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OPEN A multi-GPU enabled solver

in Kronecker product form for
multiphysics problems

Wenpeng Ma'*, Siyuan Zhao?, Xiaofan Le* & Wu Yuan?

Modern engineering and scientific computing often requires solving sparse linear systems containing
point-block matrix to model multiphysics problems. The space-time parallel method is popular

and attractive in fluid dynamics, fitting parallel computers very well. In this paper, we design and
implement a parallel, multi-GPU enabled GMRES solver for solving linear systems in the Kronecker
product form arising from the domain decomposition based space-time parallel methods. To improve
the efficiency of the solver, we also design a set of optimization strategies for Sparse Matrix-Vector
Multiplication (SpMV) in Kronecker product form. These include: (1) enhancing the Compute-to-
Memory Access Ratio (CMAR) to fully utilize the high bandwidth nature of the GPU during the
computation phase and (2) introducing a parallel buffering scheme and a pre-mapping algorithm to
enable the use of GPU-Direct for accelerating the communication phase. We conducted experiments
on1l, 2, 4, and 8 GPUs and compared the performance of OKP-Solver with the cuSPARSE based
implementation. On the V100 platform, the Kronecker product based SpMV computation (T'’x )
achieves speedups of 2.00x, 1.87 %, 1.85%, and 1.91 X on 1, 2, 4, and 8 GPUs, respectively, while
the communication time (T..) achieves 9.18 X, 6.82x, and 1.54X on 2, 4, and 8 GPUs, respectively.
On the A100 platform, T, achieves speedups of 1.43 X, 1.50%, 1.64 X, and 1.64 X, while T
achieves 8.95 X, 5.60%, and 1.62 X. The overall solver runtime (T,;;) achieves speedups of 1.70 X,
3.48%,3.70%, and 1.82x onV100, and 1.33 X, 3.70, 3.48 X, and 2.28 X on A100, for 1, 2, 4, and
8 GPUs, respectively.
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In many fields of engineering calculations, such as aerospace, simulation of atmospheric ocean currents, and
biomolecular simulation, etc., the solution of physical problems usually depends on the solution of sparse linear
systems. These problems are described as differential equations or integral equations based on physical laws, and
are transformed into the problem of solving a sparse linear equation system in the form of Az = b through
discretization and linearization processes. Linear equations can be solved by direct method or iterative method.
The direct method! is accurate but resource-consuming, making it suitable for small scale problems. The
iterative method, by contrast, is efficient and better suited to large scale problems, despite yielding approximate
solutions. A commonly used iterative method is Generalized Minimal Residual Method (GMRES) based on
Krylov subspaces?.

Modern scientific computing problems often involve high resolutions and strong time dependence.
Traditional time-stepping algorithms, due to stability limits, must use very small time steps when solving
problems with strong time dependence, which results in high computational costs. In addition, in parallel
computing, the number of communications is proportional to the number of time steps, which severely limits
the scalability of the algorithm on large scale parallel architectures. To address these challenges, recent space-
time parallel computing strategies, which parallelize both the space and time dimensions, have significantly
improved computational efficiency. These strategies have shown notable advantages in problems such as heat
equations, convection-diffusion equations, and Stokes flows.

Space-time parallel methods can be divided into methods based on multiple shooting®~>, methods based
on multigrid®-8, direct time parallel methods’, and methods based on domain decomposition and waveform
relaxation'?-13. This paper conducts research based on methods based on domain decomposition. When solving
the numerical solutions of time-dependent partial differential equations, papers'*!> use the finite element
method for spatial discretization and the implicit Runge-Kutta method for temporal discretization. By dividing
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the time intervals, the stage variables are coupled within each time step, resulting in a linear system in the
Kronecker product form, which is used to describe and solve the numerical problems of the partial differential
equations after temporal and spatial discretization.

The main challenge to solve a spatiotemporal coupling linear system is that it requires increasing
computational resources as the number of coupled stages increases. With the fast development of heterogeneous
computing, state-of-the-art GPUs, designed for fine-grained data parallelism and high memory bandwidth, can
offer substantial computing capabilities for the solve of the numerical system. However, the SpMV in Kronecker
product form in this kind of linear systems don’t change the density of the corresponding matrix when the
Kronecker product operations are explicitly performed, which makes the issue of scattered memory accesses
still exist. Therefore, code migrating from CPUs to GPUs requires detailed algorithm designs and performance
optimizations. Motivated by this fact, in this paper, we focus on building a complete framework on the CPU+GPU
platform for the solve of the spatial-temporal linear system. The main contributions are as follows:

1. We introduce a parallel framework on multiple GPUs for solving the linear system derived from space-time
parallel method based on domain decomposition. Unlike the general scalar matrix format, our work is mo-
tivated by the structure of multiphysics problems and thus focuses on the point-block matrix format. The
framework uses the generalized minimum residual (GMRES) method as the key solver.

2. We propose an optimized strategy with specified data layouts for the SpMV in Kronecker product form oper-
ations in the distributed solver, which effectively improves the Compute-to-Memory Access Ratio (CMAR).
However, a major challenge arises from the mismatch in vector data ordering between the computation and
communication phases of the solver. To address this challenge, we employ parallel buffering and pre-map-
ping strategies to ensure efficient data alignment. When combined with GPU-Direct, these strategies sub-
stantially reduce the frequency and overhead of host-device and device-device communications.

3. We conducted experiments on 1, 2, 4, and 8 GPUs and compared the performance of OKP-Solver with the
cuSPARSE based implementation. The results show that both the computation and communication phases
of the solver benefit from notable acceleration, leading to an overall runtime (T%;) speedup of at least 1.33 x
across all cases. In terms of GFLOPS, OKP-Solver improves the Kronecker product based SpMV perfor-
mance by 83.58%, 86.68%, 84.83%, and 91.11% on the V100 platform, and by 45.41%, 50.03%, 64.55%, and
65.68% on the A100 platform, for 1, 2, 4, and 8 GPUs, respectively.

Related work

As a structured linear algebraic tool, the Kronecker product is widely applied in high-performance computing
and machine learning due to its favorable computational structure and compact representation capabilities in
high-dimensional problems. In the field of machine learning, Tang et al. (2020) utilized dynamic Kronecker
product block generation and sparsity optimization techniques to achieve GPU acceleration for graph kernel
computations'®; Yu et al. (2022) optimizes bilinear pooling via two-level Kronecker product decomposition'’;
Lin et al. (2024) addresses the missing value problem in learning curve prediction by projecting and selecting
observation data joint covariance matrices from latent Kronecker products'®.

In the field of high performance computing, Gonon et al. (2024) enhances the GPU computation efficiency of
Kronecker-sparse matrix multiplication through a tiling strategy and GPU memory optimization techniques'®;
Cui et al. (2025) implements tensor product vertex-patch smoothers on GPUs using the characteristics of
the Kronecker product structure and fast diagonalization technology, optimizing high-order finite element
multigrid computations?’; Crews et al. (2022) leverages Python’s CuPy library to achieve GPU acceleration for
the discontinuous Galerkin finite element method via tensor product structures?'; Jangda et al. (2024) introduces
the FastKron framework, adopting row-slice multiplication accumulation, shift buffer optimization, and multi-
GPU latency-hiding strategies to significantly improve the computation speed of Kron-Matmul on GPUs?%
Jhurani et al. (2013) designs BLAS-like interfaces (TKRON2/TKRON3), optimizes memory layout and shared
memory reuse, and proposes efficient GPU algorithms for batched Kronecker products?.

Some works!”!823 used the properties of Kronecker product to convert the explicit SpMV in Kronecker
product form into implicit operations, so as to reduce the number of floating-point operations, thereby
improving the computational efficiency.

In contrast to existing research, our study makes two distinct contributions. First, most existing research
focuses on specific application scenarios, studying various computational forms of the Kronecker product. Our
work focuses on designing a solver for linear systems involving Kronecker products, which arise from a space-
time parallel method based on domain decomposition. Secondly, while these studies mainly focus on single-
GPU acceleration, we explore the performance and optimization strategies of the proposed solver on multi-GPU
platforms.

Background

Kronecker product

Given matrices H € R™*¢ and G € R¥*¥, then the Kronecker product H ® G € R™¥*** js defined as:
hinG -+ hiG

HoG=| : - (1)
hm1G - AmeG

where h;; represents the element at the i*" row and j** column of H.
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Point-block matrix

Point-block matrices are common in multi-physics problems**~*’, where multiple coupled variables are
required to be solved at each grid point. These problems generally result in sparse matrices that are composed
of dense blocks each of which represents the coupling feature between the variables locally. For example, in an
incompressible flow, each grid point in the computational domain has three velocity components u, v, w and a
pressure component p to be solved, and it leads to a point-block matrix with a block size of 4 when the physical
variables associating with a grid point are calculated in the coupling method.

Typically storage formats for a point-block matrix are BCSR (Block Compressed Sparse Row) and BCSC
(Block Compressed Sparse Column)?” where sparse data is stored in blocks instead of scalars. These formats
are widely supported by high-performance computing libraries such as PETSc?®, cuSPARSE?’, Trilinos*’, Intel
MKL?! and Hypre2.

24-27

Problem definition
We consider the linear system in the Kronecker product form arising from the spatiotemporal coupling
algorithm!*15 as:

(AM+7BL)U=F (2

where A, B € R**® are dense matrices arising from the temporal discretization with s denoting the number
of time steps, and M, L € RV > are point-block matrices with a block size b from the spatial discretization, n
represents the number of block rows, so that N = nb, 7 is a constant for time-scaling, and I/ and F, with a size
of N x s, are the solution and right-hand side vector, respectively.

GPU solver

We show the GMRES(m) method for the solve of Eq. (2) in Algorithm 1. The procedure aims to solve the
linear system with a size of sIN X sN. As the matrix is expressed in Kronecker product form and not explicitly
formulated, according to Eq. (1), we can also view Eq. (2) as a coupled of s systems each of which is of size
N x N. Although the GMRES(m) takes exactly the same steps for different linear equations, the data layout,
communication strategies and performance profilings are totally different when it comes to multiple GPU
computing, because the characteristics of the matrix are the most considered factor in performance optimization
and generally affect the adoption of implementation strategies. Therefore, in the following discussion, we focus
on designing a multi-GPU enabled solver for Eq. (2) by making full ultilization of the features of the matrix
in Kronecker product formulation. To evaluate the optimization performance of this solver, we also develop a
baseline implementation using the cuSPARSE 12.1 library™®. For clarity, we refer to our proposed solver as OKP-
Solver (Optimized Kronecker Product Solver) and the cuSPARSE-based implementation as CU-Solver.
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Input: (1) constant, 7; (2) dense matrix, A and B; (3) point-block matrix, M

and L; (4) right-hand side, F; (5) initial guess, Up; (6) relative tolerance,
€; (7) the maximum number of iterations, Njr; (8) the restart number,

Output: the solution vector U.

1 continue <— true;it <— 0; Hy, = (Hp g)o<p<m, 0<q<m;
2 while continue do

3 rn+—F—(AxM+ 7B L)U;
4 | B |lnollz; vo = mo/B;
5 if it == 0 then 7y « 5;
6 for i =0tom—1do
7 w+— (A®M+7B®L)v;
8 for k=0 to ¢ do
9 Hy,; + (w, v);
10 w < w— Hy ;v
11 end
12 N < ([wll2; Hit1,i = nwi t 4
13 update(H,n); // Used to update the Hessenberg matrix H
14 if 9, =0 or logio(n/mo) < logioe or + + it > Nier then
15 | continue < false; break;
16 end
17 Vi1 < W/ M)
18 end
19 t+—t+1;
20 solve y from argminy||Se; — Hyyll2, where Hy = (Hp g )o<p<t, 0<q<t;
21 Uy + Uy + Viy, where Vi = v, v1,. .., e—1];
22 end
23 U <+ Up;
Algorithm 1. GMRES Kronecker product version
The SpMV in Kronecker product form on multiple GPUs
One of the most time consuming steps is SpMV in Kronecker product form (line 3 and line 7) in Algorithm 1.
To effectively increase the Compute-to-Access Ratio on the GPU device, we perform the SpMVs by using the
property of the Kronecker product:
(A ®M)X = vec(MXAT) 3)
where vec stands for the vectorization operation that stacks all column vectors of a matrix into a single column,
X = (W 2@ 2Oy, withz® = (2, .. xil}, . xgv)l, . xg\,)b) ,and X = vec(X).

To av01d the frequent formats transform between X' and X, all column vectors having the size of N x s in
Algorithm 1, for example U/, v;, w, are stored and operated in the corresponding matrix formats by spliting the
single column into s column vectors. And X is never operated except it is required for file output. We then show
the distributed data layout for matrices and vectors from Algorithm 1 in Figs. 1 and 2. Considering a multiple
GPU environment, each GPU is mapped into a MPI process and communicate with it, and takes a partial job of
the total computational workload. For a typical multiphysics problem, M and L are point-block matrices, and
partitioned in block rows between processes. The partition of vectors are sticky with that of matrices to ensure
that the coupling variables for the same mesh point are not scattered in different devices. In addition, each point-
block matrix is divided into main-diagonal and off-diagonal parts to facilitate the communication optimization
of SpMV, which is introduced in Section “Communication”

OKP-Solver R

'The first step to perform Eq. (3) is to calculate ¥ AT locally without communication required. As mentioned

above, this benefits from the local storage of A. From the view point of global memory accesses on GPUs,

performing X AT requires gs(s + 1) reads and gs writes when performed as a traditional matrix multiplication,

where ¢ is the number of rows in a local dev1ce Besides, shared memory loads and writes, because successive

threads need to take a row of data from X' and multiply it with a column from A7 then do vector reduction
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Fig. 2. Parallel data layout of matrices and vectors on device.

to get the result. However, the computation can be optimized by writing the resulting matrix as the linear
combination of (7 as:

s

30 =3 aya?) @)

Jj=1

where a;; represents the element at the i*" row and j*" column of A. This consideration leads to (g + s)s
reads and gs writes. We explain it by Fig. 3 and Algorithm 2 which shows how Eq. (4) are implemented. For the
same time step vector %) (a column of X') is operated in parallel by all successive threads, each of which is
responsible for processing one vector element, so that only one transaction needs to be done in the same warp to

fetch the data of A, with the result denoted as X = (5c(1), A 5c<s>)NXS.
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O: Rank 0 (O: Rank 1 @: Rank 2 (J: Thread parallel operation [J : Sequential operation
: The thread takes the current time step vector data and calculates it (@;x M [t;4]).

—: The next time step vector is computed and accumulated with the previous result.
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Fig. 3. Illustration of the operation of YAT.
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Input : (1) number of rows of the X in process, ¢; (2) matrix, A and X; (3)
number of timq steps, s.

Output: result matrix X

foreach thread t;; in parallel do

if t;3 < q then

fori< 0tos—1do
x4 O [t;q);
for j < 0tos—1do

| register(j] < register(j] + x - aj;

end

end

fori+ 0tos—1do

‘ 20 [t;4] < register|i;

end

end

end

Algorithm 2. CUDA kernel implementation for Y A”

The calculation process of MY can be viewed as multiple SpMVs. Like the general SpMYV, this also requires
communication. It is straightforward to perform M’ by launching s SpMV kernels one by one, but it degrades
the performance because the global memory accesses on the same matrix M is not reduced. So does the times
of communication. To have both the calculations and communication efficient done on GPUs, we merge the
local part of Z in different time steps into one single vector, which is shown in Fig. 4. The reason why this
transformation is needed will be discussed in the communication optimization in Section “Communication”

We show how M.X are computed based on the transformed format of X" in Fig. 5. The rectangular, local
matrix M are further divided into the main-diagonal part and oft-diagonal part, and separately stored to seek
the possible overlap between the calculation and communication. Specifically, the main-diagonal part involves
only local operations, and it could be executed while the communication for the remote data required by each
local device. ~

Algorithm 3 lists the implementation kernel for MY’ that uses a warp of threads to map the workload of
a block row of M. This idea is motivated by the point-block matrix and single vector multiplication and our
previous work on the ILU factorization for the point-block matrix?”-*+35,
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Input: (1) BCSR fexpressions for M in three arrays, r,, ¢, and vg; (2) number
of block rows, n; (3) vector vec(localX), &; (4) block size, b; (5) number
of time steps, s; (6) vector size, q.

Output: output vector, o,.

1 foreach thread t;q in parallel do
2 ty < threadldx.x;
3 for i< 0tos—1do
4 ‘ Smli - pp+tz] < 0; // shared memory (p, is thread block size)
5 end
6 g < tiq/32; // Target block row index
7 if ¢ < n then
8 wy 4+ ty mod 32; fi, < 7algl; Iy  ralg + 1];
9 ty < fp +w;/b% ¢ < (w;/b) mod b; r < w; mod b;
10 if w; < (32/6%) - b% then
11 while t;, < [ do
12 J 4 calt); @« vglty - b2 +c b+l
13 for i< 0tos—1do
14 | smli -y +ta] < Smli D+t +a-E[i-qg+7-b+d;
15 end
16 ty <ty + 32/b%;
17 end
18 fori< 0tos—1do
19 o+ 4;
20 while o > 1 do
21 if w <a-bandw, + a-b < 32 then
22 ‘ Smli - b+ tz] < Smli - pp+ tz] + Smli - pp + tz + - b];
23 end
24 a < af2;
25 end
26 if w; < b then
27 | ouli g+ g b+ w)  spli-py+ to;
28 end
29 end
30 end
31 end
32 end

Algorithm 3. CUDA kernel implementation for MAX

The procedure starts with the initialization of the auxiliary vector for the subsequent data reduction in shared
memory. A warp of threads is assigned to process a block row of M, and tied to a block identifier g. As a warp
can cover L32 / b2J complete blocks, each thread then identifys the local index w; within a warp and is mapped

to a single element at (r, ¢) in a block (lines 8-9). Different from a single SpMV operation, multiple SpMV's
can increase the data reuse by prefetching the matrix data from the global memory and uses it for s times (line
13-15). Finally, s vector reduction operations are performed through shared memory to obtain the final result
of multiple SpMVs and the results are written back to the global memory. Several cycles will be performed by
a warp when the warp is unable to cover all blocks at a block row, and different cycles are serial (lines 18-29).
Additionally, the reduction logic in Algorithm 3 is general and not restricted to a specific block size. The stride
(a) used in the vector reduction stage, however, varies with the matrix block size b*°, and « should be the value
obtain by (32/2b) and then rouding it up to the nearest power of 2.
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Fig, 6. Ilustration of warp-based scheme for (\f Y.

For ease of understanding, Fig. 6 shows how multiple SpMVs are performed in warps as an example. In
this case, the block size is 4, and a warp can handle two complete blocks in a block row at a time. Note that we
present X’ in multiple segments only for illustration purposes, in fact, it is stored as a merged vector as we have
mentioned before. Squares with the same color in X indicate that the vector data at these positions are being
calculated using the same matrix elements. This property allows the matrix data to be loaded once and reused
for computing with multiple vectors, thereby reducing redundant memory accesses across multiple SpMVs
operations.

CU-Solver

In CU-Solver, the SpMV operation in Kronecker product form is implemented following Algorithm 4. The
computation of ¥ A7 is realized through a two-level loop structure, each consisting of s iterations. Within
the innermost loop, the cublasDaxpy function is invoked to perform the required vector accumulation
operations (lines 1-8). Afterwards, cadaMemcpy is invoked s times to transfer the data of X’ to the host. Then,
cusparseDbsrmv is invoked s times to compute the main-diagonal part of MLX. After each cusparseDbsrmv
computation, a VecScatter operation handles communication, resulting in a total of s communication calls (lines
10-15). Each communication phase consists of a pair of VecScatterBegin and VecScatterEnd calls, making it
non-blocking and allowing partial overlap with subsequent computation. Finally, s cudaMemcpy calls transfer
the data back to the device, followed by s cusparseDbsrmv operations to compute the oft-diagonal part of MLY,
which are then accumulated to complete (A ® M)A’ (lines 17-20).
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Input : (1) number of time steps, s; (2) matrix, A
block size, b; (5) communication vector, ¢
and off-diagonal of M, M,,, and M,,.
Output: output vector array, o
for i+ 0tos—1do
‘ cudaMemset(Z("), 0);
end
fori< 0tos—1do
for j < 0tos—1do
‘ Q- cublasDaxpy(q, a;j, z));
end
end
a <+ 1.0; 8+ 0.0;
for i+ 0tos—1do

cudaMemcpy(cs, £, cudaMemcpyDevice ToHost);
o) cusparseDbsrmv(a, M,,, £, i(i));
VecScatterBegin(cs, ¢;);
VecScatterEnd(cs, ¢ );

end

B« 1.0;

fori+0tos—1do

cudaMemcpy(d,, ¢,, cuadaMemcpyHostToDevice);
ol cusparseDbsrmv(a, My, 3, d,);
end

and X; (3) vector size, ¢; (4)
and c¢,; (6) main-diagonal

Algorithm 4. Implementation of (A ® M)X in CU-Solver

Communication
In the processing of computing the (A ® M)X implicitly (Eq. (3)

), each column vector of X requires data

exchange across GPU devices. This makes the amount of communication and the times of memory copies
between hosts and devices increase as the number of columns in X, i.e, s, increases, resulting in increasing

I_1 : Data sent to rank 1
|1 : Data sent to rank 2

1) 2(2) 3)
COB00 =000 5 0TAC0 $%3)
\’flmllel buffering
Sending buffer: [O_CL A0 S0 O AI0 %3]0 0 A0 3]

L

Separate different targets

Separate different time steps

Fig.7. Parallel buffering.
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overhead. In this subsection, effective considerations are introduced to keep the communication overhead from
affecting the overall performance.

Parallel buffering

Since the computation of the (A ® M)X can be viewed as the multiple SpMVss, it is straightforward to consider
that merging s times of communication into once can reduce the redundant overhead for launching message
exchange tasks. To complete this, all the data that needs to be sent to remote devices is required to be extracted
from each (") into the same buffer. Instead of extracting s times one by one, we realize a parallel process to
buffer the data simultaneously for all &, which is shown in Algorithm 5. To parallelize the buffer setup, we launch
as many threads as the length of the send buffer, allowing each thread to handle one element of the buffer. Since
the relative indices of the extracted elements in each &*) are the same, we first compute the length £ of a single
buffer (line 3). This value is used to determine ws, which indicates which 2 the current thread is operating on
(line 4). Furthermore, £ is used to compute ¢ and o, which are used to compute a specific index ¢ of the indexed
array ¢, which serves to locate where in &(*) the element responsible for the thread originated (lines 5-7). Finally,
each thread sets the buffer using ¢, ws, and the length ¢ of a single 7" (line 8).

Input: (1) vector that need to communicate, &; (2) vector size, ¢; (3) index

array, c; (4) buffer length, I; (5) block size, b; (6) the number of time
steps, s.

Output: send buffer, £,

1 foreach thread t;q in parallel do
2 if ;3 <[ then
3 < 1/s;
4 Wy < tid / / ;
5 ¢ < (tijg mod ¢)/b;
6 0 + (tig mod ¢) mod b;
7 L c[s] + o;
8 Iibuf[tid] — i:[L + wg - Q]§
9 end
10 end
Algorithm 5. Parallel buffering

Figure 7 shows how the data is buffered in parallel in the case where device 0 needs to send data to both
device 1 and device 2. Each element inside &V is of size b that corresponds to the block size of M. Elements in
different colors indicate that they come from different £, and elements in the same shape indicate that they
are reuired in the same relative position of &(¥).

Pre-mapping strategy )

As shown in Fig. 7, the layout of the parallel buffering process is in time-step order, and the data in &(*) that will
be sent to remote devices are extracted and stored consecutively in the sending buffer. This will cause a problem
that the data that needs to be sent to the same device is scattered in the sending buffer, resulting in repeated times
of communication with the same device. From the receiver’s perspective, if the sending and receiving buffers are
in processor order, the same problem occurs when writing data from the receiving buffer back into &%),

To avoid this problem, we create a sending map and receiving map respectively to arrange the buffers in
different orders. The algorithm is listed in Algorithm 6. Note that the mapping arrays only needs to done once
and reused to reorder the buffers before the buffers are accessed. Figure 8 shows illustrates the layouts of the
sending and receiving buffers before and after the reordering operations in the case where device 0 performs

12 Data sent to rank 1 )t Data received from rank 1
I: Data sent to rank 2 =} Data received from rank 2
Sending buffer reorder Receiving buffer reorder
Old sending buffer: ‘@@_@@j oOARLomAOS Old receiving buffer: ‘ (L VNCL A‘O HA @__}j—g__}j}__}]
Sending mapl Receiving map l

New sending buffer: ‘@:\;\_A oda bj@:@@ﬂ@iﬁ@:@‘ New receiving buﬂer:‘ oNA [0__}]‘. [] A[Q___ﬂi ® IA@}]‘

Fig. 8. Mlustration of buffer reordering.
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sending and receiving steps. In addition, we use the GPU direct technique in the communication part to realize
the direct communication between devices.

Input: (1) sending and receiving process counts, ng, n,; (2) indices arrays
indicating the starting positions of data for different devices, as, a,; (3)
block size, b; (4) number of segments, s; (5) buffer length, I.
Output: (1) map for ordering sending buffer, mg; (2) map for reordering
receiving buffer, m,.

1 /* Construct send map */

2 7+ 0;

3 U<« 0;

4 fori+ 0tons—1do

5 for j+ 0tos—1do

6 d<b-(as)i + 1] — as[i]);
7 for k<~ 0tod—1do

8 m5[7]<—k+j'é+z9;
9 vy—v+1

10 end

11 end

12 Y+ ¥+ d;

13 end

14 /* Construct recv map */

15 v < 0;

16 for i < 0 to s —1 do

17 9+ 0;

18 for j « 0ton,—1do

19 d<—b'(ar[j+1]_ar[j]);
20 for k< 0tod—1do
21 m,[y| <~ k+9+1i-d,
22 vy—v+1

23 end

24 V9 +s-d;

25 end

26 end

Algorithm 6. Pre-mapping strategy

Experiments

The experiments are conducted on two heterogeneous server platforms. The first platform consists of two
computing nodes. Each node is equipped with two Intel(R) Xeon(R) E5-2640 V4 CPUs (with a clock speed of
2.4GHz) and 128 GB of memory. Each CPU has 10 physical cores, giving each node a total of 20 CPU cores.
Nodes are interconnected via NVLink within each node, providing an intra-node bandwidth of up to 130 GB/s,
while inter-node communication relies on Intel Omni-Path Architecture (OPA) interconnects operating at 100
Gbps. In addition, each node was configured with four Tesla V100 GPUs, each with 16 GB of HBM2 memory.
The theoretical peak performance of the GPU is 15.7 TFLOPS for single-precision and 7.8 TFLOPS for double-
precision floating-point operations, respectively. The second platform consists of computing nodes equipped
with two Kunpeng-920 CPUs running at 3.0 GHz and 220 GB of available memory. In addition, each node is
configured with four NVIDIA A100 GPUs, each with 40 GB of HBM2 memory. Each GPU card is by default

Parameters | Description

M, L N x N point-block matrices with a block size of b = 4, where N = 604,360.
A, B s X s dense matrices where s = 2.

F Rigth-hand side vector, expressed as s column vectors, each of length 604,360.

o Scalar parameter, 7 = 0.125.

Table 1. Parameters of case.
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20
18
16

#Cores | Tkp (5) Tother (8) Taui (s)

1 1283.71 £ 35.58 | 247.60 £ 22.19 | 1537.20 £ 40.07
2 700.54 +26.86 | 132.54 = 13.18 | 836.50 + 32.56
4 386.94 £ 1421 | 92.03+7.32 480.57 +£20.31
8 175.88 £ 11.53 | 46.44 +5.83 279.37 £ 14.16

Table 2. Runtime results of the CPU-only solver (based on PETSc).

c - 12
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(a) CU-Solver time breakdown

(b) OKP-Solver time breakdown

Fig. 9. Time breakdowns for CU-Solver and OKP-Solver on a single GPU.

Symbol | Definition

T Time for buffer allocation, host-device data transfer, and pre-mapping (Algorithm 6).
Tk Execution time for SpMV in Kronecker product form, excluding communication.

T. Time spent on communication in SpMV in Kronecker product form.

Tcn Time for Gram-Schmidt orthogonalization and normalization.

T Overall runtime.

Table 3. Definitions of timing components.

allocated 32 CPU cores and 55 GB of memory. The nodes are interconnected via 4 x 100 Gbps RoCE high-
speed links that utilize the RDMA protocol. The theoretical peak performance of the GPU is 19.5 TFLOPS for
single-precision and 9.7 TFLOPS for double-precision floating-point operations, respectively.

All the algorithms introducted in above sections are realized based on PETSc (Portable, Extensible Toolkit
for Scientific Computation)?. The PETSc version is 3.14.2, and configured with GCC 6.3, OpenMPI 4.0.0% and
CUDA 12.1%. The most important optimization related compilation flag for the solver is -O3, and the Linux
kernel version is 3.10.0-1160.el7.x86_64.

In the numerical experiments, the case is constructed from the unsteady incompressible Stokes problem
defined in a three-dimensional computational domain (denoted as © C R?). The governing equations are given

by

w—vAu+Vp=g, inx(0,7],
V-u=0, in Q x (0,77, (5)
u(z,0) = uo(x), in Q,

where u is the velocity field, p is the pressure, v is the viscosity, g is a given source term, and uo(z) is the
prescribed initial velocity. The boundary 02 is divided into three disjoint parts: inlet I';;,, wall I'yq11, and outlet
T'out. On the inlet and wall boundaries, Dirichlet conditions are imposed:

u = uj,, onlj, X (O,T}, u=0, on Iy X (O, T] (6)
At the outlet, either a pressure boundary condition or an equivalent stress-free condition is prescribed:
P =Dout or (—pI+Vu)n=0, on oyt x (0,77, (7)
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Fig. 10. Time breakdowns for CU-Solver and OKP-Solver on 2 GPUs.
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Fig. 11. Time breakdowns for CU-Solver and OKP-Solver on 4 GPUs.
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Fig. 12. Time breakdowns for CU-Solver and OKP-Solver on 8 GPUs.

where n denotes the unit outward normal vector.The number of mesh points is 151090. Eq. (5) is discretized in
space using a stabilized finite element method and solved with a space-time coupled algorithm. The components
for Eq. (2), expressed in M, L, A, B, and 7, are extracted from the process for performance comparisons and
analysis. The main parameters for the matrices and vectors are listed in Table 1. The Kronecker product version
of the GMRES, i.e., Algorithm 1, with a restart number of 30 is employed as the main solver for solving the linear
system. The absolute and relative tolerance for convergence is set to 10™% and 10™°, respectively.

Considering the load balancing problem in communication and computation, we report the execution time
as the average values over three experimental runs. For each run, the time of each operation is taken as the
maximum across all processes. That is:
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1
=" Tir,Tio,.... T,
s max (73,1, Ti,2 .P)

where r represents the number of experimental runs and P is the total number of processes uesd.

As a reference, we implemented a CPU-only solver based on PETSc. We employ three timing metrics:
T'kp (time for the SpMV in Kronecker product form), Toiher (Time for other operations) and Tg;; (Overall
runtime). To ensure the stability of the tests, we fix the number of iterations at 6000 as the baseline for the
subsequent performance analysis. The experimental results of the CPU solver with 1, 2, 4, and 8 cores are
reported in Table 2. These experiments were conducted on the V100 platform, where each node is equipped with
two Intel(R) Xeon(R) E5-2640 V4 CPUs running at 2.4 GHz and 128 GB of memory. Each CPU has 10 physical
cores, providing a total of 20 physical cores per node.

Figure 9 presents the time breakdown of key operations performed on a single GPU, using CU-Solver and
OKP-Solver on V100 and A100 platforms. For clarity, the notation used in the GPU experiments is summarized
in Table 3, which provides detailed descriptions of all timing components.

On a single GPU, the solver requires no communication during computation, and Tk, accounts for the
majority of the solver’s runtime. Specifically, Tk, accounts for 76.2% of the total time on V100 and 68.8% on
A100 in CU-Solver. In OKP-Solver, Tk, constitutes 64.5% and 64.2% of the total time on V100 and A100,
respectively. Figure 10 shows the time breakdown for each operation of the two solvers on a single node with 2
GPUs.

In Fig. 10, CU-Solver spends most of its runtime on Ty and Tk, taking 45.5% and 31.8% on V100, and
53.8% and 22.9% on A100, while 7. accounts for only 10.2% and 10.6%. In contrast, OKP-Solver is dominated
by Tk« and TG, which account for 59.3% and 31.7% on V100, and 56.7% and 30.1% on A100, with T reduced
to merely 3.9% and 4.4%. Figure 11 shows the results for both solvers on 4 GPUs within a single node on two
platforms. We observe that the proportion of 7. in CU-Solver increases to 24.2% and 21.4%, while in OKP-
Solver, T. increases to 13.2% and 13.3%. This is because the matrix data in our case is unevenly distributed,
leading to load imbalance. As a result, T, increases when using both 4 GPUs and 8 GPUs.

Figure 12 presents the performance of both solvers on 8 GPUs, with the experiment conducted across two
nodes. We observe a significant increase in the proportion of T, for both solvers on 8 GPUs. In CU-Solver, the
proportion increases from 24.2 and 21.4% on 4 GPUs to 55.3 and 28.8% on 8 GPUs. Similarly, in OKP-Solver, it
rises from 13.2 and 13.3% to 65.4 and 40.6%. This is because there is a bottleneck in inter-node communication,
and the limited network bandwidth will be saturated as the number of GPUs increases. Specifically, when
multiple GPUs concurrently exchange data across nodes, contention for shared bandwidth resources occurs,
drastically reducing communication efficiency. In addition, A100 platform has higher efficiency in inter-node
communication, so the increase in T is less significant compared to V100 platform.

Figures 10a, 11a, and 12a indicate that Ty; constitutes a substantial fraction of the total runtime (%) in
CU-Solver. Specifically, T4 accounts for 45.5%, 45.9%, and 28.4% on the V100 platform, and 53.8%, 39.0%, and
23.6% on the A100 platform, corresponding to 2, 4, and 8 GPUs, respectively. This decrease in T4, proportion on
8 GPUs is attributed to the significant increase in T%. Importantly, there is more memory copy overhead when
solving the Kronecker product form linear system in Eq. (2), as its structure requires much more host-device
data transfers compared to general linear systems. Concretely, CU-Solver performs s rounds of host-device data
transfers and host-side VecScatter operations for multiple SpMVs involving M or L, which makes the number
of memory copies 2s times that of a general linear system. Consequently, the heavy data copying consumes a
large amount of time, making Ty; account for a considerable percentage of T5;; in CU-Solver. In contrast, OKP-
Solver employs GPU-Direct technology to enable direct device-device communication, effectively avoiding
costly host-device memory copies. This optimization reduces Ty; on 2 GPUs from 11.05 and 10.73s to 0.21
and 0.18s. On 4 GPUs, T decreases from 7.97 and 5.48 s to 0.22 and 0.20 s. On 8 GPUs, it drops from 8.58
and 5.28 s to 0.29 and 0.30s. As a result, Ty; accounts for only 3.0% and 3.4% on 2 GPUs, 4.6% and 4.9% on 4
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(a) Speedup for each solver component on V100 (b) Speedup for each solver component on A100

Fig. 13. Speedup of each operation.

Scientific Reports|  (2025) 15:43529 | https://doi.org/10.1038/s41598-025-27400-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

ICU-Solver

1500 'OKP-Solver

1000

GFLOPS

500

203.85

(a) GFLOPS comparison on V100

ICU-Solver
1500 IOKP-Solver
1186.33 1127.3
948.95
% 1000 il
{7605 T 680.39
62075 o 597.79 576.71
439.81 419.88 500 398.44
269.73
235.6 D 185.75 J
[ B N8 | EN BN BN
2 GPUs 4 GPUs 8 GPUs 1 GPU 2 GPUs 4 GPUs 8 GPUs

(b) GFLOPS comparison on A100

Fig. 14. GFLOPS comparisons of the computational part for (A @ M +7B @ L)X..

™ Memory bound _ -~ i ™ Memory bound .. -~ -7
Q103 o ____ - Compute bound J o 103 ________________ - Compute bound
o O
1 —
G G :
< q20 1 2
o 10 Py 102k |
3] 3]
c c
I I
E | Egr _
£ £
3] ]
o o

0 ! ! ! 0 ! ! !

10 10
102 107! 10° 10" 102 102 107! 10° 10’ 102

Arithmetic Intensity (FLOP/Byte)
(a) Roofline model of the kernel on V100

Arithmetic Intensity (FLOP/Byte)
(b) Roofline model of the kernel on A100

Fig. 15. Roofline model of (A ® M + 7B ® L)X in OKP-Solver.

GPUs, and 1.8% and 2.9% on 8 GPUs of the overall time. The low portions of T also show that the proposed
parallel buffering (Algorithm 5) and pre-mapping (Algorithm 6) algorithms achieve high efficiency.

Figure 13 shows the speedup of OKP-Solver relative to other CU-Solver components. In particular, for T¢, the
combination of parallel buffering (Algorithm 5) and pre-mapping (Algorithm 6) achieves speedups of 9.18 %,
6.82x,and 1.54 x on 2, 4, and 8 GPUs, respectively, on V100 platform, and 8.95%, 5.60x, and 1.62x on A100
platform. The speedup of 7. on 8 GPUs appears significantly lower compared to that on 2 and 4 GPUs within
a single node. The higher communication speedups on 2 GPUs and 4 GPUs within a single node are mainly
because OKP-Solver merges s communication rounds into a single round, employs GPU-Direct to bypass the
host and avoid redundant operations, and further benefits from the inherently faster intra-node communication
bandwidth. The notably lower speedup of T on 8 GPUs arises from the increased inter-node communication
overhead, which prolongs communication times for both CU-Solver and OKP-Solver. This effect is largely
due to the fundamental difference between intra-node and inter-node communication: while intra-node
communication benefits from direct hardware connections and low latency, inter-node communication relies on
network protocols and RDMA technology, which differ substantially in bandwidth, latency, and configuration
complexity. The situation is further aggravated by load imbalance caused by uneven matrix distribution as the
number of processes increases.

A comparison of Figs. 11a and 12a, as well as Figs. 11b and 12b, reveals a counter-intuitive phenomenon:
the absolute runtime of Ty, increases despite a reduced workload for both CU-Solver and OKP-Solver on 8
GPUs. More precisely, Tgn for CU-Solver rises from 2.02 to 4.29 s on V100, and from 2.02 to 3.64 s on A100.
For OKP-Solver, T increases over the same range from 1.48 to 2.80s on V100, and from 1.23 to 2.05s
on A100. The main cause lies in inter-node communication, which increases the communication time within
Tcn. Tan involves collective operations such as M PI _Allreduce, which must traverse the network when
scaling from a single node to two nodes, rather than remaining within the high-bandwidth intra-node links. This
leads to higher latency and lower effective bandwidth, increasing the communication cost and directly affecting
the absolute runtime of T». This can be clearly observed from the changes of Ty, for both solvers when
scaling from 4 to 8 GPUs on the two platforms: on A100 platform, which has better inter-node communication
performance, the absolute increase in T, is much smaller than that on V100 platform. However Fig. 13 show
that the speedup of TG on 8 GPUs reaches 1.53x on V100 and 1.77x on A100, surpassing the 1.37Xx on
V100 and 1.65% on A100 achieved on 4 GPUs. Unlike T, it does not suffer the speedup decrease caused by the
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Fig. 16. Residual convergence curves of CU-Solver and OKP-Solver.

same inter-node communication issue. This is because OKP-Solver has good scalability. On 8 GPUs, the good
scalability of OKP-Solver on both platforms leads to faster computation, which effectively hides the inter-node
communication latency. As a result, compared with 4 GPUs, OKP-Solver achieves a higher speedup for Tn,.

Figure 14 shows the GFLOPS comparisons of the computational part for (A ® M + 7B ® L)X between
CU-Solver and OKP-Solver when executed on 1, 2, 4, and 8 GPUs on both V100 and A100 platforms. The
number of floating-point operatlons involved in (A ® M + 7B ® L)X can be divided into three parts: (1)
The computations of Y AT and XB”, which require 4¢s floating- pomt operations; (2) main-diagonal blocks
computations of M and L.X, which incur a cost of 45 - nnzn, - b> operations, where nnzy, is the number
of nonzeros in the main-diagonal blocks; and (3) off-diagonal blocks computations of MX and 7LX, which
contribute 4s - nnz, - b> + 3qs operations, where nnz, denotes the number of nonzeros in the off-diagonal
blocks. For this case, performing (A ® M + 7B ® L)X once requires 293,200,460 floating-point operations.
It can be observed from Fig. 14 that the GFLOPS performance has increased significantly through the proposed
optimization strategy which improves CMAR and makes better use of the GPUs. On V100 platform, OKP-Solver
achieves 83.58%, 86.68%, 84.83%, and 91.11% GFLOPS improvements over CU-Solver on 1, 2, 4, and 8 GPUs,
respectively, while on A100 platform the improvements are 45.41%, 50.03%, 64.55%, and 65.68%.

We conducted a roofline model analysis of the OKP-Solver kernel, (A ® M + 7B ® L)X, onboth platforms.
Roofline model is a performance analysis tool that relates a kernel’s achievable floating-point performance to
its arithmetic intensity (i.e., the number of floating-point operations per byte of memory accessed) and the
hardware limits of the processor, such as peak FLOPS and memory bandwidth?®. Figure 15 illustrates the roofline
model of the OKP-Solver kernel when performing the computation (A ® M + 7B ® L)X on two platforms.
Experiments were performed on a single GPU to measure the arithmetic intensity and the achieved double-
precision performance. The kernel achieves an arithmetic intensity of approximately 0.23 FLOP/Byte, given by

F

where Al is arithmetic intensity, F is the total number of floating-point operations and B is the total number of
bytes transferred between memory and the GPU. For reference, the machine balance point, calculated using the
double-precision peak performance, is 8.7 FLOP/Byte for V100 and 5.0 FLOP/Byte for A100.

We observe from Fig. 15 that our kernel is memory bandwidth-bound on both platforms. This is due to the
type of large-scale sparse problem we are studying, which typically suffers from memory bandwidth limitations
on GPUs**40.

Figure 16 presents the residual convergence curves of CU-Solver and OKP-Solver on V100 and A100
platforms. In this case, both solvers exhibit almost identical convergence behavior on two platforms, reaching
convergence after 117 iterations.

Conclusion

In this paper, parallel, multi-GPU enabled algorithms for efficiently solving linear systems derived from domain
decomposition based space-time parallel methods are proposed and optimized. The OKP-Solver accelerates the
GMRES method in Kronecker product form in both computation and communication. Compared to a general
cuSPARSE based implementation, i.e., CU-Solver, T, achieves speedups of 2.00%, 1.87x, 1.85%, and 1.91x
on 1, 2, 4 and 8 V100 GPUs, and 1.43x, 1.50%, 1.64%, and 1.64X on 1, 2, 4 and 8 A100 GPUs, respectively.
Furthermore, by employing parallel buffering and pre-mapping strategies combined with GPU-Direct, the
communication time 7 is accelerated by 9.18, 6.82, and 1.54x on V100, and 8.95X%, 5.60%, and 1.62x
on A100, for 2, 4, and 8 GPUs, respectively. The experiments show that the overall runtime T%;; of OKP-Solver
achieves speedups of 1.70x, 3.48x, 3.70x, and 1.82x on 1, 2, 4, and 8 GPUs of V100 platform, and 1.33x
3.70%, 3.48x, and 2.28x on A100 platform, respectively. This solver is expected to be used in multiphysics
applications with space-time coupling.
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