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Iron ore serves as the fundamental feedstock for blast furnace operations, and its quality is 
constitutionally affected by the temperature of the mixture during the sintering process. To enhance 
the early prediction and regulation of the mixture temperature, this study proposes an intelligent 
3D prediction model for iron ore temperature based on the Temporal Fusion Transformer (TFT). This 
model effectively combines advanced multi-horizon forecasting capabilities with temporal dynamic 
interpretability, while expanding the observation framework into a three-dimensional space through 
simulation outcomes. Simultaneously, the study focuses on the fluctuation patterns of the major 
chemical components in sintering materials and their influence on iron ore temperature through 
the Variational Autoencoder-Temporal Convolutional Networks (VAE-TCN) model. The TFT model, 
developed using historical sintering data, achieves an R2 = 0.8572 and RMSE = 4.7568 for one-
step-ahead prediction of the sinter temperature spatial distribution, based on a dataset split of 90% 
training, 5% validation, and 5% testing. Compared with Transformer and Long Short-Term Memory 
(LSTM) networks, the TFT model demonstrates superior performance, reducing RMSE by 0.805 and 
2.9937, respectively. In practical applications, the TFT model offers valuable guidance for real-time 
temperature monitoring during iron ore sintering operations.
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According to the Implementation Guide for Digital Transformation in the Iron and Steel Industry emphasizing 
”Promoting Intelligent Optimization of the Production Process” and the ”Guidelines for the Construction of an 
Intelligent Manufacturing Standard System in the Iron and Steel Industry (2023 Edition)” issued by the Ministry 
of Industry and Information Technology of the People’s Republic of China, the goal is to ”improve the numerical 
control rate of key processes,” and observation and intelligent adjustment of the sintering process has always 
been a long-term goal of the national steel industry1. Temperature distributions that are too high or too low can 
lead to the formation of overly cold or overly combustible materials, resulting in a lot of waste. Currently, the 
sintering process is based on methods such as infrared thermal imaging, making it difficult to accurately observe 
the internal state in real time. Therefore, it is essential to develop an algorithmic model to predict the internal 
temperature based on external data2.

The complexity of the sintering process, coupled with the interplay of multiple factors, makes precise 
monitoring the focus of the research on the ironmaking process. Some scholars have analyzed the reaction 
behavior between C and hematite, and found that the content of C and the reaction temperature have significant 
effects on the reaction rate and effective diffusion coefficient3. Some scholars have emphasized the key role of the 
ore components in the sintering process4. Other scholars emphasized the importance of content SiO2 and MgO 
to ensure consistent iron ore performance and optimize production efficiency. However, these studies focus only 
on the main chemical components selected in the mixture5.

A thermochemical database was developed using the CALPHAD method, enabling the evaluation of iron 
ore behavior through phase equilibrium studies6. However, the study did not discuss the specific effects of the 
main chemical components on the temperature of iron ore during the sintering process. A one-dimensional 
mathematical model was proposed to predict the temperature distribution in thermally sintered materials7. 
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This model accounted for factors such as the compressible flow of gas, the instabilities of heat conduction in 
solids, and the influence of the porosity of the bed on gas flow and heat transfer. However, the actual sintering 
process occurs in a three-dimensional space, which limits the applicability of the model. In addition, advances 
in data acquisition technologies were highlighted as key enablers for the adoption of machine learning modeling 
methods8. However, challenges persist in managing high-dimensional and dynamically changing data during 
computation. Furthermore, many researchers have turned their attention to deep learning models. For example, 
studies using Back Propagation (BP) neural networks have investigated the mapping relationship between 
process parameters and the chemical composition of iron ore. Despite these efforts, the interpretability of such 
”black-box” models remains a significant area for improvement.

Recent years have witnessed growing applications of deep neural network architectures across diverse 
domains9. The Long Short-Term Memory (LSTM) model has found extensive use in time series forecasting. On 
the other hand, the Transformer model, with its superior long-term memory capabilities and non-linear mapping 
advantages, has demonstrated successful implementation in multiple domains including image recognition10, 
medical data processing11,12, and text processing13,14, among others15. In 2021, an improved model was 
proposed called Temporal Fusion Transformer (TFT)16, which substantially enhances the original Transformer 
architecture. By integrating components such as gated residual networks, variable selection networks, static 
covariate encoders, multi-head attention mechanisms, and the temporal fusion decoder, the TFT model is well 
suited for handling diverse input types, including static covariates. The TFT model effectively handles non-linear 
relationships in predictions, eliminates redundant components to improve performance, and captures long-term 
dependencies across various time steps. It also identifies key variables and important patterns while minimizing 
the contribution of irrelevant input, thereby improving the interpretability of the model. These features make it 
possible to focus on predicting the spatial temperature distribution within iron ore in this study.

Therefore, this research introduces an innovative 3D model for real-time prediction and monitoring of iron 
ore internal temperature, accompanied by comprehensive simulation results. The key contributions include:

•	 A novel 3D prediction model for iron ore temperature is proposed, extending the dimensional scope of tem-
perature observation during sintering. By entering external data, including sensor information, the model 
predicts the temperature at various points within the iron ore and identifies its key factors of influence.

•	 The study focuses on analyzing the impact of the major chemical component ratios of the mixture, which are 
identified as key factors influencing iron ore temperature.

•	 The experimental research sintering process is simulated, and the effectiveness of the established 3D sinter 
temperature prediction model is verified.

Mechanistic foundations for prediction
Sintering is a critical stage in the blast furnace ironmaking process, ensuring smooth operation of the overall 
system. The primary objective of sintering is to transform mixed raw materials into iron ore by subjecting 
them to high-temperature treatment. The temperature distribution at each point inside the iron ore during the 
sintering process is the focus of the research and prediction in this study. High-quality iron ore exhibits excellent 
reducibility, permeability, and strength, which can significantly improve blast furnace efficiency while reducing 
energy consumption and cost. The sintering process can be broken down into several key stages, including raw 
material preparation, mixture mixing, ignition, and high-temperature sintering. (See Fig. 1 for details):

Mathematical mechanisms
To facilitate research and subsequent explanation of the research process and results, the mixture on the 
sintering machine pallet is approximately abstracted as a rectangular cuboid. Taking point O as the origin, the 
direction of the pallet’s movement, width, and height are defined as the positive X, Y, and Z axes, respectively, 
establishing a three-dimensional rectangular coordinate system. The coordinate ranges for all three dimensions 
are standardized as [0, 1]. The 3D diagram is shown in the left part of Fig. 2:

Next, the cuboid is discretized in a 3D grid 17, with the slices shown in the right part of Fig. 2. For each x value 
x1, x2, . . . , xn the “slice” with negligible thickness is extracted. For each slice, the temperature distribution is 
discretized into a matrix of yn × zn, allowing a detailed study of the temperature distribution along the y and z 
axes during sintering. Finally, by summarizing the different slices, the approximate temperature can be obtained 
at each point (x, y, z) on the sintering pallet, representing the three-dimensional temperature distribution of 
iron ore.

Physical mechanisms
Sintering involves the softening and partial melting of raw material particles, such as iron ore, at elevated 
temperatures. This process generates a liquid phase that interacts with unmelted ore particles. After being cooled, 
the liquid phase stores the mineral powder particles in blocks. Obviously, the sintering process is a block-making 
process involving high-temperature physical and chemical reactions.

Therefore, after abstracting the real sintering process into a mathematical model, this study proceeds to 
explain the temperature changes during the sintering process from a physical perspective.

	a.	 Solid-gas phase heat conduction equation

	During the sintering process, heat transfer inevitably occurs between the mixture and the gas, resulting in tem-
perature differences and internal heat exchange between the solid and gas phases within the same space. 
Therefore, this study adopts a local non-thermodynamic equilibrium dual energy equation to characterize the 
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variation of solid-phase temperature, Ts = Ts(y, z, t), and gas-phase temperature, Tf = Tf (y, z, t). Con-
sidering that in the previously established model the entire sinter bed was discretized along the x-direction 
into slices denoted by xi, with each slice containing both the y and z dimensions, the one-dimensional energy 
equations for the solid and gas phases are extended into three dimensions. This allows for a more accurate 
simulation of heat transfer within the sintering bed and better reflects spatial temperature variations. It should 
be noted that although heat transfer between slices in the x-direction does exist, its effect is relatively small 
compared with those in the y- and z-directions. This is because the sinter bed has already been discretized 
along the x-direction in the modeling framework, and the sintering process is strongly influenced by external 
factors such as the induced draft fan located beneath the bed, which enhances vertical heat transfer.

	The solid-phase energy equation describes the energy changes within the solid phase, primarily including the 
conductive heat transfer within the solid, the heat source term, and the convective heat transfer between the 
solid and gas phases:
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Fig. 2.  3D spatial and sliced coordinate system model of sintered ore.

 

Fig. 1.  Sintering process flow.
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	The gas-phase energy equation describes the energy changes within the gas phase, primarily including the con-
vective and conductive heat transfer in the gas, the heat source term, and the convective heat transfer between 
the gas and solid phases:
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	In the equation: D = [0, 1] × [0, 1]; ϕ represents the porosity, indicating the volume ratio between the solid 
and gas phases; ρ is the density; c is the specific heat capacity; λ is the thermal conductivity; q is the internal 
heat source per unit volume; hv  represents the volumetric heat transfer coefficient; Qs corresponds to the 
solid-phase reaction heat source; Qf  is the gas phase reaction heat source; ufy  and ufz  is the velocity com-
ponent of the gas. The value of hv  can be calculated using Achenbach’s criterion formula19.

	b.	 Equation of conservation of heat energy

	Due to heat exchange between the high-temperature sintering mixture at the boundary and the cooler air during 
sintering, this study incorporates and analyzes the energy conservation equation. The thermal energy transfer 
in the fluid is characterized by three mechanisms in Eqs. (3)–(4)18: temporal variation, convection, and heat 
conduction.

	
ρCa

∂M

∂t
+ ρCa u · ∇M + ∇ · w = Q + Qted � (3)

	 w = −k ∇M � (4)

	In the equation: ρ is the density of the substance; Ca is the specific heat capacity; M is the temperature; u is the 
velocity vector of the fluid; ∇M  is the temperature gradient; w is the heat flux density vector; k is the thermal 
conductivity; Q is the volumetric heat source; Qted represents other forms of heat sources or heat dissipation.

Chemical mechanisms
Based on the mass and volume proportions of the chemical components in the sintering raw materials, as well 
as factors such as the heat of chemical reactions, the nature of heat absorption and release during chemical 
reactions, and the reaction rates, this study comprehensively considers these factors and identifies six key 
chemical reactions that significantly impact the sintering process. These reactions are analyzed in detail, as 
shown in Table 1:

The mechanism of the influence of the above chemical reactions is analyzed as follows. The complete and 
incomplete combustion of C acts as primary exothermic sources, continuously providing heat to the system. 
Although the decomposition reactions of CaCO3 and CaMg(CO3)2 are endothermic processes, their 
products CaO and MgO combine with silicates to form minerals at low melting points, promoting the formation 
of liquid phases. Simultaneously, the released CO2 optimizes the permeability of the sintering bed. Oxidation of 
F e3O4 maintains a high temperature environment through exothermic effects, yet requires controlled reaction 
rates to prevent excessive melting. The endothermic gasification of H2O may lead to localized cooling, which 
requires a balanced moisture content to ensure permeability and uniformity of the sintering.

Methods
To address the problem of predicting the internal spatial temperature of iron ore, the theoretical methods in 
this study include: the Variational Autoencoder- Temporal Convolutional Networks (VAE-TCN) 3D prediction 

Chemical reaction Reaction equations ∆H(KJ/mol)

C complete combustion 2C + O2 → 2CO −393.5

C incomplete combustion 2CO + O2 → 2CO2 −566.00

CaCO3  decomposition CaCO3(s) → CaO(s) + CO2(g) +179.5

CaMg(CO3)2  decomposition CaMg(CO3)2 → CaO + MgO + 2CO2 +116.7

F e3O4  oxidation 4F e3O4 + O2 → 6Fe2O3 −1118.38

H2O gasification H2O(l) → H2O(g) +44.01

Table 1.  Summary of important chemical reactions.
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model for the main chemical component proportions of the sintering mixture, and the Temporal Fusion 
Transformer (TFT) 3D prediction model for the temperature of iron ore. In this work, the focus is not on 
proposing a new TFT architecture, but on demonstrating its rational, effective, and innovative application to 3D 
spatial temperature prediction of the sintered ore, which has not been reported in previous studies.

VAE-TCN
The VAE-TCN model (Fig. 3) combines a Variational Autoencoder (VAE) and Temporal Convolutional 
Networks (TCN) to predict the main chemical composition ratios of the sintering mixture. TCN serves as both 
the encoder and decoder of the VAE. Its dilated convolutions capture long-term dependencies in time series, 
while the VAE’s latent space regularizes feature distributions through variational inference20.

Encoder and latent space
The encoder maps the input sequences to the mean µ and variance σ latent distribution parameters, and 
generates latent variables z by reparameterization:

	 z = µ + σ ⊙ ϵ� (5)

In the equation:z is a latent variable, representing low-dimensional features of the input data; µ is the mean of 
the latent variable distribution; σ is a variance of the latent variable distribution; ϵ ∼ N (0, I) injects Gaussian 
noise for gradient propagation; ⊙ denotes element-by-element multiplication.

Decoder and reconstruction
The latent variable z is decoded by TCN to reconstruct the sequence x̂. Dilated convolutions (Eq.7) expand the 
receptive field exponentially:

	 x̂ =TCN − Decoder(z) � (6)

	
ŷt =

k∑
i=0

wi · zt−d·i � (7)

In the equation: x̂ denotes the reconstructed output sequence, zis a latent variable, ŷt is the output predicted at 
the time step t, wi is the weight of the i-th filter, d is the expansion factor, k is the filter size, and t − d · i is the 
direction of past development.

Joint loss function
The total loss combines VAE reconstruction loss, KL divergence, and TCN prediction error:

	
Ltotal = LVAE + λLTCN = 1
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In the equation: λ is the balance coefficient, β is the weight hyperparameter, yi is the i-th actual value in the 
time series, ŷi is the i-th predicted value in the time series, xi is the i-th sample in the original data, x̂i is the 
i-th sample reconstructed by the decoder, N is the total number of samples, µi and σ2

i  represent the mean and 
variance of the i-th latent space sample, respectively.

Fig. 3.  VAE-TCN model architecture.
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Residual connections
Introduce skip connections (Fig. 4) to mitigate deep network degradation:

	 H(x) = F (x) + x� (9)

In the equation: H(x) is the output of the residual block, F(x) is a residual function, representing convolutional 
layers and non-linear transformations.

TFT
The Temporal Fusion Transformer (TFT) is an advanced architecture for interpretable multi-horizon forecasting, 
which integrates gating mechanisms, variable selection, attention mechanisms, and a sequence decoder to 
capture complex temporal dependencies16. The total architecture of the TFT is shown in Fig. 4

Gated residual network (GRN)
GRNs form the backbone of TFT, allowing the model to flexibly transform inputs while mitigating gradient 
vanishing or exploding problems. By incorporating gating layers, GRNs ensure that only relevant information is 
passed forward, enhancing model stability and efficiency.

Variable selection network (VSN)
VSNs operate at both static and temporal levels to automatically identify the most important variables at each 
step. This mechanism not only reduces redundancy but also enhances interpretability by highlighting the key 
factors influencing prediction.

Multi-head attention mechanism
The attention layer is designed to capture long-range temporal dependencies by focusing on the most relevant 
past information. Multi-head attention improves robustness by jointly attending to different aspects of the 
historical data.

Fig. 4.  TFT model architecture. Adapted from the standard TFT architecture16.
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Temporal fusion decoder
This module integrates local short-term patterns with long-term trends extracted by attention, enabling the 
model to generate accurate multi-step forecasts. The decoder structure fuses multiple information streams to 
produce the final output.

Loss function
TFT jointly optimizes multi-quantile prediction errors for robustness. The loss function enables the model to 
generate predictions at varying confidence levels, effectively adapting to random fluctuations in the sintering 
process.

	
L =

∑
q∈⟨0,1,0.5,0.9⟩

T∑
t=1

max
(
q
(
yt − ŷ

(q)
t

)
, (q − 1)

(
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(q)
t
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� (10)

In the equation: qis the quantile, ytis the ground truth at the time step t, ŷ(q)
t  is the quantile prediction at time 

step t, T is the total number of time steps.

Results
As shown in Fig. 5, this study first performs data augmentation based on Bayesian estimation and uniform 
distribution, followed by a Centered Log-Ratio (CLR) transformation on the composition ratio data. The VAE-
TCN model, suitable for compositional time series data, is used to obtain the proportion data of the main 
chemical components of the mixture. In addition to ignition temperature, flue negative pressure and windbox 
waste temperature, these are used as input variables for the TFT model, while the 2D temperature matrix of 
different slices is the output variable for training. Afterward, the trained TFT model can be used to predict the 
3D temperature of iron ore based on the newly collected input variable data.

Slicing data expansion
The experimental data in this study are sourced from the database of a steel plant in China (with a measurement 
accuracy of 0.01 for the distribution of sintering raw material and 0.01 for sensor variable measurements). 
The sintering data are mainly divided into sensor data and sintering chemical composition data. Sensor data 
parameters can be categorized into the following: Raw Material Parameters (RMP), Operating Parameters (OP) 
and State Parameters (SP). The parameters of the chemical composition of the sintering data parameters (CCP) 
are predicted based on the quantity of raw material distribution (as shown in Table 2).

The specific measurement data used in this study were collected from the factory’s real-time monitoring 
system, covering the period from January 14, 2021, to September 1, 2021, with a sampling rate of 4 times 
per second. A total of 80,641 samples were collected (as shown in Table 3). Since the sintering process may 
be affected by environmental disturbances, sensor instability, and other perturbing factors, the raw data was 

Fig. 5.  3D Temperature Prediction Model Architecture for Iron Ore Sintering.
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pre-processed including missing data identification, outlier detection, and data normalization to improve the 
prediction performance of the subsequent model.

For the measurement of the internal temperature of iron ore, this study focuses on analyzing the impact of 
the proportion of key chemical components in the mixture, including TFe,SiO2,CaO,MgO,Al2O3 and C , as 
their fluctuations significantly affect the mineral composition and internal temperature variations of sintered 
ore. In addition to these, the study also considers other factors influencing the temperature of ignition, the 
negative pressure of the furnace, the waste temperature of the wind box, and the temperature of the sinter ore 
slices, all of which are sensor variables.

Due to the limited data on the content of the main chemical components in different raw materials, this study 
adopts Bayesian estimation and uniform distribution to reasonably augment the initial sample data in order to 
complete the comprehensive prediction of the proportion of the main chemical components in the sintering raw 
materials, based on the characteristics of the different datasets.

In Bayesian estimation, an inverse gamma distribution is set as the prior distribution for the unknown 
variance. Subsequently, based on the results of the K-S test, the K-S statistic for the component TFe in iron ore 
is 0.028395, with p = 0.5296 > α = 0.05, indicating that there is no significant difference between the sample 
data distribution and the theoretical distribution; therefore, it can be considered normally distributed. Since 
the original sample size is 120 (>100), the K-S test in this study has sufficient statistical power, and the obtained 
normality conclusion is considered reliable. Using Bayes’ theorem, the posterior distribution of the variance is 
updated, following the same principle. Ultimately, the proportion of each major chemical component in the 
sintering raw materials is approximated by a specific distribution. For example, the chemical composition of 
TFe in iron ore is approximately distributed as:N(62.1506, 12.4056) . For other components with lower contents 
and limited fluctuation, their proportions are approximately estimated to follow a uniform distribution. The 
distribution data for the main chemical components of iron ore are shown in Table 4.

Considering that the proportion data of components have a sum constraint, which induces compositionality, 
this study applies the Centered Log-Ratio (CLR) transformation to map the chemical composition proportion 
data into the real number space. This transformation eliminates the sum constraint while preserving the relative 
relationships among the data of the original component, thereby improving the analyzability of the data and 
improving the accuracy and robustness of the subsequent VAE-TCN prediction model.

Analysis of VAE-TCN training prediction
Using component proportion data derived from Bayesian estimation and uniform distribution, this study 
applies a VAE-TCN combined model to analyze internal data relationships and predict the real-time dynamics 

Times(s) Iron ore(kg/s) Coke(kg/s) ... Igniter temperature(◦C) Flue negative pressure(◦C)

0 119.72 26.03 1118.56 43417.03

4 115.33 25.06 1119.69 49683.54

8 120.32 23.77 1122.56 40140.52

12 121.35 25.01 1126.13 45670.26

16 116.08 23.08 1129.94 51568.55

... ... ... ... ... ...

Table 3.  Examples of historical data used in the experiment.

 

Category No. Parameters and units No. Parameters and units

RMP

1 Iron ore(kg/s) 2 Coke(kg/s)

3 Dolomite(kg/s) 4 Limestone(kg/s)

5 Quicklime(kg/s) 6 Pulverized coal(kg/s)

7 Sintering return(t/h) 8 Blast furnace return(t/h)

OP

9 Round roll speed(r/h) 10 Nine-roller speed(r/h)

11 Sintering machine speed(r/h) 12 Ignition temperature(◦C)

13 Gas flow(m3/h) 14 Fan air volume(m3/h)

SP

15 South flue temperature (◦C) 16 South flue pressure (kpa)

17 North flue temperature (◦C) 18 North flue pressure (kpa)

19-32 Bellows gas temperature (◦C) 33-46 Bellows negative pressure (kpa)

CCP

47 TFe(%) 48 C(%)

49 SiO2(%) 50 CaO(%)

51 Al2O3(%) 52 MgO(%)

53 Moisture content (%) – –

Table 2.  Summary of parameters of the sintering process dataset.
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of the mixture’s main chemical component proportions. When training the VAE-TCN prediction model, 75% 
of the data set is used for training samples and 25% for testing samples. To further ensure the integrity of the 
results, the paper also performed five additional 10-fold cross-validation runs on the training set. The final 
model parameters are shown in Table 5.

The input dimension of the VAE-TCN model is (6, 7), where 6 represents the number of time steps and 
7 corresponds to the number of feature variables. This clarification ensures that the temporal structure and 
multivariate characteristics of the data are explicitly captured in the modeling process. Compared to the previous 
layer Filters1, the number of convolutional kernels in Filters2 is reduced, helping to reduce model parameters 
and lower the risk of overfitting, while still capturing important features. Overall, these two convolutional layers 
process the input data sequentially, first extracting features using 12 convolutional kernels, and then further 
processing these features with 6 convolutional kernels.

The padding strategy is configured as ”the same,” ensuring that the output sequence length matches the 
input sequence after convolution. This is achieved by adding appropriate zero padding to both sides of the 
input data. The model consists of convolutional layers, a Flatten layer, Dense layers, Lambda layers, a Repeat 
Vector layer, and GRU layers, with a total of 1125 trainable parameters. Table 6 presents the model’s training 
and testing performance metrics. The model underwent 50 training epochs using mean squared error as the 
loss function. Both training and validation losses gradually decrease and converge, demonstrating the model’s 
resistance to overfitting and strong generalization capability, making it suitable for accurately predicting the 
chemical composition ratios.

To predict the chemical composition ratios of the sinter mixture using the trained VAE-TCN model, a 2D 
data matrix is obtained, as shown in Fig. 6.

Analysis of TFT training
The TFT sinter temperature spatial prediction model was trained using the major chemical composition ratio 
data predicted by the VAE-TCN model and sensor variable data. The dataset was partitioned with 90% allocated 
for training, 5% for validation, and 5% for testing purposes. Hyperparameter optimization is performed on the 
training set through grid search combined with 5 runs of 10-fold cross-validation to ensure robustness and 
prevent overfitting. Table 7 reports the final hyperparameter settings for one representative slice used in this 
study. Due to space limitations, only the hyperparameters of this slice are presented as an example.

As shown in Table 8, the root mean square error (RMSE) and the relative root mean square error (RMSEr) 
between the actual values and the temperature matrices of different slices predicted by the TFT sinter temperature 
spatial prediction model are both relatively low, and the coefficient of determination (R2) is close to 1. This 
indicates that the model can accurately and reasonably predict the internal temperature of the sinter during the 
sintering process.

Epoch loss val_loss

1 0.9570 0.9664

10 0.1674 0.1542

20 0.0618 0.0722

30 0.0151 0.0163

40 0.0047 0.0046

50 0.0012 0.0013

Table 6.  Indicators for assessing the results of the model.

 

Model parameters Value

Input_shape (7, 6)

Latent_dim 2

Filters1 12

Filters2 6

Kernel_size 3

Table 5.  Model parameters.

 

Chemical components Components Chemical components Components

TFe N(62.15,12.41) SiO2 N(4.70,4.84)

MgO U(0.10,0.20) CaO U(0.08,0.23)

Al2O3 U(1.23,3.11) C U(0,0)

Table 4.  Iron ore content of major chemical components as a percentage of obedience distribution.
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As shown in Fig. 7, the training loss and validation loss of the TFT model decrease rapidly during the early 
stages of training and gradually stabilize. The validation loss fluctuates minimally within a certain range, indicating 
that the model has good convergence and can effectively capture both short- and long-term dependencies in 
time series data. The close alignment between the training and validation loss curves further validates that the 
model is robust, making it suitable for handling noisy time-series data and capturing key features.

To further evaluate the TFT model’s capability in predicting sintered ore internal temperature, this study 
evaluates its performance against alternative time series models capable of handling diverse input variables. 
Recent years have witnessed extensive applications of LSTM models in time series forecasting due to their 
effective long-term dependency capture through gating mechanisms. Building upon this foundation, the TFT 
architecture enhances the original Transformer framework by combining its powerful parallel processing 
capacity with improved global information extraction capabilities. Therefore, this study selects these two models, 
LSTM and Transformer, and compares their prediction results with those of the TFT model.

As shown in Table 9, differences in the coefficient of determination (R2), the mean square error (RMSE), 
and the relative mean square error (RMSEr) between the three models were analyzed. The comparison reveals 
that the TFT model achieved lower RMSE and RMSEr compared to the LSTM and Transformer models, with 
R2 improving to 0.8572. These results demonstrate significant improvement in the TFT model’s predictive 
performance, with the prediction results much closer to the target values, indicating a good prediction effect.

Slice RMSE RMSEr R2

1 4.7507 0.0185 0.8756

2 4.7618 0.0171 0.8375

3 4.7636 0.0171 0.8562

4 4.7624 0.0171 0.8245

5 4.7506 0.0185 0.8737

6 4.7514 0.0185 0.8757

Table 8.  Evaluation metrics of the model results.

 

Model Parameters Value

Learning rate 0.001

Dropout rate 0.2

L2 regularization coefficient 0.001

Number of attention heads 4

Hidden dimensions 160

Number of single batches 64

Table 7.  Model Parameters.

 

Fig. 6.  Example of data matrix for TFe and C content share.
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Analysis of TFT forecast results
The TFT model enhances the Transformer model’s performance by quantifying attention weights within the 
variable selection hierarchy. This enables the analysis of input feature importance on the output variable, 
specifically the sinter ore temperature matrix prediction. In doing so, the TFT model provides valuable 
information for factory control systems, guiding the monitoring and adjustment of key features to improve the 
accuracy and efficiency of the sintering process.

As shown in Table 10, the igniter temperature plays a key role in determining the temperature of the sinter 
ore slice. Since the igniter temperature directly affects the temperature of the mixture, it is crucial to control the 
accuracy and stability of the igniter temperature. Among the main chemical components of the mixture, the 
content of TFe has the greatest impact on the temperature of the slicing. TFe , being a core component of steel 
materials, aligns with the findings of this experiment, which are consistent with practical observations.

As shown in Fig. 8, for the specific prediction results of the TFT model on the two-dimensional temperature 
matrix of sinter slices, the predicted value (Fig. 8a) and the actual value (Fig. 8b) of six slices at a certain time 
were selected for visualization and comparative analysis. The complete predicted temperature matrices and 
corresponding detailed numerical results are provided in the Supplementary Material for reference. As the 
x coordinate of the slice position increases, the blue area gradually shifts downward, reflecting the sintering 
process where the highest temperature reaction zone moves from the top to the bottom of the material. At the 
same time, the boundaries of the high-temperature zone of the slices at different positions showed obvious 
temperature drops, which were caused by heat exchange between the sinter and the external environment. Due 
to the significant temperature difference between the high-temperature region and the external environment, 
convection and heat conduction play a major role, aligning with the physical principles outlined in the 
mechanism. Moreover, comparing the actual temperature value with the predicted results, the temperature 
difference in the high temperature area is basically stable in the range of 3.5 % of the temperature in the region.

Simulation results analysis
At present, in practical application, there are two common methods for image monitoring of the material surface 
of the sintering machine: one is to use the ordinary visible light camera to obtain an intuitive image, that is, the 
visible light camera is used to shoot the image recognition system of the tail section of the sintering machine, but 

Input features Significance Input features Significance

TFe 0.1204 C 0.1110

SiO2 0.1112 Flue negative pressure 0.1163

CaO 0.1071 Ignition temperature 0.1450

MgO 0.1069 Windbox waste temperature 0.0778

Al2O3 0.1044

Table 10.  Importance of features.

 

Model RMSE RMSEr R2

LSTM 7.7505 0.0682 0.7279

Transformer 5.5618 0.0385 0.7975

TFT 4.7568 0.0178 0.8572

Table 9.  Comparison of the values of the indicators for assessing the performance of different models.

 

Fig. 7.  Plot of training validation loss results.
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it can only identify the high temperature image, and can’t make an accurate judgment on the medium and low 
temperature image, nor can it obtain all the information of the thermal state of the section; The second is to use 
the infrared thermal imaging camera device to obtain thermal images, to realize the online monitoring of the 
thermal images of the sintering machine ore seam section and the blockage of the sintering table at the bottom 
of the sintering machine.

To visually represent the spatial distribution of the internal temperature in the sintered ore during sintering, 
a 3D simulation was conducted using simulation software. Parameters matching those of the steel mill data 
source were used to replicate real sintering conditions, and the simulated temperature data were compared with 
the model predictions.

On the one hand, the simulation of the sintered ore slices along the y-axis is shown in Fig. 9, showing the 
temperature field along the x and z axes. It can be observed that the high temperature region gradually moves in 
the negative direction of the z-axis as the coordinate value of the x-axis increases.

On the other hand, by selecting the simulation results for a specific moment of the sintered ore slice along the 
x-axis and comparing them with the results of the 3D sintered ore temperature prediction model established in 
this paper, the temperature field distribution along the y and z axes is observed to further analyze and validate 
the prediction performance of the model established in this paper.

As shown in Fig. 10, the first row (Fig. 10a) shows a simulation of sinter temperature simulated by software, 
while the second row (Fig. 10b) shows a visualization of the heat map of sinter temperature based on the results 
of a simultaneous 3D prediction model, and the third row shows an example of an infrared thermal image 
pattern (Fig. 10c).

The comparison and analysis of model prediction map, simulation map, and infrared heat map are as follows:

•	 Based on the model predictions, simulations, and thermal images, three distinct zones can be clearly identi-
fied: the sintered, high temperature, and unsintered zones, which correspond to three different states of the 
sintered ore during the actual sintering process.

•	 According to the previously established 3D spatial coordinate system model of sinter temperature, the x-coor-
dinates corresponding to the six slice positions are 1/6, 2/6, 3/6, 4/6, 5/6 and 1. The model predictions, simula-
tions, and infrared heat maps all reflect roughly equal temperatures at different slice locations along the y-axis. 
However, because of factors such as chemical composition and boundary heat conduction, all three types of 
plot show some fluctuations. Simulation plots and infrared heat maps show these fluctuations in more detail, 
while model prediction plots provide a more general depiction of temperature fluctuations due to the specific 
grid method chosen in this study. However, the trends shown in both graphs are largely consistent and match 
actual observations, further confirming the strong predictive performance of the 3D sintered ore temperature 

Fig. 9.  Simulation of y-axis slices of sintered ore.

 

Fig. 8.  Slicing temperature. At the same input data at a certain time, the heat map of the predicted value of the 
temperature of the six slices (a) and the actual value (b) of the sinter at the same position.
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prediction model developed in this study. It should be emphasized that the simulation results presented in 
this paper mainly serve as additional evidence to validate the effectiveness of applying deep learning models 
for 3D prediction of sintered ore temperature fields. For practical deployment, the preferred method is the 
learned deep model, as it offers higher efficiency, shorter computation time, lower cost, and competitive accu-
racy compared to finite element–based simulations.

•	 Looking at the model prediction plot, simulation plot, and infrared heat map along the z-axis, the high-tem-
perature region gradually shifts from top to bottom as the x-coordinate of the slice increases, representing the 
progress and final completion of the sintering process, which is consistent with reality.

Discussion and conclusion
This study develops a self-learning TFT model based on historical data, enabling more precise monitoring 
and control of sinter temperature throughout the sintering process. Additionally, through slice extraction and 
discretization of the sinter, the control range is successfully extended to three dimensions.

First, a 3D spatial coordinate system model was established for the sintering machine and the sintered ore. 
Next, the mechanism of temperature variation in the sintered ore during sintering was then analyzed. From a 
physical perspective, continuous heat exchange occurs between the sinter mixture and the gas. This study employs 
the dual-energy equation and the heat conservation equation under local non-thermodynamic equilibrium to 
provide a theoretical explanation; from the perspective of chemical reactions, the combustion process of the 
sintering material is accompanied by interactions and chemical reactions among the chemical components, 
which produce heat absorption and release. Six core chemical reactions were selected for the analysis of the 
mechanism. Next, due to limited chemical composition data across raw materials, this study applies Bayesian 
estimation or uniform distribution to reasonably augment the initial sample data, tailored to the characteristics 
of the dataset. After applying the CLR transformation, the VAE-TCN model, suitable for compositional time 
series data, was used to comprehensively predict the main chemical composition ratios in the sintering raw 
materials, resulting in a 2D composition ratio data matrix. The six main chemical composition ratio 2D data 
matrices, along with ignition temperature, flue gas negative pressure, and windbox waste temperature, were used 
as input variables, while the 2D temperature matrices of different slices were set as output variables and fed into 
the deep learning model TFT for training. The surface temperature data originate from factory-collected sensor 
measurements. However, since there are currently no practical sensors available to directly measure the internal 
temperature of the sintered bed and such data are difficult to obtain, the interior 2D temperature matrices 
employed in this study were derived from a combination of physicochemical mechanisms, simulation software, 
and partial real measurements. This not only ensures the availability of training data but also underscores the 
practical significance of this research in addressing the limitations of current industrial monitoring. The trained 
model can achieve 3D spatial predictions of sintered ore temperatures based on newly collected input variable 
data. Experimental results demonstrate the model’s superior performance compared to conventional time series 
approaches, with the mean R2 of multistep predictions being 0.8572 and the RMSE being 4.7568. The model’s 
interpretability enables quantitative analysis of multiple factors affecting sintered ore temperature through its 

Fig. 10.  Comparison of sinter temperature model prediction (a), 3D simulation (b), and infrared thermal 
image (c)22. The three subfigures correspond to the same time slice of the sintering process, allowing a direct 
comparison of the predicted temperature field, the simulated temperature field, and the actual observed 
thermal image.
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attention weight mechanism. Finally, simulation software was used to simulate the sinter temperature study 
process in 3D. Comparative analysis revealed strong agreement between the simulation results, TFT model 
predictions, and actual infrared thermal imaging data, thereby validating the model’s reliability.

Future research will optimize the model and integrate it with the best control algorithms, and by integrating 
with the factory automation system, key parameters, such as ignition temperature, can be dynamically adjusted, 
improving sintering stability and economic efficiency, while reducing energy consumption and carbon emissions. 
The model can also integrate with Industry 4.0 technologies, such as IoT and big data, to advance sintering 
intelligence. Additionally, it can be adapted to other high-temperature processes, including cement production 
and ceramic sintering.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. Please contact Jiang Yushan at jys@neuq.edu.cn.

Received: 31 March 2025; Accepted: 3 November 2025

References
	 1.	 Deng, X. et al. Development and application of intelligent sintering control system. Metall. Ind. Autom 45, 67–78 (2021).
	 2.	 Xia, G., Wu, Z., Liu, M. & Jiang, Y. Prediction interval estimation of sinter drum index based on light gradient boosting machine 

and kernel density estimation. Ironmaking & Steelmaking 50, 909–920 (2023).
	 3.	 Wang, Z., Tsutsumi, S., Maeda, T., Ohno, K.-I. & Kunitomo, K. Coke combustion rate with the presence of hematite in quasi-

particles. ISIJ Int. 61, 2964–2970 (2021).
	 4.	 Kumar, S., Jaiswal, A. & Sah, R. Improving the sinter productivity with increased specular iron ore in sinter blend. J. Min. Metall., 

Sect. B: Metall. 58, 261–273 (2022).
	 5.	 Hsieh, L.-H. Effect of raw material composition on the sintering properties. ISIJ Int. 45, 551–559 (2005).
	 6.	 Heikkinen, E.-P., Iljana, M. & Fabritius, T. Review on the phase equilibria in iron ore sinters. ISIJ Int. 60, 2633–2648 (2020).
	 7.	 Seenivasan, R., Abhale, P. B., Mohanty, B., Korath, J. M. & Prakash, G. Modeling and simulation of heat transfer phenomena in an 

annular cooler of iron ore sintering process. Trans. Indian Inst. Metals 76, 3507–3515 (2023).
	 8.	 Liu, J., Zhang, D., Shao, H., Deng, Z. & Yi, Z. A sintering process prediction model based on bp neural network. Metall. Power 38, 

1–3 (2019).
	 9.	 Jiang, Y., Yang, N., Yao, Q., Wu, Z. & Jin, W. Real-time moisture control in sintering process using offline-online narx neural 

networks. Neurocomputing 396, 209–215 (2020).
	10.	 Xiong, W. et al. Channel attention embedding for transformer image super-resolution reconstruction. J. Image and Graphics 28, 

3744–3757 (2023).
	11.	 Shuai, H., Wu, L. & Liu, Q. Adaptive multi-view and temporal fusing transformer for 3d human pose estimation. IEEE Trans. 

Pattern Anal. Mach. Intell. 45, 4122–4135 (2022).
	12.	 Ngo, G. H., Nguyen, M., Chen, N. F. & Sabuncu, M. R. A transformer-based neural language model that synthesizes brain activation 

maps from free-form text queries. Med. Image Anal. 81, 102540 (2022).
	13.	 Medved, M., Sabol, R. & Horak, A. Comparing rnn and transformer context representations in the czech answer selection task. In 

International Conference on Agents and Artificial Intelligence (2022).
	14.	 Chukwuneke, C., Ezeani, I., Rayson, P. & El-Haj, M. Igbobert models: Building and training transformer models for the igbo 

language. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, 5114–5122 (2022).
	15.	 Chen, X. et al. Real-time control of sintering moisture based on temporal fusion transformers. Symmetry 16, 636 (2024).
	16.	 Lim, B., Arık, S. Ö., Loeff, N. & Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. 

J. Forecast. 37, 1748–1764 (2021).
	17.	 Chen, J., Jiang, Y., Kang, Z. & Wu, Z. Partial differential equation modelling of the solid-liquid phase process in iron sintering and 

interface control with backstepping method. Ironmaking & Steelmaking 51, 609–621 (2024).
	18.	 Zhang, X., Zhang, J., Dai, C. & Xie, D. Optimization and simulation of sinter cooling process. CIESC J. 62, 3081–3087 (2011).
	19.	 Liu, W., Fan, A. & Huang, X. Theory and application of heat and mass transfer in porous media (Science Press, 2006).
	20.	 Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. 

arXiv preprint arXiv:1803.01271 (2018).
	21.	 Kang, Z., Wu, Z., Chen, J. & Jiang, Y. Interval prediction of sinter screening index based on gate recurrent unit and kernel density 

estimation algorithm. Ironmaking & Steelmaking 51, 117–126 (2024).
	22.	 Usamentiaga, R., Molleda, J., Garcia, D. F. & Bulnes, F. G. Monitoring sintering burn-through point using infrared thermography. 

Sensors 13, 10287–10305 (2013).

Author contributions
Conceptualization: Y.J. and Y.W.; methodology: Y.J. and Z.W; software: H.Z. and H.Y.; validation: Y.W., T.M. 
and X.C.; formal analysis: Y.C.; investigation: R.X.; resources: Y.C.; data curation: X.S.; writing—original draft 
preparation: Y.J.; writing—review and editing: Y.W.; visualization: H.Z. and X.C.; supervision: Y.J.; All authors 
have read and agreed to the published version of the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​2​7​2​5​4​-​9​​​​​.​​

Correspondence and requests for materials should be addressed to Y.J.

Scientific Reports |        (2025) 15:43455 14| https://doi.org/10.1038/s41598-025-27254-9

www.nature.com/scientificreports/

http://arxiv.org/abs/1803.01271
https://doi.org/10.1038/s41598-025-27254-9
https://doi.org/10.1038/s41598-025-27254-9
http://www.nature.com/scientificreports


Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:43455 15| https://doi.org/10.1038/s41598-025-27254-9

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Real time 3D monitoring of sintering ore temperature enabled by temporal fusion transformers
	﻿Mechanistic foundations for prediction
	﻿Mathematical mechanisms
	﻿Physical mechanisms
	﻿Chemical mechanisms

	﻿Methods
	﻿VAE-TCN
	﻿Encoder and latent space
	﻿Decoder and reconstruction
	﻿Joint loss function
	﻿Residual connections


	﻿TFT
	﻿Gated residual network (GRN)
	﻿Variable selection network (VSN)
	﻿Multi-head attention mechanism
	﻿Temporal fusion decoder
	﻿Loss function

	﻿Results
	﻿Slicing data expansion
	﻿Analysis of VAE-TCN training prediction
	﻿Analysis of TFT training
	﻿Analysis of TFT forecast results
	﻿Simulation results analysis

	﻿Discussion and conclusion
	﻿References


