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Assessment of the risk of
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postmenopausal women using
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The main objective of osteoporosis management is to prevent osteoporotic fractures. Using machine
learning methods, new risk variables can be identified to enhance the ability to identify women with
osteoporosis who are at an increased risk of bone fracture. A multicenter study using machine learning-
based methods was conducted in two independent cohorts of postmenopausal women (HURH and
Camargo Cohorts), with clinical follow-up periods ranging from 8 to 10 years. The prediction models
were developed in the HURH Cohort and validated using the Camargo Cohort, an independent external
group of postmenopausal women. This study developed machine learning models to predict the risk

of osteoporotic bone fractures. One is for postmenopausal women with osteoporosis, and the other is
for general postmenopausal women. For each of these, two variable grouping options were used. The
aggregation with the most predictive power included variables that are generally most accessible in
medical practice. For postmenopausal women with osteoporosis, the AUC was 0.92, and for general
postmenopausal women, it was 0.88. The results highlighted the significance of the previous fracture,
DXA data, vitamin D levels, and PTH levels in predicting future fractures. Machine learning should be
used to identify postmenopausal women at increased risk of fractures. This study summarizes that
previous fractures, DXA, PTH, and vitamin D play crucial roles in identifying these women.
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Osteoporosis is the most common bone disorder worldwide, characterized by low bone mineral density (BMD),
reduced bone mass, alterations in bone microarchitecture, and an increased risk of osteoporotic fractures.
Osteoporosis is a silent, progressive disease with dramatic clinical and economic consequences. It has been
reported that one in three postmenopausal women has osteoporosis, and the majority will have a bone fracture at
some point in life. Osteoporotic bone fractures are associated with increased morbidity, disability, and mortality,
and a worse quality of life' .

Preventing the appearance of osteoporotic bone fractures is the principal therapeutic objective in the
management of osteoporosis®. Therefore, it is crucial to identify patients at higher risk of suffering fractures to
prevent their occurrence. In this sense, various algorithms have been developed to identify patients with a higher
risk of suffering the disease and/or suffering bone fractures®. The most widely used is FRAX, which provides
risk stratification by combining various risk factors. The procedure used to perform it was the statistical analysis
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of cohorts of patients with osteoporotic fractures using previously identified risk factors’. These algorithms
demonstrate strong discriminative ability but require adjustments to enhance their predictive performance-14.
However, FRAX is intended to identify patients for treatment”!®. Although FRAX should not be used to
assess the reduction in fracture risk in individuals in treatment, it may still have value for guiding the need for
continued treatment or treatment withdrawal. Using machine learning methods!®, new variables associated with
bone fracture risk could be identified to improve the ability to single out osteoporotic women at increased risk
of bone fracture.

The central premise of machine learning is to present algorithms that input data, apply computational
analysis to predict output values within satisfactory accuracy ranges, recognize patterns and trends, and, finally,
learn from previous experience!’. Machine learning works with complex distributions to determine probabilistic
associations and find the minimum number of features that capture the essential patterns in the data to develop a
predictive model'®. Machine learning methods have shown better results than traditional statistical model-based
methods!”. Thus, machine learning is applied to identify risk factors and classify multiple pathologies. Some of
the techniques developed for classification systems and data processing are Support Vector Machine (SVM),
Gaussian Naive Bayes (GNB), k-nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), or decision tree
(DT)¥.

In this scenario, the primary objective was to identify variables associated with an increased risk of bone
fracture in postmenopausal women, thereby enhancing the ability to recognize subjects with a higher risk
of fracture by developing a risk prediction algorithm. Machine learning-based methods were used in two
independent cohorts of postmenopausal women with prolonged clinical follow-up.

Results
The study comprised 576 postmenopausal women, divided into two independent cohorts: the HURH and
Camargo cohorts. Table 1 summarizes the general characteristics of the study cohorts. The HURH Cohort
included 276 postmenopausal women diagnosed with osteoporosis. After a clinical follow-up, 72 patients
suffered osteoporotic bone fractures. The Camargo cohort involved 300 postmenopausal women from the
general population, and after the clinical follow-up, 91 suffered a fracture.

Table 2 presents the different machine learning methods tested for predicting osteoporotic fractures after
8-10 years of clinical follow-up in postmenopausal women with osteoporosis (HURH Cohort). Additionally,
the table includes data from external validation using records from a general population of postmenopausal

HURH Cohort | Camargo Cohort
Clinical variable (n=276) (n=300) p-value
Age, mean (SD) (years) 61.08 (8,43) 61.25(7.42) 0.787
BMI, mean (SD) (Kg/m3) 25.67 (4.04) 28.84 (4.75) <0.001
Age of menopause, mean (SD) (years) 48.01 (5.75) 49.00 (4.91) 0.051
Age of menarche, mean (SD) (years) 13.03 (1.46) 13.19 (1.61) 0.179
Smoking, n (%) 88 (30) 65 (21.7%) 0.006
Familial history of hip fracture, n (%) 42 (15.2) 56 (18.7) 0.263
Previous falls, n (%) 50 (18.3) 59 (19.7) 0.065
Previous fracture, n (%) 87 (31.52) 25 (8.3%) <0.001
PTH, mean (SD) (pg/ml) 44.54 (13.71) 51.07 (15.81) <0.001
History of DMIL, n (%) 11 (3.8%) 27 (9.00) 0.015
History of Cancer, n (%) 39 (14.1%) 11 (3.7%) <0.001
Vitamin D, mean (SD) (ng/ml) 30.24 (12.03) 24.06 (7.68) <0.001
Glucose, mean (SD) (mg/dl) 90.44 (25.87) 93.07 (21.71) 0.185
Cholesterol, mean (SD) (mg/dl) 225.65 (35.40) | 229.20 (38.44) 0.253
Chol-LDL, mean (SD) (mg/dl) 135.67 (31.78) 147.65 (35.06) <0.001
Chol-HDL, mean (SD) (mg/dl) 66.54 (13.79) 59.43 (14.21) <0.001
Lumbar T Score, mean (DS) -1,63 (1.73) -1,51 (1.23) 0.367
Lumbar BMD, mean (DS) (g/cmz) 0.85(0.12) 0.88 (0.13) <0.001
Femoral neck BMD, mean (DS) (g/cm?) | 0,83 (0.13) 0.72 (0.10) <0.001
Femoral neck T Score, mean (DS) -1,3(0.99) -1.15 (0.96) 0.073
Total femoral BMD, mean (DS) (g/cm?) | 0,86 (0.13) 0.82 (0.15) 0.030
Total femoral T-Score, mean (DS) -1,13 (1.10) -0.81 (0.94) <0.001
Cortical vBMD, mean (DS) (g/cm?) 141,97 (23.31) | 156.37 (22.56) <0.001
Trabecular vBMD, mean (DS) (g/cm?) 140,21 (40.5) 171.43 (41.58) <0.001
Integral vVBMD, mean (DS) (mg/cm3) 292,87 (50.45) | 309.23 (57.99) 0.001
TBS 1.287(0.13) 1.272(0.11) 0.061

Table 1. General characteristics of the study cohorts. BMI: body mass index, PTH: parathormone, LDL: low-
density lipoprotein, HDL: high-density lipoprotein, BMD: bone mass density, TBS: trabecular bone score.
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Clinical Variables | Method | BA (%) | Recall | Precision | AUC | IC 95% AUC | F1 Score | MCC | DYI | Kappa
SVM 80.29 80.39 |79.72 0.80 | [0.78-0.82] 80.05 71.25 | 80.15 | 71.48
DT 79.36 79.45 | 78.79 0.79 | [0.76-0.81] 79.12 70.42 | 79.39 | 70.65
Set 1 GNB 77.39 77.48 |76.84 0.77 | [0.74-0.79] 77.16 68.67 | 77.41 | 68.89
KNN 83.50 83.59 | 82.90 0.83 | [0.81-0.85] 83.25 74.09 | 83.53 | 74.33
HURH Cohort XGB 88.82 88.93 |88.19 0.88 | [0.86-0.90] 88.56 78.82 | 88.87 | 79.08
SVM 79.81 79.90 |79.24 0.88 | [0.76-0.81] 79.57 70.82 | 79.83 | 71.05
DT 78.87 78.97 | 78.31 0.88 | [0.75-0.80] 78.64 69.99 | 78.89 | 70.22
Set 2 GNB 77.07 77.16 | 76.52 0.88 | [0.74-0.79] 76.84 68.39 | 77.12 | 68.61
KNN 82.94 83.04 |82.35 0.91 | [0.79-0.84] 82.70 73.60 | 82.97 | 73.84
XGB 88.36 88.46 | 87.73 0.92 | [0.87-0.90] 88.10 78.40 | 88.39 | 78.66
SVM 79.29 79.38 | 78.72 0.79 | [0.76-0.81] 79.05 70.35 | 79.29 | 70.59
DT 78.86 78.96 | 78.30 0.79 | [0.75-0.80] 78.63 69.98 | 78.86 | 70.21
Set 1 GNB 76.73 76.82 |76.18 0.77 | [0.73-0.78] 76.50 68.08 | 76.73 | 68.31
KNN 82.82 8291 |82.23 0.83 | [0.80-0.84] 82.57 73.48 | 82.82 | 73.73
Camargo Cohort XGB 88.14 88.25 |87.51 0.88 | [0.86-0.90] 87.88 78.21 | 88.14 | 78.47
SVM 79.18 79.27 | 78.62 0.79 | [0.76-0.81] 78.94 70.26 | 79.18 | 70.49
DT 78.39 78.48 | 77.83 0.78 | [0.75-0.80] 78.16 69.56 | 78.39 | 69.79
Set 2 GNB 76.44 76.53 | 75.90 0.76 | [0.74-0.78] 76.21 67.83 | 76.44 | 68.05
KNN 82.46 82.56 |81.87 0.82 | [0.80-0.84] 82.22 73.17 | 82.46 | 73.41
XGB 88.04 88.15 | 87.42 0.88 | [0.86-0.90] 87.78 78.12 | 88.04 | 78.38

Table 2. Different machine learning methods were tested to predict osteoporotic fractures in both cohorts of
subjects included in the study. BA: Balanced Accuracy, AUC: Area Under Curve, MCC: Matthew Correlation
Coeflicient; DYI: Degenerated Younden Index, SVM: Support Vector Machine, DT: Decision Trees, GNB:
Gaussian Naive Bayes, KNN: K-Nearest Neighbors, XGB: Extreme Gradient Boosting. Set 1 included all
clinical variables, and set 2 included limited variables more readily available in general medical consultations.

women without an osteoporosis diagnosis (Camargo Cohort). Two predictive models were developed based on
two sets of variables: one including all variables (set 1) and another limited to variables more readily available in
general medical consultations (set 2). In both cases, the machine learning method yielding the best performance
for predicting osteoporotic fractures was XGB (Table 2). The XGB method achieved the highest values across
the evaluated metrics, including balanced accuracy, recall, precision, area under the curve (AUC), F1 score,
Matthews correlation coefficient (MCC), degenerated Youden index (DYI), and kappa. For the HURH Cohort,
the AUC was 0.88 for variables in set 1 and 0.92 for those in set 2. In the external validation using the Camargo
Cohort, the AUC was 0.88 for both sets of variables.

For osteoporotic postmenopausal women (HURH Cohort), the results showed that the most influential
variable in the osteoporotic bone fracture was a previous fracture, followed by parathormone (PTH) and lumbar
spine T Score (Figs. 1 and 2). If the risk analysis includes all study variables, the results showed that cortical
vBMD was the fourth most influential variable for osteoporotic fracture risk. Figure 1A shows the level of
influence of each variable. The ROC curve was calculated, and the results showed that the system based on the
XGB model obtains a larger area, allowing a greater accuracy in predicting osteoporotic bone fracture (Fig. 1B),
the AUC was 0.88. The radar plots indicated that the model training subsets yielded similar scores to those in
the test subsets. The XGB was the system with the larger area (Fig. 1C). The order of influence on fracture risk
of the most accessible variables (variables included in set 2) is summarized in Fig. 2A. The most influential
variables for osteoporotic fracture were previous fracture, PTH, lumbar spine T score, and vitamin D levels. The
XGB method showed the largest area in the ROC curve analysis (Fig. 2B). The AUC was 0.92. The radar plots
of training and test subsets are summarized in Fig. 2C. In the case of the general population of postmenopausal
women (Camargo Cohort), which served as the external validation for the proposed machine learning model,
the highest area under the ROC curve (AUC) was achieved using the XGB model (Fig. 3A), with an AUC of 0.88.
When the risk analysis was limited to the most accessible variables (set 2), the XGB method also demonstrated
the most significant area under the ROC curve (Fig. 3B), with an AUC of 0.88. In both scenarios, radar charts
illustrated that the test subsets of the model were consistent with the performance scores, further emphasizing
that XGB consistently achieved the highest AUC (Figs. 3C and D). These results underscore the robustness of the
XGB model in external validation, particularly in its ability to generalize across diverse clinical contexts.

Discussion

Artificial intelligence, with its different tools such as machine learning, allows the construction of models to
identify the risk of patients and subsequently validate them in the same population that has permitted their
development; these models would make it possible to validate the new diagnostic instruments available to us and
determine whether they provide greater prognostic power. This study designed different models using a machine
learning methodology, incorporating various parameters, including some typically not utilized in clinical
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Fig. 1. Analysis of clinical variables included in set 1 in the HURH cohort. Order of influence of clinical
variables on the osteoporotic fracture prediction (A). ROC curves for the assessed machine learning methods
(B). Radar plot in the training phase and the test phase (C). PTH: Parathyroid hormone, vBMD: volumetric
bone mineral density, TBS: trabecular bone score, DMII: diabetes mellitus II, BMI: body mass index, SVM:
Support Vector Machine, DT: Decision Trees, GNB: Gaussian Naive Bayes, KNN: K-Nearest Neighbors, XGB:
Extreme Gradient Boosting.

practice, such as trabecular bone score (TBS) and 3D-DXA. A model was also performed using parameters
available in all hospital centers. The models were tested in two independent subject cohorts, one compromised
by osteoporotic postmenopausal women and the other by general postmenopausal women.

In osteoporotic postmenopausal women, the two models obtained have an AUC greater than 0.80, indicating
the models’ great power in identifying osteoporotic postmenopausal women with an increased fracture risk. The
more complex model additionally incorporated volumetric cortical BMD, history of previous falls, and TBS.
The addition of a greater number of parameters, both clinical and densitometric, did not improve the diagnostic
capacity of the model. In general, postmenopausal women (without osteoporosis diagnosis), the models
developed have great power for the identification of postmenopausal women with an increased risk of bone
fractures. The AUC was 0.88 for two sets of variables. For the prediction of bone fracture in postmenopausal
women without a diagnosis of osteoporosis, adding a larger number of parameters also did not improve
predictive ability. In both cohorts, the models for predicting fracture risk in postmenopausal women were based
on the XGB method. That algorithm exhibits some crucial characteristics. The method is efficient in terms of
speed and scalability. XGB is highly flexible and can handle various data types, including numerical, categorical,
and missing data. Its ability to capture non-linear and complex relationships in the data makes it a powerful tool
for predictive modeling. Additionally, XGB is known for its ability to handle data imbalances and its resistance
to overfitting, resulting in more robust and accurate models?.

The results showed that the presence of a previous fracture was the most significant factor in the artificial
intelligence models for predicting fracture risk in postmenopausal women. It had been reported that the risk of
osteoporotic fracture increases predominantly in the 2 years following the fracture, giving rise to the concept of
imminent risk of fracture?!. It has also been summarized that the fracture risk then decreases but is still higher
than in patients who have not suffered a previous fracture?’~2°. PTH has a significant influence on our prediction
models. This is an exciting result because PTH levels are not considered in the most commonly used algorithms
for predicting osteoporotic fractures in postmenopausal women. PTH is crucial in bone metabolism. It binds
to the PTH receptor located on osteoblasts, causing the release of receptor activator of nuclear factor kappa
beta ligand (RANKL), which facilitates the proliferation and maturation of osteoclasts, the cells responsible
for bone resorption?. More importance has usually been given to vitamin D as it exerts a double effect: on the
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Fig. 2. Analysis of clinical variables included in set 2 in the HURH cohort. Order of influence of clinical
variables on the osteoporotic fracture prediction (A). ROC curves for the assessed machine learning methods
(B). Radar plot in the training phase and the test phase (C). PTH: Parathyroid hormone, vBMD: volumetric
bone mineral density, TBS: trabecular bone score, DMII: diabetes mellitus II, BMI: body mass index, SVM:
Support Vector Machine, DT: Decision Trees, GNB: Gaussian Naive Bayes, KNN: K-Nearest Neighbors, XGB:
Extreme Gradient Boosting.

one hand, it inhibits the release of PTH, and on the other hand, it facilitates bone mineralization?”. However,
the relationship between PTH and vitamin D occurs with 25-hydroxycholecalciferol values below 32 ng/
mL. The direct relationship is lost with higher values, and PTH can be deleterious to bone?. Our results also
confirm the importance of vitamin D in the risk of osteoporotic fracture in postmenopausal women. It was
important in our prediction models for osteoporotic women and the general population. BMD has been widely
used for disease diagnosis, indication, and therapeutic response®®. Our results indicated that measuring BMD
in the spine, femoral neck, and total hip is vital in the simplified prediction models, incorporating the most
accessible variables in general medical practice. BMD is a technique with high specificity and low sensitivity,
and a significant percentage of fractures occur in individuals with osteopenia or normal BMD, as indicated by
the NORA study*°. Moreover, Bouxsein et al. found that improvements in BMD were closely related to a greater
reduction in vertebral and hip fractures®'. However, BMD cannot modify the increased risk determined by a
previous fracture.

The more complex prediction models introduce TBS and 3D-DXA as predictive variables. TBS is a textural
analysis resulting from a computed evaluation of pixel gray-level variations in previously obtained LS DXA
images. It correlates with 3D parameters of bone microarchitecture, such as trabecular connectivity, the number
of trabeculae, and their separation32. A decrease in TBS is associated with an increased risk of fracture33.
3D-DXA allows the evaluation of the shape and intrinsic properties of the material that determine bone
strength. It provides a 3D analysis of the cortical and trabecular compartments®*. Decreased BMD is associated
with an increased risk of fractures. However, it does not provide information on volumetric density distribution,
while DEXA-3D offers information on bone strength. In the elderly, cortical thinning, periosteal apposition, and
endocortical resorption are observed. Normal BMD does not show these changes. QCT is available to explore
the three-dimensional structure of bones. However, it is an expensive technique and involves a high dose of
radiation for the patient. aBMD is associated with an AUC curve of 0.712, with an OR of 2.48 (1.595-3881)
for predicting the risk of hip fracture. These data are similar to those obtained with 3-DXA and do not provide
superiority®>. Our machine learning models, excluding DEXA-3D, enhance this prediction capability. TBS and
3D-DXA play a role in prediction models that include additional variables. However, they did not improve
the prediction capacity of our simpler models, which use more common parameters in clinical practice. This
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Fig. 3. External validation of the results with the Camargo cohort. ROC curves for the assessed machine
learning methods, with the clinical variables included in sets 1 (A) and 2 (B). Radar plot in the validation
phase for the clinical variables included in sets 1 (C) and 2 (D). SVM: Support Vector Machine, DT: Decision
Trees, GNB: Gaussian Naive Bayes, KNN: K-Nearest Neighbors, XGB: Extreme Gradient Boosting.

is probably because these are bone quality parameters already quantified in the previous fracture. The main
limitation of our study is that the size of both cohorts did not permit a more detailed analysis, such as examining
the various types and locations of fractures.

Another limitation is that our analysis treated fracture occurrence as a binary outcome at the end of follow-
up, without considering the exact timing of fracture events. Therefore, the models do not capture the temporal
dynamics of fracture risk, including the concept of imminent risk, which is known to be particularly high
within the first two years after a fracture. Incorporating time-to-event analyses, such as the Cox proportional
hazards model or survival-based machine learning approaches, in future studies could provide a more nuanced
understanding of both short- and long-term fracture risk trajectories. It is also important to note that the
algorithm included postmenopausal women with osteoporosis who were undergoing various treatments. This
was to create an algorithm that accurately reflected actual clinical practice. Another limitation is that both
cohorts were recruited in Spain. Therefore, the predictive models developed here reflect the characteristics of
Spanish postmenopausal women and may not fully generalize to populations with different ethnic backgrounds,
genetic profiles, environmental exposures, or healthcare systems. External validation in cohorts from other
countries and more diverse populations will be essential to confirm the robustness and clinical applicability of
our models before widespread adoption. Nonetheless, this study will provide a foundation for future research to
incorporate a broader range of postmenopausal women and to create more precise and practical algorithms for
predicting fracture risk.

Although the total sample size of this study (n = 576; 276 participants in the HURH Cohortand 300 participants
in the Camargo Cohort) might be considered modest when compared with very large datasets, it is appropriate
for the development and validation of machine learning models in clinical research, especially considering
the number of outcome events and the ratio between predictors and observations. Recent methodological
studies emphasize that the adequacy of sample size in machine learning-based prediction models depends on
several factors beyond the absolute number of observations, including the number of events per predictor, the
expected signal-to-noise ratio, and the model’s anticipated performance, rather than on arbitrary numerical
thresholds. In our study, the number of fracture events (72 in the HURH Cohort and 91 in the Camargo
Cohort) provides a reasonable events-per-variable ratio, which is considered crucial to reduce overfitting and
ensure stable estimates. Furthermore, the sample size used here is similar or even larger than those in several
previously published ML studies in osteoporosis and other medical domains. To further minimize the risk of
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overfitting, we implemented several well-established methodological strategies. These included a nested cross-
validation framework, Bayesian hyperparameter optimization with explicit regularization, constraints on model
complexity, and systematic feature selection to retain only the most relevant predictors. Such approaches are
widely recognized as effective for reducing variance and improving generalizability in predictive modeling.
Moreover, bootstrap-based resampling was used to estimate performance uncertainty and assess model stability.
Crucially, the models were tested not only with internal resampling techniques but also with an independent
external cohort (the Camargo Cohort). External validation is considered the gold standard to evaluate model
generalizability and to detect potential overfitting. The comparable performance metrics observed between the
training/test sets and the external validation cohort (AUC 0.88-0.92) support the robustness and reproducibility
of our findings, indicating that the models are capturing real clinical patterns rather than noise.

In conclusion, this study developed two machine learning models to predict the risk of osteoporotic bone
fractures in postmenopausal women, both exhibiting high predictive power (AUC=0.92 and 0.88). These
models demonstrated improved predictive capability when incorporating variables that are more accessible in
clinical practice, particularly previous fractures, DXA data, PTH, and vitamin D levels. This study emphasizes
that machine learning methodology should be applied to identify postmenopausal women with an increased
risk of osteoporotic fractures.

Materials and methods

Subjects

A longitudinal or prospective study was conducted in two independent cohorts of postmenopausal women: the
HURH Cohort and the Camargo Cohort. The HURH Cohort (n = 276) included postmenopausal women who
were diagnosed with osteoporosis. The inclusion criteria were postmenopausal women (no menstruation for more
than 12 months) and a low bone mass or osteoporosis, as defined by Dual-energy X-ray absorptiometry (DXA).
We randomly included women from the Densitometry Unit at Rio Hortega University Hospital (Valladolid,
Spain) who were sent consecutively. According to the National Osteoporosis Foundation’s Clinician’s Guide to
Prevention and Treatment of Osteoporosis®, patients had been diagnosed with osteoporosis by clinical criteria.
Subsequent follow-up was conducted by the Bone Metabolism Unit or primary care physicians. The medical
history and the different episodes were recorded in the electronic medical record and could be followed up. The
Camargo Cohort (n = 300) comprised a general population of postmenopausal women from Santander, Spain.
The Camargo Cohort Study is a community-based study designed to evaluate the prevalence and incidence of
metabolic bone diseases and disorders of mineral metabolism, as well as osteoporotic fractures and risk factors
for osteoporosis and fragility fractures, in postmenopausal women attending a primary care center in Northern
Spain (Santander)*. The women were selected based on demographic data from the HURH cohort. Subsequent
follow-up was conducted by the Bone Metabolism Unit at University Hospital Marqués de Valdecilla, Santander,
Cantabria, or by primary care physicians. The Camargo Cohort was used to perform an external validation of the
results obtained in the HURH cohort. All subjects were recruited from 01/01/2007 to 01/01/2009, with a follow-
up period of 8 to 10 years. Data were accessed for research purposes from 01/01/2007.

Clinical, demographic, and analytical data such as age at diagnosis, family history, lifestyle factors, previous
illnesses, and past and present medication were collected from each subject.

Most postmenopausal women received treatment during the study; some also had prior therapy before
starting the study. They were all analyzed together to ensure the findings accurately reflect real-world clinical
observations. The body mass index (BMI) was calculated. DXA data were also collected. The trabecular bone
score (TBS) was evaluated at the lumbar level (L1-L4) using TBSiNsight 2.1 (Med-Imaps, Merignac, France). In
addition, three-dimensional Dual-Energy X-ray absorptiometry (3D-DXA) was determined for each patient.
A DXA scan was performed using a Prodigy scanner (GE Healthcare, Madison, W1, USA), according to the
manufacturer’s recommendations. The software 3D-SHAPER (version 2.6, Galgo Medical S.L., Barcelona, Spain)
was also used. This method utilized a statistical 3D model of the proximal femur’s form and density, built from
a quantitative computed tomography (QCT) database comprising Caucasian men and women. The modeling
details of this method can be found in Winzenrieth et al. and Humbert et al. 338, The study was conducted using
DXA exploration to obtain a 3D model specific to each patient’s proximal femur, generating measurements in
3D from the total area of interest in the femur. The volumetric BMD (vBMD, mg/cm3), bone mineral content
(BMC) (g), and volume (cm3) were calculated in the trabecular, cortical, and integral (trabecular and cortical)
compartments, respectively. The volumetric BMD (vBMD, mg/cm3), bone mineral content (BMC) (g), and
volume (cm3) were calculated in the trabecular, cortical, and integral (trabecular and cortical) compartments,
respectively. The cortical thickness (Cth, mm) and BMD of the cortical surface (sBMD cortical, mg/cm2,
obtained by the multiplication of cortical vVBMD (mg/cm3) and Cth (cm)) provided additional analysis for the
cortical region. The precision of the models and 3D-SHAPER measurements was evaluated against a QCT>%.
The average form precision—i.e., the average distance between external limits of the femur geometry—was
derived from 3D-SHAPER and QCT, and the result was 0.93 mm. Regarding bone density and cortical bone
thickness, the correlation coefficients between 3D-SHAPER and the measurements derived from QCT were
0.86, 0.93, and 0.91 for trabecular vBMD, cortical vBMD, and cortical thickness, respectively35’37.

The study participants were followed up clinically for 8-10 years, after which they were evaluated for
osteoporotic fractures. The diagnosis of vertebral fractures was made based on lateral radiographs of the dorsal
and lumbar spine taken throughout the follow-up and reviewed by the same physician (FCS), who determined
them according to the Genant criteria’®. Non-vertebral fractures were obtained from their medical records.
Osteoporotic bone fractures were determined after a follow-up of 8-10 years.
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Machine learning analysis

The XGB method was proposed as the primary method for data analysis due to its scalability, rapid execution,
and commendable accuracy. Moreover, its versatility enables parallel computing®. Various other machine
learning methods documented in the scientific literature were employed to evaluate the efficacy and performance
of this system. The most important were the SVM*, DT #!, GNB*?, and KNN**. Models resulting from these
methodologies were developed using MATLAB (The MathWorks, Natick, MA, USA; MATLAB R2023)*. The
procedural steps undertaken to implement the machine learning algorithms are summarized in Supplementary
Fig. 1. This study combined nested cross-validation with Bayesian optimization techniques to robustly and
efficiently tune the hyperparameters of machine learning models. Within the nested cross-validation framework,
the outer loop evaluated the model’s generalized performance, while the inner loop focused on hyperparameter
optimization. In the inner loop, Bayesian optimization was employed as a strategy to efficiently explore the
space of key hyperparameters, including maximum tree depth (max_depth), the number of estimators (n_
estimators), the learning rate (learning_rate), and regularization terms (lambda and alpha). Using a probabilistic
model based on a Gaussian process, Bayesian optimization identified optimal hyperparameter combinations by
leveraging information from previous iterations, thereby minimizing the need for exhaustive evaluations and
focusing on the most promising regions*>*°. This approach reduced the risk of overfitting by ensuring that test
data in the outer loop remained entirely independent of the optimization process and improved model stability
by conducting consistent evaluations across multiple data partitions. The combination of these techniques
yielded models with optimized performance and high generalizability. In addition, the specific hyperparameters
considered for each algorithm were as follows: for XGB, max_depth (2-10), n_estimators (50-500), learning
rate (0.01-0.3), subsample (0.5-1.0), colsample_bytree (0.5-1.0), and regularization parameters lambda (0-10)
and alpha (0-10); for SVM, C (0.01-100), gamma (le-5-1), and kernel type (linear, polynomial, radial basis
function); for DT, max_depth (1-20), min_samples_split (2-20), and min_samples_leaf (1-10); for GNB, the
var_smoothing parameter (le-12-1e-6); and for KNN, n_neighbors (1-30), weights (uniform, distance), and
metric (Euclidean, Manhattan). Bayesian optimization with a Gaussian process surrogate model was applied
within a 5-fold cross-validation framework to explore the hyperparameter space efficiently. The configuration
that maximized mean balanced accuracy in the cross-validation folds was selected, then retrained on the entire
training set, and finally evaluated on the independent test set. This process was repeated across 100 simulation
iterations to ensure robustness. Building on a systematic feature relevance analysis, we employed a combined
approach to identify the most influential variables. Initially, feature importance was evaluated using a preliminary
XGB model, which provided scores derived from gain, coverage, or weight. This was followed by iterative feature
selection techniques such as Recursive Feature Elimination (RFE), with XGB as the base estimator, to reduce the
feature set while maintaining high predictive performance. Lastly, the impact of removing specific features was
assessed through cross-validation, ensuring that only those significantly contributing to the model’s performance
were retained.

To further prevent overfitting in XGB, additional techniques were employed, including explicit regularization
via the parameters lambda and alpha, controlling the maximum tree size (max_depth), adjusting the learning
rate (learning_rate) to a lower value, and applying early stopping to halt training if validation metrics failed
to improve after several consecutive iterations. Bootstrap validation was also performed, generating multiple
data subsets through resampling to estimate uncertainty in performance metrics and ensure consistency.
Additionally, the model was validated on an independent external cohort to assess its generalizability across
diverse clinical contexts. The data were randomly split into training (70%) and testing (30%) sets to ensure a
balanced representation of key classes and characteristics. The simulations were rigorously executed over 100
iterations, meticulously accounting for mean and standard deviation values, thereby mitigating the potential
impact of noise and ensuring the attainment of statistically valid conclusions?’. Finally, subjects from the
Camargo Cohort were used to perform an external validation of the results obtained in the HURH cohort.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon
reasonable request.
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