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In the cross-modal medical image segmentation method, it is easy to ignore the dependence between 
spatial features and frequency features, and fine-grained frequency features are not fused effectively. 
To solve the above problems, this paper proposes a cross-modal segmentation network DBW-Net. 
The main innovation work are as follows: Firstly, a cross-modal dual-domain bi-direction feature 
interaction segmentation network DBW-Net is designed. there are 3 encoders and 1 decoder, the 3 
encoders are used to extract the features of PET/CT, PET and CT respectively. Secondly, a Cross-Modal 
Feature Extractor “from frequency to spatial " (CMFE(F-> S)) is designed in the encoder. The module 
converts the spatial map into multiple spectral maps by 2D Discrete Cosine Transform (2D DCT). Multi-
frequency cross-dimension attention is used to capture the correlation among multiple spectral maps 
feature in different dimension. so as to generate a refined frequency attention map. This module uses 
the refined frequency attention map to enhance modal feature and fuse cross-modal interaction, and 
completes the recalibration about input feature map. Thirdly, a Cross-modal Feature Coupler “from 
spatial to frequency” (CMFC(S->F)) is designed in the bottleneck layer. The module maps multi-modal 
information to the spatial and frequency domain through the spatial-frequency feature extractor, 
Cross-domain coupled attention is used to fuse the semantic gap between multi-modal fine-grained 
frequency features and spatial features. Finally, in order to verify the effectiveness of the proposed 
method, experiments are carried out on the clinical multi-modal lung tumor medical image dataset 
and the Brats2019 brain tumor public dataset. The experimental results show that for lung tumor 
segmentation, the Miou, Dice, Voe, Rvd and Recall are increased by 3.02%, 2.32%, 4.66%, 2.63% and 
4.16%, respectively. For brain tumor segmentation, the Miou, Dice, Voe, Rvd, Recall are increased 
by 3.06%, 2.31%, 4.68%, 2.64%, 5.76%, respectively. It shows that the model for complex shape 
lesion segmentation, has high precision and relatively low redundancy. It significantly improves the 
segmentation accuracy and robustness of the lesion area, and provides technical support for accurate 
identification and diagnosis of early lesions.
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Cancer, also known as malignant tumor, is a general term for all kinds of malignant tumors, and is one of 
the main diseases that endanger human life and health. In this background, the importance of medical image 
analysis is become more and more significance. It is a key means to realize the early detection of malignant 
tumors, thus providing the possibility to extend the life of patients1. With the continuous development of medical 
image technology, multi-modal medical images are gradually become research hotspot in the medical image 
analysis field2. According to the principle of imaging, medical images are divided into anatomical images and 
functional images. Anatomical images, such as high-resolution gray-scale magnetic resonance imaging (MRI) 
and computed tomography (CT) images, can clearly show the anatomical structure about tissues and organs. 
Functional images, such as pseudo-color positron emission tomography (PET) and single photon emission 
computed tomography (SPECT) images, accurately reflect functional information such as metabolic changes. 
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Positron Emission Tomography/Computed Tomography (PET/CT) is an important multi-modal medical image. 
It combines the high sensitivity of PET images in tumor detection with the advantages of anatomical details of CT 
images, it can effectively utilize the complementarity of different modality medical images in lesion information 
expression, and provide more comprehensive support for medical diagnosis and analysis.

Current multi-modal medical image segmentation methods realize feature complementation based on 
segmentation tasks by fusion the modal information, and complete the accurate identification of the lesion 
area. Zhou et al.3 proposed an interactive segmentation network Guide-YNet, which uses the lesion location 
information of PET images for feature guided learning, considering the characteristics of lesions in different 
modal medical images. Fu et al.4 introduced a framework based on deep learning, which used the multi-modal 
spatial attention module to automatically learn the spatial regions related to tumors, and then performed 
segmentation tasks on lesion regions. Kumar et al.5 to quantify the importance of each modal feature at different 
spatial locations, using a supervised convolution neural network for feature learning. Fan et al.6 proposed a 
Transformer backbone network, dual-flow multi-modal features fusion by using deformable cross-attention 
fusion module to continuous matching features. Hou et al.7 introduced a lightweight diffraction module, which 
successfully avoided the limitation of receptive field in traditional convolution operation, and designed a modal 
fusion diffraction network MFD-Net for automatic and accurate brain tumor segmentation. Gao et al.8 proposed 
a semantic segmentation network based on global features, which can effectively aggregate representative cross-
modal features for multi-modal semantic segmentation. The above shows that the combination of multi-modal 
images can obtain richer disease semantic information.

However, traditional multi-modal segmentation methods mostly focus on the extraction and fusion of spatial 
features. Lesion areas in medical images often show complex morphological structures and fuzzy boundaries, and 
it is difficult to capture the global semantic information and the complementary relationship between modals by 
using spatial domain method. The low frequency information of medical image reflects the general contour and 
structure of the image, and provides approximate features. High-frequency of medical image contains textures 
and details, capturing microscopic features. In order to better show the characteristics of frequency domain 
analysis in medical images, a space-frequency domain comparison experiment of multi-mode lung tumor 
medical images are done, and the specific results are shown in Fig. 1.

Figure  1 shows the differences of multi-modal lung tumor medical image (CT, PET, PET/CT) in spatial 
domain and frequency domain. The first column is the original spatial domain image, which can directly present 
the shape, boundary, density change, etc. of the tumor in the image. The second column is the low-frequency 
image, which corresponds to the region where the image brightness changes gently, preserving the main 
background and large-scale structure of the image, such as the contour of the tumor or the tissue distribution. 
The third column is the high-frequency image, which corresponds to the regions where the image brightness 
changes drastically, emphasizing the boundary features of the object, such as the boundaries of the tumor and 
the details of the tiny structures. The fourth column is the Fourier spectral distribution, which reveals the 
distribution pattern of spatial features in frequency of lung tumors medical.

As can be seen from Fig. 1, the boundary, texture and background of medical images have clear distribution 
characteristics in different frequency components of the frequency domain, which makes frequency domain 
analysis more advantageous in dealing with complex lesion structures. Therefore, for multi-modal medical 
images, how to effectively utilize the dependence between multi-modal spatial features and frequency domain 

Fig. 1.  Comparison map of multi-modal lung tumor medical images in space-frequency domain.
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information, and realize the efficient fusion of fine-grained frequency domain features for information 
complementarity, improving the feature extraction ability of the network. this paper proposes DBW-Net, a cross-
modal dual-domain bi-direction feature interaction semantic segmentation network. The main contributions 
are as follows:

	1.	 From the perspective of frequency domain and space domain, a cross-modal dual-domain bi-directional 
feature interaction semantic segmentation network DBW-Net is proposed, which is “from frequency domain 
to space domain” and “from space domain to frequency domain”. There are 3 encoders and 1 decoder, the 3 
encoders are used to extract the features of PET/CT, PET and CT respectively. The network makes full use of 
the modal information of PET and CT branches to supplement the information of the main branch of PET/
CT, enhances the feature expression ability, and realizes more accurate multi-modal medical image segmen-
tation.

	2.	 A cross-modal feature extractor “from frequency domain to spatial domain” (CMFE(F-> S)) is designed in 
the encoder. The module effectively utilizes the dependence of multi-modal spatial features on frequency 
domain information. The refined frequency-domain attention maps are used to apply complementary to the 
spatial input feature map, thereby enhancing the expressive abilities of the learned features and accurately 
locating the object of interest, resulting in better performance with fewer layers.

	3.	 Aiming at the problem of effective fusion of multi-modal spatial domain features and fine-grained frequency 
domain features, a cross-modal feature coupler “from spatial to frequency” (CMFC(S-> F)) is designed in 
the bottleneck layer. By effectively bridging the semantic gap between multi-modal image fine-grained fre-
quency domain features and spatial domain features, this module generates more powerful hybrid domain 
features. Through fully integrated multi-modal cross-domain information, significantly improve model ac-
curacy and reliability in tumor segmentation task.

Related work
Single-modal semantic segmentation method refers to the use of deep learning methods to segment tissues or 
lesions by relying on a certain type of medical image data (such as CT or MRI). Ronneberger et al.9 proposed a 
U-shaped structure network to extract medical image features. Zhang et al.10 proposed a lightweight Residual 
transformer UNet (MRC-TransUNet) method for medical image segmentation tasks. Yuan et al.11 proposed a 
multi-scale context fusion method based on U-shape encoder-decoder, which enriched the extracted semantic 
features and detailed information and improved the segmentation ability of the lesion area. Zhu et al.12 proposed 
a Self-Regularized UNet method to reduce feature redundancy through feature distillation and improve the 
network’s ability to extract effective features. Zhang et al.13 proposed a meningioma feature extraction model that 
combines radiomics and deep learning methods to improve the accuracy of brain tumor grading.

Multi-modal semantic segmentation refers to the technology of combining data from different medical 
imaging modalities (such as CT and PET) for semantic segmentation. Multi-modal medical image semantic 
segmentation method complements and enhances the lesion information of different modalities by fully 
interacting with different modal images, so as to achieve the purpose of accurate segmentation lesions. Zhou et 
al.14 proposed a Transformer segmentation model for cross-modal, cross-scale and cross-dimensional PET/CT 
images, which captured the effective information of each dimension of cross-modal images from the perspective 
of modality, scale and dimension. Lin et al.15 proposed a clinical knowledge-driven brain tumor segmentation 
model, which designed a modal-related cross-attention module and a Trans&CNN feature calibration module 
to perform modal feature enhancement and cross-modal interactive fusion. Xu et al.16 designed a cross-modal 
feature fusion strategy of dual-space graphs in the bottleneck layer of the U-Net framework network. From 
the perspective of global and semantic integration of multi-modal deep features, effectively obtain rich context 
information, and alleviate the feature differences between different modal. Diao et al.17 proposed a framework 
called MIFPN, which enhances model robustness by integrating modal invariance and modal specific 
information. Wang et al.18 proposed an improved network structure MPA-Net based on multi-modal parallel 
attention mechanism, which effectively fused high-dimensional features and low-dimensional features of images 
for segmentation tasks. However, the existing multi-modal image segmentation networks do not fully consider 
the information complementarity between different modal images.

Attention mechanism is a method that imitates human visual and perceptual ability, which aims to let the 
neural network focus on the most relevant part of the data to the task, so as to improve the performance of 
the model. Wang et al.19 proposed an efficient Channel Attention module (ECA), which generates channel 
attention through one-dimensional convolution determined by nonlinear mapping of channel dimensions. 
Misra et al.20 proposed a new method with multi-branch structure to generate cross-dimensional attention by 
capturing the attention weights of three dimensions. Hou et al.21 proposed a coordinated attention method 
that embeds location information into channel attention, which encodes the resulting feature map into a pair 
of direction-aware and location-sensitive attention maps. Zhang et al.22 proposed ResNeSt architecture, which 
integrates channel attention represented by multiple paths into a single unified segmentation attention block to 
improve network segmentation performance. Ouyang et al.23 proposed a multi-scale attention module (EMA), 
which encodes global information and interacts across dimensions to capture pixel-level refined features. 
Yu et al.24 proposed a multi-dimensional collaborative attention MCA, which can infer channel, height, and 
width attention simultaneously, and introduces almost no additional overhead. Zhou et al.25 proposed Cross-
modal Feature Fusion (CFF) and Adaptive Attention Fusion (AAF), which is used to fuse and enhance the 
complementary information of the three modalities. However, the above methods ignore the importance of 
frequency domain information, especially the dependence of spatial features on frequency domain information 
in multi-modal medical images. Therefore, this paper proposes a cross-modal feature extractor “from frequency 
domain to spatial domain” (CMFE(F-> S)) in the encoder, which aims to compensate multi-modal spatial 

Scientific Reports |        (2025) 15:43153 3| https://doi.org/10.1038/s41598-025-27269-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


features by refined frequency-domain attention map, highlighting the lesion area to enhance the interest object 
representation.

Frequency analysis in an image is a method to transform an image from the “spatial domain” to the 
“frequency domain”, and to analyze the image features in the frequency domain. At this point, the pixels in the 
traditional image no longer represent the spatial position of the image, but the frequency characteristics of the 
image brightness change. Common methods for frequency analysis include discrete cosine transform (DCT) 
and discrete wavelet transform (DWT). Among them, DCT is widely used in digital image and video processing 
because of its excellent energy concentration. In particular, DCT can represent most of the energy of the signal 
with fewer coefficients, thus achieving efficient compression while ensuring high quality. This property is very 
suitable for representing channel information in scalar form in the channel attention mechanism. As a powerful 
image transformation tool, DWT has shown unique advantages in deep learning, especially in processing low-
resolution images and detecting small objects. DWT can provide multi-scale decomposition ability and effectively 
enhance the feature representation ability of the network. For the above reasons, recently, the introduction of 
frequency analysis into CNN-based medical image segmentation tasks has become a research hotspot. Huang et 
al.26proposed a frequency domain learning method called FDAM, which uses intra-class frequency relationships 
to retain valuable frequency features for medical image segmentation and classification tasks. Azad et al.27 
proposed a frequency recalibrated U-Net (FRCU-Net) for medical image segmentation to segment skin lesions. 
Tang et al.28 proposed tKFC-Net to introduce frequency representation into convolutional neural networks. The 
proposed model combines frequency and spatial domain feature representations together for medical image 
segmentation tasks. Mu et al.29 proposed a frequency-domain attention-guided Cascade U-Net (FACU-Net) 
for spatially tunable segmentation of vascular systems. Chen et al.30 introduced Spatial Frequency Enhanced 
Network (SFE-Net), which promotes the consistency of features in the nucleus by fusing spatial frequency 
features to achieve accurate nucleus segmentation. However, the above methods cannot effectively solve the 
problem of effective fusion of multi-modal spatial domain features and fine-grained frequency domain features 
in multi-modal segmentation tasks. Therefore, this paper designs a cross-modal feature coupler “from spatial to 
frequency” (CMFC(S-> F)) in the bottleneck layer, which effectively bridges the semantic gap between multi-
modal fine-grained frequency domain features and spatial domain features. This module fully combines multi-
modal cross-domain information, enables the model to establish a more effective connection between functional 
and anatomical information, and can improve the detection and segmentation accuracy of tumor regions.

Method
The structure of DBW-Net, a cross-modal two-domain bidirectional feature interactive semantic segmentation 
network proposed in this paper, is shown in Fig.  2. Firstly, in order to make full use of the complementary 
information of different modal images, 3 encoders are designed to extract the image features of PET, PET\CT 
and CT respectively. Secondly, a Cross-Modal Feature Extractor “from frequency domain to spatial domain " 
(CMFE(F-> S)) is designed in the encoder. This module uses multi-frequency cross-dimensional attention to 
capture the correlation among multiple spectral maps in different dimensions and generates a refined frequency 
domain attention map. Through these refined frequency domain attention maps, the model can further optimize 
the performance of modal spatial features, enhance the interactive fusion of cross-modal features, and improve 
the complementarity of multi-modal information in segmentation tasks. Finally, a cross-modal feature coupler 
CMFC(S-> F) from spatial domain to frequency domain is constructed in the bottleneck layer. The core goal 
of this module is to supplement the fine-grained frequency domain features of PET and CT through the spatial 
features of PET/CT in the deep layer of the network, so as to obtain more powerful hybrid domain features. 
These hybrid domain features are able to contain more comprehensive lesion and tissue information, helping the 
model to identify tumors and other lesion regions more accurately. In general, by introducing the bidirectional 
feature interaction mechanism between frequency domain and spatial domain, and the deep fusion of cross-

Fig. 2.  Cross-modal dual-domain bi-direction feature interaction semantic segmentation network DBW-Net.
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modal features, DBW-Net can not only enhance the information expression ability in segmentation tasks, but 
also improve the accuracy and robustness of the model in processing multi-modal medical images.

Cross-modal feature extractor from frequency to spatial (CMFE(F-> S))
Motivation: Since the boundary, texture and background of multi-modal medical images are preserved in 
different frequency components, the multi-frequency information is crucial for building an effective multi-modal 
medical image segmentation model. Recent studies on neural network demonstrate that the frequency domain 
attention (FCANet)31 are very important for improving model performance. In this method, multiple frequency 
components are introduced to calculate the attention among channels to reduce the information loss caused 
by the average pooling of traditional channel attention (SE). By calculating the weight information generated 
by the correlation of multiple frequency components among channels, the recalibration of the input feature 
maps is completed, and the compensation is realized from “frequency domain information” to “spatial domain 
feature map”. However, it only calculates the frequency domain attention in the channel direction, ignoring the 
correlation information of other dimensions. This inevitably leads to the information loss. At the same time, for 
multi-modal medical images, how to effectively use the dependence of multi-modal spatial domain features on 
frequency domain information, that is very important in clinic.

Therefore, based on the above reasons, this paper proposes a cross-modal feature extractor CMFE(F-> S) 
“from frequency domain to spatial domain”, its structure is shown in Fig.  3A, which aims to make full use 
of the global information of each dimension in cross-modal multiple spectral maps. The method models the 
interdependencies among the channels, heights and widths of the input feature maps for each modality, and 
calibrates the feature maps to improve the representation ability. This module consists of two main steps: In the 
first step, the refined frequency domain attention map is captured by the multi-frequency cross-dimensional 
attention module. The second step is the interactive fusion stage. For the auxiliary branches of PET and CT, the 
generated refined frequency domain attention map is used to recalibrate the input feature map. For the main 
branch of PET/CT, the refined frequency domain attention map of PET, CT and PET/CT is fused, the cross-
modal refined frequency-domain attention maps of each modality are fully interacted, and the input feature map 
of the PET/CT branch is recalibrated.

Multi-frequency cross-dimensional attention module (MFCDA)
The proposed multi-frequency cross-dimensional attention module is shown in Fig. 3B. For a given input feature 
map XS

i ∈ RCS× HS× WS (Here i represents the output of the ith layer encoder, i = 1,2,3; S denotes which 
modal branch, S = PET, PET/CT, CT.),the spatial domain feature map is converted into k frequency domain 
feature maps by 2D DCT(Here, the number of frequency components k value is selected as 4, and the k value is 
selected as described in the ablation experiment.). The formula for performing the 2D DCT transform is stated 
as follows:

	 D
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H
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2D DCT basic image is defined as D
uk,vk
h,w , with top-k selection strategy31. XS,k

i  represents the frequency 
domain feature map with frequency component (uk, vk) selected by 2D DCT transformation. In particular, 

Fig. 3.  Cross-modal feature extractor from frequency to spatial (CMFE(F-> S)).
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when the frequency component is selected as (0,0), the feature map XS,0
i  is a special frequency domain feature 

map, and its essence is a spatial domain feature map. The formula XS,0
i  is stated as follows:
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After that, each frequency domain feature map XS,k
i  is processed by the Cross-dimensional squeeze module 

(CDSM) to generate k groups of cross-dimensional attention weight vectors (Each group contains three 
dimensions C, H and W). Then, the above k groups of attention weight vectors are processed by the Multi-
Frequency Cross-dimensional Excitation Module (MFCDEM) to generate the selective attention map X̂S

i  with 
refined frequency domain features. Finally, these attention maps can be applied complementary to input feature 
maps for enhance the interested object representation. The specific process is as follows:

Cross-dimensional squeeze module (CDSM): The cross-dimensional squeeze module consists of 
three parallel branches as shown in Fig.  3C. The top two branches are responsible for capturing feature 
interdependencies in spatial dimensions H and W, respectively, while the last branch is used to capture inter-
channel interactions. Specifically, let XS,k

i ∈ RC× H× W  be the input feature map of the CDSM module. In 
the top branch, XS,k

i  is first rotated 90° counterclockwise along the W axis, and the resulting rotated feature 
map is denoted as F S,k

H ∈ RH× C× W . To model the long-range dependency between the channel dimension 
and the spatial dimension W, F S,k

H  is average pooling along the H dimension as well as Max pooling, and 
the resulting aggregated feature vector is described as F̂ S,k

H . F̂ S,k
H  is then processed by 1 × 3 Conv to capture 

the interaction between features in the H dimension. The resulting H direction feature weights are denoted as 
F̂ ′

S,k

H ∈ RH× 1× 1.

Finally, F̂ ′
S,k

H  is rotated 90° clockwise along the W axis, and the resulting aggregated feature vector 
F ′ S,k

H ∈ R1× H× 1 is the output of the top branch. The specific calculation process is as follows:

	 F̂ S,k
H = AvgH
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w
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� (4)
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Among them, P Mw  operation means 90° clockwise Permute rotation along W axis, and P M−1
w  operation 

means 90° anticlockwise Permute rotation along W axis. AvgH  represents the average pooling along the H 
dimension direction, and MaxH  represents the maximum pooling along the H dimension direction.

Similarly, the aggregated feature vector F ′ S,k
W  for the middle branch and the aggregated vector F ′ S,k

C  for 
the bottom branch can be obtained. This process can be summarized as the following equation:

	 F̂ S,k
W = AvgW
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Multi-frequency Cross-dimensional excitation module (MFCDEM): As shown in Fig. 3D, the Multi-frequency 
cross-dimensional Excitation Module (MFCDEM) aims to fully interact the cross-dimensional effective 
information among multiple frequency feature maps. Firstly, the module calculates the mean value of multiple 
groups of frequency domain cross-dimensional weight vectors according to the dimension category, and 
obtains the multi-frequency cross-weight vectors Cavgweight, Havgweight, Wavgweight.Then, the above multi-
frequency cross-dimensional weight vector is processed by 1×k convolution, and the dimensional information 
among multi-frequency feature maps is fully interacted to obtain the cross-frequency cross-dimensional weight 
vector C′ avgweight, H′ avgweight, W ′ avgweight. After that, the cross-frequency and cross-dimension weight 
vectors are expanded to obtain the attention weight feature maps Fc_weight, Fh_weight, Fw_weight. Finally, 
the above three attention weight feature maps are added to obtain the refined frequency domain attention map 
X̂S

i . The above process can be summarized as the following equation.

	




Cavgweight = 1
k

∑
k
i=1F ′ s,i

C

Havgweight = 1
k

∑
k
i=1F ′ s,i

C
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k
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� (9)

	
X̂S

i = ExpandC×H×W (Conv1×3 (Cavgweight)) ⊕ ExpandC×H×W (Conv1×3 (Cavgweight))
⊕ ExpandC×H×W (Conv1×3 (Cavgweight))

� (10)

Interactive fusion stage
The output of the three modal feature maps processed by MFCDA module is denoted as X̂P ET

i , X̂
P ET/CT
i , X̂CT

i  
respectively. For the main branch of PET/CT, the weight feature map FConcat obtained by Concat aggregation 
of refined frequency domain attention map X̂P ET

i , X̂
P ET/CT
i , X̂CT

i . Then FConcat interactively calculates 
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the weight information of each modality through 1 × 1Conv processing, and then activates it by the Sigmoid 
function. Finally, the activated refined frequency domain weight feature map is multiplied with the input feature 
map X̂P ET

i  of the PET/CT branch to obtain the recalibration of the feature map X̂P ET CT
i . For the PET 

and CT auxiliary branches, the refined frequency domain attention maps X̂P ET
i  and X̂CT

i  are activated by 
Sigmoid, and then multiplied with the input feature maps XP ET

i  and XCT
i  of the PET and CT branches, 

respectively, to obtain the recalibration of the PET and CT branch feature maps. Through the above methods, 
not only the feature extraction ability of PET and CT modal is enhanced, but also the information of the other 
two modal is aggregated for the main branch of PET/CT, and the dependence of multi-modal spatial domain 
features on frequency domain information is effectively used to improve the extraction ability of the network.

Cross-modal feature coupler from spatial to frequency CMFC (S-> F)
Considering that the low-frequency information of PET images shows the area with slow change of gray value, 
which corresponds to the macroscopic structural characteristics of the lesion area with abnormal vigorous 
glucose metabolism and the surrounding tissue background. The high frequency information of CT image is 
manifested as the area with rapid change of gray value, which reflects the detail characteristics of the boundaries 
and textures of tissues, organs and lesions. PET/CT images combine the advantages of PET and CT, and directly 
extracting features in the spatial domain can retain its comprehensiveness and global complementarity. Therefore, 
in order to make full use of the multi-modal cross-domain high-level semantic information, this paper designs 
a cross-modal feature coupler “from spatial domain to frequency domain” CMFC(S-> F) in the bottleneck layer. 
This module aims to supplement the information of the fine-grained frequency domain features of PET and CT 
through the spatial features of PET/CT, to obtain more powerful hybrid domain features. As shown in Fig. 4A, 
the multi-modal features extracted from the last layer of the encoder are mapped to the spatial and frequency 
domains using the Multi-modal Space-frequency Feature Extraction module (MMSFEM). Then, in order to 
fit the semantic gap between frequency domain and spatial domain features and promote the combination of 
features from different representation domains, this paper designed cross-domain Coupled Attention (CDFA). 
CDFA is used to align, select and combine fine-grained high-frequency features, spatial features and fine-grained 
low-frequency features to obtain hybrid domain features. Finally, the deep cross-domain semantic information 
of multi-modal features is fully fused. By combining the cross-domain information of the three modalities in the 
above way, the model can establish a more effective connection between functional and anatomical information, 
which can improve the detection and segmentation accuracy of tumor regions.

Multi-modal space-frequency feature extraction module (MMSFEM)
The module consists of three parallel branches, which are used to extract low-frequency information of PET 
image features, spatial information of PET/CT image features and high-frequency of CT image respectively. The 
multi-modal features extracted by the last encoder are mapped into spatial and frequency domains, as shown 
in Fig. 4B. Specific operations are as follows: For the high-level semantic feature Y P ET  of the PET branch, the 
Haar wavelet transform is used for down-sampling to convert Y P ET  into four frequency domain components, 
one of which is the low frequency component Y P ET

A , and the other three are the horizontal, vertical and 
diagonal high frequency components Y P ET

H , Y P ET
V  , Y P ET

D . Then, the feature representation of the low-
frequency information is learned by 1 × 1Conv, and the fine-grained low-frequency feature Ŷ P ET

L  is obtained. 

Fig. 4.  Cross-modal feature coupler from spatial to frequency (CMFC(S-> F)).
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For the high-level semantic feature Y P ET/CT  of PET/CT branch, Max pooling is used for downsampling, and 
then the spatial feature Ŷ

P ET/CT
S  is obtained by twice 3 × 3 Conv, BN and Relu. For the high-level semantic 

feature Y CT  of CT branch, the Haar wavelet transform is also used for downsampling to convert Y CT  into 
4 frequency domain components, and the low frequency component Y CT

A  and 3 different directions of high 
frequency components Y CT

H , Y CT
V  , Y CT

D  are obtained. After that, the high frequency components of the 3 
directions are aggregated by Concat. Finally, the 1 × 1 Conv is used to perform feature representation learning of 
high-frequency information, and the fine-grained high-frequency feature Ŷ CT

H  is obtained.
Taking the input of CT branch Y CT ∈ RC× H× W  as an example, the Haar wavelet transform is performed 

to transform each channel feature Y CT
C ∈ RH× W  into a low frequency component and 3 high frequency 

components in different directions are shown in Formula (11) and (12):

	

{
Ac (i, j) = Y CT

C (i,2j−1)+Y CT
C (i,2j)

2
Dc (i, j) = Y CT

C (2i − 1, j) − Y CT
C (2i, j)

� (11)

	





Ac = AAc (i, j) = Ac(i,2j−1)+Ac(i,2j)
2

Hc = ADc (i, j) = Dc(i,2j−1)+Dc(i,2j)
2

Vc = DAc (i, j) = Ac (i, 2j − 1) − Ac (i, 2j − 1)
Dc = DDc (i, j) = Dc (i, 2j − 1) − Dc (i, 2j)

� (12)

Where Ac (i, j) represents the low-frequency approximation coefficient of channel C, Dc (i, j) represents the 
high-frequency detail coefficient of channel C. The range of i is i ∈ (1, H), and the range of j is j ∈ (1, W/2). 
Then, the Haar wavelet transform is applied to the approximation coefficient and detail coefficient of each column, 
where Ac is the single-channel approximation coefficient, Hc is the single-channel horizontal detail coefficient, 
Vc is the single-channel vertical detail coefficient, Dc is the single-channel diagonal detail coefficient. The 
range of i is i ∈ (1, H/2), and the range of j is j ∈ (1, W/2). Finally, the 3 high-frequency components are 
concatenated and then point convolution is performed for low-dimensional mapping to obtain the final fine-
grained high-frequency features. The specific formula is shown in Formula (13):

	 Ŷ CT
H = fW H

(
Y CT

)
=

(
ρ

(
δ1×1

(
Concat

(
Y CT

H , Y CT
V , Y CT

D

))))
� (13)

Similarly, for the PET branch, the mathematical description of the fine-grained low-frequency characteristics is 
shown in Formula (14):

	 Ŷ P ET
L = fW L

(
Y P ET

)
=

(
ρ

(
δ1×1

(
Y P ET

A

)))
� (14)

Where Ŷ CT
H ∈ RC× H× W  represents fine-grained high-frequency features, Ŷ P ET

L ∈ RC× H× W  represents 
fine-grained low-frequency features, ρ (• )represents batch normalization calculation, and δ k× k  represents 
the size of convolution kernel k×k.

Cross-domain coupled attention (CDCA)
Frequency domain features and spatial domain features reflect different aspects and properties of images, but 
due to their semantic differences, semantic alignment is required to ensure consistency and complementarity. 
To achieve semantic alignment, feature selection of frequency and spatial domain features, Cross-Domain 
Coupled Attention (CDCA) is designed, as shown in Fig. 4C. The module consists of two parallel branches in 
frequency domain and spatial domain. Each branch consists of 3 one-dimensional convolution with different 
kernel sizes. The frequency domain branch encodes multi-scale context information in vertical direction, and 
then aggregates cross-domain attention features in horizontal direction. The spatial branch encodes multi-scale 
context information along the horizontal direction, and then fuses features along the vertical cross-domain 
attention. In the following, the fine-grained high-frequency feature Y CT

H  and the spatial feature Y
P ET/CT

S  are 
taken as examples to explain the working mechanism behind CDCA.

Firstly, the frequency domain features and spatial domain features are mapped to a unified scale using scale 
mapping, that is, vertical and horizontal bar convolution at different scales are used to process each feature, 
secondly, they are connected and mapped to a unified scale matrix Q, K, and V using 1 × 1 convolution as 
input for the next stage. Then two matrices (Q1, K1, V1) and (Q2, K2, V2) are obtained respectively for spatial 
domain features and fine-grained frequency domain features. Finally, Cross-Domain Coupled Attention is used 
for feature fusion. Specifically, for the frequency domain branch, the frequency domain features after unified 
scale are regarded as the key value matrix K1, V1, and the spatial features are regarded as the query matrix Q2. 
Similarly, for the spatial branch, the unified scale spatial feature is regarded as the key-value matrix K2, V2, and 
the fine-grained frequency domain feature is regarded as the query matrix Q1, and then the cross-attention 
calculation is performed. The calculation process is shown in Formula (15), (16), (17) and (18):

	
Q1, K1, V 1 = fms

(
Y CT

H

)
= δ1×1

(
2∑

i=0
Conv1Dy

i

(
Norm

(
Y CT

H

)))
� (15)

	
Q2, K2, V 2 = fms

(
Y P ET CT

S

)
= δ1×1

(
2∑

i=0
Conv1Dx

i

(
Norm

(
Y P ET CT

S

)))
� (16)
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Attn (Q, K, V ) = Softmax

(
QKT

√
d

)
V � (17)

	 F1 = δ1×1 (Attn (Q2, K1, V 1)) ⊕ δ1×1 (Attn (Q1, K2, V 2)) � (18)

Here, Conv1Dy
i , Conv1Dx

i  represent one-dimensional convolutions along vertical and horizontal 
directions, δ k× k  represent convolutions with kernel size k×k. For the kernel sizes of 1D convolutions, they 
are set to 1 × 7, 1 × 11 and 1 × 21, respectively. Norm (• ) is layer normalization, and fms (• ) represents the 
multiscale mapping operation. Q, K, V are the matrices after using multi-scale orthogonal convolution operation, 
F1 is the output of CDCA.

Experiments
Dataset and implementation details
To evaluate the method proposed in this paper, the effectiveness of DBW-Net is verified using the clinical multi-
modal lung tumor medical image dataset and the Brats2019 public brain tumor dataset32. The specific situation 
is as follows:

Ⅰ: This study collected 90 clinical patients with lung tumors who underwent PET/CT whole-body 
examinations using private datasets in the nuclear medicine department of a tertiary hospital in Ningxia. Each 
patient had 500 PET/CT, PET, and CT images. The labels of these datasets are manually defined by clinicians 
after referring to multi-modal medical images of the lungs. The dimensions of the obtained doctor-labeled CT, 
PET and PET/CT two-dimensional sections are 356 pixels ×356 pixels. After data augmentation processing such 
as rotation and mirroring, the image size is adjusted to 256 pixels ×256 pixels through Resize processing. Finally, 
the sample sizes of the three modal image datasets are 1,770 respectively, among which 1,416 are divided into 
the training set and 354 into the test set.

Ⅱ: Due to the particularity of the multi-modal lung tumor dataset used in this chapter, there are currently 
no publicly available datasets on multi-modal lung tumors. To ensure the consistency of the experiment, our 
method is evaluated on the open dataset of the Multi-modal Brain Tumor Segmentation Challenge (BraTS) in 
2019. We processed the BraTS (2019) dataset as follows: In our experiment, data from FLAIR, T1 and T2 modes 
are selected, with 259 3D image data selected for each mode. For each three-dimensional image, the longitudinal 
slicing method is adopted, and the slices are made into two-dimensional images and saved in PNG format. Then, 
through resizing processing, the image size is adjusted to 256 pixels ×256 pixels. Finally, the sample size of the 
three modal image datasets is 1,745, of which 1,396 are divided into the training set and 349 into the test set.

Experimental environment and parameter setting
Experimental environment: The model in this chapter is implemented based on Pytorch, laboratory hardware 
environment server Intel(R) Xeon(R) Gold 6154 CPU, memory 256GB, graphics card NVIDIA TITAN V, 
python3.7, PyTorch1.7.0, CUDA version is 11.1.106. In this chapter, we used the Adam optimizer.

Experimental parameters: In the parameter setting, the training period is 100, the learning rate is 0.0001, 
and the batch size is 4 to ensure that the model parameters are updated faster and converge at the global optimal 
point. The binary cross-entropy loss function is used to reflect the gap between the predicted value and the actual 
value of the model, and Miou is used as a reference to update the weight during the training process.

Evaluation metrics
As shown in Table  1, in order to objectively and comprehensively evaluate the segmentation effect of this 
network and compare it with other methods, this chapter based on the prediction results of the model, The 
Mean Intersection over Union (Miou), Dice Similariy Coefficient (Dice), Recall, Volumetric Overlap Error 
(Voe), Relative Volume Difference (Rvd), Haudorff distance (HD) to evaluate the performance of DBW-Net. 
To avoid ambiguity, we further standardize the parameter definition: TP (True Positive) : the region correctly 
segmented as a lesion; TN (True Negative): Region correctly segmented as normal tissue; FP (False Positive) : 
an area that is actually normal tissue but is incorrectly segmented as a lesion; FN (False Negative) : an area that 
is actually diseased but incorrectly segmented as normal tissue; P: the target pixel region predicted by the model 
(prediction); G: the target pixel region in the label value (ground truth); abs means taking the absolute value of 
the result.

Experimental design and analysis
To evaluate the segmentation model in this paper, a large number of experiments are conducted in this chapter. 
The experiment is conducted from the following aspects:

Evaluationin index Definition Evaluation index Definition

MIoU Miou = 1
k+1

∑
k
i=0

T P
T P +F N+F P Voe Voe = abs

(
1 −

∣∣ P ∩ G
P ∪ G

∣∣)

Dice Dice = 2× T P
F N+T P +F P +F P Rvd Rvd = abs

(
P −G

G

)

Recall
Recall = T P

T P +F N HD HD (G, P) = max
{

max
g∈ G

min
p∈ P

?g − p?, max
p∈ P

min
g∈ G

?p − g?
}

Table 1.  Evaluation indicators.
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	(1)	 Comparative experiments: This group of experiments conducted comparative experiments on multi-modal 
lung tumors and multi-modal brain tumors respectively. By comparing with single-modal and multi-modal 
segmentation networks, the effectiveness and advancement of the methods proposed in this chapter are 
verified.

	(2)	 Ablation Experiment: This group of experiments is divided into two parts. The first part conducts ablation 
experiments on the method proposed in this paper, verifying the effectiveness and necessity of introducing 
the proposed method into the medical image segmentation task on two datasets. The second part con-
ducted ablation experiments within the CMFE (F-> S) module and the CMFC(S-> F) module on the mul-
ti-modal lung tumor dataset. The selection of the number k of frequency components in the CMFE (F-> 
S) module of the cross-modal feature extractor is verified, as well as the rationality of using low-frequency 
information for PET and high-frequency information for CT in the modal feature mapping strategy of the 
CMFC (S-> F) module.

Comparison experiment
In the comparison experiment in this section, the experimental results as shown in Table 2, seven single-modal 
networks and four multi-modal networks are set up, and there are eleven groups of comparison experiments in 
total, among which U-Net, AttUnet, SeResUnet, UTNet, MsTGANet, TransUnet and DconnNet are all single-
mode networks. Guide-Ynet, C3TMUNet, MEAUNet and MdCo-Unet are multi-modal segmentation networks 
that use three types of modal images as input.

For the multi-modal lung tumor dataset, PET/CT images rich in anatomical and metabolic information 
of the lesion are used as the training samples. The multi-modal network adopts three modal images, namely 
CT, PET and PET/CT, as the input of the multi-modal segmentation network. As shown in Fig.  5, for the 
single-modal network, Unet and TransUnet showed incomplete lesion segmentation in the boundary area (as 
shown in the fourth row, column 5 and column 10). AttUnet, SeResUnet, UTNet, MsTGANet, and DconnNet 
showed obvious over-segmentation in the lesion area (as shown in columns 6, 7, 8, 9, and 11 of the second row). 
These phenomena reflect that the traditional single-modal spatial feature extraction method still has obvious 
shortcomings in tumor boundaries, low-contrast regions and small lesions. In contrast, the multimodal network 
improves the overall segmentation effect, but Guide-Ynet and MEAUNet are not sensitive to small lesions (as 
shown in the fifth row, column 12 and column 14), C3TMUNet and MdCo-Unet appear to be not sensitive to 
the edge of complex lesions. The phenomenon that results in incomplete lesion segmentation (as shown in the 
third row, column 13, and the fourth row, column 15). As shown in Table 2, compared with the sub-optimal 
experimental results, the proposed method improves the Miou, Dice, VOE, RVD and Recall results by 0.72%, 
0.47%, 1.16%, 0.39% and 0.69%, respectively.

To further verify the generalization ability of the method proposed in this paper on other multi-modal tumor 
datasets, this paper also conducted comparative experiments on multi-modal brain tumor datasets, in which 
the single-modal network took Flair images as the network input. The multi-modal network adopts Flair, T1 
and T2 modal images as the input of the multi-modal segmentation network. As shown in Fig. 6, for the single-
modal networks Unet, AttUnet, SeResUnet, UTNet, and MsTGANet, different degrees of lesion segmentation 
are incomplete (as shown in columns 5, 6, 7, 8, 9, and 10 of the fourth row). DconnNet suffers from over-
segmentation (as shown in the fourth row, column 11). For multimodal networks, the segmentation effect is 
improved. However, Guide-Ynet and C3TMUNet are not sensitive to the edges of complex lesions, resulting 

Method

Lung tumor DataSet Brats2019 DataSet

Miou↑(%) Dice↑(%) VOE↑(%) RVD↑(%) Recall↑(%) HD↓ Miou↑(%) Dice↑(%) VOE↑(%) RVD↑(%) Recall↑(%) HD↓
Unet9 76.96 86.04 82.99 83.08 87.20 1.87 67.45 77.25 63.27 71.73 73.78 4.48

AttUnet34 78.22 87.09 84.29 84.28 87.59 1.85 65.70 74.78 58.49 71.32 72.18 4.54

SeResUnet36 77.06 85.93 81.65 82.35 86.04 1.86 66.73 77.01 65.65 73.26 74.72 4.53

UTNet38 75.14 84.53 81.21 82.61 84.99 1.94 72.84 82.83 77.92 75.86 84.09 4.33

MsTGANet35 77.98 86.78 83.48 83.79 86.92 1.86 77.55 86.25 82.05 84.34 84.35 3.94

TransUnet37 77.70 86.45 82.99 84.65 85.45 1.86 67.58 78.82 73.26 73.44 76.63 4.54

DconnNet39 77.23 86.39 83.48 82.33 88.02 1.87 78.23 86.97 85.99 85.83 88.34 4.02

Guide-Ynet3 79.72 87.98 84.60 84.84 87.63 1.78 78.23 87.19 86.55 86.88 87.09 4.04

C3TMUNet14 80.59 88.72 85.47 85.77 87.97 1.80 81.87 89.51 87.55 87.94 89.39 3.78

MEAUNet33 80.09 88.43 85.27 86.19 86.86 1.78 79.48 87.61 83.01 85.38 85.20 3.89

MdCo-Unet25 79.81 87.95 84.11 84.65 87.96 1.81 79.12 87.50 84.42 85.18 87.47 3.94

Ours 81.31 89.19 86.63 86.58 88.66 1.78 82.79 90.03 88.53 88.92 90.32 3.74

Ratiohighest(↑) 0.72% 0.47% 1.16% 0.39% 0.69% 0.00 0.92% 0.52% 0.98% 0.98% 0.93% 0.04

Ratiolowest(↑) 6.17% 4.66% 5.42% 4.23% 3.67% 0.16 17.09% 15.25% 30.04% 17.6% 18.14% 0.80

Table 2.  The comparative experiment results (underline: best; italics: second best; bold: lowest). Ratiohighest 
(↑)represents the ratio of DBW-Net experimental results to the results of the highest results among the 
comparison methods in Miou, Dice, VOE, RVD, and Recall. Ratiolowest (↑) represents the ratio of DBW-Net 
experimental results to the results of the lowest results among the comparison methods in Miou, Dice, VOE, 
RVD, and Recall.
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in incomplete lesion segmentation (as shown in columns 12 and 13 in the fourth row).MEAUNet has an over-
segmentation phenomenon (as shown in column 13 of row 5).There is an undersegmentation phenomenon in 
MdCo-Unet (as shown in the first row and column 15 of the fifth row). Table 2 shows the experimental results 
of the comparison between the proposed network and the other 11 networks. Compared with the suboptimal 
results of Miou, Dice, VOE, RVD and Recall, the proposed method improves the results by 0.92%, 0.52%, 0.98%, 
0.98% and 0.93%, respectively.

The above results show that the existing methods are not sufficient for the extraction and fusion of cross-modal 
space-frequency features. However, the proposed method has the largest coverage of the coordinate axes of each 
evaluation index in radar Figs. 7 and 8, indicating that the model has obvious advantages in overall performance. 
This performance improvement is mainly due to the cross-modal two-domain bidirectional feature interaction 
mechanism proposed in this paper. This bidirectional interaction mechanism of “the compensation of frequency 
domain features to spatial features + the feedback of spatial features to frequency domain fusion” enables the 
model to have stronger feature expression power in areas with complex lesion structures and significant modal 
differences, thus achieving better performance in multimodal segmentation tasks.

Ablation experiment
The ablation experiments in this paper are divided into two parts. The first part conducts ablation experiments on 
the method proposed in this paper, verifying the effectiveness and necessity of introducing the proposed method 
into the medical image segmentation task on two datasets. The second part conducted ablation experiments 
within the CMFE (F-> S) module and the CMFC (S-> F) module on the multi-modal lung tumor dataset. The 
selection of the number k of frequency components in the CMFE (F-> S) module of the Cross-Modal Feature 
Extractor is verified, as well as the necessity of using low-frequency information for PET and high-frequency 
information for CT in the modal feature mapping strategy of the CMFC (S-> F) module.

Ⅰ: As shown in Table 3, this section will conduct ablation experiments on the method proposed in this 
paper on two datasets. A total of four sets of experiments have been designed to verify the necessity of adding 
the method proposed in this paper to the network. The first experiment is based on the U-Net structure of three 
encoders and one decoder. Experiment 2 is based on the encoder of Experiment 1 and adds the CMFE (F-> S) 
module. Compared with Experiment 1, for the multi-modal lung tumor dataset, the Miou, Dice, VOE, RVD 
and Recall indices of Experiment 2 increased by 2.6%, 2.05%, 4.02%, 2.08% and 3.83% respectively, and the HD 

Fig. 6.  Comparative experimental visual segmentation result map of BtraTS brain tumor.

 

Fig. 5.  Comparative experimental visual segmentation result map of lung tumor medical images.
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index decreased by 0.09. For the multi-modal brain tumor dataset, the Miou, Dice, VOE, RVD and Recall indices 
of Trial 2 increased by 1.41%, 1.37%, 3.63%, 1.91% and 3% respectively. Experiment 3 is based on the encoder 
of Experiment 1 and adds the CMFC (S-> F) module. Compared with Experiment 1, for the multi-modal lung 
tumor dataset, the Miou, Dice, VOE, RVD and Recall indices of Experiment 3 increased by 2.37%, 1.89%, 4.17%, 
2.16% and 3.81% respectively. For the multi-modal brain tumor dataset, the Miou, Dice, VOE, RVD and Recall 
indices of Trial 3 increased by 0.96%, 0.72%, 1.12%, 0.16% and 2.85% respectively. Experiment 4 is the network 
proposed in this paper. For the multi-modal lung tumor dataset, the Miou, Dice, VOE, RVD and Recall index 
of Experiment 3 increased by 3.02%, 2.32%, 4.66%, 2.63% and 4.16% respectively. For the multi-modal brain 
tumor dataset, the Miou, Dice, VOE, RVD and Recall indices of Trial 3 increased by 3.06%, 2.31%, 4.68%, 2.64% 
and 5.76% respectively. Furthermore, in radar Figs. 9 and 10, the proposed model has the largest comprehensive 
coverage on the Miou, Dice, VOE, RVD, Recall, and HD evaluation index coordinate axes, which proves the 
effectiveness and necessity of adding the proposed method to the network.

II: As shown in Table 4, this subsection will conduct ablation experiments within the CMFE (F-> S) and 
CMFC (S-> F) modules proposed in this paper on the multi-modal lung tumor clinical dataset. A total of five 
sets of experiments have been designed for each module to verify the selection of the number k of frequency 
components in the CMFE (F-> S) module respectively. And the rationality of using low-frequency information 
for PET and high-frequency information for CT in the modal feature mapping strategy of the CMFC (S-> F) 
module.

Architecture

Lung tumor DataSet Brats2019 DataSet

Miou↑ Dice↑ VOE↑ RVD↑ Recall↑ HD↓ Miou↑ Dice↑ VOE↑ RVD↑ Recall↑ HD↓
Baseline 78.29 86.87 81.97 83.95 84.50 1.88 79.73 87.72 83.85 86.28 84.56 3.81

+ CMFE(F-> S) 80.89 88.92 85.99 86.03 88.33 1.79 81.14 89.09 87.48 88.19 87.56 3.81

+ CMFC(S-> F) 80.66 88.76 86.14 86.11 88.31 1.77 80.69 88.44 84.97 86.44 87.41 3.82

Ours 81.31 89.19 86.63 86.58 88.66 1.78 82.79 90.03 88.53 88.92 90.32 3.74

Table 3.  Results of the module ablation experiment.

 

Fig. 8.  BraTS brain tumor comparison.

 

Fig. 7.  Lung tumor comparison experimental radar map.
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For the ablation experiment of CMFE (F-> S), Experiment 1 is based on the U-Net structure of three encoders 
and one decoder. Experiment 2 is based on Experiment 1 and adopted the CMFE module with the frequency 
component k = 1. Compared with Experiment 1, for the multi-modal lung tumor dataset, the Miou, Dice, VOE, 
RVD and Recall index of Experiment 2 increased by 1.27%, 0.81%, 1.59%, 0.91% and 3.02% respectively. The 
HD index decreased by 0.05. Experiment 3 is based on Experiment 1 and adopted the CMFE module with 
the frequency component k = 2. Compared with Experiment 1, for the multi-modal lung tumor dataset, the 
Miou, Dice, VOE, RVD and Recall index of Experiment 3 increased by 1.93%, 1.52%, 3.12%, 1.51% and 2.91% 
respectively. The HD index decreased by 0.06. Experiment 4 is based on Experiment 1 and adopted the CMFE 
module with frequency component k = 8. Compared with Experiment 1, for the multi-modal lung tumor 
dataset, the Miou, Dice, VOE, RVD and Recall index of Experiment 4 increased by 2.14%, 1.79%, 3.72%, 1.89% 
and 3.63% respectively. The HD index decreased by 0.08. Experiment 5 is based on Experiment 1 and adopted 
the CMFE module with the frequency component k = 4. Compared with Experiment 1, for the multi-modal 
lung tumor dataset, the Miou, Dice, VOE, RVD and Recall index of Experiment 5 increased by 2.6%, 2.05%, 
4.02%, 2.08% and 3.83% respectively. The HD index decreased by 0.09. Furthermore, in radar Fig. 11, the CMFE 

Architecture

CMFE ablation

Architecture

CMFC ablation

Miou Dice VOE RVD Recall HD Miou Dice VOE RVD Recall HD

Baseline 78.29 86.87 81.97 83.95 84.50 1.88 Baseline 78.29 86.87 81.97 83.95 84.50 1.88

+ CMFE(k = 1) 79.56 87.68 83.56 84.86 87.52 1.83 + CMFC(PETH,CTH) 80.30 88.44 84.72 85.85 86.72 1.79

+ CMFE(k = 2) 80.22 88.39 85.09 85.46 87.41 1.82 + CMFC(PETL,CTL) 80.45 88.62 85.45 86.25 87.54 1.79

+ CMFE(k = 8) 80.43 88.66 85.69 85.84 88.13 1.80 + CMFC(PETH,CTL) 79.75 88.01 83.79 85.21 85.95 1.81

+ CMFE(k = 4) 80.89 88.92 85.99 86.03 88.33 1.79 + CMFC(PETL,CTH) 80.66 88.76 86.14 86.11 88.31 1.77

Table 4.  The internal ablation experimental results of the CMFE module and the CMFC module.

 

Fig. 10.  BraTS brain tumor ablation experimental radar map.

 

Fig. 9.  Lung tumor ablation experimental radar map.
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module with the frequency component k = 4 has the largest comprehensive coverage on the Miou, Dice, VOE, 
RVD, Recall, and HD evaluation index coordinate axes, which proves the effectiveness and necessity of the 
CMFE module when the frequency component k = 4 is adopted.

For the ablation experiment of CMFC (S-> F), Experiment 1 is based on the U-Net structure of three 
encoders and one decoder. Experiment 2 is based on Experiment 1 and adopted the CMFC module using high-
frequency PET and high-frequency CT. Compared with Experiment 1, for the multi-modal lung tumor dataset, 
the Miou, Dice, VOE, RVD and Recall index of Experiment 2 increased by 2.01%, 1.57%, 2.75%, 1.9% and 2.22% 
respectively. The HD index decreased by 0.09. Experiment 3 is based on Experiment 1 and adopted the CMFC 
module with low-frequency PET and low-frequency CT. Compared with Experiment 1, for the multi-modal 
lung tumor dataset, the Miou, Dice, VOE, RVD and Recall indices of Experiment 3 increased by 2.16%, 1.75%, 
3.48%, 2.3% and 3.04% respectively. The HD index decreased by 0.09. Experiment 4 is based on Experiment 1 
and adopted the CMFC module with high-frequency PET and low-frequency CT. Compared with Experiment 1, 
it is aimed at the multi-modal lung tumor dataset. The Miou, Dice, VOE, RVD and Recall. indices of Experiment 
4 increased by 1.46%, 1.14%, 1.82%, 1.26% and 1.45% respectively, while the HD index decreased by 0.07. 
Experiment 5 is based on Experiment 1 and adopts the CMFC module that uses low-frequency PET and high-
frequency CT. Compared with Experiment 1, it is aimed at the multi-modal lung tumor dataset. The Miou, Dice, 
VOE, RVD and Recall indices of Experiment 5 increased by 2.37%, 1.89%, 4.17%, 2.16% and 3.81% respectively, 
and the HD index decreased by 0.11. Furthermore, in radar Fig. 12, the CMFC module that uses PET with high 
frequency and CT with high frequency has the largest comprehensive coverage on the Miou, Dice, VOE, RVD, 
Recall, and HD evaluation index coordinate axes, which proves the effectiveness and necessity of the CMFC 
module when adopting this strategy.

Conclusion
From the perspective of frequency domain and spatial domain, this paper proposes a cross-modal dual-domain 
bi-directional feature interaction semantic segmentation network DBW-Net, which is “from frequency to spatial 
" and “from spatial to frequency”. This paper effectively solves the problem that multi-modal segmentation 
methods usually focus on enhancing the extraction features ability from the spatial domain perspective, ignoring 
the dependence of multi-modal spatial domain features on frequency domain information and the effective 
fusion of fine-grained frequency domain features. Cross-Modal Feature Extractor “from frequency domain to 
spatial domain” (CMFE(F-> S)) and cross-modal feature coupler “from spatial to frequency” (CMFC(S-> F)) 
are introduced into the encoder and bottleneck layer. It improves the model’s ability to extract, fuse and express 

Fig. 12.  CMFC ablation experimental radar map.

 

Fig. 11.  CMFE ablation experimental radar map.
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fine-grained features in multi-modal images. About lung tumor segmentation, the experimental results show 
that the Miou, Dice, Voe, Rvd and Recall are increased by 3.02%, 2.32%, 4.66%, 2.63% and 4.16%, respectively. 
About brain tumor segmentation, the Miou, Dice, Voe, Rvd, Recall are increased by 3.06%, 2.31%, 4.68%, 2.64%, 
5.76%,respectively. It shows that the model has high precision and relatively low redundancy about complex 
shape lesion segmentation, which significantly improves the segmentation accuracy and robustness of the lesion 
area, and provides technical support for accurate identification and early lesions diagnosis. In addition, this study 
not only proves the importance of frequency domain information in medical image segmentation tasks, but 
also provides a new idea for multi-modal image processing. By introducing 2D Discrete Cosine Transform (2D 
DCT) and 2D wavelet transform (2D DWT) to capture frequency domain features, the bi-directional interaction 
of cross-modal spatial-frequency features is realized, which effectively bridges the semantic differences of multi-
modal images, and has good generalization ability and application potential.

Future work
This paper reveals the importance of frequency domain information in multi-modal medical image 
segmentation through the study of cross-modal dual-domain bidirectional feature interaction. However, for 
a wider range of application scenarios and practical requirements, future work can be carried out in depth 
from the following aspects: Firstly, this paper attempts to extend the space-frequency interaction method to 
other multi-modal medical image analysis tasks. For example, in cardiac image segmentation, the frequency 
domain can effectively extract the boundary information between heart tissue and surrounding structures, 
and in breast tumor segmentation, the high-frequency components of the frequency domain can significantly 
improve the accuracy of tumor boundaries. Medical image data in these fields has complex modal characteristics 
and diversified segmentation requirements. Secondly, incorporating more advanced learning mechanisms will 
further improve the model performance. For example, self-supervised learning uses unlabeled medical data for 
feature pre-training. By learning frequency domain features, the model can extract meaningful information 
from a wider range of data, thereby improving its performance on unlabeled data. In addition, cross-modal 
pre-training can help the model learn shared frequency domain and spatial features on large-scale cross-modal 
data, and effectively improve the generalization ability of the model in different tasks. Finally, the efficiency 
and lightweight design of the method are the key research directions in the future. In terms of frequency 
domain processing, it is possible to explore how to further reduce the computational and memory overhead 
by more efficient frequency domain conversion algorithms or by exploiting deep compression techniques such 
as quantization, pruning, etc. In conclusion, future research will continue to focus on the spatial-frequency 
feature interaction, and further promote the practical development of multi-modal medical image segmentation 
technology by expanding application fields, enhancing learning mechanisms and improving computational 
efficiency, and providing technical support for precision medicine.

Data availability
The Brats2019 public brain tumor dataset can be obtained by registering at the following link: ​h​t​t​​​​p​​s​:​​/​/​​w​w​​w​.​​m​e​d​
.​u​​p​e​​n​​n​.​e​d​u​/​c​b​i​c​a​/​b​r​a​t​s​2​0​1​9​/​d​a​t​a​.​h​t​m​l​.​​
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