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Texture-based image analysis and
explainable machine learning for
polished asphalt identification in
pavement condition monitoring
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This study presents a framework for detecting polished asphalt pavement surfaces by integrating
texture-based image analysis with interpretable Machine learning (ML). Polishing, caused by
aggregate degradation and bitumen aging, alters surface texture and reduces skid resistance, posing
a safety risk. A real-world dataset of 12,480 pavement images was analyzed using 24 texture features
derived from the Gray Level Co-occurrence Matrix (GLCM), capturing directional spatial patterns of
surface roughness. Several ML models were trained and optimized with the Hyperopt framework,
with a Backpropagation Neural Network (BPNN) achieving the highest classification accuracy of
96.1%. Feature contributions were interpreted using SHapley Additive exPlanations (SHAP), providing
physical insight into texture-driven polishing mechanisms. Although a ResNet50-based CNN achieved
slightly higher accuracy (98.7%), its high computational cost limits practical deployment. The proposed
GLCM-ML approach offers an interpretable, efficient, and physics-aware tool for pavement condition
monitoring, with potential to enhance predictive modeling of surface texture evolution.

Keywords Polished asphalt, Pavement condition monitoring, Texture analysis, Explainable machine
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The development and maintenance of road networks are crucial for ensuring sustainable serviceability,
enhancing connectivity between urban and rural areas, and fostering trade and investment. Enhanced road
infrastructure increases accessibility, lowers transportation costs, and improves productivity, ultimately boosting
economic output!. Pavement is a fundamental component of highway infrastructure, essential for ensuring the
safety and efficiency of transportation systems?. Pavement Management System (PMS) is a critical component
of transportation infrastructure, focused on systematically monitoring, assessing, and maintaining road surfaces
to ensure safety, durability, and efficiency. Effective pavement management extends roadway lifespan, reduces
repair costs, and enhances user satisfaction by ensuring good travel experiences’.With rising traffic volumes and
environmental factors accelerating pavement deterioration, adopting advanced technologies and methodologies
for pavement assessment and rehabilitation becomes essential®.

Asphalt pavements are susceptible to various types of distress that can undermine their structural integrity
and serviceability. Key contributing factors include traffic loads, environmental conditions, material properties,
and construction practices’. Flexible pavement distresses manifest in various forms, generally classified into
two categories: cracking—encompassing fatigue, block, edge, longitudinal, reflection, and transverse cracking—
and non-cracking distresses, including rutting, potholes, polished surfaces, raveling, and bleeding®. Therefore,
Pavement Distress Detection (PDD) is crucial for maintenance planning, aiming to extend the service life of
road infrastructure. PDD identifies and measures various types of pavement distresses, facilitating a reliable
methodological approach to road maintenance management. Automatic and non-destructive distress detection
is essential for effective pavement management’.

In recent years, numerous studies have employed ML and deep learning (DL) techniques in transportation
and infrastructure, highlighting the growing significance of modern computational methods in engineering. For
instance, a texture-image coupled fusion approach has been proposed for pavement skid resistance measurement,
demonstrating the effectiveness of integrating image-based and computational models in pavement analysis®4.
Over the past decade, image processing technology has emerged as a transformative tool for assessing and
maintaining road pavement infrastructure. By utilizing advanced algorithms and ML techniques, researchers
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and engineers can efficiently analyze images of pavement surfaces to detect distresses such as cracks, potholes,
patch, and surface deformations, bleeding surpassing traditional methods!>-2!. Additionally, recent research
over the past four years has investigated distresses related to changes in pavement texture, including bleeding
and raveling?®?2. Inadequate and delayed maintenance can accelerate the deterioration process; therefore,
timely detection of each distress can significantly enhance pavement longevity and performance. However, the
automatic detection of polished aggregates in asphalt pavement using computer vision remains an underexplored
area in the field.

Polished aggregate defect refers to a surface condition in which the binder wears away, exposing coarse
aggregate on the pavement. This occurs when aggregate particles in the asphalt surface are worn down under
traffic, resulting in a smooth, shiny finish that significantly reduces skid resistance. This phenomenon is a critical
concern in roadway design and maintenance due to its substantial impact on vehicle safety and performance.
The reduction in friction increases the risk of accidents, particularly in wet conditions, emphasizing the need
to study polished pavements to enhance highway safety. Research has shown that the type of aggregate and mix
design significantly influence the rate of polishing and the overall performance of asphalt pavements. In this
context, a laboratory-based close-range photogrammetric analysis on ring-shaped asphalt mixture specimens
was conducted to investigate the relationship between surface texture and friction, providing valuable insights
for skid resistance evaluation. Understanding the mechanisms and implications of polished asphalt pavements is
therefore essential for developing effective maintenance strategies and improving long-term road safety[23-28].

Aggregate characteristics significantly influence the surface texture of pavement. This is a crucial factor
in skid resistance. However, road surfaces are continuously exposed to traffic and harsh weather, leading to
aggregate degradation and polishing, which accelerates the deterioration of surface friction. Aggregates that are
less prone to abrasion and polishing typically demonstrate better friction performance in the field. Pavement
texture comprises two components: Micro-texture and macro-texture. Micro-texture relates to the properties of
aggregates, often expressed as Polished Stone Values (PSV), while macro-texture pertains to the surface texture
of asphalt mixes?~32. Consequently, over time, the micro-texture and macro-texture of the pavement surface will
degrade due to the types of materials used, traffic loads, and environmental factors. Analyzing the extent of wear
on the actual road surface may help reduce the rate of accidents.

Image processing technology and ML methods enhance the accuracy of pavement condition assessments and
enable real-time monitoring, facilitating timely maintenance interventions and optimal resource allocation®.
As previously mentioned, polished pavement surfaces directly affect pavement texture. Therefore, combining
texture-based image processing methods with ML can serve as an effective approach for the automatic detection
of this damage.

Recent studies have shown the feasibility and high accuracy of image-based approaches for estimating
pavement texture measures and Mean Texture Depth (MTD). Weng et al. (2022) proposed a rapid MTD
estimation method using image-based multiscale features, introducing indices such as Maximum Particle
Size Distribution (MPSD) and Relative Energy Distribution (RED) derived via multiscale segmentation and
2D-wavelet decomposition, and demonstrated good agreement with traditional measurements®. Moreover,
several works have extended image-based analysis using ML and DL models: Gokalp et al. (2024) developed a
2-D image processing plus ANN approach for MTD estimation on chip-sealed samples, showing competitive
results against sand-patch and hydrotimer methods, while Pan et al. (2023) proposed lightweight few-shot deep
models for pavement texture classification under limited data scenarios®>¢.

Nhat-Duc Hoang proposed an automated approach for detecting asphalt pavement raveling using image-
based texture features combined with ML, demonstrating effective classification of raveling conditions across
diverse samples®’. In 2021, researchers proposed an approach combining 3D imaging with ML to automatically
detect and classify asphalt pavement raveling, demonstrating improved accuracy and scalability compared to
traditional inspection methods?®.

Hoang Nhat-Duc and Tran Van-Duc evaluated several ML models for classifying asphalt pavement raveling,
finding that advanced approaches like Histogram-Based Gradient Boosting Classification Machine HGBCM can
achieve high accuracy and efficiency in image-based pavement assessment™. Additionally, researchers proposed
a computer vision approach for detecting asphalt pavement segregation by combining texture analysis with ML
techniques, including Attractive Repulsive Center-Symmetric Local Binary Pattern (ARCSLBP) and Extreme
Gradient Boosting (XGBoost), demonstrating effective extraction of surface features and high classification
accuracy®’. Another study, For the automatic detection of raveled areas and the categorization of their severity,
the employed texture descriptors include Local Binary Pattern (LBP), Center-Symmetric Local Binary Pattern
(CSLBP), Completed Local Binary Pattern (CLBP), and Local Ternary Pattern (LTP)*!.

Daneshvari et al. proposed a new approach LBP-GLCM texture analysis with an XGBoost classifier to detect
raveling in asphalt pavements. By employing LBP-GLCM, the researchers extracted distinctive texture features
that characterize raveling degradation patterns. These features were then used to train the XGBoost model,
selected for its balance of accuracy and efficiency in handling high-dimensional data. The results show that the
XGBoost classifier achieves high accuracy in raveling detection, outperforming traditional methods in both
speed and reliability. This approach provides a cost-effective and scalable solution for automated pavement
assessment, enhancing maintenance planning and improving road safety*.

In a separate study, the authors presented an innovative approach for detecting asphalt pavement bleeding,
specifically addressing challenges associated with imbalanced datasets. They employed an anomaly detection
framework that treats bleeding as a rare event within a majority of non-bleeding samples. This method effectively
leverages image data to capture subtle visual features indicative of bleeding, overcoming traditional challenges
related to insufficient or imbalanced data for training conventional ML models. The results show that the
anomaly detection approach achieves robust detection accuracy, even with limited bleeding data, making it
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a promising solution for scalable and automated pavement condition monitoring in real-world applications
characterized by data imbalance®.

In a recent study conducted in 2024, a hybrid approach was developed that combines texture analysis
techniques with tree-based ensemble classifiers to detect two common forms of pavement distress: bleeding
and raveling. Using 2D image data of asphalt surfaces, a set of texture features was extracted using Histogram
Equalization (HE)-GLCM and LBP-GLCM. The results demonstrated the high accuracy of tree-based methods
when combining the two feature sets, highlighting their effectiveness for automated pavement evaluation. This
approach supports efficient and scalable monitoring systems, enabling timely maintenance interventions and
improving pavement management strategies*. At the experimental scale, researchers investigated the evolution
of aggregate texture, analyzed morphological characteristics, and evaluated wear resistance?>+.

Despite significant progress in image-based detection of common asphalt distresses—such as raveling,
bleeding, segregation, and patching—the automated identification of pavement surface polishing at the field
scale remains largely underexplored. This distress type, caused by the progressive smoothing of aggregate
particles, leads to a substantial reduction in skid resistance and thereby poses a serious threat to traffic safety.
However, due to its often subtle visual appearance, it is frequently overlooked in conventional inspections.

Previous research has primarily focused on general pavement surface conditions or coarse-level distress
categories, whereas the subtle microtexture variations associated with surface polishing have received limited
attention. Moreover, existing image-based approaches either depend on handcrafted texture features with limited
interpretability or utilize DL models that act as “black boxes” and require extensive datasets. Consequently,
there remains a lack of a reliable and explainable framework capable of detecting and interpreting polished
asphalt surfaces under real-world conditions. To address this research gap, the present study aims to develop
an interpretable, texture-based ML framework that can automatically identify surface polishing using field-
acquired images. The specific objective is to achieve a reliable differentiation between polished and unpolished
surfaces through statistical texture descriptors combined with explainable learning techniques.

The key contributions of this work are as follows:

« Integration of texture analysis and ML: This research pioneers the application of image-based texture features
in combination with advanced ML models to detect and classify surface polishing under field conditions.
 Automated hyperparameter optimization: The Hyperopt framework is utilized to fine-tune model hyperpa-
rameters, improving predictive accuracy and generalization across varying pavement conditions.

o Interpretable ML via SHAP analysis: Multiple ML algorithms are employed for classification, with SHAP used
to interpret the role of each texture feature in model predictions, enhancing transparency and trustworthi-
ness.

The remainder of this paper is organized as follows: Sect. 2 presents the data collection procedure, image
preprocessing, and texture analysis techniques. Section 3 discusses the ML models and their performance.
Section 4 concludes the study with insights into future applications and potential improvements.

Data collection and methodology

In this section, the dataset preparation methods will be explained first. Next, the image processing approach
based on GLCM texture analysis, along with the extracted features from the two classes of images under study,
will be presented. The ML algorithms applied in this study will then be discussed. Following that, the optimizer
(Hyperopt) used to determine the optimal hyperparameters for the models will be described. The SHAP analysis
method employed to examine the impact of each feature will also be explained. Finally, the evaluation and
validation criteria for assessing the accuracy of the models will be presented. In summary, the overall process
and stages of the research are outlined in the flowchart in Fig. 1.

Data collection

The research began with field visits to asphalt pavement surfaces, where digital images were captured from
two categories: Non-Polished surfaces, which represent typical fine and coarse textures, and Polished surfaces,
which consist of areas worn down by prolonged traffic and lacking sufficient texture. High-resolution images
were taken with a digital camera under controlled lighting conditions to minimize shadows and reflections,
and were subsequently stored in a standardized format for further processing. The image collection process
was carried out under cloudy weather conditions to minimize the impact of varying light on image quality. The
identification of Non-Polished and Polished surfaces was performed during field observation based on visual
texture characteristics such as aggregate exposure, reflectivity, and smoothness, which are consistent with typical
indicators used in pavement surface evaluations (Fig. 2).

Figure 3 illustrates the geographical distribution of the surveyed pavement sections within the Seyed Khandan
area of Tehran, Iran. The selected locations include several asphalt road segments along Resalat Highway (Fig. 3-
B) and adjacent urban streets such as Ostadhassan Bana Street (Fig. 3-A) and Shariati Avenue (Fig. 3-C). The
yellow-dashed rectangles (A, B, C) indicate the general areas where field image acquisition was conducted. The
sub-frames labeled A1-A4, B1-B4, and C1-C4 provide enlarged overviews of representative zones within each
corridor to depict surrounding traffic and site context. These zoomed areas are intended solely to illustrate the
approximate sampling locations and urban environment, rather than to display surface texture details, which
were captured separately through field photography.

For this purpose, RGB images were captured at a resolution of 9 megapixels using a Galaxy S23 FE camera,
positioned at a distance of 1 m. To ensure the reliability of the data, images of Non-Polished pavement surfaces—
including newly constructed asphalt, low to moderate raveling, potholes, various types of cracks, traffic markings,
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Fig. 1. Workflow of the proposed method.

and patches—were selected. Figures 4 and 5 illustrate a sample from the original collected image dataset, which
was used for training and validating the computer vision approaches.

The images were cropped to a size of 250 x 250 pixels, and non-standard areas were removed. This size was
selected to adequately capture local surface texture features, such as aggregate exposure and micro-texture, while
keeping the input size manageable for the ML models. Using 250 x 250 pixels reduces computational complexity
and training time without compromising classification accuracy. The total number of images generated by the
expert was 12,480, which were classified into two categories: 6,240 images of Non-Polished surfaces and 6,240
images of Polished surfaces.

Feature extraction

This section outlines the methodology for extracting texture features from asphalt images using the GLCM. This
robust statistical technique analyzes the spatial relationships of pixel intensities, offering critical insights into the
texture characteristics of pavement surfaces.

Image preprocessing

Prior to GLCM analysis, the acquired images undergo preprocessing to enhance texture details and reduce noise.
This includes: grayscale conversion images are converted to grayscale to simplify the analysis by focusing on
intensity values. In the case where images are converted to grayscale, the three RGB channels are transformed
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Pavement Texture

Fig. 2. Details of non-polished and polished pavement textures.

into a single channel. This not only reduces the storage size and increases computational efficiency but also
enables the GLCM analysis to be performed on grayscale images®’.

GLCM features extraction

Since the surface coarseness of Non-Polished and Polished areas is expected to differ, this study utilizes GLCM
features extracted from digital images. The GLCM is particularly suitable for this task, as this texture analysis
method captures the spatial repetition of specific gray-level intensity patterns?*.

Let r denote the distance (in pixels) between two pixel pairs, and 0 represent the angular relationship between
them. The GLCM, denoted as P§, is a statistical matrix that quantifies the probability of two pixels having
intensity values i and j at a given spatial offset (r, 6). It is constructed by counting the frequency of co-occurring
pixel intensities across the image at specified distances and angles®.

Following the recommendations of Haralick, Shanmugam, and Dinstein, the GLCM is typically computed
for r = 1 (adjacent pixels) and 6 = 0°, 45°, 90°, and 135° (four primary directions). From each GLCM, texture
descriptors such as contrast, correlation, entropy, energy, homogeneity, and dissimilarity can be derived and
used for texture classification (Tables 1 and 2)%.

The GLCM was used to quantify the spatial distribution of gray levels in pavement surface images. Let P(j, j)
denote the normalized co-occurrence probability between gray levels i and j at a specified displacement vector.
Here, i and j are the gray-level intensities of the reference and neighboring pixels, respectively, and G is the total
number of gray levels considered in constructing the GLCM. In this study, the grayscale images were quantized
into G=256 Gy levels before feature extraction. Using these definitions, several statistical texture descriptors,
including contrast, correlation, angular second moment, energy, homogeneity, and dissimilarity, were calculated
as summarized in Table 1.

Table 2 presents GLCM feature values for two representative images from each class across four directions as
illustrative examples. While no single feature shows a consistent difference between Non-Polished and Polished
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Fig. 3. Geographical overview of the pavement sampling sites in the Seyed Khandan area of Tehran, Iran. (A)
Ostadhassan Bana Street, (B) Resalat Highway, and (C) Shariati Avenue. Yellow-dashed rectangles mark the
general survey corridors, and red boxes (A1-A4, B1-B4, C1-C4) indicate zoomed sub-areas showing traffic
and environmental context.
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Fig. 4. Images of non-polished asphalt pavement.
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Fig. 5. Images of polished asphalt pavement.
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Table 1. GLCM features extraction.

surfaces across all directions and samples, the combination of these descriptors enables the proposed GLCM-
Hyperopt-BPNN model to effectively discriminate between the two texture types.

ML methods

In general, there are two types of learning: supervised and unsupervised. Unlike unsupervised learning, which
utilizes unlabeled data, supervised learning uses labeled data to training. Supervised learning can be applied to
tasks such as regression and classification. When there are exactly two classes, the task is referred to as binary
classification, whereas if there are more than two classes, it is termed multi-class classification. The classification
task involves deriving a hypothesis, or classifier, from a set of labeled data instances to accurately predict the
labels of new, incoming data instances®!*>2.

In this research, we address the classification of two groups of images labeled as Non-Polished and Polished.
Consequently, supervised learning algorithms are employed. Specifically, KNN, RF, ET, and BPNN classification
models are utilized. A brief introduction to these methods is provided below. All models were trained using the
Scikit-Learn (sklearn) package in Python with default settings.

K-nearest neighbors (KNN)

The KNN algorithm is a versatile technique applicable to both classification and regression tasks. However, in
industrial applications, it is predominantly recognized for its effectiveness in solving classification problems.
KNN identifies the k-nearest learning samples within the attribute space as input. By analyzing all data points,
it determines the group to which a given data point belongs, making it a powerful tool for classification tasks. In
fact, the KNN algorithm assigns new data points to a cluster based on the nearest k neighbors, determined using
a predefined distance metric>.
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Class | Sample 0 Contrast | Correlation | Dissimilarity | Energy | Homogeneity | ASM
» - 414.39 | 0.837 13.76 0.014 0.015 0.00022
823.26 | 0.677 19.72 0.013 0.013 0.000191
0 504.48 | 0.802 15.12 0.015 0.015 0.000225
414.39 | 0.837 13.76 0.014 0.015 0.00022
209.86 | 0.828 10.14 0.018 0.114 0.000327
282.56 | 0.769 11.78 0.016 0.099 0.000286
0 133.99 | 0.890 8.09 0.0139 | 0.139 0.000393
209.86 | 0.828 10.14 0.018 0.114 0.000327
414.71 0.862 13.79 0.014 0.104 0.000214
844.87 | 0.719 19.88 0.012 0.077 0.000158
1 584.72 | 0.806 16.22 0.013 0.092 0.000188
414.71 0.862 13.79 0.014 0.104 0.000214
431.63 | 0.865 14.47 0.012 0.091 0.000165
1027.82 | 0.678 22.65 0.010 0.061 0.000115
1 659.68 | 0.793 17.86 0.011 0.078 0.00014
431.63 | 0.865 14.47 0.012 0.091 0.000165

Table 2. GLCM feature for Non-Polished (class 0) and polished (class1) samples.

Decision tree (DT)

A DT is a type of supervised ML model in which a series of Boolean (i.e., true or false) decisions are made to
classify data into categorical bins. The supervised nature of the model means that, during training, each set of
input variables (e.g., B, Hs, Tp, etc.) must be labeled with the expected output value. During training, the DT
determines how to split each leaf into branches in a way that minimizes the Gini coefficient in each resulting leaf.
The Gini coefficient quantifies the homogeneity of the values in each leaf during training™.

Extra trees (ET)

The Extremely Randomized Trees (Extra Trees) algorithm is an ensemble learning method that enhances
classification performance by constructing multiple decision trees and aggregating their predictions. Unlike
traditional RE ET introduce additional randomness by selecting split points completely at random for each
candidate feature, rather than choosing the best split based on criteria such as Gini impurity or entropy. This
characteristic reduces variance while maintaining competitive accuracy, making the algorithm particularly
robust against overfitting, especially when dealing with high-dimensional datasets. Furthermore, ET exhibit
computational efficiency, as they do not require bootstrapping and instead utilize the entire training dataset for
tree construction. These advantages make ET a valuable choice for classification tasks, particularly in domains
requiring high interpretability and resilience to noise. The algorithm is often used as a classifier and is compared
with other algorithms in various studies®>.

Random forest (RF)

RF is a ML technique that integrates multiple DTs to enhance classification accuracy through ensemble learning.
During the training process, it evaluates the significance of each feature in the decision-making process. The
algorithm typically employs the bootstrap method to generate multiple training sets by sampling the data
with replacement. Each decision tree is constructed using these samples, and the final classification result is
determined through majority voting. Additionally, the algorithm assigns weights to features based on their
importance in classification®”%.

Support vector machine (SVM)

The SVM algorithm is a powerful supervised learning method used for both classification and regression
tasks. It works by identifying an optimal hyperplane that maximizes the margin between different classes in
a high-dimensional feature space. SVM creates a multi-dimensional vector space, where each sample point is
represented as a vector, and all vectors are separated by a hyperplane. The vectors closest to the hyperplane,
known as support vectors, determine its position. The objective of SVM is to find a hyperplane that maximizes
the margin between the support vectors of the training data®.
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Backpropagation neural networks (BPNN)

The BPNN method was originally introduced by Paul Werbos in 1974 and later popularized by Rumelhart and
McCelland in 1986 It is a widely used supervised learning algorithm for classification tasks, based on Artificial
Neural Networks (ANNs) and inspired by the human brain. Its theoretical foundation lies in the universal
approximation theorem, which states that a sufficiently deep neural network with nonlinear activation functions
can approximate any continuous function. BPNN utilizes the backpropagation algorithm, which applies gradient
descent to iteratively adjust neuron weights, minimizing the error between predicted and actual outputs. The
network consists of an input layer, one or more hidden layers, and an output layer, with activation functions.
Despite its strong learning capabilities, BPNN requires careful hyperparameter tuning, including learning rate
selection and network architecture optimization, to prevent overfitting and ensure robust performance. Due
to its flexibility and ability to learn intricate patterns, BPNN is widely applied to classification problems across
various domains®%2, The hyperparameters for each classification algorithms (KNN, RE, DT, ET, SVM and
BPNN) utilized in this study are provided in Table 5.

Hyperopt library

To achieve optimal performance in ML models, hyperparameter tuning is essential. Also known as
hyperparameter optimization, this process involves testing various combinations of hyperparameters and
evaluating their performance on a validation set. Common methods include grid search and random search
algorithms®.

Hyperopt is a powerful Python library designed for optimizing hyperparameters in ML and DL models
using Bayesian optimization, Tree-structured Parzen Estimators (TPE), and other global search algorithms.
Unlike traditional grid or random search methods, Hyperopt efficiently explores the hyperparameter space by
balancing exploration and exploitation, significantly reducing computational costs. Additionally, it supports
parallel execution and integrates seamlessly with popular ML frameworks, making it well-suited for complex
optimization tasks. Due to its adaptability and efficiency, Hyperopt is a valuable tool for enhancing model
performance, particularly in high-dimensional search spaces, where optimal hyperparameter selection is crucial
for achieving robust and reliable results in data-driven research. In this study, Hyperopt is employed to perform
Bayesian optimization for various ML models. K-fold cross-validation is a widely used technique in ML to
reduce the risk of overfitting, which occurs when a model performs well on the training data but poorly on
new, unseen data. It is applied at this stage to determine and optimize the best hyperparameters for model
evaluation®,

SHapley additive explanations (SHAP) analysis

SHAP, grounded in cooperative game theory, assigns Shapley values to individual features, providing a
mathematically rigorous framework for evaluating their influence on classification outcomes. To enhance the
interpretability of the developed ML models, SHAP analysis was employed to quantify the contribution of each
feature to the model’s predictions!'>%3%. In this study, SHAP values were computed to identify the most influential
features driving the proposed model’s decisions. The analysis was conducted using the SHAP Python library,
with feature importance visualized through summary plots to provide deeper insights into feature interactions.

Evaluation criteria

After training, the model’s performance was evaluated using standard metrics. The confusion matrix is a
method used to analyze the performance of a given algorithm. In this study, the performance and accuracy
of classification models are evaluated and compared using metrics such as F1-Score, Precision, Recall, and
Accuracy, as defined by Egs. (1) to (4). These metrics are derived from four fundamental components: True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). In this matrix, the actual class
label refers to the true label of the data, and the predicted class label represents the classification output generated

by the algorithm®”,
Precision = TPTi—fFP o
Recall = % o
L= score = 2 el ®
Accuracy = TP + TN N

TP + TN +FP +FN

Results and discussion
Feature extraction
This section of the research evaluates the performance of the proposed computer vision methods for identifying
polished asphalt pavement surfaces. It begins with data collection, followed by the determination and extraction
of features from the two target image classes. First, the RGB images are converted to grayscale, and then the
GLCM method is applied to the grayscale images.

As previously noted, Class 0 refers to areas of asphalt pavement that are Non-Polished, including both fine
and coarse textures. In contrast, Class 1 represents areas where the asphalt surface is visibly Polished, meaning
the texture has been worn away, resulting in the absence of fine and coarse textures. This polished condition
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Class | Sample | ° Contrast | Correlation | Dissimilarity | Energy | Homogeneity | ASM
0° 13141 0.860 8.13 0.021 0.135 0.000461
45° | 210.10 0.776 10.45 0.019 0.106 0.000365
0 0 90° | 122.92 0.869 7.92 0.021 0.140 0.000462
135° | 131.41 0.860 8.13 0.021 0.135 0.000461
0° 399.38 0.787 14.61 0.013 0.078 0.00017
45° | 646.98 0.655 18.85 0.011 0.058 0.000139
0 ! 90° | 346.55 0.815 13.63 0.013 0.082 0.00018
135° | 399.38 0.787 14.61 0.013 0.078 0.00017
0°
45°
0
90°
135°
0° 288.30 0.774 12.583 0.015 0.088 0.000237
45° | 471.78 0.629 16.323 0.013 0.068 0.000193
0 6239 90° | 233.82 0.816 11.454 0.015 0.095 0.000255
135° | 288.30 0.774 12.583 0.0154 | 0.088 0.000237

Table 3. Features set non-polished class.

Class | Sample |° Contrast | Correlation | Dissimilarity | Energy | Homogeneity | ASM
0° 403.75 0.798 13.79 0.014 0.094 0.00022
45° | 505.89 0.747 16.02 0.013 0.078 0.000191
! 0 90° | 354.57 0.823 13.17 0.015 0.095 0.000225
135° | 403.75 0.798 13.79 0.014 0.094 0.00022
0° 624.55 0.818 16.62 0.013 0.081 0.000183
45° | 986.60 0.713 21.37 0.012 0.066 0.000149
! ! 90° | 570.17 0.834 16.01 0.013 0.084 0.000188
135° | 624.55 0.818 16.62 0.013 0.081 0.000183
0°
45°
1
90°
135°
0° 558.52 0.826 15.54 0.013 0.091 0.000188
45° | 896.83 0.722 20.07 0.012 0.071 0.000154
! 6239 90° | 463.72 0.856 14.26 0.014 0.096 0.000198
135° | 558.52 0.826 15.54 0.013 0.091 0.000188

Table 4. Features set polished class.

in Class 1 is hazardous, as it significantly reduces the surface’s skid resistance and increases the likelihood of
accidents.

To train the ML algorithms, field surveys were conducted to create an image dataset of pavement surfaces.
The dataset included samples classified as Non-Polished (coded as Class 0) and Polished surfaces (coded as Class
1). It is important to note that the identification, labeling, and collection of images were performed during field
visits by experts specializing in PMS.

According to the definition presented in Sect. 2, six indices—Contrast, Correlation, Energy, Homogeneity,
ASM, and Dissimilarity—were extracted in four directions (6=0° 45° 90°, and 135°). A total of 6x4=24
features were extracted for each dataset, with the results presented as an example in Tables 3 and 4. These features
represent the textural information of the pavement image.

As shown in Tables 3 and 4, each feature exhibits variations. This difference is more pronounced in certain
features or directions compared to others. A comparison of the sample results in these tables reveals that, in
general, feature values differ between the two classes. The distribution of these texture features for both Non-
Polished and polished pavement categories is illustrated in Fig. 6. Statistical summaries, including the mean
and standard deviation of key GLCM-based descriptors (i.e., contrast, correlation, energy, and homogeneity),
indicate observable but moderate differences between the two surface conditions, reflecting subtle yet meaningful
changes in surface microtexture due to polishing. These subtle differences suggest that even minor changes in
microtexture can be captured by the selected GLCM-based features, providing a basis for training ML models to
differentiate Polished from Non-Polished surfaces.
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Fig. 6. Distribution of GLCM-based texture features for Non-Polished and Polished.

These differences in feature values can be attributed to the inherent characteristics of the textures of the two
surfaces, as well as the fundamental modifications made to the texture of the polished pavement surface. These
modifications result in a substantial reduction in both macro- and micro-textures, which is reflected in pixel
intensity values and, consequently, in the extracted texture-based features. Based on these values, it is predicted
that these features will have the most significant impact on training the models and classifying the two classes
under study.

Hyperopt- based model optimization
The Hyperopt-based optimized KNN, DTs, RE ET, SVM, and BPNN models have been developed in the Python
programming environment. Due to the significant differences in the values of the extracted features, this study
standardizes them using the Z-score equation to prevent bias when evaluating features with varying magnitudes.
The Z-score equation is defined as (Eq 5):

X —p

Xn = STD

In this context, X, denotes the normalized features, and X denotes the raw features, while 1 and STD represent
the mean and standard deviation of the training features, respectively.

Subsequently, Hyperopt begins the search process to identify the optimal configuration of each model by
generating hyperparameter values, as shown in Table 5. Additionally, the number of iterations for the search
loop is set to 100. The dataset was divided into two subsets: 70% for training and 30% for testing. A 5-fold cross-
validation procedure was applied to the training data to determine the optimal hyperparameters. As a result, the
performance of each ML model gradually improves until the stopping condition is met. Once the search process
concludes, the optimized hyperparameters for each ML model are ready to detect polished asphalt in new image
samples. The test set was subsequently used to evaluate the model’s generalization performance and to ensure
that overfitting had not occurred. Furthermore, Z-score normalization was employed to standardize the range of
input features. In this way, the optimal hyperparameters are fixed and remain unchanged during the subsequent
evaluation process. The optimal hyperparameters for each ML model are presented in Table 5.
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ML algorithms | Best hyperparameters (Values)

KNN N_neighbors=4 Weights=1 | -eeeeem e

DT max_depth=14 min_samples_split=3 min_samples_leaf=1 | --------

ETs N_estimators =90 max_depth=50 min_samples_split=2 | min_samples_leaf=1
RF N_estimators =90 max_depth=21 min_samples_split=3 | min_samples_leaf=1
SVM C=15.988 Gamma=0.26484 |- | e

BPNN hidden_layer_sizes=140 | learning_rate_init=0.00065 | -------- | ----ooo-

Table 5. Best hyperparameter values for each ML algorithms applied with an optimizer.

Accuracy Precision F-1Score
(%) (%) Recall (%) | (%)
ML algorithms | Class Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std.
Non-Polished | ----- | ----- 94.45 | 0.52 | 89.05 | 0.79 | 91.67 | 0.53
KNN Polished | ----- | ----- 89.55 | 0.71 | 94.71 | 0.49 | 92.06 | 0.47
Overall 91.87 |0.48 |92.01 |0.47 | 91.87 |0.48 | 91.86 | 0.48
Non-Polished | ----- | ----- 87.74 | 0.75 | 86.62 | 0.82 | 87.18 | 0.54
DT Polished | ----- | ----- 86.68 | 0.66 | 87.79 | 0.72 | 87.22 | 0.39
Overall 87.20 | 0.43 |87.22 |0.43 | 87.20 | 0.43 | 87.20 |0.43
Non-Polished | ----- | ----- 93.78 | 0.55 | 90.72 | 0.81 | 92.22 | 0.50
ETs Polished | ----- | ----- 90.93 | 0.73 | 93.92 | 0.50 | 92.40 | 0.41
Overall 92.31 |0.44 |92.36 |0.43 | 92.31 |0.44 | 92.31 | 0.44
Non-Polished | ----- | ----- 92.71 | 0.61 | 90.42 |0.70 | 91.55 | 0.51
RF Polished | ----- | ----- 90.57 | 0.63 | 92.82 | 0.53 | 91.68 | 0.42
Overall 91.62 | 045 | 91.65 |0.45 |91.62 |0.45 | 91.62 | 0.45
Non-Polished | ----- | ----- 96.11 | 0.53 | 94.82 | 0.46 | 95.46 | 0.37
SVM Polished | ----- | ----- 94.84 | 0.45 | 96.12 | 0.51 | 95.48 | 0.35
Overall 95.47 |0.36 | 9548 |0.36 | 95.47 | 0.36 | 95.47 | 0.36
Non-Polished | ----- | ----- 96.45 | 0.69 | 95.55 | 0.76 | 95.99 | 0.34
BPNN Polished | ----- | ----- 95.55 | 0.73 | 96.44 | 0.76 | 95.99 | 0.35
Overall 96.10 | 0.34 | 96.02 |0.33 | 95.99 | 0.34 | 95.99 | 0.34

Table 6. Results of evaluation criteria for ML models.

Considering the optimal hyperparameter values obtained for each classification model used in this study,
the next stage involved training the algorithms using these hyperparameters. The final results, including the
accuracies achieved for each model, will be presented and interpreted in the next section.

Computational results and performance comparison of the model

As mentioned in the methodology section, this study aimed to identify the most effective model by evaluating
six ML classifiers: SVM, RE KNN, ETs, DT, and BPNN. These models were selected based on their demonstrated
effectiveness in previous studies related to pavement distress classification and other classification tasks.

To reliably evaluate the predictive ability of the proposed computer vision model, the training and testing
processes are repeated 30 times. This ensures that the models ability to classify asphalt is assessed through
statistical measurements obtained from these independent iterations. In other words, this approach ensures that
the entire dataset participates in both the training and testing processes.

In each run, the model is randomly fitted with 70% of the data and evaluated on the remaining 30%.
During each run, precision, recall, and F-score values are computed for each class, as well as for the overall
model performance. The statistical indicators related to these metrics (evaluation criteria) are then calculated
and reported as the mean and standard deviation. The results of the evaluation criteria used in this study are
presented separately for each model in Table 6.

The findings indicate that the accuracy of the applied models ranges from 87% to 96.10%. Among the
models (Fig. 7) used for classifying the target classes, the least accurate in distinguishing Polished pavement
surfaces from Non-Polished surfaces is the DT model, with an accuracy of 87.20%, while the highest accuracy is
achieved by the BPNN model, at 96.10%. This confirms that the BPNN model demonstrates strong performance
with acceptable accuracy, showing a significant improvement of more than 8% compared to the DT model in
distinguishing polished surfaces.

Additionally, the results indicate that the SVM algorithm performs well, achieving an accuracy of 95.4%.
However, it exhibits a slight performance difference when compared to the BPNN model. Based on accuracy
rankings, the models from highest to lowest performance are as follows: BPNN, SVM, ET, KNN, RE and DT.
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Fig. 7. Comparative chart of evaluation criteria for each model.

Accuracy Precision
(%) (%) Recall (%) F1-Score (%)
CNNs Class Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std.
Non-Polished | ----- | ----- 99.70 |0 99.70 |0 98.80 | 0.001
ResNet-50 | Polished | ----- | ---—-- 97.80 |0.002 | 97.80 | 0.002 | 98.70 | 0.001
Overall 98.80 | 0.001 | 98.80 |0.001 |98.80 |0.001 |98.80 | 0.001

Table 7. Results of evaluation criteria for the CNN model.

As shown in Table 6, the proposed method, GLCM-Hyperopt-BPNN, proves to be both effective and efficient,
as the evaluation metrics for both classes and overall performance exceed 95%. Furthermore, the deviation in
F1-score values is minimal—less than 4%—indicating that the values range between 91% and 99%. This narrow
range demonstrates the stability of the proposed method.

According to the obtained results, the GLCM feature extraction method, based on texture, was used to train
classification models and identify polished surfaces. This approach proved particularly effective for the proposed
BPNN and SVM models, as texture-based distinctions successfully separated the two classes, confirming the
reliability of the model outputs.

While deep transfer learning allows knowledge to be transferred from a source domain to a pre-trained deep
neural network—reducing the required target-domain data and training time—it generally improves overall
performance. To evaluate CNN performance, several models were applied, with ResNet-50 achieving the best
accuracy (Table 7). The CNN model showed less than 3% difference in accuracy compared to the proposed
GLCM-Hyperopt-BPNN method.

To evaluate and compare the performance of CNN methods, several models were applied, with ResNet-50
achieving the highest accuracy (Table 7). The results show that the CNN model’s accuracy differs by less than 3%
from that of the proposed GLCM-Hyperopt-BPNN method. Despite requiring considerably less computational
resources and training time than CNN-based DL methods, the GLCM-Hyperopt-BPNN approach achieved
comparable and satisfactory performance in classifying the target classes. This demonstrates its practical
efficiency while maintaining competitive accuracy, with actual performance exceeding 95%. Considering both
computational costs and the need for high-performance systems, the GLCM-Hyperopt-BPNN model emerges
as the most suitable and optimal algorithm for this study.

Feature analysis
The SHAP summary violin plot presented in Fig. 8 illustrates the influence of various features on the output of
the GLCM-Hyperopt-BPNN model. The x-axis represents the SHAP values, indicating both the magnitude and
direction of each feature’s impact on the model’s predictions. Features with SHAP values to the right of zero
contribute positively to the prediction, while those to the left have a negative effect.

This analysis provides a comprehensive interpretability framework for assessing the influence of textural
features in classifying polished versus normal asphalt pavement surfaces. Among the most influential features,
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Fig. 8. Summary plot of SHAP analysis for the proposed BPNN model.

Homogeneity at angles 0°, 45°, and 90° exhibits the highest positive SHAP values corresponding to greater
feature magnitudes, indicating a strong association with the polished surface class. This observation aligns with
the physical characteristics of polished pavements, which typically display more uniform texture patterns due to
aggregate wear. Moderate contributions from Correlation metrics suggest the model’s sensitivity to directional
texture alignment. Features computed at 135°, including ASM and Energy, demonstrate minimal impact.

These results underscore the pivotal role of GLCM-derived textural Homogeneity and Dissimilarity in
accurately distinguishing pavement surface conditions within ML-based assessment models.

To further validate the consistency between global and local interpretability, local SHAP analysis
was performed on randomly selected samples from each class (Figs. 9 and 10). The local SHAP force plots
complement the global SHAP summary (violin) plot by visualizing how individual features contribute to specific
model predictions. For example, in Fig. 9, model outputs of f(x)=0.14 and f(x)=0.10 are substantially below
the base value of 0.39, indicating strong confidence in classifying these samples as Non-Polished pavements. In
contrast, Fig. 10 shows outputs of f(x) =0.95 and f(x) =0.96, clearly above the base, reflecting high-confidence
predictions for the Polished surface class.

Consistent with the global SHAP analysis, features such as Homogeneity and Dissimilarity at 0°, 45°, and
90°, along with Correlation at 45°, emerged as the most influential contributors, collectively driving the model’s
predictions toward the Polished class. Although the magnitude and direction of SHAP values vary across
individual instances, the consistently high importance of these directional texture features reinforces their
reliability as discriminative indicators. This agreement between local and global interpretability demonstrates
the robustness and transparency of the model’s decision-making process.

Moreover, the SHAP-based analysis provides a clear physical interpretation aligned with the actual texture
structure of pavement surfaces. Polished surfaces exhibit smoother and more uniform patterns, whereas Non-
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Fig. 9. SHAP local analysis plot for Non-Polished class.

Fig. 10. SHAP local analysis plot for Polished class.

Polished surfaces are relatively rougher with stronger gray-level variations. Accordingly, Homogeneity plays a
dominant role in distinguishing these conditions by reflecting the uniformity of pixel intensity. Dissimilarity
and Correlation also contribute notably, indicating that both gray-level differences and directional relationships
between texture elements are essential for characterizing surface conditions. Overall, these results emphasize
that directional texture metrics are robust and physically meaningful indicators for ML-based pavement surface
assessment.

Conclusion
Asphalt surface polishing significantly reduces skid resistance and poses safety risks, highlighting the need
for timely and accurate detection. This study proposed a computer vision-based framework integrating
texture feature extraction and ML for automated identification of Non-Polished and Polished asphalt surfaces.
The analysis demonstrated that Homogeneity features were most influential in distinguishing surface types,
aligning with physical characteristics of pavement wear. The proposed GLCM-BPNN model achieved optimal
classification performance, demonstrating the effectiveness of the developed framework. The BPNN and SVM
classifiers delivered strong performance, outperforming other models such as RF, KNN, DTs, and ET. While a
CNN-based model (ResNet50) achieved slightly higher accuracy, the proposed GLCM-ML framework offers
comparable performance with significantly lower computational cost, making it practical for large-scale field
applications.

The proposed method has several practical applications. Road maintenance agencies can employ it for rapid
and automated detection of Polished and Non-Polished (normal) asphalt surfaces, enabling data-driven decisions
for maintenance planning and safety interventions. Contractors and engineers can use it to evaluate pavement
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surface conditions over time and identify early signs of polishing or surface wear. Furthermore, the approach
can be integrated into intelligent road management systems to continuously monitor surface conditions and
predict potential hazards, such as slipperiness. These applications highlight the method’s potential to enhance
operational efficiency, minimize the need for manual inspections, and deliver quantitative and reproducible
outcomes for pavement management. Future research will aim to improve system robustness by incorporating
advanced texture analysis techniques, expanding the dataset to include diverse lighting and weather conditions,
and leveraging large-scale image databases to enhance model generalization and noise resistance under real-
world scenarios.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author
on reasonable request.
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