analysis; SVM, Support Vector Machine; LASSO, Least Absolute 
Shrinkage and Selection Operator; PPI Network, Protein-Protein Interaction Network; TF, Transcription 
Factor; RBP, RNA-Binding Protein.
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The Benjamini-Hochberg correction method was applied with an adjusted p-value < 0.05 and false discovery 
rate (FDR) < 0.25 for significance.

Weighted gene co-expression network analysis
Using the R package WGCNA33,34, weighted correlation coefficients between genes were initially computed 
to build a scale-free network. Initially, pairwise correlation coefficients were computed between all genes, 
with weighted correlation values applied to establish a scale-free network topology for gene connectivity. A 
hierarchical clustering tree was then constructed based on inter-gene correlations, where distinct branches 
represented gene modules (color-coded), followed by module significance assessment. For the integrated GEO 
datasets, the variance was calculated across all genes to select the top 3000 high-variance genes, with parameters 
set to minimum module size = 80 and optimal soft-thresholding power = 5. Module-trait correlations between 
IDD and Control groups were measured, defining all genes within each module as module eigengenes. 
Modules exhibiting |r| > 0.40 were screened, and their constituent genes intersected with Glycosylation-Related 
Differentially Expressed Genes (GRDEGs) to generate Venn diagrams, with all intersecting genes from qualified 
modules designated hub genes. Finally, Spearman correlation analysis was performed on hub gene expression 
profiles within the integrated GEO dataset. Resulting correlation matrices were visualized using R packages 
igraph and ggraph with defined strength thresholds: |r| < 0.3 (Weak/Non-significant), 0.3 ≤ |r| < 0.5 (Weak), 0.5 
≤ |r| < 0.8 (Moderate), and |r| ≥ 0.8 (Strong).

Construction of IDD diagnostic model
To construct the IDD diagnostic model, logistic regression analysis was conducted on hub genes to analyze 
the association between IDD and Control. Genes with a p-value < 0.05 were identified as GRDEGs. These 
genes were then used to construct a forest plot displaying the expression levels in the logistic regression model. 
Subsequently, a model was created utilizing the Support Vector Machine (SVM) algorithm, focusing on genes 
with the highest accuracy35. Finally, LASSO regression analysis was performed using the R package glmnet36, 
setting the seed to 500 and the family to “binomial” to reduce overfitting and improve generalization ability. The 
LASSO results were depicted in the diagnostic model and variable trajectory plot. The hub genes in the results 
were defined as key genes. The risk score formula based on the LASSO regression coefficients was calculated as 
follows:

	
RiskScore =

∑
iCoefficient (genei) ∗ mRNA Expression (genei)

Validation of IDD diagnostic model
Based on the LASSO regression results, a nomogram37 was drawn using the R package rms to display the 
relationships among hub genes. Calibration plots were used to evaluate the accuracy and discrimination of IDD 
diagnostic models. Decision curve analysis (DCA)38 was performed using the ggDCA package in R to assess the 
clinical utility of the predictive model. In addition, ROC curves based on the LASSO risk score and key genes were 
plotted using the R package pROC, and AUC values were calculated to assess the diagnostic performance. An 
AUC close to 1 indicated high diagnostic accuracy. Based on the risk score, samples with IDD were categorized 
into high-risk and low-risk groups. The Mann-Whitney U test was employed to assess the expression variances 
of key genes between these groups, with the outcomes presented in group comparison plots.

Immune infiltration analysis between IDD and control groups
The CIBERSORT algorithm39 and LM22 signature gene matrix were employed to analyze the transcriptome 
expression matrix of the combined GEO dataset samples. This process estimated the composition and abundance 
of immune cells, with a focus on data displaying immune cell enrichment scores above zero. Stacked bar plots 
illustrating the proportions of LM22 immune cells in both the IDD and Control groups were generated using 
the R package ggplot2. Additionally, correlations between immune cells and key genes, as well as correlations 
among immune cells themselves, were calculated using the Spearman algorithm. Correlation heatmaps were 
then created using the R packages pheatmap and ggplot2. Based on the correlation heatmap, the four key genes 
with the strongest correlations with immune cells were selected and further displayed through scatter plots.

Construction of high and low glycosylation score groups
The ssGSEA algorithm40 was utilized with the R package GSVA to compute glycosylation scores (Gs) for all 
samples in the integrated GEO dataset. These scores were then used to categorize IDD samples into high 

GSE34095 GSE70362 GSE147383

Platform GPL96 GPL17810 GPL570

Species Homo sapiens Homo sapiens Homo sapiens

Tissue intervertebral disc tissue Nucleus pulposus tissue of intervertebral disc Nucleus pulposus tissue of intervertebral disc

Samples in IDD group 3 16 2

Samples in Control group 3 8 2

References 19 20 21

Table 1.  GEO microarray chip Information. GEO, Gene Expression Omnibus.
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Fig. 2.  Batch effects removal of combined datasets. (A) Boxplots of GEO Datasets (Combined Datasets) 
distribution before batch removal. (B) Post-batch integrated GEO Datasets (Combined Datasets) distribution 
boxplots. (C) PCA plot of the datasets before debatching. (D) Go to the PCA map of the Combined GEO 
Datasets after batch processing. IDD, Intervertebral Disc Degeneration; PCA, Principal Component Analysis. 
The intervertebral disc degeneration (IDD) dataset GSE34095 is blue, the IDD dataset GSE70362 is red, and 
the IDD dataset GSE147383 is yellow.
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(HighScore) and low (LowScore) score groups. ROC curves of glycosylation scores and key genes were generated 
using the R package pROC to assess their diagnostic performance for IDD. The AUC values varied from 0.5 to 
1, where 0.5 ~ 0.7 indicated low accuracy, 0.7 ~ 0.9 indicated moderate accuracy, and above 0.9 indicated high 
accuracy. Subsequently, the Mann-Whitney U test was employed to compare the expression variances of key 
genes between the high and low score groups, and the outcomes were illustrated through group comparison 
plots.

Immune infiltration analysis between high and low glycosylation score groups
Utilizing the CIBERSORT algorithm39 in conjunction with the LM22 signature gene matrix, IDD samples within 
the combined GEO dataset were analyzed to estimate the composition and abundance of immune cells. The 
analysis included only data with immune cell enrichment scores above zero. The results were visualized using 
stacked bar plots drawn with the R package ggplot2, showing the proportions of LM22 immune cells in the 
HighScore and LowScore groups. The Spearman algorithm was conducted to examine the relationship between 
hub genes and the abundance of immune cell infiltration, retaining results with p-value < 0.05, and a correlation 
heatmap was drawn using ggplot2. Finally, immune cells significantly correlated with key genes were selected, 
and lollipop plots were drawn using ggplot2 to further display these relationships.

Immune infiltration analysis and consensus clustering
ssGSEA40 quantitatively evaluated the infiltration abundance of immune cells in IDD samples from the 
comprehensive GEO dataset, encompassing diverse immune cell subtypes including activated CD8 T cells and 
dendritic cells. The IDD samples were subjected to analysis using consensus clustering41 based on the immune 
cell infiltration matrix, with the R package ConsensusClusterPlus42. The number of clusters ranged from 2 to 9, 
and the clustering process was repeated 50 times with 80% of the sample size. Furthermore, the analysis included 
examination of the expression variances of key genes across different IDD subtypes, as well as the expression 
disparities of immune cells within the various IDD subtypes. Finally, the Spearman algorithm was employed 
to explore the correlation between key genes and immune cells, with the resulting correlations visualized in 
heatmaps.

Construction of protein-protein interaction network
Based on central genes, the STRING 12.0 database was used to construct a protein-protein interaction (PPI) 
network of key genes43, selecting genes with a minimum interaction coefficient greater than 0.150 for in-depth 
analysis. Meanwhile, the GeneMANIA 3.5.1 database44 was utilized to predict and analyze functionally similar 
genes of key genes, further constructing a PPI network to assist in gene function analysis and prediction.

Construction of regulatory networks
Transcription factors (TFs) regulate gene expression by interacting with specific key genes. The regulatory 
effects of TFs on key genes were analyzed using the ChIPBase45 and hTFtarget46 databases, while the mRNA-TF 
regulatory network was visualized using Cytoscape 3.10.147. Additionally, the relationship between key genes and 
miRNAs was examined through the StarBase v3.0 database48, and the mRNA-miRNA regulatory network was 
visualized. Predictions for target RNA-binding proteins (RBPs) of key genes were made using the same database, 
and the mRNA-RBP regulatory network was visualized49. Finally, drug targets of key genes were predicted using 
the CTD database50, and the mRNA-Drug regulatory network was visualized through Cytoscape, completing 
the network construction.

Statistical analysis
All data processing and analysis in this study were conducted using R software (Version 4.3.1). In cases where 
continuous variables were compared between two groups, the independent Student’s T-test was utilized for 
normally distributed variables, while the Mann-Whitney U test (Wilcoxon Rank Sum Test) was employed for 
non-normally distributed variables. For comparisons involving three or more groups, the Kruskal-Wallis test 
was applied. Spearman correlation analysis was used to calculate correlation coefficients between different 
molecules. Unless otherwise specified, all statistical p-values were two-sided, with a significance level set at 
p < 0.05.

Results
Intervertebral disc degeneration-related glycosylation-related differentially expressed genes
Utilizing the R package limma for differential gene analysis, a total of 559 DEGs were screened, including 282 
upregulated genes and 277 downregulated genes. A volcano plot was drawn based on the differential analysis 
results of this dataset (Fig. 3A).

According to the differential analysis method, DEGs and GRGs were obtained, and a Venn diagram was 
drawn by taking their intersection (Fig. 3B), yielding a total of 25 GRDEGs: IGFBP3, MUC1, MAN2B2, 
ST6GALNAC2, ST8SIA1, HEXA, CNIH3, PIGT, PTGDS, MAN1A1, DPAGT1, GALNT7, SERPINA1, PDPN, 
EDEM3, RAPGEF5, C1GALT1C1, TSPAN1, GLA, TLR4, PLOD2, ATP6AP2, GALNT3, CHI3L1, and THBS1. 
Detailed information on GRDEGs is listed in Table 2. Based on the intersection results, the locations of the 25 
GRDEGs on human chromosomes were analyzed using the R package RCircos, and a chromosomal location map 
was drawn (Fig. 3C). The chromosomal location map shows that the 25 GRDEGs are located on chromosomes 1, 
2, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 20, and X.

A simple value heatmap (Fig. 3D) and group comparison plot (Fig. 3E) were drawn using the R package 
ggplot2 to display the analysis results. All 25 GRDEGs showed significant differences between the different 
sample groups. The genes IGFBP3, ST6GALNAC2, CNIH3, PTGDS, MAN1A1, DPAGT1, GALNT7, PDPN, 
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EDEM3, C1GALT1C1, GLA, TLR4, PLOD2, ATP6AP2, CHI3L1, and THBS1 were significantly up regulated in 
the IDD group, while the genes MUC1, MAN2B2, ST8SIA1, HEXA, PIGT, SERPINA1, RAPGEF5, TSPAN1, and 
GALNT3 were abundantly expressed in the Control group.

GO and KEGG enrichment analysis
The detailed results are shown in Supplementary Table S2. The results indicate that 12 GRDEGs are mainly 
enriched in protein glycosylation (BP), lysosomal lumen (CC), and hydrolase activity (MF) in IDD (Fig. 4A–C). 
They are also enriched in the mucin type O-glycan biosynthesis pathway (KEGG) (Fig. 4D).

GSEA between IDD and control groups
The GSEA results (Fig. 5A) are shown in Table 3. The results demonstrate that all genes in the integrated GEO 
dataset are markedly elevated in iron metabolism in placenta (Fig. 5B), adaptation to hypoxia down (Fig. 5C), 
apoptosis by serum deprivation up (Fig. 5D), integrated TGF-β EMT up (Fig. 5E), and other biologically relevant 
functions and signaling pathways.

Fig. 3.  Differential gene expression analysis. (A) Volcano plot of DEGs analysis between IDD and Control in 
the integrated GEO dataset, with GRDEGs marked. (B) Venn diagram of DEGs and GRGs in the integrated 
GEO dataset. (C) Chromosomal location map of GRDEGs. (D, E) Simple value heatmap (D) and group 
comparison plot (E) of GRDEGs expression levels between IDD and Control groups in the integrated GEO 
dataset. IDD, Intervertebral Disc Degeneration; DEGs, Differentially Expressed Genes; GRGs, Glycosylation-
Related Genes; GRDEGs, Glycosylation-Related Differentially Expressed Genes. *Represents p-value < 0.05, 
indicating statistical significance; ** represents p-value < 0.01, indicating high statistical significance; *** 
represents p-value < 0.01, indicating extreme statistical significance. In the grouping, red represents IDD and 
blue represents Control; in the simple value heatmap, red represents high expression and blue represents low 
expression.
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Weighted gene co-expression network analysis
The WGCNA results (Fig. 6A) show that the top 3,000 genes with the highest variance were clustered and 
annotated with grouping information through a clustering tree (Fig. 6C). The genes were aggregated into 12 
modules (Fig. 6B). Using |r value| > 0.40 as the criterion for modules, two modules were selected for subsequent 
analysis: MEpink and MEgreen. The 25 GRDEGs were intersected with the genes contained in the two modules, 
and a Venn diagram was drawn (Fig. 6D), yielding a total of 9 hub genes: IGFBP3, MAN2B2, PTGDS, MAN1A1, 
SERPINA1, RAPGEF5, GLA, PLOD2, and CHI3L1.

Finally, the correlation heatmap of hub gene expression levels (Fig. 6E) shows that the gene SERPINA1 has 
the strongest significant positive correlation with the gene MAN2B2 (r value = 0.617, p-value < 0.001), while 
the gene GLA exhibits the most robust and significant negative correlation with the gene MAN2B2 (r value = – 
0.679, p-value < 0.001).

Construction of IDD diagnostic model
The logistic regression model was constructed using the 9 hub genes and displayed through a forest plot (Fig. 7A). 
Detailed information is shown in Table 4. The results indicate that all 9 hub genes have statistical significance in 
the logistic regression model (p-value < 0.05). Next, an SVM model was constructed based on the 9 hub genes 
and the SVM algorithm, obtaining the genes with the lowest error rate (Fig. 7B) and the highest accuracy (Fig. 
7C). The results show that when the number of genes is 8, the accuracy of the SVM model is the highest. These 8 
hub genes are MAN2B2, IGFBP3, MAN1A1, CHI3L1, PLOD2, RAPGEF5, GLA, and PTGDS.

A LASSO regression analysis was conducted using the 8 hub genes from the SVM model to develop an IDD 
diagnostic model. Visual representations of the LASSO regression model diagram (Fig. 7D) and the LASSO 
variable trajectory diagram ((Fig. 7E) were created. The analysis identified 7 key genes in the LASSO regression 
model: MAN2B2, IGFBP3, MAN1A1, CHI3L1, PLOD2, RAPGEF5, and GLA.

Validation of IDD diagnostic model
To further substantiate the value of the IDD diagnostic model, a nomogram was drawn based on the key genes to 
display the relationships among key genes in the integrated GEO dataset (Fig. 8A). The findings suggest that the 
expression level of the critical gene MAN2B2 is significantly more useful for the IDD diagnostic model compared 
to other variables. In contrast, the expression level of GLA has notably less utility for the IDD diagnostic model 
compared to other variables.

The calibration curve plot of the IDD diagnostic model indicates that the calibration line, represented by 
the dashed line, slightly deviates from the diagonal line of the ideal model but closely coincides with it (Fig. 

Gene symbol Description Log FC P value Group

IGFBP3 Insulin like growth factor binding protein 3 2.035500109 1.78E-04 Up

MUC1 Mucin 1, cell surface associated – 0.411229856 2.63E-04 Down

MAN2B2 Mannosidase alpha class 2B member 2 – 0.51829118 5.44E-04 Down

ST6GALNAC2 ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 2 0.83284295 8.41E-04 Up

ST8SIA1 ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sialyltransferase 1 – 0.642364927 8.75E-04 Down

HEXA Hexosaminidase subunit alpha – 0.449213938 1.28E-03 Down

CNIH3 Cornichon family AMPA receptor auxiliary protein 3 0.745129819 1.53E-03 Up

PIGT Phosphatidylinositol glycan anchor biosynthesis class T – 0.327014225 2.57E-03 Down

PTGDS Prostaglandin D2 synthase 0.604223565 3.82E-03 Up

MAN1A1 Mannosidase alpha class 1 A member 1 0.828526669 4.01E-03 Up

DPAGT1 Dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 0.556308077 5.17E-03 Up

GALNT7 Polypeptide N-acetylgalactosaminyltransferase 7 0.531361469 5.51E-03 Up

SERPINA1 Serpin family A member 1 – 0.575254643 6.58E-03 Down

PDPN Podoplanin 0.608378351 7.89E-03 Up

EDEM3 ER degradation enhancing alpha-mannosidase like protein 3 0.320119072 8.06E-03 Up

RAPGEF5 Rap guanine nucleotide exchange factor 5 – 0.670975087 8.64E-03 Down

C1GALT1C1 C1GALT1 specific chaperone 1 0.460298705 9.56E-03 Up

TSPAN1 Tetraspanin 1 – 0.432098157 1.27E-02 Down

GLA Galactosidase alpha 0.518830547 1.48E-02 Up

TLR4 Toll like receptor 4 0.420533966 1.61E-02 Up

PLOD2 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 0.323765046 1.63E-02 Up

ATP6AP2 ATPase H + transporting accessory protein 2 0.301497136 1.76E-02 Up

GALNT3 Polypeptide N-acetylgalactosaminyltransferase 3 – 0.728143608 2.10E-02 Down

CHI3L1 Chitinase 3 like 1 0.849407929 3.24E-02 Up

THBS1 Thrombospondin 1 0.584138642 4.17E-02 Up

Table 2.  List of GRDEGs of differential expression analysis. GRDEGs, Glycosylation-Related Differentially 
Expressed Genes.
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8B). The DCA plot demonstrates that the model line consistently outperforms All positive and All negative 
within a specific range, indicating that the model provides greater benefits and superior performance (Fig. 8C). 
Furthermore, the ROC curve reveals that the risk score’s expression level in the integrated GEO dataset exhibits 
high accuracy (AUC > 0.9) across different groups (Fig. 8D). Simultaneously, drawing an ROC curve based on 
the expression levels of 7 critical genes in the integrated GEO dataset shows moderate accuracy (0.7 < AUC < 0.9) 
between different groups in this dataset (Fig. 8E). The formula for calculating risk score (Eq. 1) is as follows:

	
RiskScore = MAN2B2 ∗ (−39.650) + IGF BP 3 ∗ (7.466) + MAN1A ∗ (8.530) + CHI3L1 ∗ (6.682)

+ P LOD2 ∗ (−11.957) + RAP GEF 5 ∗ (−1.705) + GLA ∗ (−2.332) � (1)

Fig. 4.  GO and KEGG enrichment analysis for GRDEGs. (A–D) Bar plot display of Gene Ontology (GO) 
biological process (BP), cellular component (CC), molecular function (MF), and pathway (KEGG) enrichment 
analysis results of GRDEGs: BP (A), CC (B), MF (C), and KEGG (D). The horizontal axis represents GO 
terms and KEGG terms. GRDEGs, Glycosylation-Related Differentially Expressed Genes; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cell Component; MF, 
Molecular Function. The screening criteria for Gene Ontology (GO) and pathway (KEGG) enrichment analysis 
were adj.p < 0.05 and FDR value (q value) < 0.25, and the p-value correction method was Benjamini-Hochberg 
(BH).
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Subsequently, group comparison plots were utilized to explore the expression differences of critical genes in 
IDD. The results of the differential analysis of the expression levels of the 7 essential genes in the HighRisk 
and LowRisk groups of IDD are displayed in Fig. 8F. It was found that the essential genes MAN2B2, IGFBP3, 
and GLA exhibit statistically significant differences in expression levels between the HighRisk and LowRisk 

ID Set Size Enrichment Score NES P value p.adjust Q value

KIM_WT1_TARGETS_DN 416 0.4509278 1.864365 1.02 e-10 5.39 e-07 4.72 e-07

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 326 0.4767721 1.921217 6.35 e-10 1.67 e-06 1.47 e-06

BLANCO_MELO_COVID19_SARS_COV_2_INFECTION_CALU3_CELLS_UP 238 0.5088824 1.988975 1.82 e-09 3.2 e-06 2.8 e-06

NAGASHIMA_NRG1_SIGNALING_UP 163 0.5485680 2.063942 3.24 e-09 4.27 e-06 3.74 e-06

WANG_SMARCE1_TARGETS_UP 200 0.5138466 1.957534 1.32 e-08 1.4 e-05 1.22 e-05

VERHAAK_AML_WITH_NPM1_MUTATED_UP 160 0.5351318 1.965982 4.99 e-08 3.84 e-05 3.36 e-05

JAEGER_METASTASIS_DN 235 0.4819628 1.889095 5.83 e-08 3.84 e-05 3.36 e-05

RUTELLA_RESPONSE_TO_HGF_VS_CSF2RB_AND_IL4_UP 378 0.4335381 1.776046 5.16 e-08 3.84 e-05 3.36 e-05

VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARLY_UP 127 0.5727855 2.027521 8.32 e-08 4.88 e-05 4.27 e-05

ONDER_CDH1_TARGETS_2_UP 239 0.4829889 1.895050 1.4 e-07 7.4 e-05 6.47 e-05

FOROUTAN_INTEGRATED_TGFB_EMT_UP 118 0.5058604 1.783987 5.13 e-05 3.82 e-03 3.35 e-03

WEINMANN_ADAPTATION_TO_HYPOXIA_DN 34 0.6808293 1.928060 1.39 e-04 7.79 e-03 6.82 e-03

GRAESSMANN_APOPTOSIS_BY_SERUM_DEPRIVATION_UP 413 0.3475608 1.434159 5.02 e-04 1.85 e-02 1.62 e-02

WP_IRON_METABOLISM_IN_PLACENTA 10 0.8364089 1.832610 1.37 e-03 3.38 e-02 2.96 e-02

Table 3.  Results of GSEA gene set enrichment analysis between IDD and control groups in combined datasets. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; IDD, Intervertebral Disc Degeneration.

 

Fig. 5.  GSEA for intervertebral disc degeneration between IDD and control groups. (A) The gene set 
enrichment analysis (GSEA) 7 biological functions enrichment plot display of the Combined GEO Datasets. 
(B–E) Gene set enrichment analysis (GSEA) showed that all genes were significantly enriched in Hypoxia 
Dn (B), Apoptosis By CDKN1A Via TP53 (C), Emt Breast Tumor Dn (D), and apoptosis by CDKN1A via 
TP53 (C). Circadian Rhythm Genes (E). IDD, Intervertebral Disc Degeneration; GSEA, Gene Set Enrichment 
Analysis. The screening criteria of gene set enrichment analysis (GSEA) were adj.p < 0.05 and FDR value (q 
value) < 0.25, and the p value correction method was Benjamini-Hochberg (BH).
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groups of IDD (p-value < 0.05). Specifically, IGFBP3 and GLA are highly expressed in the high-risk group, while 
MAN2B2 is highly expressed in the low-risk group.

Immune infiltration analysis between IDD and control groups
The CIBERSORT algorithm was used to calculate the immune infiltration abundance in the IDD and Control 
groups. The results show that 17 immune cell types are enriched in IDD samples (Fig. 9A). According to 
the correlation heatmap of immune cell infiltration abundance (Fig. 9B), follicular helper T cells have the 

Fig. 6.  WGCNA for combined datasets. (A) Display of the scale-free network with the optimal soft 
threshold in weighted gene co-expression network analysis (WGCNA). The left plot shows the optimal soft 
threshold, and the right plot shows the network connectivity under different soft thresholds. (B) Display of 
the correlation analysis results between clustering modules of the top 3,000 genes with the highest variance 
and the Control and IDD groups. (C) Display of the module aggregation results of the top 3,000 genes with 
the highest variance. (D) Display of the Venn diagram of 25 GRDEGs and genes contained in the MEpink 
and MEgreen modules. (E) Correlation heatmap of expression levels between hub genes. IDD, Intervertebral 
Disc Degeneration; WGCNA, Weighted Gene Co-Expression Network Analysis; GRDEGs, Glycosylation-
Related Differentially Expressed Genes. *Represents p-value < 0.05, indicating statistical significance; ** 
represents p-value < 0.01, indicating high statistical significance; *** represents p-value < 0.01, indicating 
extreme statistical significance. The absolute value of the correlation coefficient (r value) below 0.3 is weak or 
uncorrelated, between 0.3 and 0.5 is weakly correlated, between 0.5 and 0.8 is moderately correlated, and above 
0.8 is strongly correlated. Red represents positive correlation and blue represents negative correlation.
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strongest significant positive correlation with activated dendritic cells (r value = 0.556, p-value < 0.001), while 
activated NK cells have the strongest significant negative correlation with activated mast cells (r value = – 
0.584, p-value < 0.001). According to the correlation heatmap between key genes and immune cell infiltration 
abundance (Fig. 9C), in IDD samples, the gene GLA has a significant positive correlation with eosinophils (r 
value = 0.581, p-value < 0.001), the gene PLOD2 has a significant positive correlation with M0 macrophages (r 
value = 0.544, p-value < 0.001), the gene GLA has a significant negative correlation with activated dendritic cells 
(r value = – 0.438, p-value < 0.01), and the gene RAPGEF5 has a significant negative correlation with regulatory 
T cells (Tregs) (r value = – 0.429, p-value < 0.05). Finally, scatter plots (Fig. 9D–G) were drawn to further display 
the correlations between the gene GLA and eosinophils (Fig. 9D), the gene PLOD2 and M0 macrophages (Fig. 
9E), the gene GLA and activated dendritic cells (Fig. 9F), and the gene RAPGEF5 and regulatory T cells (Tregs) 
(Fig. 9G).

Immune infiltration analysis between high and low glycosylation score groups
Based on the expression levels of the 7 critical genes in the integrated GEO dataset, glycosylation scores (Gs) 
for all samples were calculated using the ssGSEA algorithm. Additionally, ROC curves were generated using the 
R package pROC based on the Gs in the integrated GEO dataset. The ROC curves (Fig. 10A) indicate that Gs 

Fig. 7.  Diagnostic model of intervertebral disc degeneration. (A) Forest Plot of the nine hub genes included 
in the Logistic regression model in the diagnostic model of intervertebral disc degeneration (IDD). (B, C) 
Visualization of the number of genes with the lowest error rate (B) and the number of genes with the highest 
accuracy (C) obtained by the SVM algorithm. (D, E) Diagnostic model plot (D) and variable trajectory plot (E) 
of LASSO regression model. IDD, Intervertebral Disc Degeneration; SVM, Support Vector Machine; LASSO, 
Least Absolute Shrinkage and Selection Operator.
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Fig. 8.  Diagnostic and validation analysis of intervertebral disc degeneration. (A) Nomogram of key genes 
in the IDD diagnostic model in the integrated GEO dataset. (B) Calibration curve plot of the IDD diagnostic 
model based on key genes in the integrated GEO dataset. (C) DCA plot of the IDD diagnostic model based on 
the risk score (RiskScore) in the integrated GEO dataset. (D) ROC curve of the risk score (RiskScore) in the 
integrated GEO dataset. (E) ROC curve of key genes in the integrated GEO dataset. (F) Group comparison 
plot of key genes in the HighRisk and LowRisk groups of IDD. The vertical axis of the calibration curve 
plot represents the net benefit, and the horizontal axis represents the probability threshold or threshold 
probability. IDD, Intervertebral Disc Degeneration; DCA, Decision Curve Analysis; ROC, Receiver Operating 
Characteristic; AUC, Area Under the Curve; CI, Confidence Interval; TPR, True Positive Rate; FPR, False 
Positive Rate. ns represents p-value ≥ 0.05, indicating no statistical significance; * represents p-value < 0.05, 
indicating statistical significance; ** represents p-value < 0.01, indicating high statistical significance. When 
AUC > 0.5, it indicates a trend of the molecule’s expression promoting the occurrence of the event, and the 
closer the AUC is to 1, the better the diagnostic effect. AUC between 0.5 and 0.7 indicates low accuracy, AUC 
between 0.7 and 0.9 indicates moderate accuracy, and AUC above 0.9 indicates high accuracy. Red represents 
the HighRisk group and blue represents the LowRisk group.

 

gene OR (95% CI) P value

CHI3L1 1.99 (1 to 3.93) 0.048398

GLA 4.64 (1.16–18.52) 0.029802

IGFBP3 2.71 (1.37–5.38) 0.004276

MAN1A1 4.46 (1.32–15.1) 0.01619

MAN2B2 0.03 (0–0.4) 0.007493

PLOD2 11.28 (1.26–100.72) 0.030093

PTGDS 14.04 (1.66 to 119.03) 0.015404

RAPGEF5 0.24 (0.06–0.86) 0.028435

SERPINA1 0.15 (0.03–0.73) 0.018724

Table 4.  Results of univariate logistic regression. OR, Odds Ratio; CI, Confidence Interval.
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Fig. 9.  Immunoinfiltration analysis between IDD and control groups (CIBERSORT). (A) Stacked bar plot of 
the proportions of LM22 immune cells in the integrated GEO dataset. (B) Correlation heatmap of immune 
cell infiltration abundance in the integrated GEO dataset. (C) Correlation heatmap between immune cell 
infiltration abundance and key genes in the integrated GEO dataset. (D) Scatter plot of the correlation 
between the gene GLA and eosinophils. (E) Scatter plot of the correlation between the gene PLOD2 and M0 
macrophages. (F) Scatter plot of the correlation between the gene GLA and activated dendritic cells. (G) 
Scatter plot of the correlation between the gene RAPGEF5 and regulatory T cells (Tregs). IDD, Intervertebral 
Disc Degeneration. *Represents p-value < 0.01, indicating statistical significance; ** represents p-value < 0.01, 
indicating high statistical significance; *** represents p-value < 0.001, indicating extreme statistical significance. 
The absolute value of the correlation coefficient (r value) below 0.3 is weak or uncorrelated, between 0.3 and 
0.5 is weakly correlated, between 0.5 and 0.8 is moderately correlated, and above 0.8 is strongly correlated. In 
the grouping, red represents the IDD group and blue represents the Control group. In the correlation heatmap, 
red represents positive correlation and blue represents negative correlation, with the color depth representing 
the strength of the correlation.
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expression level demonstrates moderate accuracy (0.7 < AUC < 0.9) between different groups in the integrated 
GEO dataset. Furthermore, a group comparison plot was created using the R package ggplot2 (Fig. 10B), 
revealing highly significant statistical differences in Gs between IDD and Control groups within the integrated 
GEO dataset (p-value < 0.001). Subsequently, based on median Gs values of IDD samples, they were divided into 
high (HighScore) and low (LowScore) glycosylation score groups. Differential analysis of genes in these high and 
low-score groups was conducted using the R package limma, with results displayed through group comparison 
plots (Fig. 10C). These results demonstrate statistically significant differences in expression levels of key genes 
CHI3L1, MAN1A1, and PLOD2 between HighScore and LowScore groups of IDD (p-value < 0.05), with all 
three being highly expressed in the low score group.

Subsequently, the results of immune infiltration analysis were used to create a stacked bar plot illustrating the 
proportions of immune cells in the integrated GEO dataset (Fig. 10D). Additionally, a correlation heatmap was 
generated to visually represent the correlation between critical genes and immune cell infiltration abundance 
(Fig. 10E). The findings indicate that in IDD samples, the gene PLOD2 exhibits a strong significant positive 
correlation with M0 macrophages (r-value = 0.736, p-value < 0.001). Conversely, the gene MAN2B2 demonstrates 
a strong significant negative correlation with eosinophils (r-value = -0.534, p-value < 0.05). The key genes with 
significant correlations with eosinophils are the most numerous. The key genes MAN2B2, GLA, and CHI3L1 
have significant correlations with eosinophils, and lollipop plots (Fig. 10F) were drawn to further display the 
correlations between the genes MAN2B2, GLA, CHI3L1, and eosinophils.
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Fig. 10.  Immunoinfiltration analysis between high and low score groups (CIBERSORT). (A) ROC curve of 
the glycosylation score (Gs) in the integrated GEO dataset. (B) Group comparison plot of the glycosylation 
score (Gs) between IDD and Control groups in the integrated GEO dataset (Combined Datasets). (C) Group 
comparison plot of key genes in the HighScore and LowScore groups of IDD samples. (D) Stacked bar plot 
of the proportions of LM22 immune cells in IDD samples. (E) Correlation heatmap between immune cell 
infiltration abundance and key genes in IDD samples. (F) Lollipop plot of the correlations between key genes 
MAN2B2, GLA, CHI3L1, and eosinophils. A positive correlation coefficient indicates a positive correlation 
between the two variables, while a negative correlation coefficient indicates a negative correlation between the 
two variables. IDD, Intervertebral Disc Degeneration. ns represents p-value ≥ 0.05, indicating no statistical 
significance; * represents p-value < 0.01, indicating statistical significance; ** represents p-value < 0.01, 
indicating high statistical significance; *** represents p-value < 0.001, indicating extreme statistical significance. 
The absolute value of the correlation coefficient (r value) below 0.3 is weak or uncorrelated, between 0.3 and 
0.5 is weakly correlated, between 0.5 and 0.8 is moderately correlated, and above 0.8 is strongly correlated. In 
the group comparison plot (B), red represents the IDD group and blue represents the Control group; in the 
group comparison plot (C) and stacked bar plot (D), red represents the HighScore group and blue represents 
the LowScore group; in the correlation heatmap, red represents positive correlation and blue represents 
negative correlation, with the color depth representing the strength of the correlation.

Immune infiltration analysis and consensus clustering based on immune characteristics of 
IDD samples
Using the k-means unsupervised clustering method, based on the infiltration levels of 28 immune cell types, all 
samples were clustered into two IDD subtypes (Fig. 11A): subtype 1 (Cluster1) and subtype 2 (Cluster2). The 
PCA results (Fig. 11B) show that in the reduced dimensionality space, there is a clear and distinct boundary 
between the two groups of samples, indicating good clustering performance.

Subsequently, the expression differences of key genes between subtype 1 (Cluster1) and subtype 2 (Cluster2) 
are shown in a volcano plot (Fig. 11C). The results indicate that the genes MAN1A1 and IGFBP3 are highly 
expressed in subtype 2. At the same time, the group comparison of 28 immune cell types between subtype 
1 and subtype 2 (Fig. 11D) demonstrates that 12 immune cell types are enriched in IDD samples and have 
significant statistical differences between subtype 1 and subtype 2: activated CD4 T cells, activated dendritic 
cells, CD56dim natural killer cells, central memory CD4 T cells, effector memory CD8 T cells, eosinophils, 
MDSCs, memory B cells, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells, and type 1 T 
helper cells. Subsequently, a simple value heatmap (Fig. 11E) was used to further display the differences in the 
infiltration levels of the 12 immune cell types between subtype 1 and subtype 2 in IDD samples.

Finally, based on the correlation heatmap between essential genes and immune cell infiltration abundance 
(Fig. 11F), it was found that in IDD samples, the gene MAN2B2 exhibits a strong significant positive correlation 
with memory B cells (r-value = 0.649, p-value < 0.01). Conversely, the gene GLA shows a strong significant 
negative correlation with memory B cells (r-value = – 0.645, p-value < 0.01).

Construction of PPI network
First, the PPI network results (Fig. 12A) indicate that 6 key genes are related: MAN2B2, IGFBP3, MAN1A1, 
CHI3L1, PLOD2, and GLA. Then, use the Cytoscape software to draw the PPI network of these 6 key genes (Fig. 
12B). Subsequently, the GeneMANIA website was used to predict and construct the interaction network of the 
6 key genes and their functionally similar genes (Fig. 12C). Different colors of connecting lines represent the 
co-expression, shared protein domains, and other information between them. The network includes 6 key genes 
and 20 functionally similar proteins.

Construction of regulatory networks
First, the ChIPBase and hTFtarget databases were used to obtain TFs that bind to the 6 key genes, construct an 
mRNA-TF regulatory network, and visualize it using the Cytoscape software (Fig. 13A). The network includes 6 
key genes and 49 TFs. Detailed information was in Supplementary Table S3. Subsequently, the StarBase database 
was utilized to identify miRNAs related to these key genes, construct an mRNA-miRNA regulatory network, and 
visualize it using the Cytoscape software (Fig. 13B), involving 3 key genes and 32 miRNAs. Specific information 
is shown in Supplementary Table S4. Finally, the StarBase database was also used to predict RBPs related to these 
key genes, construct an mRNA-RBP regulatory network, and visualize it using the Cytoscape software (Fig. 
13C), containing 6 key genes and 116 RBPs. Detailed information is shown in Supplementary Table S5.

Finally, the CTD database was utilized to identify potential drugs or molecular compounds associated with 
the 6 essential genes. Cytoscape was employed to construct and visualize an mRNA-drug regulatory network 
(Fig. 13D), which includes 6 essential genes and 20 drugs or molecular compounds. Specific information can be 
found in Supplementary Table S6.

Discussion
IDD is a major global health problem associated with severe pain and disability, affecting hundreds of millions 
of people worldwide51. Existing treatment methods, such as surgery and medication, have limitations and often 
require a balance between treatment effects and side effects52. Therefore, in-depth research on the molecular 
mechanisms of IDD, especially gene expression changes in the glycosylation process, is crucial for developing 
new diagnostic and therapeutic strategies. This study conducted bioinformatic analysis of gene expression in 
IDD based on datasets downloaded from public databases.
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Hypoxia is a typical feature of the microenvironment of the NP tissue, especially when intervertebral disc 
degeneration occurs. Due to annular rupture, reduced blood vessels, and increased metabolic demands of 
nucleus pulposus cells, the local partial pressure of oxygen drops sharply53. The results of GSEA suggest that the 
integrated dataset significantly enriches gene sets such as Adaptation to Hypoxia (down) and Hypoxia (down), 
indicating that the hypoxia adaptation ability of NP tissue is significantly impaired under the state of IDD. GSEA 
analysis shows that the differentially expressed genes in the integrated dataset are significantly enriched in the 
Apoptosis By Serum Deprivation pathway (up), suggesting that the apoptotic pathway is activated in IDD, which 
is highly consistent with the pathological features of NP tissue degeneration. As IDD progresses, the nutrient 
channels of the intervertebral disc calcify, and NP cells face a lack of nutrients such as glucose and amino acids, 
thereby initiating the apoptotic program54. GSEA analysis shows that the differentially expressed genes in the 
integrated dataset are significantly enriched in the Integrated TGF-β EMT pathway (up), suggesting that the 
TGF-β induced EMT- related pathway is activated in IDD. When IDD occurs, the TGF-β signaling pathway 
may drive fibrosis and NP dehydration by inducing an imbalance in the synthesis and degradation of ECM 
components55.

The diagnostic model constructed in this study (Fig. 7D, E) included 7 glycosylation-related key genes: 
MAN2B2, IGFBP3, MAN1A1, CHI3L1, PLOD2, RAPGEF5, and GLA. According to the results of differential 
expression gene analysis ((Fig. 3D, E), diagnostic model verification results ((Fig. 8F), and glycosylation score 
results (Fig. 10B, C), MAN2B2 and RAPGEF5 showed expression patterns suggestive of a protective association 
with IDD, whereas IGFBP3, GLA, MAN1A1, PLOD2, and CHI3L1 were correlated with IDD in this dataset. 
These associations require experimental validation to confirm any functional roles. Among them, MAN2B2 
has the highest diagnostic efficiency for IDD diagnosis model. And we found that MAN2B2, IGFBP3, PLOD2, 
CHI3L1 and other genes have been confirmed by relevant studies, with high accuracy and specificity. Eva 
Morava and Xue Zhang56,57 reported two cases of patients with MAN2B2 mutation defect, which showed serious 
arthritis, malformation and immune deficiency, etc. After transduction of wild-type MAN2B2, the patients’ 
related symptoms were relieved. Studies of Grad et al.58 have shown that IGFBP3 can affect the dynamic balance 
of matrix synthesis and degradation by regulating IGF-1 activity, and the polymorphism of IGFBP3 gene is 
closely related to lumbar disc degeneration. Levi59 showed that PLOD2 encodes a collagen lysine hydroxylase, 
which is highly expressed after tissue injury and can regulate extracellular matrix remodeling by affecting 
collagen fiber crosslinking. Huan Wang60 showed that CHI3L1 secreted by M2a macrophages promoted the 
imbalance of extracellular matrix metabolism by activating IL-13Rα2/MAPK pathway, thus promoting IDD. 
Other genes such as RAPGEF5, GLA, MAN1A1, etc., have not been reported to be related to IDD at present, 
and their specific functions need to be further explored. The potential roles of these genes in IDD remain to be 
clarified and warrant further investigation through experimental studies.

Immune cell infiltration of IDD is another highlight of this study. A large number of studies have shown 
that immune cell infiltration and inflammatory response are important factors leading to IDD61,62. We used 
CIBERSORT algorithm to identify multiple invasive immune cell subpopulations in degenerative tissues and 
analyze the correlation between key genes and immune cells. Subsequently, we further analyzed the action 
mechanism of immune cells on IDD (Figs. 9C, 10E and 11F) and found that T cells CD4 memory resting, 
Neutrophils and B cells memory belonged to protective immune cells. Macrophages M0, CD56dim natural 
killer cell, T cells CD8 and MDSC belong to pathogenic immune cells. Eosinophils, T cells regulatory, Dendritic 
cells activated, and T cells follicular helper have conflicting effects on IDD. The results in Fig. 9 indicate that 
follicular helper T cells exhibit the highest correlation coefficient with activated dendritic cells (r > 0.5, p < 
0.001). Meanwhile, there is a strong negative correlation between activated NK cells and mast cells (r < -0.5, p 
< 0.001). These closely associated immune cells might reflect a specific immune regulatory network within the 
microenvironment of IDD. CD4 memory resting T cells are moderately positively correlated with regulatory 
Tregs. This finding suggests that in the context of IDD, resting T cells may be activated and differentiate into Tregs, 
thereby participating in the suppression of inflammation. This interplay embodies the dynamic equilibrium 
of immune regulation. A weak positive correlation exists between eosinophils and mast cells, which could be 
attributed to their collaborative secretion of anti-inflammatory cytokines such as IL − 4/IL − 13. This interaction 
may represent an anti-inflammatory compensatory mechanism in IDD. This is consistent with the negative 
correlation between eosinophils and MAN2B2 (a protective gene) observed in “Immune infiltration analysis 
between high and low glycosylation score groups”, further corroborating the protective role of eosinophils in 
IDD.

Ming-Xiang Zou63 conducted single-cell RNA sequencing of intervertebral discs in IDD, suggesting 
that Neutrophils interfered with nucleus pulposus cells to promote the progression of IDD. In addition, a 
bioinformatics study64 found that imbalances in Neutrophils and γδT cells were significantly associated with 
IDD progression. However, this study suggests that MAN1A1 gene may inhibit IDD by regulating Neutrophils. 
Zhengxu Ye65 suggested that M1 polarization of macrophages could accelerate disc degradation and promote 
IDD. Our analysis suggests a possible association between M0-to-M1 macrophage polarization and IDD, 
and genes such as CHI3L1, MAN1A1, and PLOD2 may be linked to this process. However, these hypotheses 
require experimental confirmation. MDSC expression is elevated in inflammatory and chronic diseases. This 
study suggests that CHI3L1 and PLOD2 genes may promote IDD by regulating MDSC. Juan Du66 showed that 
circulating MDSCs were significantly positively correlated with the severity of clinicopathological stages of 
LDH. Yang Sun67 have shown that eosinophils regulate the polarization of macrophages by secreting cytokines 
such as IL-4 and IL-13, and have anti-inflammatory effects. Therefore, it is speculated that eosinophils may play 
a protective role in IDD through this mechanism, and MAN2B2, GLA, CHI3L1 and other genes may participate 
in this process by regulating eosinophils. For other immune cells, such as T cells CD4 memory resting, B cells 
memory, T cells CD8, etc., no studies have been found on IDD, and its mechanism is still unclear. In summary, 
this study found that a variety of immune cells have different effects on IDD, and some immune cells have 
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contradictory effects on IDD, suggesting the importance and complexity of immune cell infiltration in IDD, 
which needs to be further studied.

On the other hand, this study used the ssGSEA algorithm to perform clustering analysis on IDD samples 
based on the infiltration levels of 28 immune cell types and divided the samples into two immune subtypes. By 
comparing the expression differences of key genes and immune cell infiltration characteristics between the two 
subtypes, it was found that MAN1A1 and IGFBP3 were highly expressed in subtype 2, and the two subtypes 
had significant differences in the infiltration levels of 12 immune cell types, such as activated CD4 T cells, 
activated dendritic cells, and effector memory CD8 T cells. Studies have shown that immune cell infiltration 
patterns in the IDD process have stage specificity, with macrophage infiltration predominating in the early stage, 
while T lymphocyte and dendritic cell infiltration increases in the middle and late stages68. The results of the 
clustering analysis in this study support this view, suggesting that changes in the immune microenvironment 
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Fig. 11.  Immunoinfiltration analysis between Cluster1 and Cluster2 groups (ssGSEA). (A) Consensus 
clustering results of IDD samples from the integrated GEO dataset based on the infiltration levels of 28 
immune cell types calculated by the ssGSEA algorithm. (B) PCA plot of the two IDD disease subtypes. 
(C) Volcano plot of the differential analysis results in IDD subtypes, with key genes marked. (D) Group 
comparison plot of the infiltration levels of 28 immune cell types between the two IDD subtype groups. (E) 
Simple value heatmap of the infiltration levels of the selected 12 immune cell types between the two IDD 
subtype groups. (F) Correlation heatmap between key genes and the infiltration abundance of 12 immune 
cell types. IDD, Intervertebral Disc Degeneration; PCA, Principal Component Analysis. ns represents 
p-value ≥ 0.05, indicating no statistical significance; * represents p-value < 0.01, indicating statistical 
significance; ** represents p-value < 0.01, indicating high statistical significance. In the grouping, blue 
represents subtype 1 (Cluster1) and red represents subtype 2 (Cluster2); in the simple value heatmap, red 
represents high expression and blue represents low expression; in the correlation heatmap, red represents 
positive correlation and blue represents negative correlation, with the color depth representing the strength of 
the correlation.

◂

Fig. 12.  PPI network of key genes. (A) PPI network of key genes calculated by the STRING database. (B) 
PPI network of these 6 key genes drawn using Cytoscape software. (C) Interaction network of key genes and 
their functionally similar genes predicted by the GeneMANIA website. The circles in the figure represent the 
key genes and functionally similar genes, and the colors of the connecting lines represent the functions that 
connect them. PPI, Protein-protein Interaction.
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play an important role in the formation of IDD heterogeneity, and different immune subtypes may correspond to 
different stages or severities of the disease. Therefore, immune phenotypes may become a new type of molecular 
marker for judging the degree of degeneration and guiding the selection of treatment plans.

In terms of revealing the biological functions of key genes, we found that multiple TFs, such as CEBPB and 
FOXA1, may be involved in the disease process by regulating the expression of IGFBP3, PLOD2, and other 
genes. In addition, miRNAs such as miR-19a-3p and miR-96-5p may also affect intervertebral disc homeostasis 
by targeting IGFBP3, PLOD2, and other genes. Studies have found that circARL15 plays a key role in IDD 
by regulating DISC1 expression through miR-431-5p69. This study further analyzed the regulatory role of key 
miRNAs in IDD and their association with previous research. By reviewing existing literature on the identified 
miRNAs, it was found that some miRNAs (such as miR-19a-3p, miR-96-5p, etc.) have been previously confirmed 
to be closely related to the occurrence and progression of IDD. miR-19a-3p can influence the survival status 
of disc cells by regulating apoptosis and inflammatory responses, while miR-96-5p plays a significant role in 
extracellular matrix metabolism and tissue repair processes70. The miRNAs predicted in this study are highly 
consistent with these known functions, further validating the reliability and biological significance of the 

Fig. 13.  Regulatory network of key genes. (A) mRNA-TF regulatory network of key genes. (B) mRNA-miRNA 
regulatory network of key genes. (C) The mRNA-RBP regulatory network of key genes. (D) Key genes (mRNA-
Drug Regulatory Network). TF, Transcription Factor; RBP, RNA-Binding Protein. mRNA in purple, TF in blue, 
miRNA in red, RBP in yellow, and Drug in green.
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bioinformatic screening results. However, the roles of some miRNAs also exhibit variations across different 
studies, potentially influenced by factors such as tissue type, sample source, or analysis strategies. Therefore, 
in this study, we supplemented the regulatory networks and potential target genes associated with IDD for 
these miRNAs and explored the functions of newly discovered miRNAs and their possible involvement in 
IDD pathogenesis. Overall, the miRNA network identified in this study provides a theoretical foundation and 
data support for understanding IDD’s molecular regulatory mechanisms and identifying novel diagnostic and 
therapeutic targets. Common environmental pollutants such as bisphenol A and tetrachlorodibenzodioxin can 
act on multiple key genes. Epidemiological studies have shown that exposure to environmental toxins such as 
tobacco and dioxins is a risk factor for IDD71. This suggests that exogenous chemical substances may promote 
the disease process by interfering with the expression of key genes, and the specific mechanisms still require 
more experimental research. In summary, this study explored the molecular mechanisms of IDD from the 
perspective of glycosylation abnormalities using bioinformatic methods, which may provide new methods and 
strategies for improving the prognosis of IDD patients.

Limitations of the study
This study still has certain limitations. Firstly, although the sample size was expanded by integrating multiple 
public databases, the combined dataset only included 21 IDD samples and 13 control samples, which is a limited 
sample size that may not fully represent the gene expression characteristics of IDD patients, thereby affecting 
the generalizability and reliability of the results. Although current research has mitigated the risk of overfitting 
by removing batch effects, reducing gene redundancy, and conducting cross-validation, future studies still need 
to incorporate external datasets for validation to further enhance the robustness and reliability of the results. 
Secondly, due to research constraints, it was not possible to independently collect clinical specimens or conduct 
related experimental validations, and all analyses were based on data from public databases. Consequently, there 
is a lack of validation at the protein level and functional experiments for key genes, preventing further elucidation 
of their specific mechanisms of action. Additionally, the limitations in sample size and experimental design made 
it impossible to systematically compare the expression differences of key genes in different degenerative tissue 
regions (such as the nucleus pulposus and annulus fibrosus). This study primarily focused on gene expression 
analysis of nucleus pulposus tissue, whereas the common degenerative phenotypes observed in clinical imaging 
often originate from annulus fibrosus lesions. In future research, we plan to expand the collection of clinical 
samples further, incorporating multicenter and multi-type tissue samples, and conduct protein-level and 
functional experimental validations to confirm and extend the conclusions of this study more comprehensively.

Data availability
Publicly available datasets (GSE34095, GSE70362, GSE147383) were analyzed in this study. All the datasets were 
obtained from the GEO (https://www.ncbi.nlm.nih.gov/geo/) database.
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