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This study presents a framework for detecting polished asphalt pavement surfaces by integrating 
texture-based image analysis with interpretable Machine learning (ML). Polishing, caused by 
aggregate degradation and bitumen aging, alters surface texture and reduces skid resistance, posing 
a safety risk. A real-world dataset of 12,480 pavement images was analyzed using 24 texture features 
derived from the Gray Level Co-occurrence Matrix (GLCM), capturing directional spatial patterns of 
surface roughness. Several ML models were trained and optimized with the Hyperopt framework, 
with a Backpropagation Neural Network (BPNN) achieving the highest classification accuracy of 
96.1%. Feature contributions were interpreted using SHapley Additive exPlanations (SHAP), providing 
physical insight into texture-driven polishing mechanisms. Although a ResNet50-based CNN achieved 
slightly higher accuracy (98.7%), its high computational cost limits practical deployment. The proposed 
GLCM–ML approach offers an interpretable, efficient, and physics-aware tool for pavement condition 
monitoring, with potential to enhance predictive modeling of surface texture evolution.
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The development and maintenance of road networks are crucial for ensuring sustainable serviceability, 
enhancing connectivity between urban and rural areas, and fostering trade and investment. Enhanced road 
infrastructure increases accessibility, lowers transportation costs, and improves productivity, ultimately boosting 
economic output1. Pavement is a fundamental component of highway infrastructure, essential for ensuring the 
safety and efficiency of transportation systems2. Pavement Management System (PMS) is a critical component 
of transportation infrastructure, focused on systematically monitoring, assessing, and maintaining road surfaces 
to ensure safety, durability, and efficiency. Effective pavement management extends roadway lifespan, reduces 
repair costs, and enhances user satisfaction by ensuring good travel experiences3.With rising traffic volumes and 
environmental factors accelerating pavement deterioration, adopting advanced technologies and methodologies 
for pavement assessment and rehabilitation becomes essential4.

Asphalt pavements are susceptible to various types of distress that can undermine their structural integrity 
and serviceability. Key contributing factors include traffic loads, environmental conditions, material properties, 
and construction practices5. Flexible pavement distresses manifest in various forms, generally classified into 
two categories: cracking—encompassing fatigue, block, edge, longitudinal, reflection, and transverse cracking—
and non-cracking distresses, including rutting, potholes, polished surfaces, raveling, and bleeding6. Therefore, 
Pavement Distress Detection (PDD) is crucial for maintenance planning, aiming to extend the service life of 
road infrastructure. PDD identifies and measures various types of pavement distresses, facilitating a reliable 
methodological approach to road maintenance management. Automatic and non-destructive distress detection 
is essential for effective pavement management7.

In recent years, numerous studies have employed ML and deep learning (DL) techniques in transportation 
and infrastructure, highlighting the growing significance of modern computational methods in engineering. For 
instance, a texture–image coupled fusion approach has been proposed for pavement skid resistance measurement, 
demonstrating the effectiveness of integrating image-based and computational models in pavement analysis8–14. 
Over the past decade, image processing technology has emerged as a transformative tool for assessing and 
maintaining road pavement infrastructure. By utilizing advanced algorithms and ML techniques, researchers 
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and engineers can efficiently analyze images of pavement surfaces to detect distresses such as cracks, potholes, 
patch, and surface deformations, bleeding surpassing traditional methods15–21. Additionally, recent research 
over the past four years has investigated distresses related to changes in pavement texture, including bleeding 
and raveling20,22. Inadequate and delayed maintenance can accelerate the deterioration process; therefore, 
timely detection of each distress can significantly enhance pavement longevity and performance. However, the 
automatic detection of polished aggregates in asphalt pavement using computer vision remains an underexplored 
area in the field.

Polished aggregate defect refers to a surface condition in which the binder wears away, exposing coarse 
aggregate on the pavement. This occurs when aggregate particles in the asphalt surface are worn down under 
traffic, resulting in a smooth, shiny finish that significantly reduces skid resistance. This phenomenon is a critical 
concern in roadway design and maintenance due to its substantial impact on vehicle safety and performance. 
The reduction in friction increases the risk of accidents, particularly in wet conditions, emphasizing the need 
to study polished pavements to enhance highway safety. Research has shown that the type of aggregate and mix 
design significantly influence the rate of polishing and the overall performance of asphalt pavements. In this 
context, a laboratory-based close-range photogrammetric analysis on ring-shaped asphalt mixture specimens 
was conducted to investigate the relationship between surface texture and friction, providing valuable insights 
for skid resistance evaluation. Understanding the mechanisms and implications of polished asphalt pavements is 
therefore essential for developing effective maintenance strategies and improving long-term road safety[23-28].

Aggregate characteristics significantly influence the surface texture of pavement. This is a crucial factor 
in skid resistance. However, road surfaces are continuously exposed to traffic and harsh weather, leading to 
aggregate degradation and polishing, which accelerates the deterioration of surface friction. Aggregates that are 
less prone to abrasion and polishing typically demonstrate better friction performance in the field. Pavement 
texture comprises two components: Micro-texture and macro-texture. Micro-texture relates to the properties of 
aggregates, often expressed as Polished Stone Values (PSV), while macro-texture pertains to the surface texture 
of asphalt mixes29–32. Consequently, over time, the micro-texture and macro-texture of the pavement surface will 
degrade due to the types of materials used, traffic loads, and environmental factors. Analyzing the extent of wear 
on the actual road surface may help reduce the rate of accidents.

Image processing technology and ML methods enhance the accuracy of pavement condition assessments and 
enable real-time monitoring, facilitating timely maintenance interventions and optimal resource allocation33. 
As previously mentioned, polished pavement surfaces directly affect pavement texture. Therefore, combining 
texture-based image processing methods with ML can serve as an effective approach for the automatic detection 
of this damage.

Recent studies have shown the feasibility and high accuracy of image-based approaches for estimating 
pavement texture measures and Mean Texture Depth (MTD). Weng et al. (2022) proposed a rapid MTD 
estimation method using image-based multiscale features, introducing indices such as Maximum Particle 
Size Distribution (MPSD) and Relative Energy Distribution (RED) derived via multiscale segmentation and 
2D-wavelet decomposition, and demonstrated good agreement with traditional measurements34. Moreover, 
several works have extended image-based analysis using ML and DL models: Gökalp et al. (2024) developed a 
2-D image processing plus ANN approach for MTD estimation on chip-sealed samples, showing competitive 
results against sand-patch and hydrotimer methods, while Pan et al. (2023) proposed lightweight few-shot deep 
models for pavement texture classification under limited data scenarios35,36.

Nhat-Duc Hoang proposed an automated approach for detecting asphalt pavement raveling using image-
based texture features combined with ML, demonstrating effective classification of raveling conditions across 
diverse samples37. In 2021, researchers proposed an approach combining 3D imaging with ML to automatically 
detect and classify asphalt pavement raveling, demonstrating improved accuracy and scalability compared to 
traditional inspection methods38.

Hoang Nhat-Duc and Tran Van-Duc evaluated several ML models for classifying asphalt pavement raveling, 
finding that advanced approaches like Histogram-Based Gradient Boosting Classification Machine HGBCM can 
achieve high accuracy and efficiency in image-based pavement assessment39. Additionally, researchers proposed 
a computer vision approach for detecting asphalt pavement segregation by combining texture analysis with ML 
techniques, including Attractive Repulsive Center-Symmetric Local Binary Pattern (ARCSLBP) and Extreme 
Gradient Boosting (XGBoost), demonstrating effective extraction of surface features and high classification 
accuracy40. Another study, For the automatic detection of raveled areas and the categorization of their severity, 
the employed texture descriptors include Local Binary Pattern (LBP), Center-Symmetric Local Binary Pattern 
(CSLBP), Completed Local Binary Pattern (CLBP), and Local Ternary Pattern (LTP)41.

Daneshvari et al. proposed a new approach LBP-GLCM texture analysis with an XGBoost classifier to detect 
raveling in asphalt pavements. By employing LBP-GLCM, the researchers extracted distinctive texture features 
that characterize raveling degradation patterns. These features were then used to train the XGBoost model, 
selected for its balance of accuracy and efficiency in handling high-dimensional data. The results show that the 
XGBoost classifier achieves high accuracy in raveling detection, outperforming traditional methods in both 
speed and reliability. This approach provides a cost-effective and scalable solution for automated pavement 
assessment, enhancing maintenance planning and improving road safety42.

In a separate study, the authors presented an innovative approach for detecting asphalt pavement bleeding, 
specifically addressing challenges associated with imbalanced datasets. They employed an anomaly detection 
framework that treats bleeding as a rare event within a majority of non-bleeding samples. This method effectively 
leverages image data to capture subtle visual features indicative of bleeding, overcoming traditional challenges 
related to insufficient or imbalanced data for training conventional ML models. The results show that the 
anomaly detection approach achieves robust detection accuracy, even with limited bleeding data, making it 
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a promising solution for scalable and automated pavement condition monitoring in real-world applications 
characterized by data imbalance43.

In a recent study conducted in 2024, a hybrid approach was developed that combines texture analysis 
techniques with tree-based ensemble classifiers to detect two common forms of pavement distress: bleeding 
and raveling. Using 2D image data of asphalt surfaces, a set of texture features was extracted using Histogram 
Equalization (HE)-GLCM and LBP-GLCM. The results demonstrated the high accuracy of tree-based methods 
when combining the two feature sets, highlighting their effectiveness for automated pavement evaluation. This 
approach supports efficient and scalable monitoring systems, enabling timely maintenance interventions and 
improving pavement management strategies44. At the experimental scale, researchers investigated the evolution 
of aggregate texture, analyzed morphological characteristics, and evaluated wear resistance45,46.

Despite significant progress in image-based detection of common asphalt distresses—such as raveling, 
bleeding, segregation, and patching—the automated identification of pavement surface polishing at the field 
scale remains largely underexplored. This distress type, caused by the progressive smoothing of aggregate 
particles, leads to a substantial reduction in skid resistance and thereby poses a serious threat to traffic safety. 
However, due to its often subtle visual appearance, it is frequently overlooked in conventional inspections.

Previous research has primarily focused on general pavement surface conditions or coarse-level distress 
categories, whereas the subtle microtexture variations associated with surface polishing have received limited 
attention. Moreover, existing image-based approaches either depend on handcrafted texture features with limited 
interpretability or utilize DL models that act as “black boxes” and require extensive datasets. Consequently, 
there remains a lack of a reliable and explainable framework capable of detecting and interpreting polished 
asphalt surfaces under real-world conditions. To address this research gap, the present study aims to develop 
an interpretable, texture-based ML framework that can automatically identify surface polishing using field-
acquired images. The specific objective is to achieve a reliable differentiation between polished and unpolished 
surfaces through statistical texture descriptors combined with explainable learning techniques.

The key contributions of this work are as follows:

•	 Integration of texture analysis and ML: This research pioneers the application of image-based texture features 
in combination with advanced ML models to detect and classify surface polishing under field conditions.

•	 Automated hyperparameter optimization: The Hyperopt framework is utilized to fine-tune model hyperpa-
rameters, improving predictive accuracy and generalization across varying pavement conditions.

•	 Interpretable ML via SHAP analysis: Multiple ML algorithms are employed for classification, with SHAP used 
to interpret the role of each texture feature in model predictions, enhancing transparency and trustworthi-
ness.

The remainder of this paper is organized as follows: Sect.  2 presents the data collection procedure, image 
preprocessing, and texture analysis techniques. Section  3 discusses the ML models and their performance. 
Section 4 concludes the study with insights into future applications and potential improvements.

Data collection and methodology
In this section, the dataset preparation methods will be explained first. Next, the image processing approach 
based on GLCM texture analysis, along with the extracted features from the two classes of images under study, 
will be presented. The ML algorithms applied in this study will then be discussed. Following that, the optimizer 
(Hyperopt) used to determine the optimal hyperparameters for the models will be described. The SHAP analysis 
method employed to examine the impact of each feature will also be explained. Finally, the evaluation and 
validation criteria for assessing the accuracy of the models will be presented. In summary, the overall process 
and stages of the research are outlined in the flowchart in Fig. 1.

Data collection
The research began with field visits to asphalt pavement surfaces, where digital images were captured from 
two categories: Non-Polished surfaces, which represent typical fine and coarse textures, and Polished surfaces, 
which consist of areas worn down by prolonged traffic and lacking sufficient texture. High-resolution images 
were taken with a digital camera under controlled lighting conditions to minimize shadows and reflections, 
and were subsequently stored in a standardized format for further processing. The image collection process 
was carried out under cloudy weather conditions to minimize the impact of varying light on image quality. The 
identification of Non-Polished and Polished surfaces was performed during field observation based on visual 
texture characteristics such as aggregate exposure, reflectivity, and smoothness, which are consistent with typical 
indicators used in pavement surface evaluations (Fig. 2).

Figure 3 illustrates the geographical distribution of the surveyed pavement sections within the Seyed Khandan 
area of Tehran, Iran. The selected locations include several asphalt road segments along Resalat Highway (Fig. 3-
B) and adjacent urban streets such as Ostadhassan Bana Street (Fig. 3-A) and Shariati Avenue (Fig. 3-C). The 
yellow-dashed rectangles (A, B, C) indicate the general areas where field image acquisition was conducted. The 
sub-frames labeled A1–A4, B1–B4, and C1–C4 provide enlarged overviews of representative zones within each 
corridor to depict surrounding traffic and site context. These zoomed areas are intended solely to illustrate the 
approximate sampling locations and urban environment, rather than to display surface texture details, which 
were captured separately through field photography.

For this purpose, RGB images were captured at a resolution of 9 megapixels using a Galaxy S23 FE camera, 
positioned at a distance of 1 m. To ensure the reliability of the data, images of Non-Polished pavement surfaces—
including newly constructed asphalt, low to moderate raveling, potholes, various types of cracks, traffic markings, 
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and patches—were selected. Figures 4 and 5 illustrate a sample from the original collected image dataset, which 
was used for training and validating the computer vision approaches.

The images were cropped to a size of 250 × 250 pixels, and non-standard areas were removed. This size was 
selected to adequately capture local surface texture features, such as aggregate exposure and micro-texture, while 
keeping the input size manageable for the ML models. Using 250 × 250 pixels reduces computational complexity 
and training time without compromising classification accuracy. The total number of images generated by the 
expert was 12,480, which were classified into two categories: 6,240 images of Non-Polished surfaces and 6,240 
images of Polished surfaces.

Feature extraction
This section outlines the methodology for extracting texture features from asphalt images using the GLCM. This 
robust statistical technique analyzes the spatial relationships of pixel intensities, offering critical insights into the 
texture characteristics of pavement surfaces.

Image preprocessing
Prior to GLCM analysis, the acquired images undergo preprocessing to enhance texture details and reduce noise. 
This includes: grayscale conversion images are converted to grayscale to simplify the analysis by focusing on 
intensity values. In the case where images are converted to grayscale, the three RGB channels are transformed 

Fig. 1.  Workflow of the proposed method.
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into a single channel. This not only reduces the storage size and increases computational efficiency but also 
enables the GLCM analysis to be performed on grayscale images47.

GLCM features extraction
Since the surface coarseness of Non-Polished and Polished areas is expected to differ, this study utilizes GLCM 
features extracted from digital images. The GLCM is particularly suitable for this task, as this texture analysis 
method captures the spatial repetition of specific gray-level intensity patterns48.

Let r denote the distance (in pixels) between two pixel pairs, and θ represent the angular relationship between 
them. The GLCM, denoted as Pδ, is a statistical matrix that quantifies the probability of two pixels having 
intensity values i and j at a given spatial offset (r, θ). It is constructed by counting the frequency of co-occurring 
pixel intensities across the image at specified distances and angles49.

Following the recommendations of Haralick, Shanmugam, and Dinstein, the GLCM is typically computed 
for r = 1 (adjacent pixels) and θ = 0°, 45°, 90°, and 135° (four primary directions). From each GLCM, texture 
descriptors such as contrast, correlation, entropy, energy, homogeneity, and dissimilarity can be derived and 
used for texture classification (Tables 1 and 2)50.

The GLCM was used to quantify the spatial distribution of gray levels in pavement surface images. Let P(i, j) 
denote the normalized co-occurrence probability between gray levels i and j at a specified displacement vector. 
Here, i and j are the gray-level intensities of the reference and neighboring pixels, respectively, and G is the total 
number of gray levels considered in constructing the GLCM. In this study, the grayscale images were quantized 
into G = 256 Gy levels before feature extraction. Using these definitions, several statistical texture descriptors, 
including contrast, correlation, angular second moment, energy, homogeneity, and dissimilarity, were calculated 
as summarized in Table 1.

Table 2 presents GLCM feature values for two representative images from each class across four directions as 
illustrative examples. While no single feature shows a consistent difference between Non-Polished and Polished 

Fig. 2.  Details of non-polished and polished pavement textures.
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Fig. 4.  Images of non-polished asphalt pavement.

 

Fig. 3.  Geographical overview of the pavement sampling sites in the Seyed Khandan area of Tehran, Iran. (A) 
Ostadhassan Bana Street, (B) Resalat Highway, and (C) Shariati Avenue. Yellow-dashed rectangles mark the 
general survey corridors, and red boxes (A1–A4, B1–B4, C1–C4) indicate zoomed sub-areas showing traffic 
and environmental context.
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surfaces across all directions and samples, the combination of these descriptors enables the proposed GLCM-
Hyperopt-BPNN model to effectively discriminate between the two texture types.

ML methods
In general, there are two types of learning: supervised and unsupervised. Unlike unsupervised learning, which 
utilizes unlabeled data, supervised learning uses labeled data to training. Supervised learning can be applied to 
tasks such as regression and classification. When there are exactly two classes, the task is referred to as binary 
classification, whereas if there are more than two classes, it is termed multi-class classification. The classification 
task involves deriving a hypothesis, or classifier, from a set of labeled data instances to accurately predict the 
labels of new, incoming data instances51,52.

In this research, we address the classification of two groups of images labeled as Non-Polished and Polished. 
Consequently, supervised learning algorithms are employed. Specifically, KNN, RF, ET, and BPNN classification 
models are utilized. A brief introduction to these methods is provided below. All models were trained using the 
Scikit-Learn (sklearn) package in Python with default settings.

K-nearest neighbors (KNN)
The KNN algorithm is a versatile technique applicable to both classification and regression tasks. However, in 
industrial applications, it is predominantly recognized for its effectiveness in solving classification problems. 
KNN identifies the k-nearest learning samples within the attribute space as input. By analyzing all data points, 
it determines the group to which a given data point belongs, making it a powerful tool for classification tasks. In 
fact, the KNN algorithm assigns new data points to a cluster based on the nearest k neighbors, determined using 
a predefined distance metric53.

Texture feature Definition Formula

Contrast
Measures local intensity variations; higher 
values indicate rougher or more heterogeneous 
textures.

∑
G−1
i=0

∑
G−1
j=0 P(i. j)(i − j)2

Correlation
Evaluates the linear relationship between 
neighboring pixels; higher values imply stronger 
gray-level dependencies.

∑
G−1
i=0

∑
G−1
j=0 (i−

−
x )(i−

−
y )p(i,j)

σ x σ y

Angular Second Moment (ASM) Sum of squared GLCM elements; reflects image 
uniformity and pixel pair repetition.

∑
G−1
i=0

∑
G−1
j=0 P (i, j)2

Energy
Indicates texture uniformity; higher values 
reflect more homogeneous and less complex 
textures.

√
ASM

Homogeneity
Measures the closeness of the distribution of 
elements to the diagonal of the GLCM; higher 
values indicate more uniform or smoother 
textures.

∑
G−1
i=0

∑
G−1
j=0

[
P(i. j)

1+(i−j)2

]

Dissimilarity
Measures the absolute differences between 
gray-level pairs; higher values indicate greater 
texture variation.

∑
G−1
i=0

∑
G−1
j=0 P(i. j)|i − j|

Table 1.  GLCM features extraction.

 

Fig. 5.  Images of polished asphalt pavement.
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Decision tree (DT)
A DT is a type of supervised ML model in which a series of Boolean (i.e., true or false) decisions are made to 
classify data into categorical bins. The supervised nature of the model means that, during training, each set of 
input variables (e.g., β, Hs, Tp, etc.) must be labeled with the expected output value. During training, the DT 
determines how to split each leaf into branches in a way that minimizes the Gini coefficient in each resulting leaf. 
The Gini coefficient quantifies the homogeneity of the values in each leaf during training54.

Extra trees (ET)
The Extremely Randomized Trees (Extra Trees) algorithm is an ensemble learning method that enhances 
classification performance by constructing multiple decision trees and aggregating their predictions. Unlike 
traditional RF, ET introduce additional randomness by selecting split points completely at random for each 
candidate feature, rather than choosing the best split based on criteria such as Gini impurity or entropy. This 
characteristic reduces variance while maintaining competitive accuracy, making the algorithm particularly 
robust against overfitting, especially when dealing with high-dimensional datasets. Furthermore, ET exhibit 
computational efficiency, as they do not require bootstrapping and instead utilize the entire training dataset for 
tree construction. These advantages make ET a valuable choice for classification tasks, particularly in domains 
requiring high interpretability and resilience to noise. The algorithm is often used as a classifier and is compared 
with other algorithms in various studies55,56.

Random forest (RF)
RF is a ML technique that integrates multiple DTs to enhance classification accuracy through ensemble learning. 
During the training process, it evaluates the significance of each feature in the decision-making process. The 
algorithm typically employs the bootstrap method to generate multiple training sets by sampling the data 
with replacement. Each decision tree is constructed using these samples, and the final classification result is 
determined through majority voting. Additionally, the algorithm assigns weights to features based on their 
importance in classification57,58.

Support vector machine (SVM)
The SVM algorithm is a powerful supervised learning method used for both classification and regression 
tasks. It works by identifying an optimal hyperplane that maximizes the margin between different classes in 
a high-dimensional feature space. SVM creates a multi-dimensional vector space, where each sample point is 
represented as a vector, and all vectors are separated by a hyperplane. The vectors closest to the hyperplane, 
known as support vectors, determine its position. The objective of SVM is to find a hyperplane that maximizes 
the margin between the support vectors of the training data58,59.

Class Sample ᶿ Contrast Correlation Dissimilarity Energy Homogeneity ASM

0

0° 414.39 0.837 13.76 0.014 0.015 0.00022

45° 823.26 0.677 19.72 0.013 0.013 0.000191

90° 504.48 0.802 15.12 0.015 0.015 0.000225

135° 414.39 0.837 13.76 0.014 0.015 0.00022

0

0° 209.86 0.828 10.14 0.018 0.114 0.000327

45° 282.56 0.769 11.78 0.016 0.099 0.000286

90° 133.99 0.890 8.09 0.0139 0.139 0.000393

135° 209.86 0.828 10.14 0.018 0.114 0.000327

1

0° 414.71 0.862 13.79 0.014 0.104 0.000214

45° 844.87 0.719 19.88 0.012 0.077 0.000158

90° 584.72 0.806 16.22 0.013 0.092 0.000188

135° 414.71 0.862 13.79 0.014 0.104 0.000214

1

0° 431.63 0.865 14.47 0.012 0.091 0.000165

45° 1027.82 0.678 22.65 0.010 0.061 0.000115

90° 659.68 0.793 17.86 0.011 0.078 0.00014

135° 431.63 0.865 14.47 0.012 0.091 0.000165

Table 2.  GLCM feature for Non-Polished (class 0) and polished (class1) samples.
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Backpropagation neural networks (BPNN)
The BPNN method was originally introduced by Paul Werbos in 1974 and later popularized by Rumelhart and 
McCelland in 198660. It is a widely used supervised learning algorithm for classification tasks, based on Artificial 
Neural Networks (ANNs) and inspired by the human brain. Its theoretical foundation lies in the universal 
approximation theorem, which states that a sufficiently deep neural network with nonlinear activation functions 
can approximate any continuous function. BPNN utilizes the backpropagation algorithm, which applies gradient 
descent to iteratively adjust neuron weights, minimizing the error between predicted and actual outputs. The 
network consists of an input layer, one or more hidden layers, and an output layer, with activation functions. 
Despite its strong learning capabilities, BPNN requires careful hyperparameter tuning, including learning rate 
selection and network architecture optimization, to prevent overfitting and ensure robust performance. Due 
to its flexibility and ability to learn intricate patterns, BPNN is widely applied to classification problems across 
various domains61,62. The hyperparameters for each classification algorithms (KNN, RF, DT, ET, SVM and 
BPNN) utilized in this study are provided in Table 5.

Hyperopt library
To achieve optimal performance in ML models, hyperparameter tuning is essential. Also known as 
hyperparameter optimization, this process involves testing various combinations of hyperparameters and 
evaluating their performance on a validation set. Common methods include grid search and random search 
algorithms63.

Hyperopt is a powerful Python library designed for optimizing hyperparameters in ML and DL models 
using Bayesian optimization, Tree-structured Parzen Estimators (TPE), and other global search algorithms. 
Unlike traditional grid or random search methods, Hyperopt efficiently explores the hyperparameter space by 
balancing exploration and exploitation, significantly reducing computational costs. Additionally, it supports 
parallel execution and integrates seamlessly with popular ML frameworks, making it well-suited for complex 
optimization tasks. Due to its adaptability and efficiency, Hyperopt is a valuable tool for enhancing model 
performance, particularly in high-dimensional search spaces, where optimal hyperparameter selection is crucial 
for achieving robust and reliable results in data-driven research. In this study, Hyperopt is employed to perform 
Bayesian optimization for various ML models. K-fold cross-validation is a widely used technique in ML to 
reduce the risk of overfitting, which occurs when a model performs well on the training data but poorly on 
new, unseen data. It is applied at this stage to determine and optimize the best hyperparameters for model 
evaluation64.

SHapley additive explanations (SHAP) analysis
SHAP, grounded in cooperative game theory, assigns Shapley values to individual features, providing a 
mathematically rigorous framework for evaluating their influence on classification outcomes. To enhance the 
interpretability of the developed ML models, SHAP analysis was employed to quantify the contribution of each 
feature to the model’s predictions13,63,65. In this study, SHAP values were computed to identify the most influential 
features driving the proposed model’s decisions. The analysis was conducted using the SHAP Python library, 
with feature importance visualized through summary plots to provide deeper insights into feature interactions.

Evaluation criteria
After training, the model’s performance was evaluated using standard metrics. The confusion matrix is a 
method used to analyze the performance of a given algorithm. In this study, the performance and accuracy 
of classification models are evaluated and compared using metrics such as F1-Score, Precision, Recall, and 
Accuracy, as defined by Eqs. (1) to (4). These metrics are derived from four fundamental components: True 
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). In this matrix, the actual class 
label refers to the true label of the data, and the predicted class label represents the classification output generated 
by the algorithm66,67.

	
Precision = TP

TP + FP
� (1)

	
Recall = TP

TP + FN
� (2)

	
F1 − score = 2Precision × Recall

Precision + Recall
� (3)

	
Accuracy = TP + TN

TP + TN + FP + FN
� (4)

Results and discussion
Feature extraction
This section of the research evaluates the performance of the proposed computer vision methods for identifying 
polished asphalt pavement surfaces. It begins with data collection, followed by the determination and extraction 
of features from the two target image classes. First, the RGB images are converted to grayscale, and then the 
GLCM method is applied to the grayscale images.

As previously noted, Class 0 refers to areas of asphalt pavement that are Non-Polished, including both fine 
and coarse textures. In contrast, Class 1 represents areas where the asphalt surface is visibly Polished, meaning 
the texture has been worn away, resulting in the absence of fine and coarse textures. This polished condition 
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in Class 1 is hazardous, as it significantly reduces the surface’s skid resistance and increases the likelihood of 
accidents.

To train the ML algorithms, field surveys were conducted to create an image dataset of pavement surfaces. 
The dataset included samples classified as Non-Polished (coded as Class 0) and Polished surfaces (coded as Class 
1). It is important to note that the identification, labeling, and collection of images were performed during field 
visits by experts specializing in PMS.

According to the definition presented in Sect. 2, six indices—Contrast, Correlation, Energy, Homogeneity, 
ASM, and Dissimilarity—were extracted in four directions (θ = 0°, 45°, 90°, and 135°). A total of 6 × 4 = 24 
features were extracted for each dataset, with the results presented as an example in Tables 3 and 4. These features 
represent the textural information of the pavement image.

As shown in Tables 3 and 4, each feature exhibits variations. This difference is more pronounced in certain 
features or directions compared to others. A comparison of the sample results in these tables reveals that, in 
general, feature values differ between the two classes. The distribution of these texture features for both Non-
Polished and polished pavement categories is illustrated in Fig. 6. Statistical summaries, including the mean 
and standard deviation of key GLCM-based descriptors (i.e., contrast, correlation, energy, and homogeneity), 
indicate observable but moderate differences between the two surface conditions, reflecting subtle yet meaningful 
changes in surface microtexture due to polishing. These subtle differences suggest that even minor changes in 
microtexture can be captured by the selected GLCM-based features, providing a basis for training ML models to 
differentiate Polished from Non-Polished surfaces.

Class Sample ᶿ Contrast Correlation Dissimilarity Energy Homogeneity ASM

1 0

0° 403.75 0.798 13.79 0.014 0.094 0.00022

45° 505.89 0.747 16.02 0.013 0.078 0.000191

90° 354.57 0.823 13.17 0.015 0.095 0.000225

135° 403.75 0.798 13.79 0.014 0.094 0.00022

1 1

0° 624.55 0.818 16.62 0.013 0.081 0.000183

45° 986.60 0.713 21.37 0.012 0.066 0.000149

90° 570.17 0.834 16.01 0.013 0.084 0.000188

135° 624.55 0.818 16.62 0.013 0.081 0.000183

1
.
.
.
.

0° . . . . . .

45° . . . . . .

90° . . . . . .

135° . . . . . .

1 6239

0° 558.52 0.826 15.54 0.013 0.091 0.000188

45° 896.83 0.722 20.07 0.012 0.071 0.000154

90° 463.72 0.856 14.26 0.014 0.096 0.000198

135° 558.52 0.826 15.54 0.013 0.091 0.000188

Table 4.  Features set polished class.

 

Class Sample ᶿ Contrast Correlation Dissimilarity Energy Homogeneity ASM

0 0

0° 131.41 0.860 8.13 0.021 0.135 0.000461

45° 210.10 0.776 10.45 0.019 0.106 0.000365

90° 122.92 0.869 7.92 0.021 0.140 0.000462

135° 131.41 0.860 8.13 0.021 0.135 0.000461

0 1

0° 399.38 0.787 14.61 0.013 0.078 0.00017

45° 646.98 0.655 18.85 0.011 0.058 0.000139

90° 346.55 0.815 13.63 0.013 0.082 0.00018

135° 399.38 0.787 14.61 0.013 0.078 0.00017

0
.
.
.
.

0° . . . . . .

45° . . . . . .

90° . . . . . .

135° . . . . . .

0 6239

0° 288.30 0.774 12.583 0.015 0.088 0.000237

45° 471.78 0.629 16.323 0.013 0.068 0.000193

90° 233.82 0.816 11.454 0.015 0.095 0.000255

135° 288.30 0.774 12.583 0.0154 0.088 0.000237

Table 3.  Features set non-polished class.
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These differences in feature values can be attributed to the inherent characteristics of the textures of the two 
surfaces, as well as the fundamental modifications made to the texture of the polished pavement surface. These 
modifications result in a substantial reduction in both macro- and micro-textures, which is reflected in pixel 
intensity values and, consequently, in the extracted texture-based features. Based on these values, it is predicted 
that these features will have the most significant impact on training the models and classifying the two classes 
under study.

Hyperopt- based model optimization
The Hyperopt-based optimized KNN, DTs, RF, ET, SVM, and BPNN models have been developed in the Python 
programming environment. Due to the significant differences in the values of the extracted features, this study 
standardizes them using the Z-score equation to prevent bias when evaluating features with varying magnitudes. 
The Z-score equation is defined as (Eq 5):

	
Xn = X − µ

ST D

In this context, Xn​ denotes the normalized features, and X denotes the raw features, while µ  and STD​ represent 
the mean and standard deviation of the training features, respectively.

Subsequently, Hyperopt begins the search process to identify the optimal configuration of each model by 
generating hyperparameter values, as shown in Table 5. Additionally, the number of iterations for the search 
loop is set to 100. The dataset was divided into two subsets: 70% for training and 30% for testing. A 5-fold cross-
validation procedure was applied to the training data to determine the optimal hyperparameters. As a result, the 
performance of each ML model gradually improves until the stopping condition is met. Once the search process 
concludes, the optimized hyperparameters for each ML model are ready to detect polished asphalt in new image 
samples. The test set was subsequently used to evaluate the model’s generalization performance and to ensure 
that overfitting had not occurred. Furthermore, Z-score normalization was employed to standardize the range of 
input features. In this way, the optimal hyperparameters are fixed and remain unchanged during the subsequent 
evaluation process. The optimal hyperparameters for each ML model are presented in Table 5.

Fig. 6.  Distribution of GLCM-based texture features for Non-Polished and Polished.
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Considering the optimal hyperparameter values obtained for each classification model used in this study, 
the next stage involved training the algorithms using these hyperparameters. The final results, including the 
accuracies achieved for each model, will be presented and interpreted in the next section.

Computational results and performance comparison of the model
As mentioned in the methodology section, this study aimed to identify the most effective model by evaluating 
six ML classifiers: SVM, RF, KNN, ETs, DT, and BPNN. These models were selected based on their demonstrated 
effectiveness in previous studies related to pavement distress classification and other classification tasks.

To reliably evaluate the predictive ability of the proposed computer vision model, the training and testing 
processes are repeated 30 times. This ensures that the model’s ability to classify asphalt is assessed through 
statistical measurements obtained from these independent iterations. In other words, this approach ensures that 
the entire dataset participates in both the training and testing processes.

In each run, the model is randomly fitted with 70% of the data and evaluated on the remaining 30%. 
During each run, precision, recall, and F-score values are computed for each class, as well as for the overall 
model performance. The statistical indicators related to these metrics (evaluation criteria) are then calculated 
and reported as the mean and standard deviation. The results of the evaluation criteria used in this study are 
presented separately for each model in Table 6.

The findings indicate that the accuracy of the applied models ranges from 87% to 96.10%. Among the 
models (Fig. 7) used for classifying the target classes, the least accurate in distinguishing Polished pavement 
surfaces from Non-Polished surfaces is the DT model, with an accuracy of 87.20%, while the highest accuracy is 
achieved by the BPNN model, at 96.10%. This confirms that the BPNN model demonstrates strong performance 
with acceptable accuracy, showing a significant improvement of more than 8% compared to the DT model in 
distinguishing polished surfaces.

Additionally, the results indicate that the SVM algorithm performs well, achieving an accuracy of 95.4%. 
However, it exhibits a slight performance difference when compared to the BPNN model. Based on accuracy 
rankings, the models from highest to lowest performance are as follows: BPNN, SVM, ET, KNN, RF, and DT.

ML algorithms Class

Accuracy 
(%)

Precision 
(%) Recall (%)

F-1Score 
(%)

Mean Std. Mean Std. Mean Std. Mean Std.

KNN

Non-Polished ----- ----- 94.45 0.52 89.05 0.79 91.67 0.53

Polished ----- ----- 89.55 0.71 94.71 0.49 92.06 0.47

Overall 91.87 0.48 92.01 0.47 91.87 0.48 91.86 0.48

DT

Non-Polished ----- ----- 87.74 0.75 86.62 0.82 87.18 0.54

Polished ----- ----- 86.68 0.66 87.79 0.72 87.22 0.39

Overall 87.20 0.43 87.22 0.43 87.20 0.43 87.20 0.43

ETs

Non-Polished ----- ----- 93.78 0.55 90.72 0.81 92.22 0.50

Polished ----- ----- 90.93 0.73 93.92 0.50 92.40 0.41

Overall 92.31 0.44 92.36 0.43 92.31 0.44 92.31 0.44

RF

Non-Polished ----- ----- 92.71 0.61 90.42 0.70 91.55 0.51

Polished ----- ----- 90.57 0.63 92.82 0.53 91.68 0.42

Overall 91.62 0.45 91.65 0.45 91.62 0.45 91.62 0.45

SVM

Non-Polished ----- ----- 96.11 0.53 94.82 0.46 95.46 0.37

Polished ----- ----- 94.84 0.45 96.12 0.51 95.48 0.35

Overall 95.47 0.36 95.48 0.36 95.47 0.36 95.47 0.36

BPNN

Non-Polished ----- ----- 96.45 0.69 95.55 0.76 95.99 0.34

Polished ----- ----- 95.55 0.73 96.44 0.76 95.99 0.35

Overall 96.10 0.34 96.02 0.33 95.99 0.34 95.99 0.34

Table 6.  Results of evaluation criteria for ML models.

 

ML algorithms Best hyperparameters (Values)

KNN N_neighbors = 4 Weights = 1 -------- --------

DT max_depth = 14 min_samples_split = 3 min_samples_leaf = 1 --------

ETs N_estimators = 90 max_depth = 50 min_samples_split = 2 min_samples_leaf = 1

RF N_estimators = 90 max_depth = 21 min_samples_split = 3 min_samples_leaf = 1

SVM C = 15.988 Gamma = 0.26484 -------- --------

BPNN hidden_layer_sizes = 140 learning_rate_init = 0.00065 -------- --------

Table 5.  Best hyperparameter values for each ML algorithms applied with an optimizer.
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As shown in Table 6, the proposed method, GLCM-Hyperopt-BPNN, proves to be both effective and efficient, 
as the evaluation metrics for both classes and overall performance exceed 95%. Furthermore, the deviation in 
F1-score values is minimal—less than 4%—indicating that the values range between 91% and 99%. This narrow 
range demonstrates the stability of the proposed method.

According to the obtained results, the GLCM feature extraction method, based on texture, was used to train 
classification models and identify polished surfaces. This approach proved particularly effective for the proposed 
BPNN and SVM models, as texture-based distinctions successfully separated the two classes, confirming the 
reliability of the model outputs.

While deep transfer learning allows knowledge to be transferred from a source domain to a pre-trained deep 
neural network—reducing the required target-domain data and training time—it generally improves overall 
performance. To evaluate CNN performance, several models were applied, with ResNet-50 achieving the best 
accuracy (Table 7). The CNN model showed less than 3% difference in accuracy compared to the proposed 
GLCM-Hyperopt-BPNN method.

To evaluate and compare the performance of CNN methods, several models were applied, with ResNet-50 
achieving the highest accuracy (Table 7). The results show that the CNN model’s accuracy differs by less than 3% 
from that of the proposed GLCM-Hyperopt-BPNN method. Despite requiring considerably less computational 
resources and training time than CNN-based DL methods, the GLCM-Hyperopt-BPNN approach achieved 
comparable and satisfactory performance in classifying the target classes. This demonstrates its practical 
efficiency while maintaining competitive accuracy, with actual performance exceeding 95%. Considering both 
computational costs and the need for high-performance systems, the GLCM-Hyperopt-BPNN model emerges 
as the most suitable and optimal algorithm for this study.

Feature analysis
The SHAP summary violin plot presented in Fig. 8 illustrates the influence of various features on the output of 
the GLCM-Hyperopt-BPNN model. The x-axis represents the SHAP values, indicating both the magnitude and 
direction of each feature’s impact on the model’s predictions. Features with SHAP values to the right of zero 
contribute positively to the prediction, while those to the left have a negative effect.

This analysis provides a comprehensive interpretability framework for assessing the influence of textural 
features in classifying polished versus normal asphalt pavement surfaces. Among the most influential features, 

CNNs Class

Accuracy 
(%)

Precision 
(%) Recall (%) F1-Score (%)

Mean Std. Mean Std. Mean Std. Mean Std.

ResNet-50

Non-Polished ----- ----- 99.70 0 99.70 0 98.80 0.001

Polished ----- ----- 97.80 0.002 97.80 0.002 98.70 0.001

Overall 98.80 0.001 98.80 0.001 98.80 0.001 98.80 0.001

Table 7.  Results of evaluation criteria for the CNN model.

 

Fig. 7.  Comparative chart of evaluation criteria for each model.

 

Scientific Reports |        (2025) 15:43167 13| https://doi.org/10.1038/s41598-025-27203-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Homogeneity at angles 0°, 45°, and 90° exhibits the highest positive SHAP values corresponding to greater 
feature magnitudes, indicating a strong association with the polished surface class. This observation aligns with 
the physical characteristics of polished pavements, which typically display more uniform texture patterns due to 
aggregate wear. Moderate contributions from Correlation metrics suggest the model’s sensitivity to directional 
texture alignment. Features computed at 135°, including ASM and Energy, demonstrate minimal impact.

These results underscore the pivotal role of GLCM-derived textural Homogeneity and Dissimilarity in 
accurately distinguishing pavement surface conditions within ML-based assessment models.

To further validate the consistency between global and local interpretability, local SHAP analysis 
was performed on randomly selected samples from each class (Figs.  9 and 10). The local SHAP force plots 
complement the global SHAP summary (violin) plot by visualizing how individual features contribute to specific 
model predictions. For example, in Fig. 9, model outputs of f(x) = 0.14 and f(x) = 0.10 are substantially below 
the base value of 0.39, indicating strong confidence in classifying these samples as Non-Polished pavements. In 
contrast, Fig. 10 shows outputs of f(x) = 0.95 and f(x) = 0.96, clearly above the base, reflecting high-confidence 
predictions for the Polished surface class.

Consistent with the global SHAP analysis, features such as Homogeneity and Dissimilarity at 0°, 45°, and 
90°, along with Correlation at 45°, emerged as the most influential contributors, collectively driving the model’s 
predictions toward the Polished class. Although the magnitude and direction of SHAP values vary across 
individual instances, the consistently high importance of these directional texture features reinforces their 
reliability as discriminative indicators. This agreement between local and global interpretability demonstrates 
the robustness and transparency of the model’s decision-making process.

Moreover, the SHAP-based analysis provides a clear physical interpretation aligned with the actual texture 
structure of pavement surfaces. Polished surfaces exhibit smoother and more uniform patterns, whereas Non-

Fig. 8.  Summary plot of SHAP analysis for the proposed BPNN model.
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Polished surfaces are relatively rougher with stronger gray-level variations. Accordingly, Homogeneity plays a 
dominant role in distinguishing these conditions by reflecting the uniformity of pixel intensity. Dissimilarity 
and Correlation also contribute notably, indicating that both gray-level differences and directional relationships 
between texture elements are essential for characterizing surface conditions. Overall, these results emphasize 
that directional texture metrics are robust and physically meaningful indicators for ML-based pavement surface 
assessment.

Conclusion
Asphalt surface polishing significantly reduces skid resistance and poses safety risks, highlighting the need 
for timely and accurate detection. This study proposed a computer vision-based framework integrating 
texture feature extraction and ML for automated identification of Non-Polished and Polished asphalt surfaces. 
The analysis demonstrated that Homogeneity features were most influential in distinguishing surface types, 
aligning with physical characteristics of pavement wear. The proposed GLCM–BPNN model achieved optimal 
classification performance, demonstrating the effectiveness of the developed framework. The BPNN and SVM 
classifiers delivered strong performance, outperforming other models such as RF, KNN, DTs, and ET. While a 
CNN-based model (ResNet50) achieved slightly higher accuracy, the proposed GLCM–ML framework offers 
comparable performance with significantly lower computational cost, making it practical for large-scale field 
applications.

The proposed method has several practical applications. Road maintenance agencies can employ it for rapid 
and automated detection of Polished and Non-Polished (normal) asphalt surfaces, enabling data-driven decisions 
for maintenance planning and safety interventions. Contractors and engineers can use it to evaluate pavement 

Fig. 10.  SHAP local analysis plot for Polished class.

 

Fig. 9.  SHAP local analysis plot for Non-Polished class.
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surface conditions over time and identify early signs of polishing or surface wear. Furthermore, the approach 
can be integrated into intelligent road management systems to continuously monitor surface conditions and 
predict potential hazards, such as slipperiness. These applications highlight the method’s potential to enhance 
operational efficiency, minimize the need for manual inspections, and deliver quantitative and reproducible 
outcomes for pavement management. Future research will aim to improve system robustness by incorporating 
advanced texture analysis techniques, expanding the dataset to include diverse lighting and weather conditions, 
and leveraging large-scale image databases to enhance model generalization and noise resistance under real-
world scenarios.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.

Received: 15 September 2025; Accepted: 3 November 2025

References
	 1.	 Duranton, G. & Turner, M. A. Urban growth and transportation. Rev. Econ. Stud. 79, 1407–1440 (2012).
	 2.	 Banister, D. Unsustainable Transport (Routledge, 2005). https://doi.org/10.4324/9780203003886
	 3.	 Shahin, M. Y. Pavement Management for Airports, Roads, and Parking Lots (Chapman & Hall, 1994).
	 4.	 Bhandari, S., Luo, X. & Wang, F. Understanding the effects of structural factors and traffic loading on flexible pavement 

performance. Int. J. Transp. Sci. Technol. 12, 258–272 (2023).
	 5.	 Haas, R. & Hudson, W. Pavement Asset Management (Wiley, 2015).
	 6.	 Chu, C., Wang, L. & Xiong, H. A review on pavement distress and structural defects detection and quantification technologies 

using imaging approaches. J. Traffic Transp. Eng. (English Edition). 9, 135–150 (2022).
	 7.	 Guerrieri, M. & Parla, G. Flexible and stone pavements distress detection and measurement by deep learning and low-cost 

detection devices. Eng. Fail. Anal. 141, 106714 (2022).
	 8.	 Mozaffari, L., Mozaffari, A. & Azad, N. L. Vehicle speed prediction via a sliding-window time series analysis and an evolutionary 

least learning machine: A case study on San Francisco urban roads. Eng. Sci. Technol. Int. J. 18, 150–162 (2015).
	 9.	 Pompigna, A. & Mauro, R. Smart roads: A state of the Art of highways innovations in the smart age. Eng. Sci. Technol. Int. J. 25, 

100986 (2022).
	10.	 Garita-Durán, H., Stöcker, J. P. & Kaliske, M. Deep learning-based system for automated damage detection and quantification in 

concrete pavement. Results Eng. 25, 104546 (2025).
	11.	 Jiang, J., Ketabdari, M., Crispino, M. & Toraldo, E. Estimating vehicle braking distance over wet and rutted pavement surface 

through back-propagation neural network. Results Eng. 21, 101686 (2024).
	12.	 Jimenez Rios, A., Ben Seghier, M. E. A., Plevris, V. & Dai, J. Explainable ensemble learning framework for estimating corrosion rate 

in suspension Bridge main cables. Results Eng. 23, 102723 (2024).
	13.	 Khadijeh, M., Kasbergen, C., Erkens, S. & Varveri, A. Combining deep neural networks and Gaussian processes for asphalt 

rheological insights. Results Eng. 26, 105629 (2025).
	14.	 Zhong, J. et al. Texture-image coupled fusion analysis for pavement skid resistance measurement. Measurement 256, 118272 

(2025).
	15.	 Medina, R. LIamas, J. Zalama, E and. Gómez-García-Bermejo, J. Enhanced automatic detection of road surface cracks by 

combining 2D/3D image processing techniques. International Conference on Image Processing (ICIP), 7025156778–782, (2014)
	16.	 Shang, J., Zhang, A. A., Dong, Z., Zhang, H. & He, A. Automated pavement detection and artificial intelligence pavement image 

data processing technology. Autom. Constr. 168, 105797 (2024).
	17.	 Jing, J. et al. Self-adaptive 2D–3D image fusion for automated pixel-level pavement crack detection. Autom. Constr. 168, 105756 

(2024).
	18.	 Xing, C. et al. A lightweight detection method of pavement potholes based on binocular stereo vision and deep learning. Constr. 

Build. Mater. 436, 136733 (2024).
	19.	 Hoang, N. D. Image processing based automatic recognition of asphalt pavement patch using a metaheuristic optimized machine 

learning approach. Adv. Eng. Inform. 40, 110–120 (2019).
	20.	 Ranjbar, S., Nejad, F. M. & Zakeri, H. Image-based severity analysis of asphalt pavement bleeding using a metaheuristic-boosted 

fuzzy classifier. Autom. Constr. 166, 105797 (2024).
	21.	 Ranjbar, S., Moghadas Nejad, F. & Zakeri, H. Image-based severity analysis of asphalt pavement bleeding using a metaheuristic-

boosted fuzzy classifier. Autom. Constr. 166, 105655 (2024).
	22.	 Nasertork, A., Ranjbar, S., Rahai, M. & Moghadas, F. Pavement raveling inspection using a new image texture-based feature set and 

artificial intelligence. Adv. Eng. Inform. 62, 102665 (2024).
	23.	 Zhong, J. et al. An investigation of texture–friction relationship with laboratory ring-shaped asphalt mixture specimens via close-

range photogrammetry. Constr. Build. Mater. 442, 137508 (2024).
	24.	 Zong, Y. et al. Effect of morphology characteristics on the Polishing resistance of coarse aggregates on asphalt pavement. Constr. 

Build. Mater. 341, 127755 (2022).
	25.	 Kane, M., Lim, M., Tan, M. & Edmondson, V. A new predictive skid resistance model (PSRM) for pavement evolution due to 

texture Polishing by traffic. Constr. Build. Mater. 342, 128052 (2022).
	26.	 Wang, D., Liu, P., Xu, H., Kollmann, J. & Oeser, M. Evaluation of the Polishing resistance characteristics of fine and coarse aggregate 

for asphalt pavement using Wehner/Schulze test. Constr. Build. Mater. 163, 742–750 (2018).
	27.	 Pomoni, M., Plati, C., Kane, M. & Loizos, A. Polishing behaviour of asphalt surface course containing recycled materials. Int. J. 

Transp. Sci. Technol. 11, 711–725 (2022).
	28.	 Yun, D., Tang, C., Gao, J., Ran, M. & Zhou, X. Effect of asphalt mixture gradation characteristics on long-term skid resistance under 

high temperature and heavy load. Constr. Build. Mater. 441, 137386 (2024).
	29.	 Descantes, Y. & Hamard, E. Parameters influencing the polished stone value (PSV) of road surface aggregates. Constr. Build. Mater. 

100, 246–254 (2015).
	30.	 Guo, F. et al. Study on the skid resistance of asphalt pavement: A state-of-the-art review and future prospective. Constr. Build. 

Mater. 303, 124411 (2021).
	31.	 Zhan, Y. et al. Effect of aggregate properties on asphalt pavement friction based on random forest analysis. Constr. Build. Mater. 

292, 123467 (2021).
	32.	 Guide for Pavement Friction. Transportation Research Board & Washington, D. C. [ (2009). https://doi.org/10.17226/23038]
	33.	 Zhang, A. A. et al. Intelligent pavement condition survey: overview of current researches and practices. J. Road. Eng. 4, 257–281 

(2024).

Scientific Reports |        (2025) 15:43167 16| https://doi.org/10.1038/s41598-025-27203-6

www.nature.com/scientificreports/

https://doi.org/10.4324/9780203003886
https://doi.org/10.17226/23038]
http://www.nature.com/scientificreports


	34.	 Weng, Z. et al. Pavement texture depth Estimation using image-based multiscale features. Autom. Constr. 141, 104404 (2022).
	35.	 Gökalp, İ., Uz, V. E., Barstuğan, M. & Balcı, M. C. Image processing and artificial neural network based determination of surface 

mean texture depth on lab-controlled chip seal pavement samples. Sci. Rep. 14, 27885 (2024).
	36.	 Pan, S. et al. Automatic pavement texture recognition using lightweight few-shot learning. Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences 381, 20220209 (2023).
	37.	 Hoang, N. D. Automatic detection of asphalt pavement raveling using image texture-based feature extraction and stochastic 

gradient descent logistic regression. Autom. Constr. 105, 102843 (2019).
	38.	 Hsieh, Y. A. & Tsai, Y. Automated asphalt pavement raveling detection and classification using convolutional neural network and 

macrotexture analysis. Transp. Res. Rec. 2675, 984–994 (2021).
	39.	 Nhat-Duc, H. & Van-Duc, T. Comparison of histogram-based gradient boosting classification machine, random forest, and deep 

convolutional neural network for pavement raveling severity classification. Autom. Constr. 148, 104767 (2023).
	40.	 Hoang, N. D. & Tran, V. D. Computer vision based asphalt pavement segregation detection using image texture analysis integrated 

with extreme gradient boosting machine and deep convolutional neural networks. Measurement: Journal of the International 
Measurement Confederation 196, 111207 (2022).

	41.	 Nhat-Duc, H. & Van-Duc, T. Computer vision-based severity classification of asphalt pavement raveling using advanced gradient 
boosting machines and lightweight texture descriptors. Iran. J. Sci. Technol. Trans. Civil Eng. 47, 4059–4073 (2023).

	42.	 Daneshvari, M. H., Nourmohammadi, E., Ameri, M. & Mojaradi, B. Efficient LBP-GLCM texture analysis for asphalt pavement 
raveling detection using eXtreme gradient boost. Constr. Build. Mater. 401, 132731 (2023).

	43.	 Daneshvari, M. H., Mojaradi, B., Ameri, M. & Nourmohammadi, E. Automation detection of asphalt pavement bleeding for 
imbalanced datasets using an anomaly detection approach. Measurement: J. Int. Meas. Confederation. 235, 114987 (2024).

	44.	 Daneshvari, M. H., Mojaradi, B., Ameri, M. & Nourmohammadi, E. Hybrid texture analysis of 2D images for detecting asphalt 
pavement bleeding and raveling using tree-based ensemble methods. Alexandria Eng. J. 107, 150–164 (2024).

	45.	 Lei, J. et al. Research on the evolution law of aggregate micro-texture during long-term wearing of asphalt pavement. Constr. Build. 
Mater. 444, 137846 (2024).

	46.	 Lei, J., Zheng, N., Chen, X., Bi, J. & Wu, X. Research on the relationship between anti-skid performance and various aggregate 
micro texture based on laser scanning confocal microscope. Constr. Build. Mater. 316, 125984 (2022).

	47.	 McKnight, J., Bedle, H. & Saneiyan, S. Improving electrical resistivity tomography interpretation with Gray level co-occurrence 
matrix textural attributes. Sci. Rep. 15, 30868 (2025).

	48.	 Cao, M. T., Nguyen, N. M., Chang, K. T. & Tran, X. L. Hoang, N. D. Automatic recognition of concrete spall using image processing 
and metaheuristic optimized logitboost classification tree. Adv. Eng. Softw. 159, 103031 (2021).

	49.	 Tomita, F. & Tsuji, S. Computer Analysis of Visual Textures (Springer Science + Business Media, 1990).
	50.	 Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man. Cybernetics. SMC-

3, 610–621 (1973).
	51.	 Kumar, G., Banerjee, R., Singh, K. & Choubey, D. Arnaw. Mathematics for machine learning. J. Math. Sci. Comput. Math. 1, 

229–238 (2020).
	52.	 Berry, M. W., Mohamed, A. & Yap, B. W. Unsupervised and Semi-Supervised Learning. Springer, Cham, 22475-2 (2019)
	53.	 Altman, N. S. An Introduction To Kernel and Nearest Neighbor Nonparametric Regression (Springer, 1992).
	54.	 Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Routledge, 2017).
	55.	 Simm, J., Magrans de Abril, I. & Sugiyama, M. Tree-based ensemble multi-task learning method for classification and regression. 

IEICE. Trans. Inf. Syst. E97.D, 1677–1681 (2014).
	56.	 Shang, H. et al. A hybrid cloud detection and cloud phase classification algorithm using classic threshold-based tests and extra 

randomized tree model. Remote Sensing of Environment 302,113957 (2024).
	57.	 Ho, T. K. Random decision forest. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, 

Montreal, (1995).
	58.	 He, Q. et al. Evaluation of landslide susceptibility of mountain highway based on RF and SVM models. Sci. Rep. 15, 24991 (2025).
	59.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	60.	 Mislan, H., Haviluddin, Hardwinarto, S., Aipassa, M. & Sumaryono & Rainfall monthly prediction based on artificial neural 

network: A case study in Tenggarong Station, East Kalimantan – Indonesia. Procedia Comput. Sci. 59, 142–151 (2015).
	61.	 Wu, D. et al. Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with 

screened environmental factors. Chem. Eng. J. 399, 125878 (2020).
	62.	 Liang, J. et al. Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back 

propagation neural network. Tunn. Undergr. Space Technol. 148, 105781 (2024).
	63.	 Ruan, S. et al. Multifactor interpretability method for offshore wind power output prediction based on TPE-CatBoost-SHAP. 

Comput. Electr. Eng. 123, 110081 (2025).
	64.	 Hanifi, S., Cammarono, A. & Zare-Behtash, H. Advanced hyperparameter optimization of deep learning models for wind power 

prediction. Renew. Energy. 221, 119700 (2024).
	65.	 Bacanin, N. et al. Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural 

networks. Inf. Sci. 642, 119122 (2023).
	66.	 Luque, A., Carrasco, A., Martín, A., e las Heras, A. & d The impact of class imbalance in classification performance metrics based 

on the binary confusion matrix. Pattern Recognit. 91, 216–231 (2019).
	67.	 Saifullah, S., Fauziyah, Y. & Aribowo, A. S. Comparison of machine learning for sentiment analysis in detecting anxiety based on 

social media data. J. Inf. 15, 45 (2021).

Author contributions
Mansour Fakhri supervised the research and provided overall guidance. Seyed Vahid Pourjafar conceived, de-
signed, and conducted the study, performed data handling, data analysis, preprocessing, and drafted the manu-
script. Mohammad Hassan Daneshvari contributed to programming, data analysis, image processing, machine 
learning, and assisted with manuscript revision. All authors discussed the results, reviewed, and approved the 
final version of the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.F.

Scientific Reports |        (2025) 15:43167 17| https://doi.org/10.1038/s41598-025-27203-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:43167 18| https://doi.org/10.1038/s41598-025-27203-6

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Texture-based image analysis and explainable machine learning for polished asphalt identification in pavement condition monitoring
	﻿Data collection and methodology
	﻿Data collection
	﻿Feature extraction
	﻿Image preprocessing
	﻿GLCM features extraction


	﻿ML methods
	﻿K-nearest neighbors (KNN)
	﻿Decision tree (DT)
	﻿Extra trees (ET)
	﻿Random forest (RF)
	﻿Support vector machine (SVM)
	﻿Backpropagation neural networks (BPNN)

	﻿Hyperopt library
	﻿SHapley additive explanations (SHAP) analysis
	﻿Evaluation criteria
	﻿Results and discussion


