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The main objective of osteoporosis management is to prevent osteoporotic fractures. Using machine 
learning methods, new risk variables can be identified to enhance the ability to identify women with 
osteoporosis who are at an increased risk of bone fracture. A multicenter study using machine learning-
based methods was conducted in two independent cohorts of postmenopausal women (HURH and 
Camargo Cohorts), with clinical follow-up periods ranging from 8 to 10 years. The prediction models 
were developed in the HURH Cohort and validated using the Camargo Cohort, an independent external 
group of postmenopausal women. This study developed machine learning models to predict the risk 
of osteoporotic bone fractures. One is for postmenopausal women with osteoporosis, and the other is 
for general postmenopausal women. For each of these, two variable grouping options were used. The 
aggregation with the most predictive power included variables that are generally most accessible in 
medical practice. For postmenopausal women with osteoporosis, the AUC was 0.92, and for general 
postmenopausal women, it was 0.88. The results highlighted the significance of the previous fracture, 
DXA data, vitamin D levels, and PTH levels in predicting future fractures. Machine learning should be 
used to identify postmenopausal women at increased risk of fractures. This study summarizes that 
previous fractures, DXA, PTH, and vitamin D play crucial roles in identifying these women.
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Osteoporosis is the most common bone disorder worldwide, characterized by low bone mineral density (BMD), 
reduced bone mass, alterations in bone microarchitecture, and an increased risk of osteoporotic fractures. 
Osteoporosis is a silent, progressive disease with dramatic clinical and economic consequences. It has been 
reported that one in three postmenopausal women has osteoporosis, and the majority will have a bone fracture at 
some point in life. Osteoporotic bone fractures are associated with increased morbidity, disability, and mortality, 
and a worse quality of life1–4.

Preventing the appearance of osteoporotic bone fractures is the principal therapeutic objective in the 
management of osteoporosis5. Therefore, it is crucial to identify patients at higher risk of suffering fractures to 
prevent their occurrence. In this sense, various algorithms have been developed to identify patients with a higher 
risk of suffering the disease and/or suffering bone fractures6. The most widely used is FRAX, which provides 
risk stratification by combining various risk factors. The procedure used to perform it was the statistical analysis 
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of cohorts of patients with osteoporotic fractures using previously identified risk factors7. These algorithms 
demonstrate strong discriminative ability but require adjustments to enhance their predictive performance8–14. 
However, FRAX is intended to identify patients for treatment7,15. Although FRAX should not be used to 
assess the reduction in fracture risk in individuals in treatment, it may still have value for guiding the need for 
continued treatment or treatment withdrawal. Using machine learning methods16, new variables associated with 
bone fracture risk could be identified to improve the ability to single out osteoporotic women at increased risk 
of bone fracture.

The central premise of machine learning is to present algorithms that input data, apply computational 
analysis to predict output values within satisfactory accuracy ranges, recognize patterns and trends, and, finally, 
learn from previous experience17. Machine learning works with complex distributions to determine probabilistic 
associations and find the minimum number of features that capture the essential patterns in the data to develop a 
predictive model18. Machine learning methods have shown better results than traditional statistical model-based 
methods17. Thus, machine learning is applied to identify risk factors and classify multiple pathologies. Some of 
the techniques developed for classification systems and data processing are Support Vector Machine (SVM), 
Gaussian Naïve Bayes (GNB), k-nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), or decision tree 
(DT)19.

In this scenario, the primary objective was to identify variables associated with an increased risk of bone 
fracture in postmenopausal women, thereby enhancing the ability to recognize subjects with a higher risk 
of fracture by developing a risk prediction algorithm. Machine learning-based methods were used in two 
independent cohorts of postmenopausal women with prolonged clinical follow-up.

Results
The study comprised 576 postmenopausal women, divided into two independent cohorts: the HURH and 
Camargo cohorts. Table  1 summarizes the general characteristics of the study cohorts. The HURH Cohort 
included 276 postmenopausal women diagnosed with osteoporosis. After a clinical follow-up, 72 patients 
suffered osteoporotic bone fractures. The Camargo cohort involved 300 postmenopausal women from the 
general population, and after the clinical follow-up, 91 suffered a fracture.

Table 2 presents the different machine learning methods tested for predicting osteoporotic fractures after 
8–10 years of clinical follow-up in postmenopausal women with osteoporosis (HURH Cohort). Additionally, 
the table includes data from external validation using records from a general population of postmenopausal 

Clinical variable
HURH Cohort
(n = 276)

Camargo Cohort
(n = 300) p-value

Age, mean (SD) (years) 61.08 (8,43) 61.25 (7.42) 0.787

BMI, mean (SD) (Kg/m3) 25.67 (4.04) 28.84 (4.75) < 0.001

Age of menopause, mean (SD) (years) 48.01 (5.75) 49.00 (4.91) 0.051

Age of menarche, mean (SD) (years) 13.03 (1.46) 13.19 (1.61) 0.179

Smoking, n (%) 88 (30) 65 (21.7%) 0.006

Familial history of hip fracture, n (%) 42 (15.2) 56 (18.7) 0.263

Previous falls, n (%) 50 (18.3) 59 (19.7) 0.065

Previous fracture, n (%) 87 (31.52) 25 (8.3%) < 0.001

PTH, mean (SD) (pg/ml) 44.54 (13.71) 51.07 (15.81) < 0.001

History of DMII, n (%) 11 (3.8%) 27 (9.00) 0.015

History of Cancer, n (%) 39 (14.1%) 11 (3.7%) < 0.001

Vitamin D, mean (SD) (ng/ml) 30.24 (12.03) 24.06 (7.68) < 0.001

Glucose, mean (SD) (mg/dl) 90.44 (25.87) 93.07 (21.71) 0.185

Cholesterol, mean (SD) (mg/dl) 225.65 (35.40) 229.20 (38.44) 0.253

Chol-LDL, mean (SD) (mg/dl) 135.67 (31.78) 147.65 (35.06) < 0.001

Chol-HDL, mean (SD) (mg/dl) 66.54 (13.79) 59.43 (14.21) < 0.001

Lumbar T Score, mean (DS) -1,63 (1.73) -1,51 (1.23) 0.367

Lumbar BMD, mean (DS) (g/cm2) 0.85 (0.12) 0.88 (0.13) < 0.001

Femoral neck BMD, mean (DS) (g/cm2) 0,83 (0.13) 0.72 (0.10) < 0.001

Femoral neck T Score, mean (DS) -1,3 (0.99) -1.15 (0.96) 0.073

Total femoral BMD, mean (DS) (g/cm2) 0,86 (0.13) 0.82 (0.15) 0.030

Total femoral T-Score, mean (DS) -1,13 (1.10) -0.81 (0.94) < 0.001

Cortical vBMD, mean (DS) (g/cm3) 141,97 (23.31) 156.37 (22.56) < 0.001

Trabecular vBMD, mean (DS) (g/cm3) 140,21 (40.5) 171.43 (41.58) < 0.001

Integral vBMD, mean (DS) (mg/cm3) 292,87 (50.45) 309.23 (57.99) 0.001

TBS 1.287 (0.13) 1.272 (0.11) 0.061

Table 1.  General characteristics of the study cohorts. BMI: body mass index, PTH: parathormone, LDL: low-
density lipoprotein, HDL: high-density lipoprotein, BMD: bone mass density, TBS: trabecular bone score.
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women without an osteoporosis diagnosis (Camargo Cohort). Two predictive models were developed based on 
two sets of variables: one including all variables (set 1) and another limited to variables more readily available in 
general medical consultations (set 2). In both cases, the machine learning method yielding the best performance 
for predicting osteoporotic fractures was XGB (Table 2). The XGB method achieved the highest values across 
the evaluated metrics, including balanced accuracy, recall, precision, area under the curve (AUC), F1 score, 
Matthews correlation coefficient (MCC), degenerated Youden index (DYI), and kappa. For the HURH Cohort, 
the AUC was 0.88 for variables in set 1 and 0.92 for those in set 2. In the external validation using the Camargo 
Cohort, the AUC was 0.88 for both sets of variables.

For osteoporotic postmenopausal women (HURH Cohort), the results showed that the most influential 
variable in the osteoporotic bone fracture was a previous fracture, followed by parathormone (PTH) and lumbar 
spine T Score (Figs. 1 and 2). If the risk analysis includes all study variables, the results showed that cortical 
vBMD was the fourth most influential variable for osteoporotic fracture risk. Figure  1A shows the level of 
influence of each variable. The ROC curve was calculated, and the results showed that the system based on the 
XGB model obtains a larger area, allowing a greater accuracy in predicting osteoporotic bone fracture (Fig. 1B), 
the AUC was 0.88. The radar plots indicated that the model training subsets yielded similar scores to those in 
the test subsets. The XGB was the system with the larger area (Fig. 1C). The order of influence on fracture risk 
of the most accessible variables (variables included in set 2) is summarized in Fig.  2A. The most influential 
variables for osteoporotic fracture were previous fracture, PTH, lumbar spine T score, and vitamin D levels. The 
XGB method showed the largest area in the ROC curve analysis (Fig. 2B). The AUC was 0.92. The radar plots 
of training and test subsets are summarized in Fig. 2C. In the case of the general population of postmenopausal 
women (Camargo Cohort), which served as the external validation for the proposed machine learning model, 
the highest area under the ROC curve (AUC) was achieved using the XGB model (Fig. 3A), with an AUC of 0.88. 
When the risk analysis was limited to the most accessible variables (set 2), the XGB method also demonstrated 
the most significant area under the ROC curve (Fig. 3B), with an AUC of 0.88. In both scenarios, radar charts 
illustrated that the test subsets of the model were consistent with the performance scores, further emphasizing 
that XGB consistently achieved the highest AUC (Figs. 3C and D). These results underscore the robustness of the 
XGB model in external validation, particularly in its ability to generalize across diverse clinical contexts.

Discussion
Artificial intelligence, with its different tools such as machine learning, allows the construction of models to 
identify the risk of patients and subsequently validate them in the same population that has permitted their 
development; these models would make it possible to validate the new diagnostic instruments available to us and 
determine whether they provide greater prognostic power. This study designed different models using a machine 
learning methodology, incorporating various parameters, including some typically not utilized in clinical 

Clinical Variables Method BA (%) Recall Precision AUC IC 95% AUC F1 Score MCC DYI Kappa

HURH Cohort

Set 1

SVM 80.29 80.39 79.72 0.80 [0.78–0.82] 80.05 71.25 80.15 71.48

DT 79.36 79.45 78.79 0.79 [0.76–0.81] 79.12 70.42 79.39 70.65

GNB 77.39 77.48 76.84 0.77 [0.74–0.79] 77.16 68.67 77.41 68.89

KNN 83.50 83.59 82.90 0.83 [0.81–0.85] 83.25 74.09 83.53 74.33

XGB 88.82 88.93 88.19 0.88 [0.86–0.90] 88.56 78.82 88.87 79.08

Set 2

SVM 79.81 79.90 79.24 0.88 [0.76–0.81] 79.57 70.82 79.83 71.05

DT 78.87 78.97 78.31 0.88 [0.75–0.80] 78.64 69.99 78.89 70.22

GNB 77.07 77.16 76.52 0.88 [0.74–0.79] 76.84 68.39 77.12 68.61

KNN 82.94 83.04 82.35 0.91 [0.79–0.84] 82.70 73.60 82.97 73.84

XGB 88.36 88.46 87.73 0.92 [0.87–0.90] 88.10 78.40 88.39 78.66

Camargo Cohort

Set 1

SVM 79.29 79.38 78.72 0.79 [0.76–0.81] 79.05 70.35 79.29 70.59

DT 78.86 78.96 78.30 0.79 [0.75–0.80] 78.63 69.98 78.86 70.21

GNB 76.73 76.82 76.18 0.77 [0.73–0.78] 76.50 68.08 76.73 68.31

KNN 82.82 82.91 82.23 0.83 [0.80–0.84] 82.57 73.48 82.82 73.73

XGB 88.14 88.25 87.51 0.88 [0.86–0.90] 87.88 78.21 88.14 78.47

Set 2

SVM 79.18 79.27 78.62 0.79 [0.76–0.81] 78.94 70.26 79.18 70.49

DT 78.39 78.48 77.83 0.78 [0.75–0.80] 78.16 69.56 78.39 69.79

GNB 76.44 76.53 75.90 0.76 [0.74–0.78] 76.21 67.83 76.44 68.05

KNN 82.46 82.56 81.87 0.82 [0.80–0.84] 82.22 73.17 82.46 73.41

XGB 88.04 88.15 87.42 0.88 [0.86–0.90] 87.78 78.12 88.04 78.38

Table 2.  Different machine learning methods were tested to predict osteoporotic fractures in both cohorts of 
subjects included in the study. BA: Balanced Accuracy, AUC: Area Under Curve, MCC: Matthew Correlation 
Coefficient; DYI: Degenerated Younden Index, SVM: Support Vector Machine, DT: Decision Trees, GNB: 
Gaussian Naïve Bayes, KNN: K-Nearest Neighbors, XGB: Extreme Gradient Boosting. Set 1 included all 
clinical variables, and set 2 included limited variables more readily available in general medical consultations.
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practice, such as trabecular bone score (TBS) and 3D-DXA. A model was also performed using parameters 
available in all hospital centers. The models were tested in two independent subject cohorts, one compromised 
by osteoporotic postmenopausal women and the other by general postmenopausal women.

In osteoporotic postmenopausal women, the two models obtained have an AUC greater than 0.80, indicating 
the models’ great power in identifying osteoporotic postmenopausal women with an increased fracture risk. The 
more complex model additionally incorporated volumetric cortical BMD, history of previous falls, and TBS. 
The addition of a greater number of parameters, both clinical and densitometric, did not improve the diagnostic 
capacity of the model. In general, postmenopausal women (without osteoporosis diagnosis), the models 
developed have great power for the identification of postmenopausal women with an increased risk of bone 
fractures. The AUC was 0.88 for two sets of variables. For the prediction of bone fracture in postmenopausal 
women without a diagnosis of osteoporosis, adding a larger number of parameters also did not improve 
predictive ability. In both cohorts, the models for predicting fracture risk in postmenopausal women were based 
on the XGB method. That algorithm exhibits some crucial characteristics. The method is efficient in terms of 
speed and scalability. XGB is highly flexible and can handle various data types, including numerical, categorical, 
and missing data. Its ability to capture non-linear and complex relationships in the data makes it a powerful tool 
for predictive modeling. Additionally, XGB is known for its ability to handle data imbalances and its resistance 
to overfitting, resulting in more robust and accurate models20.

The results showed that the presence of a previous fracture was the most significant factor in the artificial 
intelligence models for predicting fracture risk in postmenopausal women. It had been reported that the risk of 
osteoporotic fracture increases predominantly in the 2 years following the fracture, giving rise to the concept of 
imminent risk of fracture21. It has also been summarized that the fracture risk then decreases but is still higher 
than in patients who have not suffered a previous fracture22–25. PTH has a significant influence on our prediction 
models. This is an exciting result because PTH levels are not considered in the most commonly used algorithms 
for predicting osteoporotic fractures in postmenopausal women. PTH is crucial in bone metabolism. It binds 
to the PTH receptor located on osteoblasts, causing the release of receptor activator of nuclear factor kappa 
beta ligand (RANKL), which facilitates the proliferation and maturation of osteoclasts, the cells responsible 
for bone resorption26. More importance has usually been given to vitamin D as it exerts a double effect: on the 

Fig. 1.  Analysis of clinical variables included in set 1 in the HURH cohort. Order of influence of clinical 
variables on the osteoporotic fracture prediction (A). ROC curves for the assessed machine learning methods 
(B). Radar plot in the training phase and the test phase (C). PTH: Parathyroid hormone, vBMD: volumetric 
bone mineral density, TBS: trabecular bone score, DMII: diabetes mellitus II, BMI: body mass index, SVM: 
Support Vector Machine, DT: Decision Trees, GNB: Gaussian Naïve Bayes, KNN: K-Nearest Neighbors, XGB: 
Extreme Gradient Boosting.
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one hand, it inhibits the release of PTH, and on the other hand, it facilitates bone mineralization27. However, 
the relationship between PTH and vitamin D occurs with 25-hydroxycholecalciferol values below 32 ng/
mL. The direct relationship is lost with higher values, and PTH can be deleterious to bone28. Our results also 
confirm the importance of vitamin D in the risk of osteoporotic fracture in postmenopausal women. It was 
important in our prediction models for osteoporotic women and the general population. BMD has been widely 
used for disease diagnosis, indication, and therapeutic response29. Our results indicated that measuring BMD 
in the spine, femoral neck, and total hip is vital in the simplified prediction models, incorporating the most 
accessible variables in general medical practice. BMD is a technique with high specificity and low sensitivity, 
and a significant percentage of fractures occur in individuals with osteopenia or normal BMD, as indicated by 
the NORA study30. Moreover, Bouxsein et al. found that improvements in BMD were closely related to a greater 
reduction in vertebral and hip fractures31. However, BMD cannot modify the increased risk determined by a 
previous fracture.

The more complex prediction models introduce TBS and 3D-DXA as predictive variables. TBS is a textural 
analysis resulting from a computed evaluation of pixel gray-level variations in previously obtained LS DXA 
images. It correlates with 3D parameters of bone microarchitecture, such as trabecular connectivity, the number 
of trabeculae, and their separation32. A decrease in TBS is associated with an increased risk of fracture33. 
3D-DXA allows the evaluation of the shape and intrinsic properties of the material that determine bone 
strength. It provides a 3D analysis of the cortical and trabecular compartments34. Decreased BMD is associated 
with an increased risk of fractures. However, it does not provide information on volumetric density distribution, 
while DEXA-3D offers information on bone strength. In the elderly, cortical thinning, periosteal apposition, and 
endocortical resorption are observed. Normal BMD does not show these changes. QCT is available to explore 
the three-dimensional structure of bones. However, it is an expensive technique and involves a high dose of 
radiation for the patient. aBMD is associated with an AUC curve of 0.712, with an OR of 2.48 (1.595–3881) 
for predicting the risk of hip fracture. These data are similar to those obtained with 3-DXA and do not provide 
superiority35. Our machine learning models, excluding DEXA-3D, enhance this prediction capability. TBS and 
3D-DXA play a role in prediction models that include additional variables. However, they did not improve 
the prediction capacity of our simpler models, which use more common parameters in clinical practice. This 

Fig. 2.  Analysis of clinical variables included in set 2 in the HURH cohort. Order of influence of clinical 
variables on the osteoporotic fracture prediction (A). ROC curves for the assessed machine learning methods 
(B). Radar plot in the training phase and the test phase (C). PTH: Parathyroid hormone, vBMD: volumetric 
bone mineral density, TBS: trabecular bone score, DMII: diabetes mellitus II, BMI: body mass index, SVM: 
Support Vector Machine, DT: Decision Trees, GNB: Gaussian Naïve Bayes, KNN: K-Nearest Neighbors, XGB: 
Extreme Gradient Boosting.
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is probably because these are bone quality parameters already quantified in the previous fracture. The main 
limitation of our study is that the size of both cohorts did not permit a more detailed analysis, such as examining 
the various types and locations of fractures.

Another limitation is that our analysis treated fracture occurrence as a binary outcome at the end of follow-
up, without considering the exact timing of fracture events. Therefore, the models do not capture the temporal 
dynamics of fracture risk, including the concept of imminent risk, which is known to be particularly high 
within the first two years after a fracture. Incorporating time-to-event analyses, such as the Cox proportional 
hazards model or survival-based machine learning approaches, in future studies could provide a more nuanced 
understanding of both short- and long-term fracture risk trajectories. It is also important to note that the 
algorithm included postmenopausal women with osteoporosis who were undergoing various treatments. This 
was to create an algorithm that accurately reflected actual clinical practice. Another limitation is that both 
cohorts were recruited in Spain. Therefore, the predictive models developed here reflect the characteristics of 
Spanish postmenopausal women and may not fully generalize to populations with different ethnic backgrounds, 
genetic profiles, environmental exposures, or healthcare systems. External validation in cohorts from other 
countries and more diverse populations will be essential to confirm the robustness and clinical applicability of 
our models before widespread adoption. Nonetheless, this study will provide a foundation for future research to 
incorporate a broader range of postmenopausal women and to create more precise and practical algorithms for 
predicting fracture risk.

Although the total sample size of this study (n = 576; 276 participants in the HURH Cohort and 300 participants 
in the Camargo Cohort) might be considered modest when compared with very large datasets, it is appropriate 
for the development and validation of machine learning models in clinical research, especially considering 
the number of outcome events and the ratio between predictors and observations. Recent methodological 
studies emphasize that the adequacy of sample size in machine learning-based prediction models depends on 
several factors beyond the absolute number of observations, including the number of events per predictor, the 
expected signal-to-noise ratio, and the model’s anticipated performance, rather than on arbitrary numerical 
thresholds. In our study, the number of fracture events (72 in the HURH Cohort and 91 in the Camargo 
Cohort) provides a reasonable events-per-variable ratio, which is considered crucial to reduce overfitting and 
ensure stable estimates. Furthermore, the sample size used here is similar or even larger than those in several 
previously published ML studies in osteoporosis and other medical domains. To further minimize the risk of 

Fig. 3.  External validation of the results with the Camargo cohort. ROC curves for the assessed machine 
learning methods, with the clinical variables included in sets 1 (A) and 2 (B). Radar plot in the validation 
phase for the clinical variables included in sets 1 (C) and 2 (D). SVM: Support Vector Machine, DT: Decision 
Trees, GNB: Gaussian Naïve Bayes, KNN: K-Nearest Neighbors, XGB: Extreme Gradient Boosting.
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overfitting, we implemented several well-established methodological strategies. These included a nested cross-
validation framework, Bayesian hyperparameter optimization with explicit regularization, constraints on model 
complexity, and systematic feature selection to retain only the most relevant predictors. Such approaches are 
widely recognized as effective for reducing variance and improving generalizability in predictive modeling. 
Moreover, bootstrap-based resampling was used to estimate performance uncertainty and assess model stability. 
Crucially, the models were tested not only with internal resampling techniques but also with an independent 
external cohort (the Camargo Cohort). External validation is considered the gold standard to evaluate model 
generalizability and to detect potential overfitting. The comparable performance metrics observed between the 
training/test sets and the external validation cohort (AUC 0.88–0.92) support the robustness and reproducibility 
of our findings, indicating that the models are capturing real clinical patterns rather than noise.

In conclusion, this study developed two machine learning models to predict the risk of osteoporotic bone 
fractures in postmenopausal women, both exhibiting high predictive power (AUC = 0.92 and 0.88). These 
models demonstrated improved predictive capability when incorporating variables that are more accessible in 
clinical practice, particularly previous fractures, DXA data, PTH, and vitamin D levels. This study emphasizes 
that machine learning methodology should be applied to identify postmenopausal women with an increased 
risk of osteoporotic fractures.

Materials and methods
Subjects
A longitudinal or prospective study was conducted in two independent cohorts of postmenopausal women: the 
HURH Cohort and the Camargo Cohort. The HURH Cohort (n = 276) included postmenopausal women who 
were diagnosed with osteoporosis. The inclusion criteria were postmenopausal women (no menstruation for more 
than 12 months) and a low bone mass or osteoporosis, as defined by Dual-energy X-ray absorptiometry (DXA). 
We randomly included women from the Densitometry Unit at Rio Hortega University Hospital (Valladolid, 
Spain) who were sent consecutively. According to the National Osteoporosis Foundation’s Clinician’s Guide to 
Prevention and Treatment of Osteoporosis6, patients had been diagnosed with osteoporosis by clinical criteria. 
Subsequent follow-up was conducted by the Bone Metabolism Unit or primary care physicians. The medical 
history and the different episodes were recorded in the electronic medical record and could be followed up. The 
Camargo Cohort (n = 300) comprised a general population of postmenopausal women from Santander, Spain. 
The Camargo Cohort Study is a community-based study designed to evaluate the prevalence and incidence of 
metabolic bone diseases and disorders of mineral metabolism, as well as osteoporotic fractures and risk factors 
for osteoporosis and fragility fractures, in postmenopausal women attending a primary care center in Northern 
Spain (Santander)36. The women were selected based on demographic data from the HURH cohort. Subsequent 
follow-up was conducted by the Bone Metabolism Unit at University Hospital Marqués de Valdecilla, Santander, 
Cantabria, or by primary care physicians. The Camargo Cohort was used to perform an external validation of the 
results obtained in the HURH cohort. All subjects were recruited from 01/01/2007 to 01/01/2009, with a follow-
up period of 8 to 10 years. Data were accessed for research purposes from 01/01/2007.

Clinical, demographic, and analytical data such as age at diagnosis, family history, lifestyle factors, previous 
illnesses, and past and present medication were collected from each subject.

Most postmenopausal women received treatment during the study; some also had prior therapy before 
starting the study. They were all analyzed together to ensure the findings accurately reflect real-world clinical 
observations. The body mass index (BMI) was calculated. DXA data were also collected. The trabecular bone 
score (TBS) was evaluated at the lumbar level (L1-L4) using TBSiNsight 2.1 (Med-Imaps, Merignac, France). In 
addition, three-dimensional Dual-Energy X-ray absorptiometry (3D-DXA) was determined for each patient. 
A DXA scan was performed using a Prodigy scanner (GE Healthcare, Madison, WI, USA), according to the 
manufacturer’s recommendations. The software 3D-SHAPER (version 2.6, Galgo Medical S.L., Barcelona, Spain) 
was also used. This method utilized a statistical 3D model of the proximal femur’s form and density, built from 
a quantitative computed tomography (QCT) database comprising Caucasian men and women. The modeling 
details of this method can be found in Winzenrieth et al. and Humbert et al. 36,38. The study was conducted using 
DXA exploration to obtain a 3D model specific to each patient’s proximal femur, generating measurements in 
3D from the total area of interest in the femur. The volumetric BMD (vBMD, mg/cm3), bone mineral content 
(BMC) (g), and volume (cm3) were calculated in the trabecular, cortical, and integral (trabecular and cortical) 
compartments, respectively. The volumetric BMD (vBMD, mg/cm3), bone mineral content (BMC) (g), and 
volume (cm3) were calculated in the trabecular, cortical, and integral (trabecular and cortical) compartments, 
respectively. The cortical thickness (Cth, mm) and BMD of the cortical surface (sBMD cortical, mg/cm2, 
obtained by the multiplication of cortical vBMD (mg/cm3) and Cth (cm)) provided additional analysis for the 
cortical region. The precision of the models and 3D-SHAPER measurements was evaluated against a QCT35,37. 
The average form precision—i.e., the average distance between external limits of the femur geometry—was 
derived from 3D-SHAPER and QCT, and the result was 0.93 mm. Regarding bone density and cortical bone 
thickness, the correlation coefficients between 3D-SHAPER and the measurements derived from QCT were 
0.86, 0.93, and 0.91 for trabecular vBMD, cortical vBMD, and cortical thickness, respectively35,37.

The study participants were followed up clinically for 8–10 years, after which they were evaluated for 
osteoporotic fractures. The diagnosis of vertebral fractures was made based on lateral radiographs of the dorsal 
and lumbar spine taken throughout the follow-up and reviewed by the same physician (FCS), who determined 
them according to the Genant criteria38. Non-vertebral fractures were obtained from their medical records. 
Osteoporotic bone fractures were determined after a follow-up of 8–10 years.
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Machine learning analysis
The XGB method was proposed as the primary method for data analysis due to its scalability, rapid execution, 
and commendable accuracy. Moreover, its versatility enables parallel computing39. Various other machine 
learning methods documented in the scientific literature were employed to evaluate the efficacy and performance 
of this system. The most important were the SVM40, DT 41, GNB42, and KNN43. Models resulting from these 
methodologies were developed using MATLAB (The MathWorks, Natick, MA, USA; MATLAB R2023)44. The 
procedural steps undertaken to implement the machine learning algorithms are summarized in Supplementary 
Fig. 1. This study combined nested cross-validation with Bayesian optimization techniques to robustly and 
efficiently tune the hyperparameters of machine learning models. Within the nested cross-validation framework, 
the outer loop evaluated the model’s generalized performance, while the inner loop focused on hyperparameter 
optimization. In the inner loop, Bayesian optimization was employed as a strategy to efficiently explore the 
space of key hyperparameters, including maximum tree depth (max_depth), the number of estimators (n_
estimators), the learning rate (learning_rate), and regularization terms (lambda and alpha). Using a probabilistic 
model based on a Gaussian process, Bayesian optimization identified optimal hyperparameter combinations by 
leveraging information from previous iterations, thereby minimizing the need for exhaustive evaluations and 
focusing on the most promising regions45,46. This approach reduced the risk of overfitting by ensuring that test 
data in the outer loop remained entirely independent of the optimization process and improved model stability 
by conducting consistent evaluations across multiple data partitions. The combination of these techniques 
yielded models with optimized performance and high generalizability. In addition, the specific hyperparameters 
considered for each algorithm were as follows: for XGB, max_depth (2–10), n_estimators (50–500), learning_
rate (0.01–0.3), subsample (0.5–1.0), colsample_bytree (0.5–1.0), and regularization parameters lambda (0–10) 
and alpha (0–10); for SVM, C (0.01–100), gamma (1e-5–1), and kernel type (linear, polynomial, radial basis 
function); for DT, max_depth (1–20), min_samples_split (2–20), and min_samples_leaf (1–10); for GNB, the 
var_smoothing parameter (1e-12–1e-6); and for KNN, n_neighbors (1–30), weights (uniform, distance), and 
metric (Euclidean, Manhattan). Bayesian optimization with a Gaussian process surrogate model was applied 
within a 5-fold cross-validation framework to explore the hyperparameter space efficiently. The configuration 
that maximized mean balanced accuracy in the cross-validation folds was selected, then retrained on the entire 
training set, and finally evaluated on the independent test set. This process was repeated across 100 simulation 
iterations to ensure robustness. Building on a systematic feature relevance analysis, we employed a combined 
approach to identify the most influential variables. Initially, feature importance was evaluated using a preliminary 
XGB model, which provided scores derived from gain, coverage, or weight. This was followed by iterative feature 
selection techniques such as Recursive Feature Elimination (RFE), with XGB as the base estimator, to reduce the 
feature set while maintaining high predictive performance. Lastly, the impact of removing specific features was 
assessed through cross-validation, ensuring that only those significantly contributing to the model’s performance 
were retained.

To further prevent overfitting in XGB, additional techniques were employed, including explicit regularization 
via the parameters lambda and alpha, controlling the maximum tree size (max_depth), adjusting the learning 
rate (learning_rate) to a lower value, and applying early stopping to halt training if validation metrics failed 
to improve after several consecutive iterations. Bootstrap validation was also performed, generating multiple 
data subsets through resampling to estimate uncertainty in performance metrics and ensure consistency. 
Additionally, the model was validated on an independent external cohort to assess its generalizability across 
diverse clinical contexts. The data were randomly split into training (70%) and testing (30%) sets to ensure a 
balanced representation of key classes and characteristics. The simulations were rigorously executed over 100 
iterations, meticulously accounting for mean and standard deviation values, thereby mitigating the potential 
impact of noise and ensuring the attainment of statistically valid conclusions47. Finally, subjects from the 
Camargo Cohort were used to perform an external validation of the results obtained in the HURH cohort.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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