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Plateau zokor mounds, created by the burrowing activity of Plateau zokor, cause significant damage 
to crops, grasslands, and infrastructure, particularly in the alpine meadows of the Tibetan Plateau. 
Traditional field surveys are inefficient and labor-intensive, limiting the ability to conduct large-
scale monitoring. Accurate detection of zokor mounds is essential for effective rodent control and 
sustainable grassland management. This study introduces VGG–Dice–PSA UNet(VDP_UNet), an 
enhanced deep learning model designed to segment zokor mounds from UAV imagery captured at 
30 m. Based on the UNet architecture, VGG16 is used to replace the original UNet backbone, enabling 
the model to capture global contextual information and enhance feature extraction in complex 
backgrounds. Additionally, a Polarized Self-Attention (PSA) module is integrated into the feature 
fusion stage following the encoder–decoder skip connections to better capture fine-grained semantic 
features related to zokor mounds. To reduce overfitting and address class imbalance, Dice Loss is 
introduced during training. VDP_UNet was trained and evaluated on a custom high-resolution zokor 
mound dataset. It achieved an IoU of 51.99%, MIoU of 75.63%, mean Pixel Accuracy of 82.66%, 
Precision of 71.44%, FPS of 42.13 f/s, Accuracy of 99.27%, and an F1-score of 68.41%, outperforming 
recent deep learning models. Experimental results indicate that the proposed VDP_UNet model 
efficiently segments zokor mounds in alpine meadows, markedly improving the extraction of mound 
features from UAV images. Furthermore, this study establishes a practical foundation for estimating 
mound areas in real sample plots and provides solid technical support for rodent control and the 
sustainable development of alpine ecosystems.
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The plateau zokor (Eospalax baileyi), a member of the order Rodentia and family Spalacidae1, is a subterranean 
rodent species endemic to the grasslands of the Tibetan Plateau. Its burrowing and mound-building activities 
strongly influence primary productivity and herbivore interactions, while accelerating soil nutrient turnover, 
enhancing microbial activity2, and promoting decomposition processes3. The presence of zokor mounds not 
only disrupts plant community succession and affects carbon sequestration4, but also reduces available grazing 
area5, accelerates soil erosion6, and contributes to a decline in biodiversity7, ultimately diminishing ground 
cover and productivity in alpine meadows8. These impacts have made zokor activity one of the key drivers of 
grassland degradation9. Furthermore, the spread of zokor mounds poses serious threats to forestry operations 
and grassland ecological security10–12. Therefore, the precise identification and extraction of zokor mounds from 
UAV images is essential for enhancing the effectiveness of rodent damage control efforts in alpine grasslands and 
supporting long-term ecological sustainability.

Currently, due to limited monitoring capabilities, rodent control in alpine meadows largely relies on 
indiscriminate large-scale extermination efforts. Although this approach can suppress rodent outbreaks in 
the short term, it overlooks the multiple ecological roles of the plateau zokor within grassland ecosystems and 
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compromises both ecological stability and functional integrity. Therefore, scientifically monitoring rodent 
activity is a fundamental prerequisite for implementing tiered management strategies that balance biodiversity 
conservation with effective control measures. At present, rodent damage monitoring in China’s grasslands 
primarily relies on manual field surveys13, which focus on counting burrows, bare patches, and mounds14–16, 
while often neglecting the importance of affected area. Traditional monitoring methods are inefficient and 
costly, making it difficult to simultaneously extract the number and area of zokor mounds over large regions17 
or meet the demands of high-precision monitoring18. The emergence of remote sensing technologies offers new 
opportunities for rodent damage assessment. For example, Wang et al.19 utilized UAV imagery combined with 
supervised classification methods to investigate zokor mound distribution across plots of varying densities in 
Ruoergai County, Sichuan Province, enabling the classification of rodent damage severity and risk prediction. 
In Maqu County, Gansu Province, Hua et al.20 employed UAV remote sensing and hierarchical sampling to 
establish a three-level sample system and estimate the area affected by plateau pika damage. Although these 
studies represent progress in remote sensing-assisted monitoring of rodent mounds, the process still heavily 
depends on manual interpretation, with algorithmic models playing only a supplementary role21. Moreover, 
supervised classification performs poorly in complex scenarios, limiting its applicability. Therefore, there is an 
urgent need to develop rodent mound monitoring approaches that integrate remote sensing imagery with deep 
learning techniques to improve overall monitoring efficiency and application scope.

UAV imaging enables rapid acquisition of large-scale, high-resolution remote sensing data, providing a strong 
foundation for fine-grained target identification. When combined with machine learning, it allows efficient 
detection of zokor mound locations and contours, greatly reducing the need for manual image analysis22. As 
a result, the integration of UAV remote sensing imagery and machine learning represents a vital approach and 
emerging research direction for efficient zokor mound monitoring. In existing studies, Qi et al.23 proposed a 
detection framework that combines UAV images, object-based image analysis, and the correlation-based feature 
selection algorithm to efficiently extract rodent burrow patches in desert grasslands. However, the study was 
limited by a small number of samples. Li et al.24 applied “3S” technologies in conjunction with the maximum 
likelihood method and decision tree classification to estimate the affected area of rodent damage in the Altun 
Mountains. Yet, the image resolution was insufficient for small-scale or topographically complex regions. Sandino 
et al.25 developed an automated method integrating UAV-based hyperspectral imaging, machine learning, and 
image processing to detect termite mounds, though the accuracy of the model still requires improvement. 
In recent years, the advancement of deep learning has greatly enhanced the efficiency of image processing, 
especially in feature extraction, and has driven the intelligent analysis of remote sensing data26. In the context 
of rodent monitoring, deep learning has been widely used for tasks such as burrow detection27,28, population 
estimation29, and predictive modeling. However, studies focusing on extracting zokor mound areas using deep 
learning methods remain relatively scarce. Given that deep learning–based semantic segmentation algorithms 
can automatically learn complex image features and demonstrate superior accuracy and generalization 
performance30, developing a precise deep learning model for the automated detection of zokor mounds across 
large-scale alpine meadow regions offers a more efficient and intelligent solution for rodent damage monitoring.

To address the aforementioned challenges, this study proposes a deep learning-based segmentation model 
named VGG–Dice–PSA UNet(VDP_UNet). The model enhances the traditional UNet architecture by replacing 
its encoder with VGG16, enabling improved capture of global contextual information from input images. To 
further strengthen feature representation under complex background conditions, a Polarized Self-Attention 
(PSA) module is integrated into the feature fusion stage following the encoder–decoder skip connections. 
Additionally, Dice Loss is adopted to alleviate class imbalance between zokor mound and background samples. 
We conducted a comprehensive performance comparison between VDP_UNet and both traditional and 
state-of-the-art segmentation methods. The results demonstrate that VDP_UNet consistently outperforms 
other approaches, accurately extracting zokor mounds in challenging environments and exhibiting strong 
generalization capabilities. This method offers robust technical support for the efficient monitoring of zokor 
mounds in alpine meadows.

Materials and methods
Overview of the study area
The study area is located in Zhuaxixiulong Town, Tianzhu Tibetan Autonomous County, Gansu Province 
(37°12′13″N, 102°46′11″E; elevation: 2,890.38 m), adjacent to the eastern edge of the Tibetan Plateau (As shown 
in Fig. 1). It represents a typical habitat for the plateau zokor. The region is characterized by a plateau continental 
climate, marked by significant annual temperature variation and pronounced diurnal temperature differences. 
The soil type is subalpine meadow soil, and the vegetation consists of typical alpine meadow. The climate 
features two primary seasons: a warm season from May to October and a cold season from November to April 
of the following year. The area experiences no absolute frost-free period, with an average annual temperature 
of approximately − 0.1 °C. The mean annual precipitation is 416.0 mm, most of which occurs between July and 
September31. The plateau zokor is the only subterranean rodent species in this region32. Its burrowing activities 
result in the formation of mounds on the soil surface33, producing a characteristic “mound–vegetation” mosaic 
pattern across the grassland landscape.

Data collection and preprocessing
Data acquisition
In this study, a DJI Mavic 2 Pro quadcopter UAV (https://www.dji.com/mavic-2) equipped with a Hasselblad 
L1D-20c camera was used to capture RGB images of plateau zokor mounds. The camera features a 1-inch, 
20-megapixel CMOS image sensor, enabling the acquisition of high-resolution images. Data collection was 
conducted on April 12, 13, and 15, 2021, as well as on June 5, 13, 15, 17, and 19, 2023, covering both the returning 
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green period and peak grass period of the alpine meadow vegetation cycle. The UAV followed pre-programmed 
flight paths at an altitude of 30 m, capturing multi-directional images with both forward and side overlap rates 
maintained at 75% to ensure full coverage. The resolution of the collected zokor mound images was 5280 × 3956 
pixels. To ensure image quality and minimize interference from environmental factors such as lighting and wind, 
all flights were conducted under clear skies with calm wind conditions and ample sunlight. In total, 876 high-
quality zokor mound images were acquired for further analysis.

Data preprocessing
Initial annotations were generated using the automatic labeling tool on the Roboflow platform (Roboflow, Des 
Moines, Iowa, US). Targets were classified into two categories: zokor mounds (labeled “ZM”) and non-mound 
areas. To support the subsequent segmentation task, category and location data were saved in JSON format. 
Annotation was carried out using a tagging system powered by Grounding DINO, which identifies and labels 
surface mounds of varying sizes formed by zokor digging activity. Developed by IDEA Research, Grounding 
DINO is an open-vocabulary object detection model that integrates object recognition with multimodal 
understanding34. By leveraging natural language prompts, it enables fast and accurate identification of multiple 
relevant objects within an image. Unlike traditional detection models, Grounding DINO incorporates a language 
understanding module, giving it the ability to recognize unfamiliar categories in open-world scenarios35. In this 
study, it proved especially effective in handling densely distributed and complex zokor mound scenes, significantly 
improving labeling efficiency and accuracy—thereby offering strong support for dataset development.

Following the preliminary annotation using DINO, experts conducted a meticulous image-by-image review 
with Labelme to ensure the accurate labeling of plateau zokor mounds. Images exhibiting excessive overexposure 
or underexposure that compromised visual details were excluded. As a result, an initial dataset of 869 images 
was finalized. This dataset was then randomly split into a training set (90%) and a validation set (10%), with no 

Fig. 1.  Overview map of the study area. (a) Administrative divisions of Tianzhu county. (b) Digital elevation 
model of Tianzhu county. (c) Representative UAV image of plateau zokor mounds during the peak grass 
period. (d) Representative UAV image of plateau zokor mounds during the returning green period.
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separate test set used in this experiment. Because deep learning models are typically sensitive to sample size, five 
data augmentation techniques—translation, flipping, mirroring, noise addition, and brightness adjustment—
were applied to the training images to prevent overfitting and improve model robustness. After augmentation, 
a total of 5,214 images were generated, forming the alpine meadow plateau zokor mound dataset, as shown in 
Fig. 2. Among these, 4,692 images were used for training, and 522 images were used for performance validation 
during training. For image annotation, OpenCV was used to create pixel-level labels, assigning a value of 1 to 
annotated regions (zokor mounds) and 0 to unannotated regions (non-mound areas), facilitating subsequent 
semantic segmentation training.

Network architecture
To mitigate the issues of gradient vanishing and exploding during deep neural network training, and to enhance 
the ability to extract zokor mound features from remote sensing imagery, we optimized the traditional UNet 
architecture and proposed an improved model specifically designed for zokor mound extraction in UAV images. 
Specifically, the original UNet encoder was replaced with the VGG16 backbone, which offers a favorable balance 
between depth and computational efficiency. This replacement enhances the model’s capability to represent 
complex spatial structures and RGB features in remote sensing images, enabling more accurate identification 
of subtle differences in zokor mounds. In addition, to further strengthen the model’s focus on key regions, we 
introduced the PSA module after the skip connections to enhance feature representation. This module improves 
the model’s sensitivity to local spatial structure and semantic information, especially in scenes with complex 
backgrounds or densely distributed targets. Given that zokor mounds typically occupy a small portion of 
remote sensing images—resulting in a pronounced class imbalance—we adopted Dice Loss as the loss function. 
This choice improves the model’s training performance under imbalanced positive and negative samples and 
enhances detection precision. Based on the above improvements, we propose the VDP_UNet segmentation 
model, architecture is shown in Fig. 3.

Fig. 2.  Flowchart of data collection and processing: (a) flip, add noise, and adjust brightness; (b) translate and 
add noise; (c) add noise; (d) flip; (e) translate and adjust brightness.
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UNet network
UNet is a classic semantic segmentation network that adopts a U-shaped encoder–decoder architecture36. The 
encoder is composed of multiple layers of convolution and max pooling, progressively extracting spatial and 
texture features from the image. Through successive 3 × 3 convolutions followed by ReLU activation, UNet 
enhances deep feature representation while preserving local information. Each downsampling operation halves 
the spatial resolution and increases the number of feature channels to capture more abstract high-level semantic 
information.

The decoder gradually restores the image resolution using transposed convolutions, and employs skip 
connections to pass shallow features from corresponding encoder layers37, enabling effective feature fusion. This 
fusion aids in recovering fine details and improves segmentation accuracy. The fused features are further refined 
through 3 × 3 convolutions and finally processed by a 1 × 1 convolution to produce the semantic segmentation 
output.

VGG16
This study employs the structurally stable and widely used convolutional neural network VGG16 as the backbone 
for feature extraction38. VGG16 consists of multiple consecutive 3 × 3 convolutional layers, max pooling 
layers, several fully connected layers, and a Softmax classification layer, offering strong hierarchical feature 
representation capabilities. By stacking small-sized convolutional kernels, the network effectively expands the 
receptive field and enhances feature abstraction while controlling computational complexity, thereby improving 
its ability to capture fine image details. This architecture enables precise extraction of critical information—such 
as texture, edges, and shape—of plateau zokor mounds from high-resolution remote sensing images of alpine 
meadows. As a result, it significantly improves the model’s ability to detect and segment small targets under 
complex background conditions.

Polarized self-attention module
Polarized Self-Attention (PSA) is a lightweight attention mechanism specifically designed for pixel-level 
regression tasks39. It splits the attention process into Channel-only Self-Attention and Spatial-only Self-
Attention, modeling high-resolution attention separately along the channel and spatial dimensions. This design 
enables more precise capture of key structures and semantic information in images, significantly enhancing the 
expressiveness and discriminative power of feature representations.

In this study, PSA is implemented using a parallel structure that computes channel-only and spatial-only 
self-attention simultaneously. In the channel branch, the input feature map X is first passed through two 1 × 1 
convolution layers to produce features q and v. The feature q is compressed to a single channel to extract a 
compact global representation, while v retains richer information with C/2 channels. The compressed q is then 
normalized using the Softmax function to highlight relative importance across channels. This normalized q is 
multiplied with the reshaped v to generate a channel-wise aggregated representation, which is then processed by 
another 1 × 1 convolution and LayerNorm to restore the original C dimensions. Finally, the attention weights are 
activated with a Sigmoid function, scaled to the [0,1] range, and multiplied channel-wise with the input feature 
map to enhance the output. In the spatial branch, two 1 × 1 convolutions are applied to extract a spatial feature 
map v and a globally averaged 1 × 1 feature q, which are used to compute spatial correlations. The resulting 
attention map is reshaped and passed through a Sigmoid activation, then multiplied pixel-wise with the input 
feature map to emphasize critical spatial regions. The overall architecture of the PSA module is shown in Fig. 4.

The computations for the Channel-only branch, Spatial-only branch, and the parallel arrangement of both 
branches are as follows:

Fig. 3.  Architecture of the VDP_UNet model.
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	 Ach(X) = FSG[Wzθ1 ((σ1(Wv(X)) × FSM (σ2(Wq(X))))]� (1)

	 Asp(X) = FSG[σ3(FSM (σ1(FGP (Wq(X)))) × σ2(Wv(X)))]� (2)

	 P SAp(X) = Zch + Zsp = Ach(X)⊙chX + Asp(X)⊙spX � (3)

where X is an input tensor, Wq, Wv and Wz are 1 × 1 convolution layers respectively, σ1, σ2 and σ3 are tensor 
reshape operators, FSG() represents the attention-weighted operation on the value feature matrix, FSM(·) is a 
softmax operator, “×” is the matrix dotproduct operation, FGP(·) is a global pooling operator, where ⊙ch is a 
channel-wise multiplication operator, where ⊙sp is a spatial-wise multiplication operator and “+” is the element-
wise addition operator.

Dice loss function
Dice Loss offers significant advantages in segmentation tasks involving small foreground objects and imbalanced 
class distributions40. Unlike cross-entropy loss, which calculates errors independently at each pixel and often 
overlooks small targets, Dice Loss directly optimizes the overlap between the predicted region and the ground 
truth, placing greater emphasis on overall structural consistency. This makes it particularly effective for accurately 
identifying small yet important plateau zokor mounds in alpine meadows. Additionally, Dice Loss helps mitigate 
the negative effects of class imbalance and enhances the model’s ability to segment edge regions, significantly 
reducing contour blurring. Its formula is shown in Eq. (4):

	
Dice Loss = 1 −

2
∑N

i=1 piyi + γ∑N

i=1 pi +
∑N

i=1 yi + γ
� (4)

Where pi represents the predicted probability of the i-th pixel, yi represents the ground truth label of the i-th 
pixel, N denotes the N-th pixel, and γ is a smoothing term used to prevent division by zero.

Parameter setting details
This study was conducted on a Windows 11 operating system using the PyTorch 2.0.0 deep learning framework. 
The server is equipped with an Intel(R) Core(TM) i9-14900 K processor and an NVIDIA GeForce RTX 4090 
GPU, utilizing the CUDA v11.8 parallel computing platform and the cuDNN 8.9.7 deep neural network 
acceleration library. Python 3.8.20 was used as the programming language. Optimization was performed using 
the Adam optimizer with a momentum of 0.9 and a batch size of 16. Images were processed at a resolution of 

Fig. 4.  Parallel architecture of polarized self-attention.
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512 × 512 pixels. The initial learning rate was set to 0.0001, with a minimum learning rate of 0.000001. The 
learning rate decay followed a cosine schedule, and training lasted for 80 epochs.

Evaluation metric
The model’s performance was evaluated using key metrics derived from the confusion matrix: True Positives 
(TP) represent the number of pixels correctly identified as zokor mounds; False Positives (FP) are non-mound 
pixels mistakenly predicted as mounds; True Negatives (TN) refer to pixels correctly identified as non-mounds; 
and False Negatives (FN) are actual mound pixels incorrectly classified as non-mounds. Choosing appropriate 
evaluation metrics is critical for comprehensively assessing the effectiveness of the proposed mound extraction 
model. In this study, several essential metrics were used to evaluate semantic segmentation performance, 
including Intersection over Union (IoU), Mean Intersection over Union (MIoU), Mean Pixel Accuracy (MPA), 
Precision, Recall, Accuracy, F1-score, and FPS.

IoU measures the ratio of the overlap between the predicted and ground truth regions of a specific class to 
their union:

	
IoU = T P

T P + F P + F N
� (5)

MIoU is used to measure the overlap between the predicted and actual zokor mound areas:

	
MIoU = 1

k + 1 ·
∑k

i=0

Pii∑k

j=0 Pij +
∑k

j=0 Pji − Pii
� (6)

In Eq.  (6), (k + 1) represents the number of categories. Pii is the count of True Positive, Pij represents False 
Negative, and Pji indicates False Positive. In this context, ‘i’ signifies the true category, while ‘j’ refers to the other 
categories.

MPA is calculated by averaging the pixel accuracy for each class, where pixel accuracy refers to the ratio of 
correctly classified pixels of a given class to the total number of pixels in that class:

	

MP A = 1
C

C∑
i=1

nii∑
j

nij
� (7)

C represents the number of classes (for a binary classification task, C = 2), nii denotes the number of pixels 
correctly classified as class i, and nij is the total number of pixels belonging to class i.

Precision refers to the proportion of correctly classified zokor mound pixels among all pixels that were 
predicted to be zokor mounds:

	
P recision = T P

T P + F P
� (8)

Recall evaluates the ratio of correctly classified zokor mound pixels to the total number of pixels labeled as zokor 
mounds:

	
Recall = T P

T P + F N
� (9)

Accuracy is used to measure the proportion of correctly classified pixels by the model at the pixel level:

	
Accuracy = T P + T N

T P + F P + T N + F N
� (10)

The F1-score, a key metric, is the harmonic mean of precision and recall; a higher F1-score indicates better 
model performance:

	
F 1 − score = 2 × P recision × Recall

P recision + Recall
� (11)

FPS (Frames Per Second): Under the same hardware conditions, a higher FPS indicates stronger real-time 
processing capability of the model. FPS is calculated as: FPS = 1/latency, where latency refers to the time required 
for the network to process a single image.

Results
Ablation study
To validate the effectiveness of the proposed VDP_UNet method in segmenting zokor activity areas (zokor 
mounds) in alpine meadow regions, detailed ablation experiments were conducted on the constructed dataset. 
Various experimental configurations were designed to assess the impact of each improved module on the overall 
model performance and to quantify their contributions. Model performance was evaluated using IoU, MIoU, 
MPA, F1-score, and FPS. The corresponding experimental results are summarized in Table 1.
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The experimental results demonstrate that in Case 2, integrating VGG16 alone led to improvements of 1.26% 
in IoU, 8.2% in MIoU, 5.24% in MPA, and 14.92% in F1-score compared to the baseline model, highlighting 
VGG16’s advantage in extracting zokor mound features. The deeper architecture of VGG16 allows it to capture 
global contextual information from images, enabling the model to better focus on relevant mound features and 
improving its ability to accurately identify mound regions.

In Case 3, the Dice Loss function was added on top of the VGG16 backbone. By directly measuring the 
overlap between predicted results and ground truth labels, Dice Loss helps the model converge more effectively. 
In contrast, the baseline model uses cross-entropy with a predefined weight map, which struggles to emphasize 
hard examples and often overlooks contextual structural information. Compared to Case 2, Case 3 showed 
further increases of 1.97% in IoU, 0.97% in MIoU, 3.41% in MPA, 1.77% in F1-score, and 0.65 f/s in FPS.

Case 4  introduced the PSA module. The parallel structure of Channel-only and Spatial-only Self-Attention in 
PSA effectively enhances fine-grained features of zokor mounds in complex backgrounds and improves localiza-
tion accuracy. Compared to Case 2, IoU, MIoU and F1-score increased by 0.46%, 0.24% and 0.42%, respectively, 
though MPA slightly decreased by 0.42%.

In Case 5, the combination of Dice Loss and the PSA module on the VGG16 backbone achieved the best overall 
performance, with IoU, MIoU, MPA, F1-score, and FPS reaching 51.99%, 75.63%, 82.66%, 68.41%, and 42.13f/s, 
respectively—improvements of 4.87%, 10.01%, 9.47%, 18.12%,and 8.57 f/s, over the baseline. These results 
validate the effectiveness of the proposed VDP_UNet model for zokor mound segmentation in the complex 
environment of alpine meadows.

The training and validation loss curves of the UNet and VDP_UNet models are shown in Fig. 5. As training 
progressed, the loss curves began to stabilize at epoch 70 and reached a steady state by epoch 80.

Comparative experiments
Comparison with classical algorithms
To ensure recognition accuracy, the proposed method was compared against several classic models on the 
alpine meadow zokor mound dataset, including SegFormer41, DeepLabV3+42, BiSeNetV243, Fast-SCNN44, and 
DANet45, All models were trained for 80 epochs.

As shown in Table 2, VDP_UNet outperforms several mainstream semantic segmentation models across 
key metrics such as Accuracy, MIoU, and F1-score. While SegFormer achieved the highest Precision (72.32%), 
its relatively low Recall and F1-score indicate an issue with under-detection, and therefore it was not selected 
as the baseline model. DeepLabV3 + achieved a slightly higher Recall than VDP_UNet, but fell short in other 
performance indicators. BiSeNetV2 and DANet demonstrated relatively balanced results across metrics and 
maintained stable overall performance, yet still underperformed compared to the proposed method. Fast-SCNN 

Fig. 5.  Comparison of loss curves between the UNet (a) and VDP_UNet (b) models.

 

Case VGG16 Dice Loss PSA IoU(%) MIoU(%) MPA(%) F1-score(%) FPS

1 - - - 47.12 65.62 73.19 50.29 33.56

2 √ - - 48.38 73.82 78.43 65.21 30.42

3 √ √ - 50.35 74.79 81.84 66.98 31.07

4 √ - √ 48.84 74.06 78.01 65.63 28.78

5 √ √ √ 51.99 75.63 82.66 68.41 42.13

Table 1.  Ablation experiment results. Bold values indicate the best performance. A “√” denotes that the 
module is included, while a “-” indicates it is not.
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performed the worst on this dataset, struggling to effectively capture the small-scale features of zokor mounds. 
Overall, VDP_UNet strikes a strong balance between accuracy and robustness, confirming its effectiveness 
in extracting zokor mound regions under complex background conditions and offering valuable support and 
methodological insight for future research.

Figure 6 illustrates the loss curves of different semantic segmentation models. Although the SgFormer model 
achieved the highest accuracy, its loss decreased too rapidly and became stable around the 30th epoch, indicating 
that the model might suffer from an improper learning rate setting or premature convergence. The Fast-SCNN 
model showed relatively poor training performance, with large fluctuations in its loss curve throughout the 
training process and no clear convergence. Overall, the VDP_UNet model exhibited faster convergence and the 
lowest final loss value, demonstrating superior convergence and stability.

Backbone network comparison
This experiment compared the performance of models using different backbone networks—UNet’s original 
backbone, VGG16, and ResNet50—on the zokor mound dataset. The experimental results are shown in Table 3. 
The results indicate that the VGG16 backbone demonstrates a stronger ability to capture contextual information 
from zokor mound images. It achieved Precision, IoU, and MIoU values of 76.04%, 48.38%, and 73.82%, 
respectively, representing improvements of 25.01%, 1.26%, and 8.20% over the original UNet backbone, and 
achieving the best overall performance.

Polarized self-attention
To verify the effectiveness of the Polarized Self-Attention (PSA) module in semantic feature fusion, a comparative 
experiment was conducted based on the VGG16 backbone using CBAM, Triplet, ECA, and PSA modules, as 
shown in Table 4. The PSA module integrates features through a parallel combination of channel and spatial 
attention mechanisms, achieving Precision, IoU, and MIoU values of 78.85%, 48.84%, and 74.06%, respectively—
improvements of 2.81%, 0.46%, and 0.24% over the other modules. These results clearly demonstrate the 
superiority of the PSA module compared to the baseline modules, indicating that incorporating Polarized Self-
Attention enables more effective integration of semantic information and enhances segmentation accuracy.

Loss function
A series of comparative experiments were conducted to verify the effectiveness of the proposed loss function. 
The experiments were carried out based on the VGG16 backbone and PSA module, as shown in Table 5. Three 
loss functions—Dice Loss, Focal Loss, and Dice + Focal—were introduced for comparison, where “Origin” 
represents the baseline model without additional loss function. The results show that the baseline model 
achieved IoU, MIoU, F1-score, and FPS values of 48.84%、74.06%、65.63%、28.78f/s, respectively. After 
introducing Dice Loss, these metrics improved to 51.99%, 75.63%, 68.41%, and 42.13 f/s, representing the best 
overall performance. These findings confirm the effectiveness of the proposed loss function in the zokor mound 
segmentation task and demonstrate its ability to significantly enhance feature extraction accuracy.

Result visualization
To visually demonstrate the performance of the VDP_UNet model in detecting zokor mound regions, two 
UAV images captured at an altitude of 30 m were randomly selected and enlarged for qualitative analysis. The 
comparison group included UNet, other comparative models, and manual annotations, resulting in a total of 
eight sets of experimental results, as shown in Fig. 7. In the figure, “Original” denotes the raw image, “Label” 
represents the manually annotated ground truth, and the black-and-white images indicate the model predictions, 
where white areas correspond to detected zokor mounds and black areas represent non-mound regions. The first 
sample was collected during the flourishing grass stage, while the second corresponds to the regreening stage, 
demonstrating the model’s adaptability and detection performance across different vegetation growth phases.

As shown in Fig.  7, zokor mounds exhibit more distinctive visual features during the flourishing grass 
stage, especially in terms of color, making them easier to identify. In contrast, during the regreening stage, the 
mounds often overlap with ground objects such as livestock footprints and surface patches, resulting in less 
distinguishable features and a higher likelihood of confusion. Compared with the manually annotated results, 
DeepLabV3+, BiSeNetV2, Fast-SCNN, and DANet performed unsatisfactorily on the zokor mound test set—
showing significant false detections and omissions during the flourishing grass stage and failing to accurately 
delineate mound boundaries in the complex backgrounds of the regreening stage. Although SegFormer achieved 
a slight improvement in detection accuracy, its boundary perception capability remained limited.

Model Precision(%) Recall(%) Accuracy(%) MIoU(%) F1-score(%)

SegFormer 72.32 41.18 99.10 67.33 52.48

DeepLabV3+ 68.11 66.12 98.99 63.57 67.10

BiSeNetV2 60.84 58.39 98.86 57.06 59.59

Fast-SCNN 49.90 58.55 98.78 56.76 53.88

DANet 70.60 62.68 98.96 61.00 66.40

VDP_UNet 71.44 65.63 99.27 75.63 68.41

Table 2.  Comparative analysis with classic semantic segmentation models. Bold font indicates the best values.
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In contrast, the proposed VDP_UNet exhibits superior detection performance across all four representative 
scenarios. This improvement is largely attributed to the VGG16 backbone, which enhances the model’s capacity 
to capture contextual and semantic features of zokor mounds. Furthermore, the integration of a parallel PSA 
module—combining channel-only and spatial-only self-attention—significantly boosts the extraction of fine-
grained details and edge information. The use of Dice Loss to address class imbalance further enhances label 

Method Precision(%) IoU(%) MIoU(%) Accuracy(%) F1-score(%) FPS(f/s)

Origin 51.03 47.12 65.62 99.17 50.29 33.56

ResNet50 67.57 48.08 73.61 99.18 64.90 30.81

VGG16 76.04 48.38 73.82 99.26 65.21 30.42

Table 3.  Results from choosing the backbone, bold font indicates the best values.

 

Fig. 6.  Comparison of loss curves for different semantic segmentation models. (a) SegFormer model, (b) 
DeepLabV3 + model, (c) BiSeNetV2 model, (d) Fast-SCNN model, (e) DANet model, and (f) VDP_UNet 
model.
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prediction accuracy. Collectively, these enhancements demonstrate the robustness and reliability of VDP_UNet 
in accurately identifying zokor mound features under complex background conditions.

Application of the VDP_UNet model in field sites and area Estimation
To validate the effectiveness of the proposed method and explore its potential applications in zokor mound 
monitoring and sustainable ecosystem management, four zokor mound UAV images—randomly selected and 
excluded from training—were analyzed. A comparative study was conducted using traditional area calculation 
methods in ENVI (https://envi.geoscene.cn/). This study primarily calculated the total zokor mound area by 
counting the number of target pixels labeled as 1 (zokor mound) in the segmentation result maps, with non-
zokor mound areas labeled as 0, then converting these pixel counts to actual ground area based on flight altitude 
and camera sensor parameters. The related area estimation principle is illustrated in Fig. 8.

The formula for calculating the actual area of zokor mounds is as follows:

	
Areazokor mound = Cpixel × GSD2 = Cpixel × (H × SW

f × IW
)2� (12)

Where Cpixel is the number of pixels, GSD is the ground sampling distance, H is the flight altitude (meters), SW is 
the sensor width (meters), f is the focal length (meters), and IW represents the image width (pixels).

As shown in Fig. 9, images (a)–(c) were captured during the returning green period, while image (d) was 
taken during the peak grass period. The ENVI software was used to perform supervised classification based 
on the maximum likelihood method, with regions of interest (ROIs) manually defined. Post-processing steps 
included clustering analysis and principal and minor component analysis. During the peak grass period, when 
zokor mounds exhibit distinct texture and color differences from the surrounding vegetation, both ENVI and 
the proposed VDP_UNet produce satisfactory segmentation results. However, in the returning green period, 
zokor mounds often blend with livestock manure, bare soil, and other ground features, resulting in a complex 
background. This complexity limits ENVI’s ability to capture discriminative statistical features, leading to 
numerous false positives. In contrast, VDP_UNet maintains strong performance in this challenging setting, 
accurately identifying zokor mound regions with segmentation results that closely align with the original images, 
despite occasional misclassifications of non-mound areas.

Overall, ENVI’s reliance on traditional statistical classification methods results in a complex processing 
workflow and issues like blurred boundaries and misclassification, revealing clear limitations in zokor 
mound area extraction. By comparison, VDP_UNet enables large-scale, efficient UAV image processing and 
demonstrates superior overall performance in comparative experiments. Its segmentation results closely align 
with actual zokor mound distribution, providing more accurate area estimates, thus validating VDP_UNet’s 
applicability and effectiveness for zokor damage area extraction in alpine meadow environments.

Subsequently, 100 zokor mound images that were not used for training were analyzed. For each image, the 
ground truth mound area and the predicted value were calculated to generate a scatter plot, as shown in Fig. 10. 
The closer the points are to the reference line y = x, the more consistent the predicted values are with the ground 
truth.

Method Precision(%) IoU(%) MIoU(%) Accuracy(%) F1-score(%) FPS(f/s)

Origin 78.85 48.84 74.06 99.29 65.63 28.78

Dice + Focal 68.37 50.81 75.01 99.22 67.38 29.28

Focal Loss 77.94 48.08 73.65 99.26 64.90 41.14

Dice Loss 71.44 51.99 75.63 99.27 68.41 42.13

Table 5.  The network performance is compared by adding different loss function, bold font indicates the best 
values.

 

Method Precision(%) IoU(%) MIoU(%) Accuracy(%) F1-score(%) FPS(f/s)

Origin 76.04 48.38 73.82 99.26 65.21 30.42

CBAM 76.80 47.58 73.42 99.26 64.48 39.34

Triplet 76.67 48.31 73.79 99.27 65.15 20.05

ECA 76.10 45.10 72.10 99.22 62.16 38.47

PSA 78.85 48.84 74.06 99.29 65.63 28.78

Table 4.  The network performance is compared by using different network blocks, bold font indicates the best 
values.
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Discussion
Performance comparison of the VDP_UNet model with similar methods on the Zokor mound 
dataset
Semantic segmentation models have been widely applied across numerous object detection tasks, spanning 

Fig. 7.  Visualization results.
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fields such as agriculture, water resource management, forest fire early warning46, and forestry monitoring47, For 
example, Zhang et al.48 used the DD-DA model for precise segmentation of gully erosion in the Northeast Black 
Soil region; Chen et al.49 proposed Res_AUNet, which effectively enhanced the extraction of sunlight reflection 
areas on water surfaces; to address the efficiency bottlenecks and lack of explicit structural information fusion in 
traditional ViT models when processing high-resolution images, Chu et al.50 designed a structurally improved 
Twins network architecture. Additionally, this study compared several mainstream semantic segmentation 
models, including M-DeepLabV3 + with a MobileNet backbone, V2-HRNet based on HRNetV2, and the 
lightweight M-PSPNet, a MobileNet-based variant of PSPNet. To comprehensively evaluate the performance 
of the proposed VDP_UNet model in zokor mound area extraction, all models were trained and tuned under 
identical conditions, including the same data splits, augmentation strategies, number of epochs, early stopping 
policy, learning rate schedules, and a consistent hyperparameter tuning budget, to ensure fairness and reliability 
of the comparison results.

At a flight altitude of 30 m, using UAVs to capture zokor mound images significantly improves data acquisition 
efficiency. However, it also presents challenges such as smaller target sizes and less distinguishable features, 
making mound extraction more difficult. To validate the effectiveness of the proposed method, we conducted 
comparative experiments between VDP_UNet and several mainstream semantic segmentation models tailored 
for small-object detection in UAV imagery, as shown in Table  6. The results demonstrate that VDP_UNet 
outperforms other models in terms of Precision (71.44%), MIoU (75.63%), Accuracy (99.27%), and F1-score 
(68.41%), achieving the best overall performance. The DD-DA model achieved the highest Recall (66.75%), 

Fig. 9.  Comparison of UAV images and segmentation results of zokor mounds in the real field using ENVI 
and VDP_UNet. “Label” refers to the precise manual annotations. Notes: ENVI’s classification performance 
is poor with large errors; therefore, only images (a)–(d) segmented by VDP_UNet are shown, with the 
corresponding zokor mound areas in the field being 17.14 m², 20.47 m², 22.90 m², and 41.76 m², respectively.

 

Fig. 8.  Workflow diagram for zokor mound area calculation in real field sites.
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indicating strong capability in detecting zokor mounds. However, compared to DD-DA, VDP_UNet maintains 
high precision while also achieving competitive recall, highlighting its superior ability to capture fine-grained 
mound features.

Among the other models, Res_AUNet and M-PSPNet performed relatively poorly in terms of both precision 
and intersection over union, struggling to extract discriminative features of zokor mounds. Twins and V2-HRNet 
showed strengths in precision but suffered from lower recall, suggesting a higher risk of missed detections. 
Notably, introducing the PSA module between the encoder and decoder in Res_AUNet enhanced the model’s 
representational power in complex backgrounds and improved its sensitivity to small-object semantic features. 
Nevertheless, there is still room for improvement in both its precision and recall metrics.

Limitations and future considerations
Although the proposed VDP_UNet model exhibited strong overall performance in this study, several limitations 
remain. Some missed detections were observed, and the model’s precision still requires improvement. One 
contributing factor may be the limited availability of original zokor mound data, which could have hindered 
effective feature extraction and, consequently, model training. Additionally, the dataset used was confined to 
alpine meadows, which restricts the model’s applicability to a relatively narrow ecological context. This study 
also focused exclusively on newly formed mounds, whereas a more comprehensive evaluation of rodent damage 
in grasslands should include semi-new and old mounds as well. Moreover, no comparison was made between 
the actual measured areas of zokor mounds and the area estimates generated by the proposed method, leaving a 
gap in assessing the model’s practical utility.

Future research will focus on the following three directions. First, beyond visible light imagery, multimodal 
approaches that incorporate thermal infrared data, textual descriptions, and other complementary sources 
should be explored to enhance the extraction of zokor mound features across diverse modalities. Integrating 
various data types may improve the model’s generalization capability in different environmental contexts. 
Second, while this study primarily demonstrated the feasibility of applying the segmentation model in alpine 
meadows, practical deployment remains limited. Future research could explore model lightweighting with 
respect to parameter count and model size, and incorporate boundary-aware loss and class-balance calibration 
to facilitate deployment on edge devices and support new application scenarios. Third, the scope of zokor mound 
research should be broadened to include different successional stages of mound development and to incorporate 
field-based area measurements. This includes, but is not limited to, identifying new, semi-new, and old mounds 

Model Precision(%) Recall(%) MIoU(%) Accuracy(%) F1-score(%)

DD-DA 60.95 66.75 63.35 98.93 63.72

Res_AUNet 51.00 54.71 53.74 98.94 52.79

Twins 67.38 41.89 66.93 99.05 51.66

M-DeepLabV3+ 59.07 58.54 70.32 99.01 58.80

V2-HRNet 63.21 56.60 70.82 99.08 59.72

M-PSPNet 46.21 41.18 63.28 98.71 43.55

VDP_UNet 71.44 65.63 75.63 99.27 68.41

Table 6.  Performance comparison with existing semantic segmentation models. The bold font indicates the 
best values.

 

Fig. 10.  Comparison between the ground truth and predicted values of zokor mounds in sample plots.
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across diverse habitats such as alpine meadows and alpine shrub-meadows in regions like Qinghai, Tibet, Gansu, 
and Sichuan. These efforts will improve the applicability of mound area extraction methods, ensure greater 
consistency with real-world field conditions, and enhance both the model’s generalizability and the reliability of 
experimental outcomes.

Conclusion
The widespread presence of zokor mounds poses a significant threat to the sustainable development of alpine 
meadow ecosystems. Accurately identifying their distribution not only facilitates the assessment of rodent damage 
but also serves as an indirect indicator of zokor activity intensity. To enhance the precision and efficiency of 
zokor mound extraction, this study proposes a deep semantic segmentation model—VDP_UNet—integrating a 
polarized self-attention mechanism. In VDP_UNet, the encoder is replaced with VGG16 to better capture global 
contextual information of mound regions. Additionally, a Polarized Self-Attention (PSA) block is introduced in 
the feature fusion stage following encoder-decoder skip connections to strengthen the representation of fine-
grained features in complex backgrounds. The Dice loss function is employed to address sample imbalance 
and further improve overall model performance. Compared with classical semantic segmentation networks 
and several state-of-the-art methods, VDP_UNet achieves superior results across multiple evaluation metrics, 
demonstrating clear advantages in zokor mound extraction tasks. This approach provides a practical and 
effective solution for accurately detecting zokor mounds, offering strong potential for applications in rodent 
damage monitoring and ecological management. To support the real-world application of deep learning in this 
domain, a dedicated alpine meadow zokor mound dataset was constructed using UAV imagery collected at a 
30-meter flight altitude. This dataset fills a critical gap in high-quality remote sensing data for zokor mounds and 
lays a solid foundation for future research and model development.

Data availability
1. The data that support the findings of this study are available in “Scicense Data Bank” at: ​[​h​t​t​p​s​​:​/​/​g​i​t​​h​u​b​.​c​o​​m​/​
Y​a​n​g​​y​a​n​g​8​7​5​/​P​l​a​t​e​a​u​-​Z​o​k​o​r​-​M​o​u​n​d​s​] 2. The source code employed in the current research can be accessed on 
the GitHub page: [https://github.com/Yangyang875/VDP\_UNet].
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