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Modern engineering and scientific computing often requires solving sparse linear systems containing 
point-block matrix to model multiphysics problems. The space-time parallel method is popular 
and attractive in fluid dynamics, fitting parallel computers very well. In this paper, we design and 
implement a parallel, multi-GPU enabled GMRES solver for solving linear systems in the Kronecker 
product form arising from the domain decomposition based space-time parallel methods. To improve 
the efficiency of the solver, we also design a set of optimization strategies for Sparse Matrix-Vector 
Multiplication (SpMV) in Kronecker product form. These include: (1) enhancing the Compute-to-
Memory Access Ratio (CMAR) to fully utilize the high bandwidth nature of the GPU during the 
computation phase and (2) introducing a parallel buffering scheme and a pre-mapping algorithm to 
enable the use of GPU-Direct for accelerating the communication phase. We conducted experiments 
on 1, 2, 4, and 8 GPUs and compared the performance of OKP-Solver with the cuSPARSE based 
implementation. On the V100 platform, the Kronecker product based SpMV computation (TKx) 
achieves speedups of 2.00×, 1.87×, 1.85×, and 1.91× on 1, 2, 4, and 8 GPUs, respectively, while 
the communication time (Tc) achieves 9.18×, 6.82×, and 1.54× on 2, 4, and 8 GPUs, respectively. 
On the A100 platform, TKx achieves speedups of 1.43×, 1.50×, 1.64×, and 1.64×, while Tc 
achieves 8.95×, 5.60×, and 1.62×. The overall solver runtime (Tall) achieves speedups of 1.70×, 
3.48×, 3.70×, and 1.82× on V100, and 1.33×, 3.70×, 3.48×, and 2.28× on A100, for 1, 2, 4, and 
8 GPUs, respectively.
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In many fields of engineering calculations, such as aerospace, simulation of atmospheric ocean currents, and 
biomolecular simulation, etc., the solution of physical problems usually depends on the solution of sparse linear 
systems. These problems are described as differential equations or integral equations based on physical laws, and 
are transformed into the problem of solving a sparse linear equation system in the form of Ax = b through 
discretization and linearization processes. Linear equations can be solved by direct method or iterative method. 
The direct method1 is accurate but resource-consuming, making it suitable for small scale problems. The 
iterative method, by contrast, is efficient and better suited to large scale problems, despite yielding approximate 
solutions. A commonly used iterative method is Generalized Minimal Residual Method (GMRES) based on 
Krylov subspaces2.

Modern scientific computing problems often involve high resolutions and strong time dependence. 
Traditional time-stepping algorithms, due to stability limits, must use very small time steps when solving 
problems with strong time dependence, which results in high computational costs. In addition, in parallel 
computing, the number of communications is proportional to the number of time steps, which severely limits 
the scalability of the algorithm on large scale parallel architectures. To address these challenges, recent space-
time parallel computing strategies, which parallelize both the space and time dimensions, have significantly 
improved computational efficiency. These strategies have shown notable advantages in problems such as heat 
equations, convection-diffusion equations, and Stokes flows.

Space-time parallel methods can be divided into methods based on multiple shooting3–5, methods based 
on multigrid6–8, direct time parallel methods9, and methods based on domain decomposition and waveform 
relaxation10–13. This paper conducts research based on methods based on domain decomposition. When solving 
the numerical solutions of time-dependent partial differential equations, papers14,15 use the finite element 
method for spatial discretization and the implicit Runge-Kutta method for temporal discretization. By dividing 
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the time intervals, the stage variables are coupled within each time step, resulting in a linear system in the 
Kronecker product form, which is used to describe and solve the numerical problems of the partial differential 
equations after temporal and spatial discretization.

The main challenge to solve a spatiotemporal coupling linear system is that it requires increasing 
computational resources as the number of coupled stages increases. With the fast development of heterogeneous 
computing, state-of-the-art GPUs, designed for fine-grained data parallelism and high memory bandwidth, can 
offer substantial computing capabilities for the solve of the numerical system. However, the SpMV in Kronecker 
product form in this kind of linear systems don’t change the density of the corresponding matrix when the 
Kronecker product operations are explicitly performed, which makes the issue of scattered memory accesses 
still exist. Therefore, code migrating from CPUs to GPUs requires detailed algorithm designs and performance 
optimizations. Motivated by this fact, in this paper, we focus on building a complete framework on the CPU+GPU 
platform for the solve of the spatial-temporal linear system. The main contributions are as follows: 

	1.	 We introduce a parallel framework on multiple GPUs for solving the linear system derived from space-time 
parallel method based on domain decomposition. Unlike the general scalar matrix format, our work is mo-
tivated by the structure of multiphysics problems and thus focuses on the point-block matrix format. The 
framework uses the generalized minimum residual (GMRES) method as the key solver.

	2.	 We propose an optimized strategy with specified data layouts for the SpMV in Kronecker product form oper-
ations in the distributed solver, which effectively improves the Compute-to-Memory Access Ratio (CMAR). 
However, a major challenge arises from the mismatch in vector data ordering between the computation and 
communication phases of the solver. To address this challenge, we employ parallel buffering and pre-map-
ping strategies to ensure efficient data alignment. When combined with GPU-Direct, these strategies sub-
stantially reduce the frequency and overhead of host-device and device-device communications.

	3.	 We conducted experiments on 1, 2, 4, and 8 GPUs and compared the performance of OKP-Solver with the 
cuSPARSE based implementation. The results show that both the computation and communication phases 
of the solver benefit from notable acceleration, leading to an overall runtime (Tall) speedup of at least 1.33× 
across all cases. In terms of GFLOPS, OKP-Solver improves the Kronecker product based SpMV perfor-
mance by 83.58%, 86.68%, 84.83%, and 91.11% on the V100 platform, and by 45.41%, 50.03%, 64.55%, and 
65.68% on the A100 platform, for 1, 2, 4, and 8 GPUs, respectively.

Related work
As a structured linear algebraic tool, the Kronecker product is widely applied in high-performance computing 
and machine learning due to its favorable computational structure and compact representation capabilities in 
high-dimensional problems. In the field of machine learning, Tang et al. (2020) utilized dynamic Kronecker 
product block generation and sparsity optimization techniques to achieve GPU acceleration for graph kernel 
computations16; Yu et al. (2022) optimizes bilinear pooling via two-level Kronecker product decomposition17; 
Lin et al. (2024) addresses the missing value problem in learning curve prediction by projecting and selecting 
observation data joint covariance matrices from latent Kronecker products18.

In the field of high performance computing, Gonon et al. (2024) enhances the GPU computation efficiency of 
Kronecker-sparse matrix multiplication through a tiling strategy and GPU memory optimization techniques19; 
Cui et al. (2025) implements tensor product vertex-patch smoothers on GPUs using the characteristics of 
the Kronecker product structure and fast diagonalization technology, optimizing high-order finite element 
multigrid computations20; Crews et al. (2022) leverages Python’s CuPy library to achieve GPU acceleration for 
the discontinuous Galerkin finite element method via tensor product structures21; Jangda et al. (2024) introduces 
the FastKron framework, adopting row-slice multiplication accumulation, shift buffer optimization, and multi-
GPU latency-hiding strategies to significantly improve the computation speed of Kron-Matmul on GPUs22; 
Jhurani et al. (2013) designs BLAS-like interfaces (TKRON2/TKRON3), optimizes memory layout and shared 
memory reuse, and proposes efficient GPU algorithms for batched Kronecker products23.

Some works17,18,23 used the properties of Kronecker product to convert the explicit SpMV in Kronecker 
product form into implicit operations, so as to reduce the number of floating-point operations, thereby 
improving the computational efficiency.

In contrast to existing research, our study makes two distinct contributions. First, most existing research 
focuses on specific application scenarios, studying various computational forms of the Kronecker product. Our 
work focuses on designing a solver for linear systems involving Kronecker products, which arise from a space-
time parallel method based on domain decomposition. Secondly, while these studies mainly focus on single-
GPU acceleration, we explore the performance and optimization strategies of the proposed solver on multi-GPU 
platforms.

Background
Kronecker product
Given matrices H ∈ Rm×e and G ∈ Ry×k , then the Kronecker product H ⊗ G ∈ Rmy×ek  is defined as:

	

H ⊗ G =




h11G · · · h1eG
...

. . .
...

hm1G · · · hmeG


� (1)

where hij  represents the element at the ith row and jth column of H.

Scientific Reports |        (2025) 15:43529 2| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Point-block matrix
Point-block matrices are common in multi-physics problems24–27, where multiple coupled variables are 
required to be solved at each grid point. These problems generally result in sparse matrices that are composed 
of dense blocks each of which represents the coupling feature between the variables locally. For example, in an 
incompressible flow, each grid point in the computational domain has three velocity components u, v, w and a 
pressure component p to be solved, and it leads to a point-block matrix with a block size of 4 when the physical 
variables associating with a grid point are calculated in the coupling method.

Typically storage formats for a point-block matrix are BCSR (Block Compressed Sparse Row) and BCSC 
(Block Compressed Sparse Column)27 where sparse data is stored in blocks instead of scalars. These formats 
are widely supported by high-performance computing libraries such as PETSc28, cuSPARSE29, Trilinos30, Intel 
MKL31 and Hypre32.

Problem definition
We consider the linear system in the Kronecker product form arising from the spatiotemporal coupling 
algorithm14,15 as:

	 (A ⊗ M + τB ⊗ L)U = F � (2)

where A, B ∈ Rs×s are dense matrices arising from the temporal discretization with s denoting the number 
of time steps, and M, L ∈ RN×N  are point-block matrices with a block size b from the spatial discretization, n 
represents the number of block rows, so that N = nb, τ  is a constant for time-scaling, and U  and F , with a size 
of N × s, are the solution and right-hand side vector, respectively.

GPU solver
We show the GMRES(m) method for the solve of Eq. (2) in Algorithm  1. The procedure aims to solve the 
linear system with a size of sN × sN . As the matrix is expressed in Kronecker product form and not explicitly 
formulated, according to Eq. (1), we can also view Eq. (2) as a coupled of s systems each of which is of size 
N × N . Although the GMRES(m) takes exactly the same steps for different linear equations, the data layout, 
communication strategies and performance profilings are totally different when it comes to multiple GPU 
computing, because the characteristics of the matrix are the most considered factor in performance optimization 
and generally affect the adoption of implementation strategies. Therefore, in the following discussion, we focus 
on designing a multi-GPU enabled solver for Eq. (2) by making full ultilization of the features of the matrix 
in Kronecker product formulation. To evaluate the optimization performance of this solver, we also develop a 
baseline implementation using the cuSPARSE 12.1 library33. For clarity, we refer to our proposed solver as OKP-
Solver (Optimized Kronecker Product Solver) and the cuSPARSE-based implementation as CU-Solver.
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Algorithm 1.  GMRES Kronecker product version

The SpMV in Kronecker product form on multiple GPUs
One of the most time consuming steps is SpMV in Kronecker product form (line 3 and line 7) in Algorithm 1. 
To effectively increase the Compute-to-Access Ratio on the GPU device, we perform the SpMVs by using the 
property of the Kronecker product:

	 (A ⊗ M)X = vec(MX̂ AT )� (3)

where vec stands for the vectorization operation that stacks all column vectors of a matrix into a single column, 
X̂ = (x(1), x(2), .., x(s))N×s with x(i) = (x(i)

11 , .., x
(i)
1b , .., x

(i)
N1, .., x

(i)
Nb)T , and X = vec(X̂ ).

To avoid the frequent formats transform between X  and X̂ , all column vectors having the size of N × s in 
Algorithm 1, for example U , vi, w, are stored and operated in the corresponding matrix formats by spliting the 
single column into s column vectors. And X  is never operated except it is required for file output. We then show 
the distributed data layout for matrices and vectors from Algorithm 1 in Figs. 1 and 2. Considering a multiple 
GPU environment, each GPU is mapped into a MPI process and communicate with it, and takes a partial job of 
the total computational workload. For a typical multiphysics problem, M and L are point-block matrices, and 
partitioned in block rows between processes. The partition of vectors are sticky with that of matrices to ensure 
that the coupling variables for the same mesh point are not scattered in different devices. In addition, each point-
block matrix is divided into main-diagonal and off-diagonal parts to facilitate the communication optimization 
of SpMV, which is introduced in Section “Communication”.

OKP-Solver
The first step to perform Eq. (3) is to calculate X̂ AT  locally without communication required. As mentioned 
above, this benefits from the local storage of A. From the view point of global memory accesses on GPUs, 
performing X̂ AT  requires qs(s + 1) reads and qs writes when performed as a traditional matrix multiplication, 
where q is the number of rows in a local device. Besides, shared memory loads and writes, because successive 
threads need to take a row of data from X̂  and multiply it with a column from AT  then do vector reduction 
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to get the result. However, the computation can be optimized by writing the resulting matrix as the linear 
combination of x(j) as:

	
x̃(i) =

s∑
j=1

aijx(j)� (4)

where aij  represents the element at the ith row and jth column of A. This consideration leads to (q + s)s 
reads and qs writes. We explain it by Fig. 3 and Algorithm 2 which shows how Eq. (4) are implemented. For the 
same time step vector x(j) (a column of X̂ ) is operated in parallel by all successive threads, each of which is 
responsible for processing one vector element, so that only one transaction needs to be done in the same warp to 
fetch the data of A, with the result denoted as X̃ = (x̃(1), x̃(2), . . . , x̃(s))N×s.

Fig. 2.  Parallel data layout of matrices and vectors on device.

 

Fig. 1.  Parallel data layout of matrices and vectors on host.
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Algorithm 2.  CUDA kernel implementation for X̂ AT

The calculation process of MX̃  can be viewed as multiple SpMVs. Like the general SpMV, this also requires 
communication. It is straightforward to perform MX̃  by launching s SpMV kernels one by one, but it degrades 
the performance because the global memory accesses on the same matrix M is not reduced. So does the times 
of communication. To have both the calculations and communication efficient done on GPUs, we merge the 
local part of x̃ in different time steps into one single vector, which is shown in Fig. 4. The reason why this 
transformation is needed will be discussed in the communication optimization in Section “Communication”.

We show how MX̃  are computed based on the transformed format of X̃  in Fig. 5. The rectangular, local 
matrix M are further divided into the main-diagonal part and off-diagonal part, and separately stored to seek 
the possible overlap between the calculation and communication. Specifically, the main-diagonal part involves 
only local operations, and it could be executed while the communication for the remote data required by each 
local device.

Algorithm 3 lists the implementation kernel for MX̃  that uses a warp of threads to map the workload of 
a block row of M. This idea is motivated by the point-block matrix and single vector multiplication and our 
previous work on the ILU factorization for the point-block matrix27,34,35.

Fig. 3.  Illustration of the operation of X̂ AT .
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Fig. 5.  Illustration of the operation of MX̃ .

 

Fig. 4.  Vector transformation for X̃  before MX̃ .
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Algorithm 3.  CUDA kernel implementation for MX̃

The procedure starts with the initialization of the auxiliary vector for the subsequent data reduction in shared 
memory. A warp of threads is assigned to process a block row of M, and tied to a block identifier g. As a warp 
can cover 

⌊
32/b2⌋

 complete blocks, each thread then identifys the local index wl within a warp and is mapped 
to a single element at (r, c) in a block (lines 8–9). Different from a single SpMV operation, multiple SpMVs 
can increase the data reuse by prefetching the matrix data from the global memory and uses it for s times (line 
13–15). Finally, s vector reduction operations are performed through shared memory to obtain the final result 
of multiple SpMVs and the results are written back to the global memory. Several cycles will be performed by 
a warp when the warp is unable to cover all blocks at a block row, and different cycles are serial (lines 18–29). 
Additionally, the reduction logic in Algorithm 3 is general and not restricted to a specific block size. The stride 
(α) used in the vector reduction stage, however, varies with the matrix block size b35, and α should be the value 
obtain by (32/2b) and then rouding it up to the nearest power of 2.
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For ease of understanding, Fig. 6 shows how multiple SpMVs are performed in warps as an example. In 
this case, the block size is 4, and a warp can handle two complete blocks in a block row at a time. Note that we 
present X̃  in multiple segments only for illustration purposes, in fact, it is stored as a merged vector as we have 
mentioned before. Squares with the same color in X̃  indicate that the vector data at these positions are being 
calculated using the same matrix elements. This property allows the matrix data to be loaded once and reused 
for computing with multiple vectors, thereby reducing redundant memory accesses across multiple SpMVs 
operations.

CU-Solver
In CU-Solver, the SpMV operation in Kronecker product form is implemented following Algorithm  4. The 
computation of X̂ AT  is realized through a two-level loop structure, each consisting of s iterations. Within 
the innermost loop, the cublasDaxpy function is invoked to perform the required vector accumulation 
operations (lines 1–8). Afterwards, cudaMemcpy is invoked s times to transfer the data of X̃  to the host. Then, 
cusparseDbsrmv is invoked s times to compute the main-diagonal part of MX̃ . After each cusparseDbsrmv 
computation, a VecScatter operation handles communication, resulting in a total of s communication calls (lines 
10–15). Each communication phase consists of a pair of VecScatterBegin and VecScatterEnd calls, making it 
non-blocking and allowing partial overlap with subsequent computation. Finally, s cudaMemcpy calls transfer 
the data back to the device, followed by s cusparseDbsrmv operations to compute the off-diagonal part of MX̃ , 
which are then accumulated to complete (A ⊗ M)X  (lines 17–20).

Fig, 6.  Illustration of warp-based scheme for MX̃ .
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Algorithm 4.  Implementation of (A ⊗ M)X  in CU-Solver

Communication
In the processing of computing the (A ⊗ M)X  implicitly (Eq. (3)), each column vector of X̂  requires data 
exchange across GPU devices. This makes the amount of communication and the times of memory copies 
between hosts and devices increase as the number of columns in X̂ , i.e., s, increases, resulting in increasing 

Fig.7.  Parallel buffering.
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overhead. In this subsection, effective considerations are introduced to keep the communication overhead from 
affecting the overall performance.

Parallel buffering
Since the computation of the (A ⊗ M)X  can be viewed as the multiple SpMVs, it is straightforward to consider 
that merging s times of communication into once can reduce the redundant overhead for launching message 
exchange tasks. To complete this, all the data that needs to be sent to remote devices is required to be extracted 
from each x̃(i) into the same buffer. Instead of extracting s times one by one, we realize a parallel process to 
buffer the data simultaneously for all x̃, which is shown in Algorithm 5. To parallelize the buffer setup, we launch 
as many threads as the length of the send buffer, allowing each thread to handle one element of the buffer. Since 
the relative indices of the extracted elements in each x̃(i) are the same, we first compute the length ℓ of a single 
buffer (line 3). This value is used to determine ws, which indicates which x̃(i) the current thread is operating on 
(line 4). Furthermore, ℓ is used to compute ς  and o, which are used to compute a specific index ι of the indexed 
array c, which serves to locate where in x̃(i) the element responsible for the thread originated (lines 5–7). Finally, 
each thread sets the buffer using ι, ws, and the length q of a single x̃(i) (line 8).

Algorithm 5.  Parallel buffering

Figure 7 shows how the data is buffered in parallel in the case where device 0 needs to send data to both 
device 1 and device 2. Each element inside x̃(i) is of size b that corresponds to the block size of M. Elements in 
different colors indicate that they come from different x̃(i), and elements in the same shape indicate that they 
are reuired in the same relative position of x̃(i).

Pre-mapping strategy
As shown in Fig. 7, the layout of the parallel buffering process is in time-step order, and the data in x̃(i) that will 
be sent to remote devices are extracted and stored consecutively in the sending buffer. This will cause a problem 
that the data that needs to be sent to the same device is scattered in the sending buffer, resulting in repeated times 
of communication with the same device. From the receiver’s perspective, if the sending and receiving buffers are 
in processor order, the same problem occurs when writing data from the receiving buffer back into x̃(i).

To avoid this problem, we create a sending map and receiving map respectively to arrange the buffers in 
different orders. The algorithm is listed in Algorithm 6. Note that the mapping arrays only needs to done once 
and reused to reorder the buffers before the buffers are accessed. Figure 8 shows illustrates the layouts of the 
sending and receiving buffers before and after the reordering operations in the case where device 0 performs 

Fig. 8.  Illustration of buffer reordering.
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sending and receiving steps. In addition, we use the GPU direct technique in the communication part to realize 
the direct communication between devices.

Algorithm 6.  Pre-mapping strategy

Experiments
The experiments are conducted on two heterogeneous server platforms. The first platform consists of two 
computing nodes. Each node is equipped with two Intel(R) Xeon(R) E5-2640 V4 CPUs (with a clock speed of 
2.4GHz) and 128 GB of memory. Each CPU has 10 physical cores, giving each node a total of 20 CPU cores. 
Nodes are interconnected via NVLink within each node, providing an intra-node bandwidth of up to 130 GB/s, 
while inter-node communication relies on Intel Omni-Path Architecture (OPA) interconnects operating at 100 
Gbps. In addition, each node was configured with four Tesla V100 GPUs, each with 16 GB of HBM2 memory. 
The theoretical peak performance of the GPU is 15.7 TFLOPS for single-precision and 7.8 TFLOPS for double-
precision floating-point operations, respectively. The second platform consists of computing nodes equipped 
with two Kunpeng-920 CPUs running at 3.0 GHz and 220 GB of available memory. In addition, each node is 
configured with four NVIDIA A100 GPUs, each with 40 GB of HBM2 memory. Each GPU card is by default 

Parameters Description

M, L N × N  point-block matrices with a block size of b = 4, where N = 604,360.

A, B s × s dense matrices where s = 2.

F Rigth-hand side vector, expressed as s column vectors, each of length 604,360.

τ Scalar parameter, τ = 0.125.

Table 1.  Parameters of case.

 

Scientific Reports |        (2025) 15:43529 12| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


allocated 32 CPU cores and 55 GB of memory. The nodes are interconnected via 4 × 100 Gbps RoCE high-
speed links that utilize the RDMA protocol. The theoretical peak performance of the GPU is 19.5 TFLOPS for 
single-precision and 9.7 TFLOPS for double-precision floating-point operations, respectively.

All the algorithms introducted in above sections are realized based on PETSc (Portable, Extensible Toolkit 
for Scientific Computation)28. The PETSc version is 3.14.2, and configured with GCC 6.3, OpenMPI 4.0.036 and 
CUDA 12.137. The most important optimization related compilation flag for the solver is -O3, and the Linux 
kernel version is 3.10.0-1160.el7.x86_64.

In the numerical experiments, the case is constructed from the unsteady incompressible Stokes problem 
defined in a three-dimensional computational domain (denoted as Ω ⊂ R3). The governing equations are given 
by

	





ut − ν∆u + ∇p = g, in Ω × (0, T ],
∇ · u = 0, in Ω × (0, T ],
u(x, 0) = u0(x), in Ω,

� (5)

where u is the velocity field, p is the pressure, ν is the viscosity, g is a given source term, and u0(x) is the 
prescribed initial velocity. The boundary ∂Ω is divided into three disjoint parts: inlet Γin, wall Γwall, and outlet 
Γout. On the inlet and wall boundaries, Dirichlet conditions are imposed:

	 u = uin, on Γin × (0, T ], u = 0, on Γwall × (0, T ].� (6)

At the outlet, either a pressure boundary condition or an equivalent stress-free condition is prescribed:

	 p = pout or (−pI + ∇u)n = 0, on Γout × (0, T ],� (7)

Symbol Definition

Tdt Time for buffer allocation, host-device data transfer, and pre-mapping (Algorithm 6).

TKx Execution time for SpMV in Kronecker product form, excluding communication.

Tc Time spent on communication in SpMV in Kronecker product form.

TGn Time for Gram-Schmidt orthogonalization and normalization.

Tall Overall runtime.

Table 3.  Definitions of timing components.

 

Fig. 9.  Time breakdowns for CU-Solver and OKP-Solver on a single GPU.

 

#Cores TKp  (s) Tother  (s) Tall  (s)

1 1283.71 ± 35.58 247.60 ± 22.19 1537.20 ± 40.07

2 700.54 ± 26.86 132.54 ± 13.18 836.50 ± 32.56

4 386.94 ± 14.21 92.03 ± 7.32 480.57 ± 20.31

8 175.88 ± 11.53 46.44 ± 5.83 279.37 ± 14.16

Table 2.  Runtime results of the CPU-only solver (based on PETSc).
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where n denotes the unit outward normal vector.The number of mesh points is 151090. Eq. (5) is discretized in 
space using a stabilized finite element method and solved with a space-time coupled algorithm. The components 
for Eq. (2), expressed in M, L, A, B, and τ , are extracted from the process for performance comparisons and 
analysis. The main parameters for the matrices and vectors are listed in Table 1. The Kronecker product version 
of the GMRES, i.e., Algorithm 1, with a restart number of 30 is employed as the main solver for solving the linear 
system. The absolute and relative tolerance for convergence is set to 10−8 and 10−6, respectively.

Considering the load balancing problem in communication and computation, we report the execution time 
as the average values over three experimental runs. For each run, the time of each operation is taken as the 
maximum across all processes. That is:

Fig. 12.  Time breakdowns for CU-Solver and OKP-Solver on 8 GPUs.

 

Fig. 11.  Time breakdowns for CU-Solver and OKP-Solver on 4 GPUs.

 

Fig. 10.  Time breakdowns for CU-Solver and OKP-Solver on 2 GPUs.
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T = 1

r

r∑
i=1

max (Ti,1, Ti,2, . . . , Ti,P )

where r represents the number of experimental runs and P is the total number of processes uesd.
As a reference, we implemented a CPU-only solver based on PETSc. We employ three timing metrics: 

TKp (time for the SpMV in Kronecker product form), Tother  (Time for other operations) and Tall (Overall 
runtime). To ensure the stability of the tests, we fix the number of iterations at 6000 as the baseline for the 
subsequent performance analysis. The experimental results of the CPU solver with 1, 2, 4, and 8 cores are 
reported in Table 2. These experiments were conducted on the V100 platform, where each node is equipped with 
two Intel(R) Xeon(R) E5-2640 V4 CPUs running at 2.4 GHz and 128 GB of memory. Each CPU has 10 physical 
cores, providing a total of 20 physical cores per node.

Figure 9 presents the time breakdown of key operations performed on a single GPU, using CU-Solver and 
OKP-Solver on V100 and A100 platforms. For clarity, the notation used in the GPU experiments is summarized 
in Table 3, which provides detailed descriptions of all timing components.

On a single GPU, the solver requires no communication during computation, and TKx accounts for the 
majority of the solver’s runtime. Specifically, TKx accounts for 76.2% of the total time on V100 and 68.8% on 
A100 in CU-Solver. In OKP-Solver, TKx constitutes 64.5% and 64.2% of the total time on V100 and A100, 
respectively. Figure 10 shows the time breakdown for each operation of the two solvers on a single node with 2 
GPUs.

In Fig. 10, CU-Solver spends most of its runtime on Tdt and TKx, taking 45.5% and 31.8% on V100, and 
53.8% and 22.9% on A100, while Tc accounts for only 10.2% and 10.6%. In contrast, OKP-Solver is dominated 
by TKx and TGn, which account for 59.3% and 31.7% on V100, and 56.7% and 30.1% on A100, with Tc reduced 
to merely 3.9% and 4.4%. Figure 11 shows the results for both solvers on 4 GPUs within a single node on two 
platforms. We observe that the proportion of Tc in CU-Solver increases to 24.2% and 21.4%, while in OKP-
Solver, Tc increases to 13.2% and 13.3%. This is because the matrix data in our case is unevenly distributed, 
leading to load imbalance. As a result, Tc increases when using both 4 GPUs and 8 GPUs.

Figure 12 presents the performance of both solvers on 8 GPUs, with the experiment conducted across two 
nodes. We observe a significant increase in the proportion of Tc for both solvers on 8 GPUs. In CU-Solver, the 
proportion increases from 24.2 and 21.4% on 4 GPUs to 55.3 and 28.8% on 8 GPUs. Similarly, in OKP-Solver, it 
rises from 13.2 and 13.3% to 65.4 and 40.6%. This is because there is a bottleneck in inter-node communication, 
and the limited network bandwidth will be saturated as the number of GPUs increases. Specifically, when 
multiple GPUs concurrently exchange data across nodes, contention for shared bandwidth resources occurs, 
drastically reducing communication efficiency. In addition, A100 platform has higher efficiency in inter-node 
communication, so the increase in Tc is less significant compared to V100 platform.

Figures 10a, 11a, and 12a indicate that Tdt constitutes a substantial fraction of the total runtime (Tall) in 
CU-Solver. Specifically, Tdt accounts for 45.5%, 45.9%, and 28.4% on the V100 platform, and 53.8%, 39.0%, and 
23.6% on the A100 platform, corresponding to 2, 4, and 8 GPUs, respectively. This decrease in Tdt proportion on 
8 GPUs is attributed to the significant increase in Tc. Importantly, there is more memory copy overhead when 
solving the Kronecker product form linear system in Eq. (2), as its structure requires much more host-device 
data transfers compared to general linear systems. Concretely, CU-Solver performs s rounds of host-device data 
transfers and host-side VecScatter operations for multiple SpMVs involving M or L, which makes the number 
of memory copies 2s times that of a general linear system. Consequently, the heavy data copying consumes a 
large amount of time, making Tdt account for a considerable percentage of Tall in CU-Solver. In contrast, OKP-
Solver employs GPU-Direct technology to enable direct device-device communication, effectively avoiding 
costly host-device memory copies. This optimization reduces Tdt on 2 GPUs from 11.05 and 10.73 s to 0.21 
and 0.18 s. On 4 GPUs, Tdt decreases from 7.97 and 5.48 s to 0.22 and 0.20 s. On 8 GPUs, it drops from 8.58 
and 5.28 s to 0.29 and 0.30 s. As a result, Tdt accounts for only 3.0% and 3.4% on 2 GPUs, 4.6% and 4.9% on 4 

Fig. 13.  Speedup of each operation.
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GPUs, and 1.8% and 2.9% on 8 GPUs of the overall time. The low portions of Tdt also show that the proposed 
parallel buffering (Algorithm 5) and pre-mapping (Algorithm 6) algorithms achieve high efficiency.

Figure 13 shows the speedup of OKP-Solver relative to other CU-Solver components. In particular, for Tc, the 
combination of parallel buffering (Algorithm 5) and pre-mapping (Algorithm 6) achieves speedups of 9.18×, 
6.82×, and 1.54× on 2, 4, and 8 GPUs, respectively, on V100 platform, and 8.95×, 5.60×, and 1.62× on A100 
platform. The speedup of Tc on 8 GPUs appears significantly lower compared to that on 2 and 4 GPUs within 
a single node. The higher communication speedups on 2 GPUs and 4 GPUs within a single node are mainly 
because OKP-Solver merges s communication rounds into a single round, employs GPU-Direct to bypass the 
host and avoid redundant operations, and further benefits from the inherently faster intra-node communication 
bandwidth. The notably lower speedup of Tc on 8 GPUs arises from the increased inter-node communication 
overhead, which prolongs communication times for both CU-Solver and OKP-Solver. This effect is largely 
due to the fundamental difference between intra-node and inter-node communication: while intra-node 
communication benefits from direct hardware connections and low latency, inter-node communication relies on 
network protocols and RDMA technology, which differ substantially in bandwidth, latency, and configuration 
complexity. The situation is further aggravated by load imbalance caused by uneven matrix distribution as the 
number of processes increases.

A comparison of Figs. 11a and 12a, as well as Figs. 11b and 12b, reveals a counter-intuitive phenomenon: 
the absolute runtime of TGn increases despite a reduced workload for both CU-Solver and OKP-Solver on 8 
GPUs. More precisely, TGn for CU-Solver rises from 2.02 to 4.29 s on V100, and from 2.02 to 3.64 s on A100. 
For OKP-Solver, TGn increases over the same range from 1.48 to 2.80 s on V100, and from 1.23 to 2.05 s 
on A100. The main cause lies in inter-node communication, which increases the communication time within 
TGn. TGn involves collective operations such as MP I_Allreduce, which must traverse the network when 
scaling from a single node to two nodes, rather than remaining within the high-bandwidth intra-node links. This 
leads to higher latency and lower effective bandwidth, increasing the communication cost and directly affecting 
the absolute runtime of TGn. This can be clearly observed from the changes of TGn for both solvers when 
scaling from 4 to 8 GPUs on the two platforms: on A100 platform, which has better inter-node communication 
performance, the absolute increase in TGn is much smaller than that on V100 platform. However Fig. 13 show 
that the speedup of TGn on 8 GPUs reaches 1.53× on V100 and 1.77× on A100, surpassing the 1.37× on 
V100 and 1.65× on A100 achieved on 4 GPUs. Unlike Tc, it does not suffer the speedup decrease caused by the 
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Fig. 15.  Roofline model of (A ⊗ M + τB ⊗ L)X  in OKP-Solver.

 

Fig. 14.  GFLOPS comparisons of the computational part for (A ⊗ M + τB ⊗ L)X ..
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same inter-node communication issue. This is because OKP-Solver has good scalability. On 8 GPUs, the good 
scalability of OKP-Solver on both platforms leads to faster computation, which effectively hides the inter-node 
communication latency. As a result, compared with 4 GPUs, OKP-Solver achieves a higher speedup for TGn.

Figure 14 shows the GFLOPS comparisons of the computational part for (A ⊗ M + τB ⊗ L)X  between 
CU-Solver and OKP-Solver when executed on 1, 2, 4, and 8 GPUs on both V100 and A100 platforms. The 
number of floating-point operations involved in (A ⊗ M + τB ⊗ L)X  can be divided into three parts: (1) 
The computations of X̂ AT  and X̂ BT , which require 4qs2 floating-point operations; (2) main-diagonal blocks 
computations of MX̃  and LX̃ , which incur a cost of 4s · nnzm · b2 operations, where nnzm is the number 
of nonzeros in the main-diagonal blocks; and (3) off-diagonal blocks computations of MX̃  and τLX̃ , which 
contribute 4s · nnzo · b2 + 3qs operations, where nnzo denotes the number of nonzeros in the off-diagonal 
blocks. For this case, performing (A ⊗ M + τB ⊗ L)X  once requires 293,200,460 floating-point operations. 
It can be observed from Fig. 14 that the GFLOPS performance has increased significantly through the proposed 
optimization strategy which improves CMAR and makes better use of the GPUs. On V100 platform, OKP-Solver 
achieves 83.58%, 86.68%, 84.83%, and 91.11% GFLOPS improvements over CU-Solver on 1, 2, 4, and 8 GPUs, 
respectively, while on A100 platform the improvements are 45.41%, 50.03%, 64.55%, and 65.68%.

We conducted a roofline model analysis of the OKP-Solver kernel, (A ⊗ M + τB ⊗ L)X , on both platforms. 
Roofline model is a performance analysis tool that relates a kernel’s achievable floating-point performance to 
its arithmetic intensity (i.e., the number of floating-point operations per byte of memory accessed) and the 
hardware limits of the processor, such as peak FLOPS and memory bandwidth38. Figure 15 illustrates the roofline 
model of the OKP-Solver kernel when performing the computation (A ⊗ M + τB ⊗ L)X  on two platforms. 
Experiments were performed on a single GPU to measure the arithmetic intensity and the achieved double-
precision performance. The kernel achieves an arithmetic intensity of approximately 0.23 FLOP/Byte, given by

	
AI = F

B

where AI is arithmetic intensity, F is the total number of floating-point operations and B is the total number of 
bytes transferred between memory and the GPU. For reference, the machine balance point, calculated using the 
double-precision peak performance, is 8.7 FLOP/Byte for V100 and 5.0 FLOP/Byte for A100.

We observe from Fig. 15 that our kernel is memory bandwidth-bound on both platforms. This is due to the 
type of large-scale sparse problem we are studying, which typically suffers from memory bandwidth limitations 
on GPUs39,40.

Figure 16 presents the residual convergence curves of CU-Solver and OKP-Solver on V100 and A100 
platforms. In this case, both solvers exhibit almost identical convergence behavior on two platforms, reaching 
convergence after 117 iterations.

Conclusion
In this paper, parallel, multi-GPU enabled algorithms for efficiently solving linear systems derived from domain 
decomposition based space-time parallel methods are proposed and optimized. The OKP-Solver accelerates the 
GMRES method in Kronecker product form in both computation and communication. Compared to a general 
cuSPARSE based implementation, i.e., CU-Solver, TKx achieves speedups of 2.00×, 1.87×, 1.85×, and 1.91× 
on 1, 2, 4 and 8 V100 GPUs, and 1.43×, 1.50×, 1.64×, and 1.64× on 1, 2, 4 and 8 A100 GPUs, respectively. 
Furthermore, by employing parallel buffering and pre-mapping strategies combined with GPU-Direct, the 
communication time Tc is accelerated by 9.18×, 6.82×, and 1.54× on V100, and 8.95×, 5.60×, and 1.62× 
on A100, for 2, 4, and 8 GPUs, respectively. The experiments show that the overall runtime Tall of OKP-Solver 
achieves speedups of 1.70×, 3.48×, 3.70×, and 1.82× on 1, 2, 4, and 8 GPUs of V100 platform, and 1.33× 
3.70×, 3.48×, and 2.28× on A100 platform, respectively. This solver is expected to be used in multiphysics 
applications with space-time coupling.

Fig. 16.  Residual convergence curves of CU-Solver and OKP-Solver.
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