
A multi-GPU enabled solver
in Kronecker product form for
multiphysics problems
Wenpeng Ma1, Siyuan Zhao1, Xiaofan Le1 & Wu Yuan2

Modern engineering and scientific computing often requires solving sparse linear systems containing
point-block matrix to model multiphysics problems. The space-time parallel method is popular
and attractive in fluid dynamics, fitting parallel computers very well. In this paper, we design and
implement a parallel, multi-GPU enabled GMRES solver for solving linear systems in the Kronecker
product form arising from the domain decomposition based space-time parallel methods. To improve
the efficiency of the solver, we also design a set of optimization strategies for Sparse Matrix-Vector
Multiplication (SpMV) in Kronecker product form. These include: (1) enhancing the Compute-to-
Memory Access Ratio (CMAR) to fully utilize the high bandwidth nature of the GPU during the
computation phase and (2) introducing a parallel buffering scheme and a pre-mapping algorithm to
enable the use of GPU-Direct for accelerating the communication phase. We conducted experiments
on 1, 2, 4, and 8 GPUs and compared the performance of OKP-Solver with the cuSPARSE based
implementation. On the V100 platform, the Kronecker product based SpMV computation (TKx)
achieves speedups of 2.00×, 1.87×, 1.85×, and 1.91× on 1, 2, 4, and 8 GPUs, respectively, while
the communication time (Tc) achieves 9.18×, 6.82×, and 1.54× on 2, 4, and 8 GPUs, respectively.
On the A100 platform, TKx achieves speedups of 1.43×, 1.50×, 1.64×, and 1.64×, while Tc
achieves 8.95×, 5.60×, and 1.62×. The overall solver runtime (Tall) achieves speedups of 1.70×,
3.48×, 3.70×, and 1.82× on V100, and 1.33×, 3.70×, 3.48×, and 2.28× on A100, for 1, 2, 4, and
8 GPUs, respectively.

Keywords  Kronecker product, Linear system, Parallel, GPU, Point-block matrix

In many fields of engineering calculations, such as aerospace, simulation of atmospheric ocean currents, and
biomolecular simulation, etc., the solution of physical problems usually depends on the solution of sparse linear
systems. These problems are described as differential equations or integral equations based on physical laws, and
are transformed into the problem of solving a sparse linear equation system in the form of Ax = b through
discretization and linearization processes. Linear equations can be solved by direct method or iterative method.
The direct method1 is accurate but resource-consuming, making it suitable for small scale problems. The
iterative method, by contrast, is efficient and better suited to large scale problems, despite yielding approximate
solutions. A commonly used iterative method is Generalized Minimal Residual Method (GMRES) based on
Krylov subspaces2.

Modern scientific computing problems often involve high resolutions and strong time dependence.
Traditional time-stepping algorithms, due to stability limits, must use very small time steps when solving
problems with strong time dependence, which results in high computational costs. In addition, in parallel
computing, the number of communications is proportional to the number of time steps, which severely limits
the scalability of the algorithm on large scale parallel architectures. To address these challenges, recent space-
time parallel computing strategies, which parallelize both the space and time dimensions, have significantly
improved computational efficiency. These strategies have shown notable advantages in problems such as heat
equations, convection-diffusion equations, and Stokes flows.

Space-time parallel methods can be divided into methods based on multiple shooting3–5, methods based
on multigrid6–8, direct time parallel methods9, and methods based on domain decomposition and waveform
relaxation10–13. This paper conducts research based on methods based on domain decomposition. When solving
the numerical solutions of time-dependent partial differential equations, papers14,15 use the finite element
method for spatial discretization and the implicit Runge-Kutta method for temporal discretization. By dividing

1School of Computer and Information Technology, Xinyang Normal University, Henan 464000, China. 2Computer
Network Information Center, Chinese Academy of Sciences, Beijing 100190, China. email: mawp@xynu.edu.cn

OPEN

Scientific Reports | (2025) 15:43529 1| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-27400-3&domain=pdf&date_stamp=2025-11-11

the time intervals, the stage variables are coupled within each time step, resulting in a linear system in the
Kronecker product form, which is used to describe and solve the numerical problems of the partial differential
equations after temporal and spatial discretization.

The main challenge to solve a spatiotemporal coupling linear system is that it requires increasing
computational resources as the number of coupled stages increases. With the fast development of heterogeneous
computing, state-of-the-art GPUs, designed for fine-grained data parallelism and high memory bandwidth, can
offer substantial computing capabilities for the solve of the numerical system. However, the SpMV in Kronecker
product form in this kind of linear systems don’t change the density of the corresponding matrix when the
Kronecker product operations are explicitly performed, which makes the issue of scattered memory accesses
still exist. Therefore, code migrating from CPUs to GPUs requires detailed algorithm designs and performance
optimizations. Motivated by this fact, in this paper, we focus on building a complete framework on the CPU+GPU
platform for the solve of the spatial-temporal linear system. The main contributions are as follows:

	1.	 We introduce a parallel framework on multiple GPUs for solving the linear system derived from space-time
parallel method based on domain decomposition. Unlike the general scalar matrix format, our work is mo-
tivated by the structure of multiphysics problems and thus focuses on the point-block matrix format. The
framework uses the generalized minimum residual (GMRES) method as the key solver.

	2.	 We propose an optimized strategy with specified data layouts for the SpMV in Kronecker product form oper-
ations in the distributed solver, which effectively improves the Compute-to-Memory Access Ratio (CMAR).
However, a major challenge arises from the mismatch in vector data ordering between the computation and
communication phases of the solver. To address this challenge, we employ parallel buffering and pre-map-
ping strategies to ensure efficient data alignment. When combined with GPU-Direct, these strategies sub-
stantially reduce the frequency and overhead of host-device and device-device communications.

	3.	 We conducted experiments on 1, 2, 4, and 8 GPUs and compared the performance of OKP-Solver with the
cuSPARSE based implementation. The results show that both the computation and communication phases
of the solver benefit from notable acceleration, leading to an overall runtime (Tall) speedup of at least 1.33×
across all cases. In terms of GFLOPS, OKP-Solver improves the Kronecker product based SpMV perfor-
mance by 83.58%, 86.68%, 84.83%, and 91.11% on the V100 platform, and by 45.41%, 50.03%, 64.55%, and
65.68% on the A100 platform, for 1, 2, 4, and 8 GPUs, respectively.

Related work
As a structured linear algebraic tool, the Kronecker product is widely applied in high-performance computing
and machine learning due to its favorable computational structure and compact representation capabilities in
high-dimensional problems. In the field of machine learning, Tang et al. (2020) utilized dynamic Kronecker
product block generation and sparsity optimization techniques to achieve GPU acceleration for graph kernel
computations16; Yu et al. (2022) optimizes bilinear pooling via two-level Kronecker product decomposition17;
Lin et al. (2024) addresses the missing value problem in learning curve prediction by projecting and selecting
observation data joint covariance matrices from latent Kronecker products18.

In the field of high performance computing, Gonon et al. (2024) enhances the GPU computation efficiency of
Kronecker-sparse matrix multiplication through a tiling strategy and GPU memory optimization techniques19;
Cui et al. (2025) implements tensor product vertex-patch smoothers on GPUs using the characteristics of
the Kronecker product structure and fast diagonalization technology, optimizing high-order finite element
multigrid computations20; Crews et al. (2022) leverages Python’s CuPy library to achieve GPU acceleration for
the discontinuous Galerkin finite element method via tensor product structures21; Jangda et al. (2024) introduces
the FastKron framework, adopting row-slice multiplication accumulation, shift buffer optimization, and multi-
GPU latency-hiding strategies to significantly improve the computation speed of Kron-Matmul on GPUs22;
Jhurani et al. (2013) designs BLAS-like interfaces (TKRON2/TKRON3), optimizes memory layout and shared
memory reuse, and proposes efficient GPU algorithms for batched Kronecker products23.

Some works17,18,23 used the properties of Kronecker product to convert the explicit SpMV in Kronecker
product form into implicit operations, so as to reduce the number of floating-point operations, thereby
improving the computational efficiency.

In contrast to existing research, our study makes two distinct contributions. First, most existing research
focuses on specific application scenarios, studying various computational forms of the Kronecker product. Our
work focuses on designing a solver for linear systems involving Kronecker products, which arise from a space-
time parallel method based on domain decomposition. Secondly, while these studies mainly focus on single-
GPU acceleration, we explore the performance and optimization strategies of the proposed solver on multi-GPU
platforms.

Background
Kronecker product
Given matrices H ∈ Rm×e and G ∈ Ry×k , then the Kronecker product H ⊗ G ∈ Rmy×ek is defined as:

	

H ⊗ G =




h11G · · · h1eG
...

. . .
...

hm1G · · · hmeG


� (1)

where hij represents the element at the ith row and jth column of H.

Scientific Reports | (2025) 15:43529 2| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Point-block matrix
Point-block matrices are common in multi-physics problems24–27, where multiple coupled variables are
required to be solved at each grid point. These problems generally result in sparse matrices that are composed
of dense blocks each of which represents the coupling feature between the variables locally. For example, in an
incompressible flow, each grid point in the computational domain has three velocity components u, v, w and a
pressure component p to be solved, and it leads to a point-block matrix with a block size of 4 when the physical
variables associating with a grid point are calculated in the coupling method.

Typically storage formats for a point-block matrix are BCSR (Block Compressed Sparse Row) and BCSC
(Block Compressed Sparse Column)27 where sparse data is stored in blocks instead of scalars. These formats
are widely supported by high-performance computing libraries such as PETSc28, cuSPARSE29, Trilinos30, Intel
MKL31 and Hypre32.

Problem definition
We consider the linear system in the Kronecker product form arising from the spatiotemporal coupling
algorithm14,15 as:

	 (A ⊗ M + τB ⊗ L)U = F � (2)

where A, B ∈ Rs×s are dense matrices arising from the temporal discretization with s denoting the number
of time steps, and M, L ∈ RN×N are point-block matrices with a block size b from the spatial discretization, n
represents the number of block rows, so that N = nb, τ is a constant for time-scaling, and U and F , with a size
of N × s, are the solution and right-hand side vector, respectively.

GPU solver
We show the GMRES(m) method for the solve of Eq. (2) in Algorithm 1. The procedure aims to solve the
linear system with a size of sN × sN . As the matrix is expressed in Kronecker product form and not explicitly
formulated, according to Eq. (1), we can also view Eq. (2) as a coupled of s systems each of which is of size
N × N . Although the GMRES(m) takes exactly the same steps for different linear equations, the data layout,
communication strategies and performance profilings are totally different when it comes to multiple GPU
computing, because the characteristics of the matrix are the most considered factor in performance optimization
and generally affect the adoption of implementation strategies. Therefore, in the following discussion, we focus
on designing a multi-GPU enabled solver for Eq. (2) by making full ultilization of the features of the matrix
in Kronecker product formulation. To evaluate the optimization performance of this solver, we also develop a
baseline implementation using the cuSPARSE 12.1 library33. For clarity, we refer to our proposed solver as OKP-
Solver (Optimized Kronecker Product Solver) and the cuSPARSE-based implementation as CU-Solver.

Scientific Reports | (2025) 15:43529 3| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.  GMRES Kronecker product version

The SpMV in Kronecker product form on multiple GPUs
One of the most time consuming steps is SpMV in Kronecker product form (line 3 and line 7) in Algorithm 1.
To effectively increase the Compute-to-Access Ratio on the GPU device, we perform the SpMVs by using the
property of the Kronecker product:

	 (A ⊗ M)X = vec(MX̂ AT)� (3)

where vec stands for the vectorization operation that stacks all column vectors of a matrix into a single column,
X̂ = (x(1), x(2), .., x(s))N×s with x(i) = (x(i)

11 , .., x
(i)
1b , .., x

(i)
N1, .., x

(i)
Nb)T , and X = vec(X̂).

To avoid the frequent formats transform between X and X̂ , all column vectors having the size of N × s in
Algorithm 1, for example U , vi, w, are stored and operated in the corresponding matrix formats by spliting the
single column into s column vectors. And X is never operated except it is required for file output. We then show
the distributed data layout for matrices and vectors from Algorithm 1 in Figs. 1 and 2. Considering a multiple
GPU environment, each GPU is mapped into a MPI process and communicate with it, and takes a partial job of
the total computational workload. For a typical multiphysics problem, M and L are point-block matrices, and
partitioned in block rows between processes. The partition of vectors are sticky with that of matrices to ensure
that the coupling variables for the same mesh point are not scattered in different devices. In addition, each point-
block matrix is divided into main-diagonal and off-diagonal parts to facilitate the communication optimization
of SpMV, which is introduced in Section “Communication”.

OKP-Solver
The first step to perform Eq. (3) is to calculate X̂ AT locally without communication required. As mentioned
above, this benefits from the local storage of A. From the view point of global memory accesses on GPUs,
performing X̂ AT requires qs(s + 1) reads and qs writes when performed as a traditional matrix multiplication,
where q is the number of rows in a local device. Besides, shared memory loads and writes, because successive
threads need to take a row of data from X̂ and multiply it with a column from AT then do vector reduction

Scientific Reports | (2025) 15:43529 4| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

to get the result. However, the computation can be optimized by writing the resulting matrix as the linear
combination of x(j) as:

	
x̃(i) =

s∑
j=1

aijx(j)� (4)

where aij represents the element at the ith row and jth column of A. This consideration leads to (q + s)s
reads and qs writes. We explain it by Fig. 3 and Algorithm 2 which shows how Eq. (4) are implemented. For the
same time step vector x(j) (a column of X̂) is operated in parallel by all successive threads, each of which is
responsible for processing one vector element, so that only one transaction needs to be done in the same warp to
fetch the data of A, with the result denoted as X̃ = (x̃(1), x̃(2), . . . , x̃(s))N×s.

Fig. 2.  Parallel data layout of matrices and vectors on device.

Fig. 1.  Parallel data layout of matrices and vectors on host.

Scientific Reports | (2025) 15:43529 5| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 2.  CUDA kernel implementation for X̂ AT

The calculation process of MX̃ can be viewed as multiple SpMVs. Like the general SpMV, this also requires
communication. It is straightforward to perform MX̃ by launching s SpMV kernels one by one, but it degrades
the performance because the global memory accesses on the same matrix M is not reduced. So does the times
of communication. To have both the calculations and communication efficient done on GPUs, we merge the
local part of x̃ in different time steps into one single vector, which is shown in Fig. 4. The reason why this
transformation is needed will be discussed in the communication optimization in Section “Communication”.

We show how MX̃ are computed based on the transformed format of X̃ in Fig. 5. The rectangular, local
matrix M are further divided into the main-diagonal part and off-diagonal part, and separately stored to seek
the possible overlap between the calculation and communication. Specifically, the main-diagonal part involves
only local operations, and it could be executed while the communication for the remote data required by each
local device.

Algorithm 3 lists the implementation kernel for MX̃ that uses a warp of threads to map the workload of
a block row of M. This idea is motivated by the point-block matrix and single vector multiplication and our
previous work on the ILU factorization for the point-block matrix27,34,35.

Fig. 3.  Illustration of the operation of X̂ AT .

Scientific Reports | (2025) 15:43529 6| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 5.  Illustration of the operation of MX̃ .

Fig. 4.  Vector transformation for X̃ before MX̃ .

Scientific Reports | (2025) 15:43529 7| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 3.  CUDA kernel implementation for MX̃

The procedure starts with the initialization of the auxiliary vector for the subsequent data reduction in shared
memory. A warp of threads is assigned to process a block row of M, and tied to a block identifier g. As a warp
can cover

⌊
32/b2⌋

 complete blocks, each thread then identifys the local index wl within a warp and is mapped
to a single element at (r, c) in a block (lines 8–9). Different from a single SpMV operation, multiple SpMVs
can increase the data reuse by prefetching the matrix data from the global memory and uses it for s times (line
13–15). Finally, s vector reduction operations are performed through shared memory to obtain the final result
of multiple SpMVs and the results are written back to the global memory. Several cycles will be performed by
a warp when the warp is unable to cover all blocks at a block row, and different cycles are serial (lines 18–29).
Additionally, the reduction logic in Algorithm 3 is general and not restricted to a specific block size. The stride
(α) used in the vector reduction stage, however, varies with the matrix block size b35, and α should be the value
obtain by (32/2b) and then rouding it up to the nearest power of 2.

Scientific Reports | (2025) 15:43529 8| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

For ease of understanding, Fig. 6 shows how multiple SpMVs are performed in warps as an example. In
this case, the block size is 4, and a warp can handle two complete blocks in a block row at a time. Note that we
present X̃ in multiple segments only for illustration purposes, in fact, it is stored as a merged vector as we have
mentioned before. Squares with the same color in X̃ indicate that the vector data at these positions are being
calculated using the same matrix elements. This property allows the matrix data to be loaded once and reused
for computing with multiple vectors, thereby reducing redundant memory accesses across multiple SpMVs
operations.

CU-Solver
In CU-Solver, the SpMV operation in Kronecker product form is implemented following Algorithm 4. The
computation of X̂ AT is realized through a two-level loop structure, each consisting of s iterations. Within
the innermost loop, the cublasDaxpy function is invoked to perform the required vector accumulation
operations (lines 1–8). Afterwards, cudaMemcpy is invoked s times to transfer the data of X̃ to the host. Then,
cusparseDbsrmv is invoked s times to compute the main-diagonal part of MX̃ . After each cusparseDbsrmv
computation, a VecScatter operation handles communication, resulting in a total of s communication calls (lines
10–15). Each communication phase consists of a pair of VecScatterBegin and VecScatterEnd calls, making it
non-blocking and allowing partial overlap with subsequent computation. Finally, s cudaMemcpy calls transfer
the data back to the device, followed by s cusparseDbsrmv operations to compute the off-diagonal part of MX̃ ,
which are then accumulated to complete (A ⊗ M)X (lines 17–20).

Fig, 6.  Illustration of warp-based scheme for MX̃ .

Scientific Reports | (2025) 15:43529 9| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 4.  Implementation of (A ⊗ M)X in CU-Solver

Communication
In the processing of computing the (A ⊗ M)X implicitly (Eq. (3)), each column vector of X̂ requires data
exchange across GPU devices. This makes the amount of communication and the times of memory copies
between hosts and devices increase as the number of columns in X̂ , i.e., s, increases, resulting in increasing

Fig.7.  Parallel buffering.

Scientific Reports | (2025) 15:43529 10| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

overhead. In this subsection, effective considerations are introduced to keep the communication overhead from
affecting the overall performance.

Parallel buffering
Since the computation of the (A ⊗ M)X can be viewed as the multiple SpMVs, it is straightforward to consider
that merging s times of communication into once can reduce the redundant overhead for launching message
exchange tasks. To complete this, all the data that needs to be sent to remote devices is required to be extracted
from each x̃(i) into the same buffer. Instead of extracting s times one by one, we realize a parallel process to
buffer the data simultaneously for all x̃, which is shown in Algorithm 5. To parallelize the buffer setup, we launch
as many threads as the length of the send buffer, allowing each thread to handle one element of the buffer. Since
the relative indices of the extracted elements in each x̃(i) are the same, we first compute the length ℓ of a single
buffer (line 3). This value is used to determine ws, which indicates which x̃(i) the current thread is operating on
(line 4). Furthermore, ℓ is used to compute ς and o, which are used to compute a specific index ι of the indexed
array c, which serves to locate where in x̃(i) the element responsible for the thread originated (lines 5–7). Finally,
each thread sets the buffer using ι, ws, and the length q of a single x̃(i) (line 8).

Algorithm 5.  Parallel buffering

Figure 7 shows how the data is buffered in parallel in the case where device 0 needs to send data to both
device 1 and device 2. Each element inside x̃(i) is of size b that corresponds to the block size of M. Elements in
different colors indicate that they come from different x̃(i), and elements in the same shape indicate that they
are reuired in the same relative position of x̃(i).

Pre-mapping strategy
As shown in Fig. 7, the layout of the parallel buffering process is in time-step order, and the data in x̃(i) that will
be sent to remote devices are extracted and stored consecutively in the sending buffer. This will cause a problem
that the data that needs to be sent to the same device is scattered in the sending buffer, resulting in repeated times
of communication with the same device. From the receiver’s perspective, if the sending and receiving buffers are
in processor order, the same problem occurs when writing data from the receiving buffer back into x̃(i).

To avoid this problem, we create a sending map and receiving map respectively to arrange the buffers in
different orders. The algorithm is listed in Algorithm 6. Note that the mapping arrays only needs to done once
and reused to reorder the buffers before the buffers are accessed. Figure 8 shows illustrates the layouts of the
sending and receiving buffers before and after the reordering operations in the case where device 0 performs

Fig. 8.  Illustration of buffer reordering.

Scientific Reports | (2025) 15:43529 11| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

sending and receiving steps. In addition, we use the GPU direct technique in the communication part to realize
the direct communication between devices.

Algorithm 6.  Pre-mapping strategy

Experiments
The experiments are conducted on two heterogeneous server platforms. The first platform consists of two
computing nodes. Each node is equipped with two Intel(R) Xeon(R) E5-2640 V4 CPUs (with a clock speed of
2.4GHz) and 128 GB of memory. Each CPU has 10 physical cores, giving each node a total of 20 CPU cores.
Nodes are interconnected via NVLink within each node, providing an intra-node bandwidth of up to 130 GB/s,
while inter-node communication relies on Intel Omni-Path Architecture (OPA) interconnects operating at 100
Gbps. In addition, each node was configured with four Tesla V100 GPUs, each with 16 GB of HBM2 memory.
The theoretical peak performance of the GPU is 15.7 TFLOPS for single-precision and 7.8 TFLOPS for double-
precision floating-point operations, respectively. The second platform consists of computing nodes equipped
with two Kunpeng-920 CPUs running at 3.0 GHz and 220 GB of available memory. In addition, each node is
configured with four NVIDIA A100 GPUs, each with 40 GB of HBM2 memory. Each GPU card is by default

Parameters Description

M, L N × N point-block matrices with a block size of b = 4, where N = 604,360.

A, B s × s dense matrices where s = 2.

F Rigth-hand side vector, expressed as s column vectors, each of length 604,360.

τ Scalar parameter, τ = 0.125.

Table 1.  Parameters of case.

Scientific Reports | (2025) 15:43529 12| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

allocated 32 CPU cores and 55 GB of memory. The nodes are interconnected via 4 × 100 Gbps RoCE high-
speed links that utilize the RDMA protocol. The theoretical peak performance of the GPU is 19.5 TFLOPS for
single-precision and 9.7 TFLOPS for double-precision floating-point operations, respectively.

All the algorithms introducted in above sections are realized based on PETSc (Portable, Extensible Toolkit
for Scientific Computation)28. The PETSc version is 3.14.2, and configured with GCC 6.3, OpenMPI 4.0.036 and
CUDA 12.137. The most important optimization related compilation flag for the solver is -O3, and the Linux
kernel version is 3.10.0-1160.el7.x86_64.

In the numerical experiments, the case is constructed from the unsteady incompressible Stokes problem
defined in a three-dimensional computational domain (denoted as Ω ⊂ R3). The governing equations are given
by

	





ut − ν∆u + ∇p = g, in Ω × (0, T],
∇ · u = 0, in Ω × (0, T],
u(x, 0) = u0(x), in Ω,

� (5)

where u is the velocity field, p is the pressure, ν is the viscosity, g is a given source term, and u0(x) is the
prescribed initial velocity. The boundary ∂Ω is divided into three disjoint parts: inlet Γin, wall Γwall, and outlet
Γout. On the inlet and wall boundaries, Dirichlet conditions are imposed:

	 u = uin, on Γin × (0, T], u = 0, on Γwall × (0, T].� (6)

At the outlet, either a pressure boundary condition or an equivalent stress-free condition is prescribed:

	 p = pout or (−pI + ∇u)n = 0, on Γout × (0, T],� (7)

Symbol Definition

Tdt Time for buffer allocation, host-device data transfer, and pre-mapping (Algorithm 6).

TKx Execution time for SpMV in Kronecker product form, excluding communication.

Tc Time spent on communication in SpMV in Kronecker product form.

TGn Time for Gram-Schmidt orthogonalization and normalization.

Tall Overall runtime.

Table 3.  Definitions of timing components.

Fig. 9.  Time breakdowns for CU-Solver and OKP-Solver on a single GPU.

#Cores TKp (s) Tother (s) Tall (s)

1 1283.71 ± 35.58 247.60 ± 22.19 1537.20 ± 40.07

2 700.54 ± 26.86 132.54 ± 13.18 836.50 ± 32.56

4 386.94 ± 14.21 92.03 ± 7.32 480.57 ± 20.31

8 175.88 ± 11.53 46.44 ± 5.83 279.37 ± 14.16

Table 2.  Runtime results of the CPU-only solver (based on PETSc).

Scientific Reports | (2025) 15:43529 13| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where n denotes the unit outward normal vector.The number of mesh points is 151090. Eq. (5) is discretized in
space using a stabilized finite element method and solved with a space-time coupled algorithm. The components
for Eq. (2), expressed in M, L, A, B, and τ , are extracted from the process for performance comparisons and
analysis. The main parameters for the matrices and vectors are listed in Table 1. The Kronecker product version
of the GMRES, i.e., Algorithm 1, with a restart number of 30 is employed as the main solver for solving the linear
system. The absolute and relative tolerance for convergence is set to 10−8 and 10−6, respectively.

Considering the load balancing problem in communication and computation, we report the execution time
as the average values over three experimental runs. For each run, the time of each operation is taken as the
maximum across all processes. That is:

Fig. 12.  Time breakdowns for CU-Solver and OKP-Solver on 8 GPUs.

Fig. 11.  Time breakdowns for CU-Solver and OKP-Solver on 4 GPUs.

Fig. 10.  Time breakdowns for CU-Solver and OKP-Solver on 2 GPUs.

Scientific Reports | (2025) 15:43529 14| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
T = 1

r

r∑
i=1

max (Ti,1, Ti,2, . . . , Ti,P)

where r represents the number of experimental runs and P is the total number of processes uesd.
As a reference, we implemented a CPU-only solver based on PETSc. We employ three timing metrics:

TKp (time for the SpMV in Kronecker product form), Tother (Time for other operations) and Tall (Overall
runtime). To ensure the stability of the tests, we fix the number of iterations at 6000 as the baseline for the
subsequent performance analysis. The experimental results of the CPU solver with 1, 2, 4, and 8 cores are
reported in Table 2. These experiments were conducted on the V100 platform, where each node is equipped with
two Intel(R) Xeon(R) E5-2640 V4 CPUs running at 2.4 GHz and 128 GB of memory. Each CPU has 10 physical
cores, providing a total of 20 physical cores per node.

Figure 9 presents the time breakdown of key operations performed on a single GPU, using CU-Solver and
OKP-Solver on V100 and A100 platforms. For clarity, the notation used in the GPU experiments is summarized
in Table 3, which provides detailed descriptions of all timing components.

On a single GPU, the solver requires no communication during computation, and TKx accounts for the
majority of the solver’s runtime. Specifically, TKx accounts for 76.2% of the total time on V100 and 68.8% on
A100 in CU-Solver. In OKP-Solver, TKx constitutes 64.5% and 64.2% of the total time on V100 and A100,
respectively. Figure 10 shows the time breakdown for each operation of the two solvers on a single node with 2
GPUs.

In Fig. 10, CU-Solver spends most of its runtime on Tdt and TKx, taking 45.5% and 31.8% on V100, and
53.8% and 22.9% on A100, while Tc accounts for only 10.2% and 10.6%. In contrast, OKP-Solver is dominated
by TKx and TGn, which account for 59.3% and 31.7% on V100, and 56.7% and 30.1% on A100, with Tc reduced
to merely 3.9% and 4.4%. Figure 11 shows the results for both solvers on 4 GPUs within a single node on two
platforms. We observe that the proportion of Tc in CU-Solver increases to 24.2% and 21.4%, while in OKP-
Solver, Tc increases to 13.2% and 13.3%. This is because the matrix data in our case is unevenly distributed,
leading to load imbalance. As a result, Tc increases when using both 4 GPUs and 8 GPUs.

Figure 12 presents the performance of both solvers on 8 GPUs, with the experiment conducted across two
nodes. We observe a significant increase in the proportion of Tc for both solvers on 8 GPUs. In CU-Solver, the
proportion increases from 24.2 and 21.4% on 4 GPUs to 55.3 and 28.8% on 8 GPUs. Similarly, in OKP-Solver, it
rises from 13.2 and 13.3% to 65.4 and 40.6%. This is because there is a bottleneck in inter-node communication,
and the limited network bandwidth will be saturated as the number of GPUs increases. Specifically, when
multiple GPUs concurrently exchange data across nodes, contention for shared bandwidth resources occurs,
drastically reducing communication efficiency. In addition, A100 platform has higher efficiency in inter-node
communication, so the increase in Tc is less significant compared to V100 platform.

Figures 10a, 11a, and 12a indicate that Tdt constitutes a substantial fraction of the total runtime (Tall) in
CU-Solver. Specifically, Tdt accounts for 45.5%, 45.9%, and 28.4% on the V100 platform, and 53.8%, 39.0%, and
23.6% on the A100 platform, corresponding to 2, 4, and 8 GPUs, respectively. This decrease in Tdt proportion on
8 GPUs is attributed to the significant increase in Tc. Importantly, there is more memory copy overhead when
solving the Kronecker product form linear system in Eq. (2), as its structure requires much more host-device
data transfers compared to general linear systems. Concretely, CU-Solver performs s rounds of host-device data
transfers and host-side VecScatter operations for multiple SpMVs involving M or L, which makes the number
of memory copies 2s times that of a general linear system. Consequently, the heavy data copying consumes a
large amount of time, making Tdt account for a considerable percentage of Tall in CU-Solver. In contrast, OKP-
Solver employs GPU-Direct technology to enable direct device-device communication, effectively avoiding
costly host-device memory copies. This optimization reduces Tdt on 2 GPUs from 11.05 and 10.73 s to 0.21
and 0.18 s. On 4 GPUs, Tdt decreases from 7.97 and 5.48 s to 0.22 and 0.20 s. On 8 GPUs, it drops from 8.58
and 5.28 s to 0.29 and 0.30 s. As a result, Tdt accounts for only 3.0% and 3.4% on 2 GPUs, 4.6% and 4.9% on 4

Fig. 13.  Speedup of each operation.

Scientific Reports | (2025) 15:43529 15| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

GPUs, and 1.8% and 2.9% on 8 GPUs of the overall time. The low portions of Tdt also show that the proposed
parallel buffering (Algorithm 5) and pre-mapping (Algorithm 6) algorithms achieve high efficiency.

Figure 13 shows the speedup of OKP-Solver relative to other CU-Solver components. In particular, for Tc, the
combination of parallel buffering (Algorithm 5) and pre-mapping (Algorithm 6) achieves speedups of 9.18×,
6.82×, and 1.54× on 2, 4, and 8 GPUs, respectively, on V100 platform, and 8.95×, 5.60×, and 1.62× on A100
platform. The speedup of Tc on 8 GPUs appears significantly lower compared to that on 2 and 4 GPUs within
a single node. The higher communication speedups on 2 GPUs and 4 GPUs within a single node are mainly
because OKP-Solver merges s communication rounds into a single round, employs GPU-Direct to bypass the
host and avoid redundant operations, and further benefits from the inherently faster intra-node communication
bandwidth. The notably lower speedup of Tc on 8 GPUs arises from the increased inter-node communication
overhead, which prolongs communication times for both CU-Solver and OKP-Solver. This effect is largely
due to the fundamental difference between intra-node and inter-node communication: while intra-node
communication benefits from direct hardware connections and low latency, inter-node communication relies on
network protocols and RDMA technology, which differ substantially in bandwidth, latency, and configuration
complexity. The situation is further aggravated by load imbalance caused by uneven matrix distribution as the
number of processes increases.

A comparison of Figs. 11a and 12a, as well as Figs. 11b and 12b, reveals a counter-intuitive phenomenon:
the absolute runtime of TGn increases despite a reduced workload for both CU-Solver and OKP-Solver on 8
GPUs. More precisely, TGn for CU-Solver rises from 2.02 to 4.29 s on V100, and from 2.02 to 3.64 s on A100.
For OKP-Solver, TGn increases over the same range from 1.48 to 2.80 s on V100, and from 1.23 to 2.05 s
on A100. The main cause lies in inter-node communication, which increases the communication time within
TGn. TGn involves collective operations such as MP I_Allreduce, which must traverse the network when
scaling from a single node to two nodes, rather than remaining within the high-bandwidth intra-node links. This
leads to higher latency and lower effective bandwidth, increasing the communication cost and directly affecting
the absolute runtime of TGn. This can be clearly observed from the changes of TGn for both solvers when
scaling from 4 to 8 GPUs on the two platforms: on A100 platform, which has better inter-node communication
performance, the absolute increase in TGn is much smaller than that on V100 platform. However Fig. 13 show
that the speedup of TGn on 8 GPUs reaches 1.53× on V100 and 1.77× on A100, surpassing the 1.37× on
V100 and 1.65× on A100 achieved on 4 GPUs. Unlike Tc, it does not suffer the speedup decrease caused by the

10-2 10-1 100 101 102

Arithmetic Intensity (FLOP/Byte)

100

101

102

103

Pe
rfo

rm
an

ce
 (G

FL
O

PS
) Memory bound

Compute bound

10-2 10-1 100 101 102

Arithmetic Intensity (FLOP/Byte)

100

101

102

103

Pe
rfo

rm
an

ce
 (G

FL
O

PS
) Memory bound

Compute bound

Fig. 15.  Roofline model of (A ⊗ M + τB ⊗ L)X in OKP-Solver.

Fig. 14.  GFLOPS comparisons of the computational part for (A ⊗ M + τB ⊗ L)X ..

Scientific Reports | (2025) 15:43529 16| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

same inter-node communication issue. This is because OKP-Solver has good scalability. On 8 GPUs, the good
scalability of OKP-Solver on both platforms leads to faster computation, which effectively hides the inter-node
communication latency. As a result, compared with 4 GPUs, OKP-Solver achieves a higher speedup for TGn.

Figure 14 shows the GFLOPS comparisons of the computational part for (A ⊗ M + τB ⊗ L)X between
CU-Solver and OKP-Solver when executed on 1, 2, 4, and 8 GPUs on both V100 and A100 platforms. The
number of floating-point operations involved in (A ⊗ M + τB ⊗ L)X can be divided into three parts: (1)
The computations of X̂ AT and X̂ BT , which require 4qs2 floating-point operations; (2) main-diagonal blocks
computations of MX̃ and LX̃ , which incur a cost of 4s · nnzm · b2 operations, where nnzm is the number
of nonzeros in the main-diagonal blocks; and (3) off-diagonal blocks computations of MX̃ and τLX̃ , which
contribute 4s · nnzo · b2 + 3qs operations, where nnzo denotes the number of nonzeros in the off-diagonal
blocks. For this case, performing (A ⊗ M + τB ⊗ L)X once requires 293,200,460 floating-point operations.
It can be observed from Fig. 14 that the GFLOPS performance has increased significantly through the proposed
optimization strategy which improves CMAR and makes better use of the GPUs. On V100 platform, OKP-Solver
achieves 83.58%, 86.68%, 84.83%, and 91.11% GFLOPS improvements over CU-Solver on 1, 2, 4, and 8 GPUs,
respectively, while on A100 platform the improvements are 45.41%, 50.03%, 64.55%, and 65.68%.

We conducted a roofline model analysis of the OKP-Solver kernel, (A ⊗ M + τB ⊗ L)X , on both platforms.
Roofline model is a performance analysis tool that relates a kernel’s achievable floating-point performance to
its arithmetic intensity (i.e., the number of floating-point operations per byte of memory accessed) and the
hardware limits of the processor, such as peak FLOPS and memory bandwidth38. Figure 15 illustrates the roofline
model of the OKP-Solver kernel when performing the computation (A ⊗ M + τB ⊗ L)X on two platforms.
Experiments were performed on a single GPU to measure the arithmetic intensity and the achieved double-
precision performance. The kernel achieves an arithmetic intensity of approximately 0.23 FLOP/Byte, given by

	
AI = F

B

where AI is arithmetic intensity, F is the total number of floating-point operations and B is the total number of
bytes transferred between memory and the GPU. For reference, the machine balance point, calculated using the
double-precision peak performance, is 8.7 FLOP/Byte for V100 and 5.0 FLOP/Byte for A100.

We observe from Fig. 15 that our kernel is memory bandwidth-bound on both platforms. This is due to the
type of large-scale sparse problem we are studying, which typically suffers from memory bandwidth limitations
on GPUs39,40.

Figure 16 presents the residual convergence curves of CU-Solver and OKP-Solver on V100 and A100
platforms. In this case, both solvers exhibit almost identical convergence behavior on two platforms, reaching
convergence after 117 iterations.

Conclusion
In this paper, parallel, multi-GPU enabled algorithms for efficiently solving linear systems derived from domain
decomposition based space-time parallel methods are proposed and optimized. The OKP-Solver accelerates the
GMRES method in Kronecker product form in both computation and communication. Compared to a general
cuSPARSE based implementation, i.e., CU-Solver, TKx achieves speedups of 2.00×, 1.87×, 1.85×, and 1.91×
on 1, 2, 4 and 8 V100 GPUs, and 1.43×, 1.50×, 1.64×, and 1.64× on 1, 2, 4 and 8 A100 GPUs, respectively.
Furthermore, by employing parallel buffering and pre-mapping strategies combined with GPU-Direct, the
communication time Tc is accelerated by 9.18×, 6.82×, and 1.54× on V100, and 8.95×, 5.60×, and 1.62×
on A100, for 2, 4, and 8 GPUs, respectively. The experiments show that the overall runtime Tall of OKP-Solver
achieves speedups of 1.70×, 3.48×, 3.70×, and 1.82× on 1, 2, 4, and 8 GPUs of V100 platform, and 1.33×
3.70×, 3.48×, and 2.28× on A100 platform, respectively. This solver is expected to be used in multiphysics
applications with space-time coupling.

Fig. 16.  Residual convergence curves of CU-Solver and OKP-Solver.

Scientific Reports | (2025) 15:43529 17| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Data Availability
The data used in this study are available from the corresponding author upon request.

Received: 30 July 2025; Accepted: 4 November 2025

References
	 1.	 Tinney, W. F. & Walker, J. W. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE

55(11), 1801–1809 (1967).
	 2.	 Saad, Y. & Schultz, M. H. Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci.

Stat. Comput. 7(3), 856–869 (1986).
	 3.	 Lions, J.-L. Résolution d’edp par un schéma en temps «pararéel» a “parareal’’ in time discretization of pde’s. Academie des Sciences

Paris Comptes Rendus Serie Sciences Mathematiques 332(7), 661–668 (2001).
	 4.	 Gander, M. J. & Vandewalle, S. Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–

578 (2007).
	 5.	 Minion, M. L., Speck, R., Bolten, M., Emmett, M. & Ruprecht, D. Interweaving PFASST and parallel multigrid. SIAM J. Sci.

Comput. 37(5), S244–S263 (2015).
	 6.	 Horton, G. & Vandewalle, S. A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput.

16(4), 848–864 (1995).
	 7.	 Gander, M. J. & Neumuller, M. Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci.

Comput. 38(4), A2173–A2208 (2016).
	 8.	 Margenberg, Nils & Munch, Peter. A space-time multigrid method for space-time finite element discretizations of parabolic and

hyperbolic pdes. arXiv preprint arXiv:2408.04372, (2024).
	 9.	 Güttel, Stefan. A parallel overlapping time-domain decomposition method for odes. In Domain decomposition methods in science

and engineering XX pages 459–466. Springer, (2013).
	10.	 Lelarasmee, E., Ruehli, A. E. & Sangiovanni-Vincentelli, A. L. The waveform relaxation method for time-domain analysis of large

scale integrated circuits. IEEE Trans. Comput. Aided Des. Tntegr. Circuits Syst. 1(3), 131–145 (2004).
	11.	 Tran, M.-B. Parallel schwarz waveform relaxation algorithm for ANN-dimensional semilinear heat equation. ESAIM Math. Model.

Numer. Anal. 48(3), 795–813 (2014).
	12.	 Bennequin, D., Gander, M. & Halpern, L. A homographic best approximation problem with application to optimized schwarz

waveform relaxation. Math. Comput. 78(265), 185–223 (2009).
	13.	 Li, S., Shao, X. & Cai, X.-C. Highly parallel space-time domain decomposition methods for parabolic problems. CCF Trans. High

Perform. Comput. 1(1), 25–34 (2019).
	14.	 Axelsson, O., Dravins, I. & Neytcheva, M. Stage-parallel preconditioners for implicit Runge–Kutta methods of arbitrarily high

order, linear problems. Numer. Linear Algebra Appl. 31(1), e2532 (2024).
	15.	 Kirby, R. C. On the convergence of monolithic multigrid for implicit Runge-Kutta time stepping of finite element problems. SIAM

J. Sci. Comput. 46(5), S22–S45 (2024).
	16.	 Tang, Yu-Hang., Selvitopi, Oguz, Popovici, Doru Thom & Buluç, A. A high-throughput solver for marginalized graph kernels on

gpu. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 728–738. IEEE (2020).
	17.	 Tan, Yu., Cai, Yunfeng & Li, Ping. Efficient compact bilinear pooling via kronecker product. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 3170–3178 (2022).
	18.	 Lin, J. A., Ament, S., Balandat, M. & Bakshy, E. Scaling gaussian processes for learning curve prediction via latent kronecker

structure. In NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty (2024).
	19.	 Gonon, Antoine, Zheng, Léon., Carrivain, Pascal & TUNG QUOC L. E. Fast inference with kronecker-sparse matrices. In Forty-

second International Conference on Machine Learning (2025).
	20.	 Cui, C., Grosse-Bley, P., Kanschat, G. & Strzodka, R. An implementation of tensor product patch smoothers on GPUs. SIAM J. Sci.

Comput. 47(2), B280–B307 (2025).
	21.	 Crews, D. W. Analysis of tensor-product discontinous galerkin operators for vlasov-poisson simulations and gpu implementation

on python. arXiv preprint arXiv:2202.13532, (2022).
	22.	 Jangda, A & Yadav, M. Fast kronecker matrix-matrix multiplication on gpus. In Proceedings of the 29th ACM SIGPLAN Annual

Symposium on Principles and Practice of Parallel Programming, pages 390–403, (2024).
	23.	 Jhurani, C. Batched kronecker product for 2-d matrices and 3-d arrays on nvidia gpus. arXiv preprint arXiv:1304.7054, (2013).
	24.	 Keyes, D. E. et al. Multiphysics simulations: Challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1), 4–83 (2013).
	25.	 Kashi, Aditya & Nadarajah, Sivakumaran. Fine-grain parallel smoothing by asynchronous iterations and incomplete sparse

approximate inverses for computational fluid dynamics. In AIAA Scitech 2020 Forum, page 0806 (2020).
	26.	 Kashi, A. & Nadarajah, S. An asynchronous incomplete block LU preconditioner for computational fluid dynamics on unstructured

grids. SIAM J. Sci. Comput. 43(1), C1–C30 (2021).
	27.	 Ma, W. & Cai, X.-C. Point-block incomplete LU preconditioning with asynchronous iterations on GPU for multiphysics problems.

Int. J. High Perform. Comput. Appl. 35(2), 121–135 (2021).
	28.	 Balay, S. et al. PETSc Web page. https://petsc.org/, (2025).
	29.	 NVIDIA cuSPARSE Library. https://developer.nvidia.com/cusparse, (2025).
	30.	 The Trilinos Project Team. The Trilinos Project Website. https://trilinos.github.io, (2020).
	31.	 Intel Math Kernel Library Documentation. ​h​t​t​p​s​:​​/​/​w​w​w​.​​i​n​t​e​l​.​​c​o​m​/​c​o​​n​t​e​n​t​​/​w​w​w​/​u​​s​/​e​n​/​r​​e​s​o​u​r​c​​e​s​-​d​o​​c​u​m​e​n​t​​a​t​i​o​n​/​​d​e​v​e​l​o​​p​e​r​.​h​t​m​l,

(2025).
	32.	 hypre: High performance preconditioners. https://llnl.gov/casc/hypre, https://github.com/hypre-space/hypre.
	33.	 NVIDIA cuSPARSE Library, release: 12.1. ​h​t​t​p​s​:​​/​/​d​o​c​s​​.​n​v​i​d​i​​a​.​c​o​m​/​​c​u​d​a​/​​a​r​c​h​i​v​​e​/​1​2​.​1​​.​0​/​c​u​s​​p​a​r​s​e, (2023).
	34.	 Abdelfattah, A., Ltaief, H., Keyes, D. & Dongarra, J. Performance optimization of sparse matrix-vector multiplication for multi-

component PDE-based applications using GPUs. Concurr. Comput. Practice Exp. 28(12), 3447–3465 (2016).
	35.	 Eberhardt, Ryan & Hoemmen, Mark. Optimization of block sparse matrix-vector multiplication on shared-memory parallel

architectures. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 663–672.
IEEE, (2016).

	36.	 MPI: A message-passing interface standard version 4.0. ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​m​p​​i​-​f​o​r​​u​m​.​​o​​r​g​/​d​​​o​c​s​/​​m​​​p​i​​-​4​.​​0​/​​m​p​i​​4​0​-​r​​e​p​o​r​t​.​p​d​f, (2021).
	37.	 NVIDIA CUDA, release: 12.1. https://developer.nvidia.com/cuda-toolkit, (2023).
	38.	 Williams, S., Waterman, A. & Patterson, D. Roofline: An insightful visual performance model for multicore architectures. Commun.

ACM 52(4), 65–76 (2009).
	39.	 Shi, Shaohuai, Wang, Qiang & Chu, Xiaowen. Efficient sparse-dense matrix-matrix multiplication on gpus using the customized

sparse storage format. In 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), pages 19–26.
IEEE, (2020).

Scientific Reports | (2025) 15:43529 18| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://arxiv.org/abs/2408.04372
http://arxiv.org/abs/2202.13532
http://arxiv.org/abs/1304.7054
https://petsc.org/
https://developer.nvidia.com/cusparse
https://trilinos.github.io
https://www.intel.com/content/www/us/en/resources-documentation/developer.html
https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
https://docs.nvidia.com/cuda/archive/12.1.0/cusparse
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://developer.nvidia.com/cuda-toolkit
http://www.nature.com/scientificreports

	40.	 Zhixiang, Gu., Moreira, Jose, Edelsohn, David & Azad, Ariful. Bandwidth optimized parallel algorithms for sparse matrix-
matrix multiplication using propagation blocking. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, pages 293–303 (2020).

Acknowledgements
This work is supported by the Innovation Team Support Plan of Science and Technology of Henan Province
(252102210219) and the Nanhu Scholar Program of XYNU.

Author contributions
W.M. was responsible for the methodology, supervision, and overall project guidance. S.Z. developed the code,
conducted the experiments, drafted the manuscript, and created the figures. X.L. was responsible for organizing
and processing the data. W.Y. provided the experimental platform and related resources. All authors reviewed
the final manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:43529 19| https://doi.org/10.1038/s41598-025-27400-3

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A multi-GPU enabled solver in Kronecker product form for multiphysics problems
	﻿Related work
	﻿Background
	﻿Kronecker product
	﻿Point-block matrix
	﻿Problem definition

	﻿GPU solver
	﻿The SpMV in Kronecker product form on multiple GPUs
	﻿OKP-Solver
	﻿CU-Solver

	﻿﻿Communication
	﻿Parallel buffering
	﻿Pre-mapping strategy

	﻿Experiments
	﻿Conclusion
	﻿References

