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The agricultural sector confronts escalating challenges, including population growth, climate change, 
and constrained land resources. Addressing these issues requires agricultural methods to evolve 
into more intelligent, sustainable, and efficient practices in order to satisfy the expanding global 
demand. In this context, the smart greenhouse plays a crucial role in contemporary smart agriculture 
by amalgamating diverse technologies and equipment to establish an optimal environment for plant 
cultivation. This paper aims to create an enhanced algorithm for ventilation control utilizing artificial 
intelligence technology. The goal is to achieve intelligent ventilation and air exchange in greenhouses 
while ensuring that optimal air conditions for crop growth are maintained consistently. Employing data 
from the Shouguang Vegetable High-Tech Demonstration Park, we collect and analyze historical and 
real-time data within a glass greenhouse. We establish the foundational algorithm for autonomous 
ventilation control using an adaptive genetic algorithm-back propagation neural network. A hybrid 
fitness scaling approach, combining linear and nonlinear fitness scaling, is proposed and implemented. 
In the pursuit of a well-fitted model, three models i.e., multiple regression (MR), back propagation 
neural network (BPNN), and genetic algorithm - back propagation neural network (GA-BPNN) are 
explored in experiments to fit greenhouse data. These models have been validated through extensive 
simulation experiments, and the results revealed that our method outperforms the investigated 
techniques in terms of errors. This paper concludes that effective ventilation control algorithms enable 
precise regulation of greenhouse environmental factors, including temperature, humidity, and CO2, 
thereby optimizing crop yield and quality.
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Ventilating a vegetable greenhouse is a crucial technical consideration with a direct impact on the growing 
conditions and production efficiency of greenhouse vegetables. To ensure the sustained maintenance of optimal 
temperature conditions for crop growth over the long term, greenhouses, whether traditional solar structures or 
relatively costly glass ones (refer to Figure 1), typically adopt a relatively airtight design. When the greenhouse is 
fully enclosed, the gas composition in the indoor air undergoes significant changes over time. This includes an 
increase in water vapor (mainly from soil evaporation and plant transpiration), a rise in harmful gases (primarily 
from fertilizer decomposition, etc.), and a decrease in carbon dioxide (CO2) (essential for crop photosynthesis). 
Implementing ventilation and air exchange system enhances the exchange of indoor and outdoor air, creating a 
more favorable environment for crop growth and consequently increasing production efficiency.

The growth of plants usually has strict requirements for temperature, light, water, fertilizer, and gas, following 
the “barrel effect”, and the most problematic component is frequently related to gas. This is especially notable 
during the winter, when greenhouses are frequently enclosed. Despite significant differences between the interior 
and exterior environments, the heightened internal temperature and enhanced sealing often result in indoor 
air humidity reaching saturation. Excess moisture accumulates as a water film on plant leaves, detrimentally 
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affecting crop photosynthesis and respiration, and creating conditions conducive to bacterial growth and the 
onset of pests and diseases.

(The ideal atmospheric humidity for crop growth is around 65-75% during the daytime and 80-90% at 
nighttime1.) Additionally, temperature stands out as the foremost determinant of greenhouse vegetable growth 
and development. Different vegetables exhibit varied optimum growth temperatures during different stages, and 
extremes, whether too high or too low, can significantly impact plant growth. We present the growth habits of 
some common greenhouse vegetables and the temperature range conducive to their development in Table 1.

Table  1 displays the germination and growth temperature requirements for various common vegetables, 
including chili peppers, tomatoes, celery, eggplant, and cucumbers. The concentration of CO2 is directly 
correlated with crop photosynthesis. In closed greenhouse environments, low CO2 levels can result in sluggish 
photosynthesis, decreased crop resilience to pests and diseases, compromised quality, and diminished yields2. 
Beyond CO2, harmful gases such as ammonia (NH3) also pose threats to crops. As indicated by3, cucumbers can 
perish within 1-2 hours when NH3 concentrations exceed 0.1%-0.8%. Nitrogen, phosphorus, and potassium are 
essential for vegetable growth, however, the breakdown of both organic and artificial fertilizers can release toxic 
gases such as methane and ammonia. Additionally, the degradation of organic materials within the soil, like 
fallen leaves, also contributes to the release of toxic gases. Consequently, the presence of these harmful gases in 
a greenhouse is indubitable.

To consistently enhance crop yields, greenhouse ventilation plays an important role and can be achieved 
through two methods: 1) natural ventilation (passive ventilation4), relying on the temperature differential 
between the warmer air inside the greenhouse and the cooler air outside the greenhouse, and 2) forced ventilation 
(active ventilation), involving the use of mechanical systems to enhance air circulation and facilitate air exchange 
between the greenhouse and the external environment. 5reviewed the impact of shape and orientation on the 
availability of solar radiation in greenhouses in various regions with reference to the equator. Wind direction, 
greenhouse dimensions, vent configurations6, and humidity around the greenhouse are important influencing 
parameters on the effectiveness of ventilation systems. They also propose a development path of using sensors to 
build intelligent and automatic feedback. The greenhouse environment, influenced by factors like weather and 
human activity, exhibits high nonlinearity and strong coupling7. Neural networks, known for their adaptability 
to both linear and nonlinear contexts, were utilized by7 in the development of an Output Feedback Neural 
Network (OFNN)-based ventilation control approach, demonstrating high accuracy in managing various 
aspects. In a study by8, a recurrent dynamic network (NARMX) predictive control approach was employed to 
optimize water and energy utilization in naturally ventilated and fog-cooled greenhouses, resulting in a near-
optimal and uniform crop growth environment.

In hot climate regions of the tropics and subtropics, where air cooling is essential to counteract overheating 
during summer,9 and10 comprehensively reviewed current greenhouse design and cooling technologies, 
providing comparisons and critical discussions of multiple cooling systems. 11reviewed greenhouse design and 
cooling systems in tropics and subtropics, pointing out the interrelationships between greenhouse architecture 

Types of vegetables Habits Germination temperature (◦C)

OGT (◦C)

Minimum ground temperature (◦C)Day Night

Chilli heat-loving 15-30 26-30 18-22 10

Tomato heat-loving 10-35 25-28 16-20 8

Celery cold-loving - 15-22 10-18 6

Eggplant warm-tolerant, heat-resistant 28-30 20-25 15-22 8

Cucumber temperature-sensitive 28-32 24-26 14-15 12

Table 1.  Temperature requirements for the growth of various vegetables in greenhouse environment. (OGT: 
Optimal Growth Temperature).

 

Fig. 1.  The development of vegetable greenhouses in China.
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and cooling mechanisms to achieve anti-climatic sustainable farming. It also pointed to topics for further 
research, arguing for the selection of appropriate solutions based on local climate and growing conditions.

Globally, scholars have increasingly utilized advanced technologies to augment the efficiency and efficacy 
of greenhouse agricultural practices. This study employs adaptive GA-BPNN12–14 to regulate microclimatic 
conditions within greenhouses, including temperature, humidity, and CO2, thereby fostering an optimal 
environment for crop growth. We enhance experimental outcomes through α-weighted linear and nonlinear 
mixed fitness scaling. Recognizing the versatility of the Weibull distribution in fitting diverse datasets, we 
suggest its use as an alternative to the conventional segmented function for determining critical parameters, 
such as cross probability and mutation probability.

We structure the remainder of the paper as follows: In Section Experimental setup, we provide a detailed 
account of the data acquisition process for this study, along with an assessment of data validity using quadratic 
regression. Section Algorithms outlines the methodology’s structure, delving into the enhanced fitness scaling 
function and analyzing the fitting effects of the Weibull, One-phase exponential decay (ExpDec1)15,16, and 
Boltzmann functions17,18. Discussion of the experimental results takes place in Section 4, where various 
algorithms such as BPNN19,20, GA-BPNN, etc., are analyzed in terms of their adherence to the original data. 
Finally, Section Conclusion and future work offers concluding remarks on the overall study.

Experimental setup
The study’s experimental site was selected in ShouGuang, a prominent vegetable base in China. ShouGuang’s 
diverse range and widespread distribution of vegetable greenhouses offer ample experimental data for our 
research purposes. (Refer to Figure 2).

Data collected from an authentic glass greenhouse includes wind speed (m/s), levels of toxic gases (%), CO2 
(%), temperature (◦C), and humidity (%). The wind speed represents the airflow rate within the greenhouse, 
facilitated by fans and ventilation windows according to greenhouse environmental conditions. We assessed 
the data’s credibility by constructing a quadratic regression model to correlate wind speed, ensuring alignment 
between the model’s outcomes and real-world observations.

We utilize quadratic regression to map the wind speed and other variables because it better reflects the 
monotonic relationship between the data while avoiding the drawbacks of unnecessarily complicated high-order 
polynomial fits. The model considers wind speed to be the independent variable and other factors to be the 
dependent variables, and the interval of the independent variable is too small to fit the model. However, to reflect 
the trend of other factors with wind speed, the small interval of the independent variable has little effect on this 
model. The results of the regression analysis are shown in Figure 3.

In Figure 3(A), the scatter plot illustrates the relationship between wind speed and toxic gases alongside the 
quadratic fitting curve. It reveals a gradual decrease in toxic gases as wind speed increases, indicating that higher 
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Fig. 3.  Scatter and quadratic regression plots of wind speed versus toxic gases, CO2, temperature, and 
humidity.

 

Fig. 2.  Shouguang Vegetable Hi-Tech Demonstration Park Pilot Area: (a,b) Data collection location, (c) 
Modern greenhouses.
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wind speeds correspond to lower concentrations of toxic gases during greenhouse ventilation. Further scrutiny 
of the regression curve demonstrates that the rate of decrease in toxic gases accelerates with rising wind speed, 
forming a convex function that aligns well with real-world observations, thus validating the regression outcome.

Figure  3(B) displays the scatter plot of wind speed against CO2 concentration, along with the quadratic 
regression curve. Despite data points being scattered, the initial portion of the regression curve indicates 
a consistent increase in CO2 levels with escalating wind speeds, albeit with a gradual slowdown in the rate 
of increase. The CO2 increase nearly plateaus around the interval [1.8, 1.9], closely mirroring the typical 
atmospheric CO2 concentration of 0.03%. However, due to irregular sampling intervals, the latter part of the 
curve shows a decline in CO2 with wind speed, deviating from the expected scenario. Nevertheless, the overall 
regression curve provides insights into the relationship between wind speed and CO2.

Figures 3(C) and 3(D) demonstrate the correlation between wind speed and temperature, and wind speed 
and humidity, respectively. Both temperature and humidity exhibit a consistent decrease with increasing wind 
speed, with the rate of decline gradually tapering off. This is attributed to wind enhancing evaporation and 
transpiration from plants and soil, thereby reducing atmospheric moisture content. Consequently, higher wind 
speeds lead to increased moisture transport and lower humidity levels.

Algorithms
Uniform manifold approximation and projection (UMAP)
UMAP21 is a dimensionality reduction approach that aims to preserve the underlying structure of high-
dimensional data. It uses concepts from topology and graph theory to construct a weighted K-nearest neighbor 
graph, denoted as G, based on the original data.

Let X = x1, x2, ..., xn represent the high-dimensional dataset, with each xi ∈ Rd representing a data point. 
UMAP generates G by employing a distance metric such as Euclidean distance to connect each data point to its 
k nearest neighbors. The graph G depicts the proximity relationships between the data points.

To generate a lower-dimensional representation, UMAP learns a smooth and uniform manifold that 
approximates the original high-dimensional space. Let Y = y1, y2, ..., yn represent X’s low-dimensional 
embedding, where each yi ∈ Rk  represents a reduced-dimensional point. UMAP seeks Y such that it retains 
both the data’s local and global structures.

UMAP optimizes a cost function composed of two terms: localization and cross-entropy. The localization 
term encourages neighboring points in high-dimensional space to stay close in low-dimensional space. It can 
be expressed as:

	
L_loc =

∑
i

∑
j

Wij(1 − Qij) × (Dl(yi, yj) − Dh(xi, xj))2
� (1)

Here, Dl(·, ·) denotes the low-dimensional distance metric, Dh means the high-dimensional distance metric, 
Wij  is the weight of the edge between xi and xj  in the graph G, and Qij  stands for the pairwise similarity of 
xi and xj .

	

L_CE =
∑

i

∑
j

Wij(Pij × log(P ij

Qij
)

+ (1 − Pij) × log( (1 − Pij)
(1 − Qij) ))

� (2)

where Pij , Qij  denote the similarity between neighboring points in high-dimensional space and low-
dimensional space, respectively. The other parameters have the same meaning as Eq. 1.

Analysis of the effect of UMAP on model performance: By mapping high-dimensional data to low-
dimensional space, UMAP reduces the number of model parameters, which decreases model complexity 
and enhances its generalization. UMAP identifies and removes highly correlated features from greenhouse 
environment data, improving the quality of features and enabling the model to capture the complex dynamic 
changes in greenhouses more effectively. UMAP also shortens training time, increasing model efficiency. 
However, dimensionality reduction makes the data lose its clear physical meaning, reducing its interpretability.

Genetic algorithm
Genetic Algorithms(GAs)22–25 are a parallel stochastic search optimization algorithm that mimics the process 
of biological evolution via genetic variations and converts issue solutions into “population” search problems 
directed by randomized techniques. GAs utilize mutation and selection to find optimal solutions to complex 
problems. Selection weeds out worse-performing alternatives to allow only the best to survive and reproduce, 
whereas mutation generates diverse candidate solutions to prevent being stuck in local optima. This combination 
ensures consistent progress towards superior solutions. If the search space allows for it, a near-optimal solution 
may emerge over many generations.

The individual decision variables (IDVs) X = X1X2 · · · Xn corresponding to the n-dimensional decision 
vector X = [x1, x2, · · · , xn]T  are the unknown quantities to be solved, and all IDVs constitute the solution 
space of the problem. The search for the optimal solution of the problem is performed by genetic and evolutionary 
operations on the population composed of M-IDVs, and the IDVs are made to approach the optimal solution 
X∗ after several iterations.

Scientific Reports |        (2025) 15:43245 4| https://doi.org/10.1038/s41598-025-27333-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


From finding the shortest path in a graph to designing novel pharmaceuticals or materials, GAs can tackle a 
wide range of optimization challenges. They have been employed in a variety of industries, such as engineering, 
finance, and artificial intelligence. Figure 4 shows the genetic algorithm flow.

Structure design of GA-BP neural network
To create a GA-BP neural network (GA-BPNN) model, first construct the neural network topology and decide 
the number of input, output, and hidden layers. The genetic algorithm generates an initial population of 
chromosomes by coding, taking the training and test sets as input, and cycling to solve the optimal error in 
order to determine the optimal weights and offsets, which are then substituted into the BPNN for computation.

Figure 5 shows the GA-BPNN architecture used in this paper, where xi (i = 1, 2, ..., n) denotes the input 
node, yi (i = 1, 2, ..., k) represents the output node, hi (i = 1, 2, ..., m) is the hidden node. Wi, Bi (i = 1, 2) 
are the weight and bias, respectively.

The procedures of the algorithm are as follows:
Step 1: During the training phase, the algorithm takes critical environmental parameters (wind speed (m/s), 

levels of toxic gases (%), CO2 (%), temperature (◦C), and humidity (%)) as input parameters, which are then 
passed to Step 3 as training data after UMAP dimensionality reduction and data verification.

Step 2: Input nodes (xi), hidden nodes (hi), and output nodes (yi) of the exploited neural network (net) are 
constructed. The GA randomly creates an initial chromosomal population, which serves as the neural network 
weights (W1, W2) and biases (B1, B2), and calculates the first fitness.

Step 3: The GA codes the training data into a new population of chromosomes, which are selected during the 
GA evolution. During iterations, the best-performing individual is evaluated from the population through cross, 
mutation, and selection operators based on fitness scores, yielding the optimal initial weights and biases. The 
neural network can utilize the optimal value directly to accelerate convergence and improve efficiency during 
training.

Data Collection UMAP

data
verification

Y

•••

•••

•••

x1

x2

xn

Coding
W1 B1 W2 B2chromi

Input  Layer Output  LayerHidden  Layer

y1

y2

y2

chrom1

chrom2

chromn

...

Fitness
Calculation

Fitness1

Fitness2

Fitnessn

...

Select

Cross

Weight
Initialization

Mutation

N

Optimization
or not?

N

pc

pm

Step 1

Step 3

Start

Network

Construction

Weibull Distribution

+

Hybrid Fitness Transform

Y

Weight & Bias Determining

Data Collection

(Real-time)

data verification Control signal

generation

Step 2 Step 4

Network Training

Edge Computer

Temperature Sensor

Illumination Sensor Fresh Air
CO2&Toxic Air Sensor

Fan

SensorSeSSSeSe

e Probee Pro

Fig. 5.  Proposed GA-BPNN architecture.

 

Roulette Wheel
Selection

Chromosome

#input×#hidden #hidden #hidden×#output #output

W1 B1 W2 B2

chromi

Coding

Calculation

Fitness 1

Fitness 2

•••

Fitness n

p1

p2

p3

p4

......

••• •••

••• •••

••• •••

••• •••

A B C D E GF H

I J K L M ON P

•••

•••

I ON P•••D E GF

I ON P•••D E GF

I ON B•••W E GF
Selection Crossover

pm

pc

Mutation

0 0 0 1 11

a
a

b

c d

a
a b

e f Crossover

••• 1

1 1 1 0 00••• 0

1 0 1 0 10••• 1

1 1 0 0 01••• 1

•••

a
a b

e f

a
h b

e f Mutation

Fitness n

Fig. 4.  Flowchart of genetic algorithm.

 

Scientific Reports |        (2025) 15:43245 5| https://doi.org/10.1038/s41598-025-27333-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Step 4: In the control phase, the program collects environmental parameters in real-time and continuously, 
which are fed into the net to calculate the optimal wind speed (i.e., output) and provide control signals for 
devices such as fans and vents accordingly.

The algorithm, driven by data, can adapt to dynamic changes in the environment to some extent. Any 
complex nonlinear relationship can be captured by data approximation of DNN, which can also rapidly converge 
and approach optimality with the assistance of GA for optimization. Therefore, the model has high generality 
and extensive applicability potential, and is not limited to specific greenhouses.

Fitness scaling
In genetic algorithms, fitness value is a numerical score awarded to each individual in a population. It compares 
the proximity of each candidate solution to optimality depending on the fitness functions defined beforehand. 
As the algorithm converges, the fitness values of all IDVs in the population become very close to each other, 
making optimization difficult and causing the GAs to oscillate too much at the optimal solution. To improve 
the GAs, we employed fitness scaling, which includes linear and nonlinear fitness scaling, using the following 
equations, respectively:

Linear fitness scaling: f∗ = h1f + h2, where f and f∗ are the values of the fitness function before and after 
fitness scaling, respectively. h1 and h2 denote the two newly added hyperparameters. h1, h2 take different values 
and consequently have varied expressions for various scenarios, typically:

Minimum Scaling Transform:

	

{
h1 = 1
h2 = −fmin + ∆ ⇒ f∗ = f − fmin + ∆� (3)

Maximum Scaling Transform:

	

{
h1 = −1
h2 = fmax + ∆ ⇒ f∗ = fmax − f + ∆� (4)

where fmin, fmax are the minimum and maximum of the fitness function before scaling transform, and 
∆ ∈ (0, 1) is to improve the randomness of the population.

Nonlinear fitness scaling: The more typical methods are power-law fitness scaling and logarithmic fitness 
scaling, which have the following expressions:

Power-law fitness scaling:

	 f∗ = fk � (5)

where k > 1 indicates the selective pressure increased, while k < 1 denotes the selective pressure decreased.
Logarithmic fitness scaling:

	 f∗ = h1 ln f + h2� (6)

where h1, h2 are new hyperparameters.

Weibull-based adaptive genetic algorithm
We adjust the aforementioned fitness scaling formula (see section  2.4) as follows, based on the application 
scenario and data characteristics of this work:

	
Linear fitness scaling Φ∗ = Φ + |Φmin|

Φmin + Φmax + η
� (7)

	
Power-law fitness scaling Φ∗ = (Φ + |Φmin|)k

Φmin + Φmax + η
� (8)

	
Logarithmic fitness scaling Φ∗ = ln (Φ + |Φmin|)

Φmin + Φmax + η
� (9)

where Φ, Φ∗ indicate the pre-scaling and post-scaling values, respectively. η ∈ (0, 1) is to prevent the 
denominator from being zero, while allowing the worst individual in the population to be selected, hence 
enhancing the randomness of group selection.

In Figure 6, we find that a single method cannot achieve good scaling transform results for this study. As we 
can see in Figure 6(A), the curve of fitness converges slowly, i.e., epoch=20, and eventually to around 10, which 
is larger than expected. Figure 6(B) shows the curve with the linear fitness scaling, which converges around 12th 
epoch, somewhat quicker than Figure 6(A), and the fitness value ends up about 11, which is still on the large side. 
The power-law fitness scaling (k=2) is slightly better than the first two, faster (epoch<10) in terms of convergence 
speed, and with a smaller value (around 5), as we see in Figure 6(C). The natural logarithm fitness scaling is 
used in Figure 6(D), and the fitness eventually stabilizes between 6 and 7 and converges slowly compared to the 
power-law fitness scaling. We conclude that the algorithm converges faster and the process is more stable after 
applying power-law fitness scaling compared to linear and natural logarithm fitness scaling, thus implying that 
power-law fitness scaling is more suitable in this scenario.
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We employ a hybrid fitness scaling method based on linear and non-linear fitness scaling to further improve 
experimental results, with the following formula:

	
Φ∗ =α (Φ + |Φmin|) + (1 − α) (ln (Φ + |Φmin|))

Φmin + Φmax + η
� (10)

	
Φ∗ =

α (Φ + |Φmin|) + (1 − α)
(
(Φ + |Φmin|)k

)
Φmin + Φmax + η

� (11)

where α ∈ [0, 1] is a newly introduced trade-off factor for weighing the linear and nonlinear components. 
Among the above formulas, Eq. 10 shows the hybrid scaling method with natural logarithmic scaling and linear 
scaling, which will be mainly applied in our algorithm. In order to ensure the study’s completeness, we also 
provide the power-law version (as in Eq. 11) to interested scholars.

Cross probability pc and mutation probability pm in GAs are critical for determining the behavior and 
performance of GAs, and directly affect the convergence of the algorithms. The larger pc, pm, the faster new 
individuals are created, however, when pc, pm are too large, the risk of genetic patterns being disrupted increases, 
and the structure of individuals with high fitness is quickly destroyed. Too small, the pc and pm slow the search 
process and even halt it. Many scholars26–30 studied adaptive genetic algorithms and proposed a variety of 
strategies for dynamic adjustment of relevant parameters, such as pc and pm, which are dynamically adjusted 
with reference to individual fitness. The most representative method is employed in27, and the calculations of pc, 
pm are shown as Eqs. 12 and 13 :

	
pc =

{
k1 −

(k1−k2)
(

f
′
−favg

)
fmax−fmin

f
′

≥ favg

k1 f
′

< favg

� (12)

	
pm =

{
k3 −

(k3−k4)
(

fmax−f
′)

fmax−fmin
f

′
≥ favg

k3 f
′

< favg

� (13)

where favg, fmax, fmin denote the average, maximum, and minimum values of population fitness. Here, we set 
k1, k2, k3, k4 to 0.7, 0.55, 0.1, 0.001, respectively. These strategies, however, don’t employ continuous functions, 
when individual fitness values exceed the average, pc and pm jump, causing greater fluctuations in the average 
fitness, indicating the need for a more stable and continuous weighting function.

Basically, pc and pm are reduced when population fitness is relatively dispersed, and pc and pm are increased 
accordingly when population fitness tends to be consistent. At the same time, if an individual’s fitness is lower 
than the average fitness, it indicates that the individual is not performing well and a higher probability can be 
used for it, whereas if the fitness is higher than the average fitness, it indicates that the individual is performing 
well and a lower probability can be used for it. As fitness approaches maximum fitness, pc and pm tend to zero.

Based on the above considerations and the observation of the existing probability dynamics adjustment, 
we generate pc and pm with the Weibull distribution31,32. The Weibull distribution is a continuous probability 
distribution that reflects the probability of an event occurring over a particular time or distance period. It 
is frequently used to simulate the survival periods or lifespans of mechanical components or other physical 
phenomena that are prone to wear or failure as a result of random occurrences. The probability density function 
(PDF) is:

	

f(p; α, γ) = γ

α

(
p − u

α

)γ−1
e−( p−u

α )γ

α ∈ (0, +∞) , γ ∈ (0, +∞)
� (14)

where α denotes the scale parameter of the Weibull distribution, γ is the shape parameter of it, and u represents 
the location at which the distribution begins. The cumulative distribution function (CDF) is defined as:

Fig. 6.  The curves of fitness. (A) No fitness scaling. (B) Linear fitness scaling. (C) Power-law fitness scaling 
(k = 2). (D) Natural logarithm fitness scaling.
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F (p; α, γ) =
ˆ p−u

0
γα−γtγ−1e−( t

α )γ

dt

= 1 − e−( p−u
α )γ

α ∈ (0, +∞) , γ ∈ (0, +∞)

� (15)

The mean and variance are given as follows:

	
E(P ) = αΓ

(
1 + 1

γ

)
= 1

n

n∑
i=1

pi � (16)

	

var(P ) = α2Γ
(

1 + 2
γ

)
− Γ2

(
1 + 1

γ

)

= 1
n − 1

n∑
i=1

(pi − E(P ))2
� (17)

where Γ (·) is the Gamma function, i.e., Γ (n) =
´∞

0 tn−1e−tdt, n > 0.
Figure 7 shows the fit of the Weibull, ExpDec1, and Boltzmann functions versus pc and pm data, which were 

generated according to traditional adaptive genetic algorithms27. The Weibull PDF function is employed here 
with a modification on Eq.( 14):

	
y = y0 + γ

α

(
−(x − p0) − u

α

)γ−1

e−( x−u
α )γ

� (18)

where y0 and p0 are the offsets on the y and x axes, respectively. The function of ExpDec115,16 is:

	 y = y0 + A1e−p/t1 � (19)

where y0 denotes the offset on the y-axis, A1 is the amplitude, and t1 stands for the time constant. The Boltzmann 
function17,18 is:

	
y = A1 − A2

1 + e(p−p0)/dp
+ A2� (20)

where A1 and A2 are the bottom and top values, respectively. p0 means the center (i.e., 50% threshold at 
(p0, (A1 + A2)/2)) value), and dp is the time constant.

As can be seen in Figures 7(A) and  7(B), the curves of the Weibull PDF closely correspond to the histograms 
of the real data of pc and pm for all the methods analyzed. Figure 7(C) shows that the convergence is faster 
relative to the single fitness scaling method, and the convergence value of the fitness is around 0, which is small, 
confirming our hypothesis. The value of the trade-off factor, α = 0.475 chosen, may fluctuate depending on the 
hardware/software environment and must be fine-tuned accordingly.

Results and discussions
Maintaining stringent controls for consistency, all experimental procedures were within a uniform hardware 
environment that aligns with the setting identical to earlier experiments, inclusive of a specified learning rate of 

Fig. 7.  The Weibull PDF versus pc and pm data. (A) The fit on pc with p0 = 0.7 for the Weibull PDF (Eq.
( 18)). (B) The fit on pm with p0 = 0.1 for the Weibull PDF (Eq.( 18)). (C) The curve of fitness value.
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0.001. To enable a lucid comparison of prediction outcomes, our algorithms were positioned against an ensemble 
of models, including BPNN, GA-BPNN, Linear SGA-BPNN (Linear fitness scaling GA-BPNN), PLSGA-BPNN 
(Power-law fitness scaling GA-BPNN), log SGA-BPNN (Logarithm fitness scaling GA-BPNN), and the original 
data. We integrated an examination of the residuals from each respective methodology to provide a more 
comprehensive and nuanced evaluation of their comparative performance.

The results are as follows:
In Figures 8(A)- 8(E), it can be seen that our method is closer to the original signal. Figure  8(F) shows the 

residual curves of various algorithms appearing in this research, from which it can be seen that the fluctuation 
of our method is relatively small and generally near “0”. In order to compare the effectiveness of the algorithms 
more explicitly, we calculated the mean absolute error (MAE = 1

n

∑n

i=1 |xi − x̂i|) and the mean squared 
error(MSE = 1

n

∑n

i=1 (xi − x̂i)2) for each algorithm, and computed the P-value through the T-test, as 
shown in Table 2.

In Table 2, we find that MAE and MSE for multiple regression (MR) are 1.7702 and 3.2143, respectively, with 
maximum values, which means the worst performance of MR compared to other algorithms. Our algorithm with 
the minimum values of MAE and MSE, i.e., 0.0533 and 0.0091, respectively, suggests that the results are closest to 
the original data. The p-values can also roughly indicate this pattern. Based on the characteristics of the data, we 

Methods Mean Absolute Error (MAE) Mean Squared Error (MSE) P-Value

MR 1.7702 3.2143 0.0984

BP-NN 0.1127 0.0201 0.8523

GA-BPNN 0.1033 0.0172 0.4000

Linear SGA-BPNN 0.0911 0.0132 0.8293

PLSGA-BPNN 0.0902 0.0155 0.5825

Log SGA-BPNN 0.0677 0.0103 0.1453

W&HSGA-BPNN 0.0533 0.0091 0.8831

Table 2.  Comparative analysis table of Mean Absolute Error (MAE), Mean Squared Error (MSE), and P-value 
(T-test) for all algorithms.

 

Fig. 8.  Comparison of simulation results of multiple algorithms. (A) BP neural network and our method. (B) 
Vinilla GA-BP neural network and our method. (C) GA-BP neural network with linear fitness scaling (Linear 
SGA-BP) and our method. (D) GA-BP neural network with power-law fitness scaling (PLSGA-BP) and our 
method. (E) GA-BP neural network with logarithm fitness scaling (Log SGA-BP) and our method. (F) Error 
plots for all algorithms.
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compare whether there is a significant difference between the mean values of two vectors using the T-test. If the 
p-value is small (typically less than 0.05), it indicates a significant difference between the two vectors. We found 
that the p-value for MR is 0.0984, which is close to 0.05, indicating the worst fit. Our method has the highest 
p-value of 0.8831, indicating the best fit. Based on the available data, a system-wise search was performed, and 
our model could obtain optimum ventilation conditions: toxic gases (%) 0.0700, CO2 (%) 0.0050, temperature 
(◦C) 30, humidity (%) 85.5, and the estimated ideal wind speed was 1.6423.

From Table 2, it can be seen that MR performs the worst, as the manually designed higher-order terms 
cannot adapt to the dynamic changes in the data, and its accuracy relies more on the designer’s experience, 
leading to significant errors. The parameter optimization of BP-NN takes more time and is prone to getting stuck 
in local optima, affecting its precision. Linear SGA-BPNN, PLSGA-BPNN, and Log SGA-BPNN are suitable 
for linear, exponential, and logarithmic data, respectively, while data in nature typically do not follow a specific 
pattern. Our method employs hybrid fitness scaling that fuses linear and nonlinear features and uses the Weibull 
distribution for faster convergence.

Conclusion and future work
Conclusion
Nowadays, the utilization of artificial intelligence (AI) within the realm of smart agriculture stands as a prominent 
research area, bearing significant implications for the advancement of smart agriculture practices. This paper 
combines the current state of Shouguang smart agriculture with an in-depth study of the fundamental algorithm. 
The experimental results show that MR requires manual design of higher-order terms when modeling nonlinear 
relationships, whereas GA-BPNN automatically captures complex coupling relationships through hidden layers. 
Compared to MR, GA-BPNN, through its global search strategy, is more likely to escape local optima and find 
better network parameters. Inheriting the advantages of GA and neural networks, GA-BPNN exhibits stronger 
generalization capabilities and is well-suited for various regression tasks. Although it is slightly more complex 
than MR, its prediction results are more accurate.

The main contribution of the study: First, we rely on the Shouguang High-Tech Vegetable Expo to analyze 
environmental data on greenhouse vegetable productions and conduct in-depth research on the fundamental 
algorithms. Second, we apply UMAP to downsize the training data and analyze its validity with multiple 
regression. And then, to address the issue of low accuracy of the GA-BP neural network, we offer the hybrid 
fitness scaling and Weibull distribution improvement method, which achieves better results. Outstanding 
experimental results verify the superiority of the proposed ventilation algorithm.

The potential limitations: To improve space utilization and production efficiency, a variety of crops are 
usually grown in greenhouses. Different crops have different requirements for ventilation, and the same crop has 
different requirements for ventilation at different growth stages, which brings great challenges to our research. 
In addition, the model training requires a large amount of data.

Future work
From an efficiency point of view, traditional agriculture tends to rely on experience, which makes it difficult 
to control the greenhouse environment precisely. This management method not only leads to energy waste 
but also affects the growth rate and quality of crops. Automated ventilation, through intelligent algorithms, 
achieves precise environmental control, optimizing resource utilization and freeing growers from tedious 
manual operations. With less input, more output is obtained, thereby significantly improving the efficiency of 
agricultural production. From the perspective of sustainability, our approach aims to build an environment-
friendly, green agricultural production model. It enables precise control of environmental factors based on crop 
needs, reducing unnecessary resource waste.

This study not only helps protect the ecological environment but also lays the foundation for future 
agricultural development. The future direction of this work is to apply the proposed algorithm to the glass 
greenhouse ventilation system to test its effectiveness in the real-world application environment, and to improve 
the accuracy under the premise of minimizing the training data.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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