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Facial expression recognition (FER), as a critical task in computer vision and affective computing, 
has gained considerable attention in recent years. However, current methods often suffer from high 
computational costs and limited capability in extracting key discriminative features. To address these 
issues, this paper proposes SPAYOLO (Spectral-aware Perception and Aggregation YOLOv8), a novel 
FER network based on the YOLOv8 architecture. We introduce a new Spectral-aware Perception 
and Aggregation Module (SPAM), designed to enhance expression recognition performance by 
systematically modeling spatial and frequency features. SPAM comprises three components: a 
Hierarchical Receptive Modeling (HRM) path that uses multi-scale convolutional branches to capture 
fine-grained and mid-level spatial variations; a Frequency Enhancement Path (FEP) that leverages Fast 
Fourier Transform (FFT) to extract high-frequency texture and micro-expression features; and a Gated 
Attention Mechanism (GAM) that adaptively fuses spatial and frequency features to mitigate feature 
distribution inconsistency and improve discriminative stability. Experimental results show that the 
proposed model achieves an accuracy of 70.74% on the FER2013 dataset and 67.88% on the AffectNet 
dataset, while maintaining high computational efficiency. These results highlight its suitability for real-
time facial expression recognition tasks.Our findings validate the effectiveness of hierarchical feature 
fusion and frequency-domain enhancement in FER tasks, offering valuable insights for future research 
in computer vision.The custom code for this study is available at GitHub repository: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​
Y​o​c​i​L​​a​m​/​S​p​​e​c​t​r​a​l​​-​S​p​a​t​i​​a​l​-​F​e​a​​t​u​r​e​-​​F​u​s​i​o​n​​-​f​o​r​-​R​​e​a​l​-​T​i​​m​e​-​F​a​​c​i​a​l​-​E​​x​p​r​e​s​s​​i​o​n​-​R​e​​c​o​g​n​i​t​i​o​n.
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Recent advances in computer vision, driven by deep learning, have significantly improved facial analysis tasks. 
Facial expression recognition (FER), a key component in areas such as identity verification, affective computing, 
and human-computer interaction, involves detecting facial expressions, extracting relevant features, and 
performing classification.

Early approaches to FER relied on handcrafted features and landmark-based methods, such as Principal 
Component Analysis (PCA)1, Linear Discriminant Analysis (LDA)2, and Local Binary Patterns (LBP)3. While 
these techniques achieved moderate success under controlled conditions, they struggle with illumination 
changes, occlusions, and pose variations in real-world scenarios. The emergence of convolutional neural networks 
(CNNs)4, such as FaceNet5 and ArcFace6, has marked a paradigm shift in facial recognition, enabling the 
learning of high-dimensional representations that improve intra-class compactness and inter-class separability. 
Nevertheless, these models remain suboptimal for FER, which demands finer discrimination of subtle muscular 
movements and faces the additional challenge of ambiguous annotations, as noted by Jin et al. who modeled 
visual sentiment classification with low-rank subspace learning and label relaxation7.

Facial expression recognition differs from standard identity or object classification in that it requires 
precise modeling of localized facial muscle changes. To address this, recent studies have incorporated attention 
mechanisms8 into CNNs to enhance feature focus on critical facial regions. For instance, SENet9 introduced 
channel-wise attention, CBAM10 integrated spatial and channel attention, and ECA11 proposed lightweight 
attention with local 1D convolutions. These approaches inspired the design of the multi-scale attention modules 
in this work.
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YOLO12 (You Only Look Once), as an efficient single-stage object detection framework, achieves a favorable 
balance between computational efficiency and detection accuracy. Since the introduction of YOLOv1, subsequent 
versions have incorporated architectural advancements such as Cross Stage Partial Networks (CSPNet)13, Path 
Aggregation Networks (PANet)14, and dynamic label assignment strategies, resulting in consistent performance 
improvements across a wide range of tasks. Compared with two-stage approaches like Faster R-CNN15, YOLO 
exhibits significant advantages in terms of end-to-end inference speed and structural efficiency.In parallel, 
recent advances such as DFD-NAS16 further highlight how neural architecture search can automatically discover 
lightweight yet accurate backbones for multimedia forensics, underscoring the importance of efficiency–
accuracy trade-offs also pursued in our FER framework.

Although YOLO was originally designed for object detection, recent studies have repurposed its architecture 
for classification tasks by leveraging its strong feature extraction capabilities. Applications have extended to 
domains such as medical imaging and traffic sign recognition. However, facial expression recognition poses 
distinct challenges due to its sensitivity to fine-grained facial variations, such as subtle movements around 
the eyes, eyebrows, and mouth. YOLO’s conventional architecture struggles to effectively capture these local 
variations. Moreover, facial expressions often involve multi-scale and high-frequency details, which are not 
adequately modeled by traditional CNNs operating purely in the spatial domain.

To address these challenges, we propose a Spectral-aware Perception and Aggregation Module (SPAM), which 
is integrated into a classification-adapted version of YOLOv8. SPAM enhances the modeling of facial expression 
features by incorporating multi-scale convolutional operations to improve feature extraction and employing Fast 
Fourier Transform (FFT)17 to emphasize frequency-domain details. Additionally, a Gated Attention Mechanism 
(GAM)18 is introduced to optimize feature interaction across spatial and frequency domains. This design 
improves expression recognition accuracy while maintaining computational efficiency.

The main contributions of this work are as follows:

	1)	 Hierarchical Receptive Modeling (HRM): To address the spatial-scale heterogeneity of facial expression re-
gions, we design a multi-branch convolutional structure with varying receptive fields. This enhances the 
model’s spatial awareness of both fine-grained local variations and mid-scale dynamic regions.

	2)	 Frequency Enhancement Path (FEP): We introduce Fast Fourier Transform (FFT) for frequency-domain 
modeling of spatial feature maps. Combined with a channel attention mechanism, this reweights spectral 
components to emphasize high-frequency details, improving the model’s responsiveness and discriminative 
consistency to subtle facial expression changes.

	3)	 Gated Attention Mechanism (GAM): A cross-domain attention mechanism is developed to dynamically fuse 
spatial and frequency features under global semantic guidance. This mitigates domain inconsistency and 
facilitates adaptive integration of heterogeneous feature representations.

	4)	 Efficient Integration of Lightweight Attention into a Detection Framework: The proposed SPAM module is 
embedded into a classification-adapted YOLOv8 backbone. Without introducing significant computational 
overhead, this integration improves semantic awareness and structural adaptability in FER tasks, achieving 
a balance between recognition accuracy and deployment feasibility.

The remainder of this paper is organized as follows: Sect. 2 reviews related work; Sect. 3 presents the detailed 
architecture and methodology; Sect. 4 outlines the experimental setup and results; and Sect. 5 concludes with a 
summary and discussion of future directions.

Related work
Facial expression recognition is a critical task in affective computing and human-computer interaction. Recent 
methods have made significant progress by leveraging multi-scale modeling, attention mechanisms, and 
frequency-domain features. However, these approaches often face challenges such as structural complexity, 
limited adaptability to real-world conditions, and high computational costs, which restrict their deployment 
in resource-constrained scenarios. To address these limitations, the proposed SPA module integrates multi-
scale spatial perception, frequency enhancement, and lightweight gated attention into a unified framework. By 
dynamically combining spatial and frequency-domain features, SPA not only improves recognition accuracy but 
also ensures practical efficiency, making it a robust solution for real-time FER applications.

Recent studies have explored frequency-domain modeling and cross-modality fusion techniques to enhance 
FER performance. For example, MoADNet19 introduced a lightweight dual-stream network for RGB-D salient 
object detection, showcasing the efficiency of compact architectures for multimodal feature processing. Similarly, 
FCMNet20 leveraged frequency-aware attention mechanisms to effectively capture complementary information 
between modalities. Furthermore, TriPINet21proposed dynamic cross-modality fusion strategies to integrate 
multistage features, improving localization performance in image forensics. Liang et al. further demonstrated 
that progressive cross-modality integration can boost fine-grained localization22, a principle echoed in our gated 
spectral–spatial fusion. These approaches inspired the design of the Frequency Enhancement Path (FEP) and 
Gated Attention Mechanism (GAM) in this work, enabling dynamic spatial-frequency alignment to overcome 
limitations in prior methods.

Multi-scale feature modelingnn
To enhance the expressiveness of facial features, multi-scale architectures have become a prevalent modeling 
strategy. For example, POSTER + +23 employs a dual-branch design to integrate image and landmark features, 
using a hierarchical pyramid structure to enhance perception at different spatial scales and reduce intra-class 
variability. However, it heavily depends on external landmark detectors and suffers from low modular coupling 
and a complex training pipeline. EMA-Net introduces cross-scale attention modules and compact aggregation 
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structures to improve context modeling while maintaining high efficiency. Nonetheless, its fusion mechanism 
mainly relies on shallow-level concatenation, limiting its ability to dynamically emphasize important regions at 
varying scales.

In contrast, the proposed Spectral-aware Perception and Aggregation (SPA) module adopts structurally 
distinct convolutional paths tailored for different spatial semantics. A dynamic gating mechanism is introduced 
during the fusion stage to enable weighted selection of cross-scale features. This design allows the model to 
capture both global context and local details while adaptively enhancing the discriminability of key facial regions.

Attention mechanisms in FER
Attention mechanisms have emerged as critical components in deep models for improving region selectivity 
and feature expressiveness in FER. For instance, FerNeXt24 enhances the quality of expression features by 
incorporating channel attention, effectively suppressing interference from irrelevant regions. However, 
traditional attention methods—such as Squeeze-and-Excitation (SE)—often rely on static receptive fields or 
global pooling, which limits their responsiveness to local dynamic changes and can lead to redundancy or 
missing information in complex scenes.

To address long-range dependencies, Transformer-based architectures have recently been introduced 
in FER. FER-Former25 combines multimodal information with hybrid self-attention to achieve state-of-the-
art performance in expression classification. Similarly, Face-MLLM26 employs multi-stage pretraining and 
semantic space alignment to enhance cross-task generalizability. Other studies have proposed Transformer-
based aggregation modules such as EMA27, which aim to balance model performance and parameter efficiency. 
Additionally, some approaches integrate Transformer modules with efficient detection frameworks such as 
YOLOv528,29, balancing model expressiveness with structural efficiency. Despite the global modeling capabilities 
of Transformers, they are often computationally intensive and structurally complex, limiting their deployment 
in resource-constrained environments. Meanwhile, CNN-based attention mechanisms continue to struggle with 
scale adaptiveness and fine-grained modeling.

To this end, we propose a Gated Attention Mechanism (GAM) that unifies spatial, frequency, and scale 
dimensions. With learnable gating functions, GAM selectively emphasizes discriminative features while 
combining the efficiency of CNNs with the flexibility of Transformers, yielding a lightweight solution for joint 
spatial–frequency modeling.

Frequency-domain modeling
Recently, frequency-domain information has been increasingly explored as a valuable supplement to spatial-
domain modeling in vision tasks such as facial expression recognition and real-world image denoising. Zhou et 
al.30 introduced Fourier transforms into pose estimation to enhance high-frequency detail representation, while 
Zhuang et al.31 proposed a Frequency-Regulated Channel-Spatial Attention (FCSA) mechanism to improve 
image classification via frequency-based reweighting. Similarly, recent studies in image denoising32,33 have 
demonstrated the utility of frequency-domain modeling in preserving subtle textures and suppressing irrelevant 
noise. However, many of these approaches apply global frequency operations and lack spatial or semantic 
alignment, which can limit their integration with attention mechanisms and reduce effectiveness in expression-
specific modeling tasks.

Building on these insights, we embed the frequency enhancement process within the value vector generation 
path of our attention mechanism. Conventional CNN-based attention mechanisms (e.g., SE, CBAM) often 
struggle with scale adaptiveness and fine-grained feature modeling, as also evidenced in recent studies34 on real-
world image denoising. These limitations are particularly critical for FER tasks, where subtle, localized muscle 
movements require both high spatial precision and flexible feature emphasis.

Our Gated Attention Mechanism (GAM) adaptively controls the fusion of spatial and frequency features, 
enabling joint modeling within the attention framework. Unlike FCSA’s global channel reweighting, SPAM aligns 
frequency cues with spatial semantics at multiple scales, selectively emphasizing expression-relevant details (e.g., 
wrinkles, micro-movements) while reducing inconsistencies from static global operations.

Model efficiency and deployability
Lightweight design and inference efficiency are vital for real-world FER. The YOLO series, with its single-stage 
architecture and high speed, has been widely used in recognition tasks. FER-YOLO-Mamba36 extends YOLOv5 
with a state-space attention mechanism, but such methods remain limited to shallow attention or minor 
structural tuning, lacking deep modeling of fine-grained expressions or cross-domain enhancement.

In this work, we integrate the SPA module into the YOLOv8 backbone in a lightweight manner, combining 
YOLOv8’s efficient feature extraction with enhanced multi-scale and frequency-aware representation. This 
enables a better trade-off between accuracy and real-time performance.

Summary
Recent FER methods have made significant progress in multi-scale modeling, attention mechanisms, and 
frequency-domain features. However, they often suffer from structural complexity, limited adaptability, and 
challenges in real-world deployment. The proposed SPA module addresses these limitations by unifying multi-
scale spatial perception, frequency enhancement, and lightweight gated attention into a cohesive design. This 
approach not only improves expression recognition accuracy but also ensures practical efficiency, making it 
suitable for real-time and resource-constrained applications.
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Methodology
This section provides a detailed description of the proposed SPAYOLO network architecture and its core 
component—the Spectral-aware Perception and Aggregation Module (SPAM). The model is specifically designed 
to meet the demands of facial expression recognition, which requires precise modeling of fine-grained features. 
As illustrated in Fig. 1, SPAYOLO integrates spatial and frequency feature modeling through a targeted and 
efficient architectural design, enabling both deep perception and adaptive fusion of heterogeneous information.

Overall architecture of SPAYOLO
SPAYOLO builds upon the lightweight and efficient backbone of YOLOv8, enhancing its ability to model local 
detail variations that are crucial in FER tasks. In particular, SPAM is introduced at the feature extraction stage 
to strengthen the model’s sensitivity to high-frequency micro-patterns and to enable robust multi-scale spatial 
feature learning.

The overall network comprises three functionally complementary paths:

	1)	 Hierarchical Receptive Modeling (HRM): This branch captures spatial structures at multiple receptive field 
scales, enabling the modeling of diverse facial regions with varying granularity.

	2)	 Frequency Enhancement Path (FEP): This branch focuses on frequency-domain representation, enhancing 
the model’s ability to capture high-frequency changes such as subtle muscle movements and fine textures.

	3)	 Gated Attention Mechanism (GAM): This module adaptively fuses spatial and frequency features via a learn-
able gating mechanism, mitigating domain inconsistency and enabling dynamic weighting across heteroge-
neous representations.

This cooperative architecture—combining hierarchical spatial perception, frequency enhancement, and gated 
cross-domain fusion—maximizes the advantages of YOLOv8 in efficient feature extraction, while addressing its 
limitations in capturing subtle facial expressions. By incorporating targeted feature modeling across both spatial 
and frequency dimensions, SPAYOLO achieves superior recognition accuracy and generalization capability 
under complex emotional conditions.

Spectral-aware perception and aggregation module
The Spectral-aware Perception and Aggregation Module (SPAM) is the core innovative component of the 
SPAYOLO architecture. It is designed to achieve deep integration of spatial-scale heterogeneity modeling and 
frequency component enhancement. As illustrated in Fig. 2, in contrast to conventional convolutional networks 
that rely solely on spatial-domain operations for local feature extraction, SPAM employs a multi-branch and 
multi-domain collaborative framework to systematically improve the richness and discriminative capacity of 
the learned features.

HRM
The Hierarchical Receptive Modeling (HRM) path is designed to capture the spatial-scale heterogeneity of 
expression-activated facial regions. Facial expressions often involve the coordinated movement of multiple 
anatomical areas, each exhibiting distinct activation patterns at varying spatial scales. For instance, eyebrow 
raising typically occurs in small, localized regions, whereas downward movement of the mouth corners or global 
facial contractions affects broader areas.

Conventional convolutional networks, constrained by fixed receptive field sizes, struggle to simultaneously 
model both localized micro-changes and broad structural variations within a unified feature space. This 
limitation hinders multi-scale feature integration and impairs the model’s ability to interpret complex emotional 

Fig. 1.  The overall architecture of the SPAYOLO network.
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expressions. To overcome this, HRM introduces a parallel multi-branch architecture with varied receptive fields 
to explicitly enable multi-scale spatial modeling.

Specifically, HRM comprises four convolutional branches employing kernel sizes of 1 × 1, 3 × 3, 5 × 5, and 
7 × 7, respectively, to extract features across different spatial granularities—from fine to mid-scale responses. 
Each branch is tailored to its target scale and combines standard and depthwise separable convolutions to 
balance modeling capacity with computational efficiency. After extracting features at multiple scales, outputs 
from all branches are passed through a shared 1 × 1 convolution for channel compression, resulting in a compact 
and expressive spatial representation.

To further support the dynamic modeling needs of the subsequent attention mechanism, HRM incorporates 
a differentiated pathway design during channel compression:

	1)	 Query vectors (Q) are primarily derived from the 1 × 1, 3 × 3, and 5 × 5 branches to capture localized details 
and rapidly changing features, enhancing sensitivity to fine-grained facial expressions.

	2)	 Key vectors (K), while incorporating 3 × 3 features for fine-scale context, place greater emphasis on 5 × 5 and 
7 × 7 branches to support global and mid-scale structural modeling, thereby improving stability in perceiv-
ing broader facial layouts and emotional transitions.

To formally represent the multi-branch structure of HRM, we define the scale-aware spatial feature aggregation 
process as a weighted combination of features extracted from different receptive fields. Each branch output is 
modulated by a learnable scalar and subsequently fused via a shared 1 × 1 convolution. The resulting unified 
feature map is then used to generate the query and key vectors for the subsequent attention mechanism, as 
formulated below:

	
F s = Conv1× 1

(∑
n
i=1α i · fi (X)

)
� (1)

	 Q = Ψ Q (F s) , K = Ψ K (F s)� (2)

where: X ∈ RC× H× W denotes the input feature map to the HRM module,
fidenotes the output of the i-th convolutional branch with a specific,

receptive field, where i ∈ {1,2, 3,4}corresponds to kernel sizes 1 × 1, 3 × 3, 5 × 5 and 7 × 7, respectively,
α i ∈ R is a learnable scalar weight assigned to the i-th branch, used to adaptively balance the contribution 

of each scale,
Ψ Q(·)and Ψ K(·)denote learnable mappings used to project features into the query/key spaces.

This structured division of labor enables complementary modeling of local sensitivity and global consistency, 
empowering the attention mechanism with more discriminative capability for spatial alignment and feature 
selection.

Moreover, compared to dilated convolutions, HRM’s continuous scale convolution avoids the gridding effect 
inherent in sparse sampling, thus preserving the integrity and coherence of local structures. Unlike pyramid 
pooling modules, HRM maintains an all-convolutional design, eliminating semantic fragmentation introduced 
by pooling and better retaining contextual coherence in critical facial regions. Additionally, the widespread 

Fig. 2.  The SPA module consists of three components: HRM (green) for multi-scale spatial feature extraction, 
FEP (pink) for frequency enhancement using FFT, and GAM (yellow) for adaptive spatial-frequency fusion via 
gated attention. Key operations are illustrated in the legend.
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use of depthwise separable convolutions across all branches ensures that the module maintains low parameter 
overhead and computational cost, significantly enhancing its suitability for lightweight deployment, especially 
in resource-constrained environments such as mobile or edge devices.

In summary, the HRM module enhances the model’s capability to decode cross-scale expression variations 
by leveraging diverse receptive fields and carefully organized branch structures. It provides a semantically rich 
yet compact feature foundation for subsequent frequency enhancement and.

dynamic fusion stages, achieving a dual optimization of structural efficiency and expressive performance in 
FER tasks.

FEP
Facial expression recognition often requires the identification of subtle local variations, such as fine wrinkles, 
micro-expressions, and muscle tremors, which tend to be encoded in the high-frequency components of facial 
images. However, traditional convolutional neural networks (CNNs), operating solely in the spatial domain, have 
inherent limitations in capturing these high-frequency cues due to their limited receptive fields and tendency 
toward spatial smoothing. This restricts their ability to distinguish between visually similar emotion categories, 
such as fear and disgust.

To address these challenges, the Frequency Enhancement Path (FEP) introduces a frequency-domain 
modeling strategy based on Fourier analysis. Specifically, it leverages the Fast Fourier Transform (FFT) to extract 
and emphasize high-frequency components that correspond to expression-critical texture cues. As shown in 
Fig.  3, incorporating frequency-aware attention allows the model to focus more precisely on semantically 
discriminative facial regions, such as the eyes and mouth.

The Fourier Transform decomposes complex spatial structures into orthogonal components across 
different frequency levels, thereby improving both feature separability and sparsity. In the context of FER, 
high-frequency components typically reflect fine-grained motion patterns and contour variations, while low-
frequency components describe broader facial structure or illumination. Mapping features to the frequency 
domain therefore enhances the model’s sensitivity to localized expression dynamics while suppressing irrelevant 
background noise.

Concretely, let the input feature map be denoted as X ∈ RC× H× W. A two-dimensional Fast Fourier 
Transform (FFT) is applied to project the spatial feature into the frequency domain:

	 F f = F (X)� (3)

where:
F f  represents the frequency-domain representation,
F (• )denotes the Fourier Transform operation, which is applied to project the spatial-domain features into 

the frequency domain.
To emphasize frequency components that are most relevant to facial expression recognition and suppress 

irrelevant or noisy responses, we introduce a channel-wise modulation mechanism within the frequency 
enhancement path. Specifically, we apply a learnable frequency reweighting strategy that incorporates channel-
specific scaling and bias, followed by a lightweight attention module to generate refined frequency representations. 
The attention-enhanced feature is computed as:

	
∼
F f = φ att (F f ⊙ γ + β )� (4)

where:∼
F f denotes the frequency feature map after channel-wise modulation and attention weighting,
φ attdenotes the channel attention function, which selectively emphasizes informative channels in the 

frequency domain,
⊙  represents element-wise multiplication,
γ ∈ RCrepresents a learnable channel-wise scaling vector used to modulate frequency responses,
β ∈ RCrepresents a learnable channel-wise bias vector added to the modulated features.
To further compress the channel dimension and integrate semantic information within the frequency space, 

a 1 × 1 convolution is applied:

	
F c = Conv1× 1

(∼
F f

)
� (5)

where F c denotes the compressed frequency-domain feature map.
To emphasize the frequency components most relevant to facial expression recognition and suppress 

irrelevant or noisy frequencies, FEP incorporates a channel attention mechanism for explicit weighting. The 
attention weights are computed as follows:

	 φ att (z) = σ (W 2 · δ (W 1 · GAP (z)))� (6)

where:
z denotes the frequency-domain feature map obtained from the FEP branch prior to attention computation.
GAP(·) denotes global average pooling,
W1and W2 are learnable weights of two fully connected layers,
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δ (·) is a non-linear activation function,
σ (·) is a sigmoid activation function.
The final enhanced frequency feature is obtained by channel-wise multiplication:

	 Fenhanced = Fc ⊙ φ att (z)� (7)

where ⊙ denotes element-wise multiplication across channels.
The enhanced frequency features Fenhanced are subsequently used as value vectors ( V) in the downstream 

attention fusion mechanism, where they are jointly modeled with the spatial features from the HRM path to 
generate a complete spatial-frequency representation.

Through this design, FEP effectively addresses the spatial pathway’s deficiency in modeling high-frequency 
details. It enhances feature sparsity and saliency, selectively amplifies expression-relevant frequency components, 
and suppresses background and redundant frequencies. This leads to improved discriminability and robustness 
in feature representation.

Fig. 3.  Effect of integrating spectral-domain information via FFT in the SPA module. The image on the 
right shows the attention distribution from the original SPA module without frequency modeling. After 
incorporating the FFT-based spectral extractor (left), the model focuses more precisely on semantically 
discriminative facial regions such as the mouth and eyes. This highlights the importance of frequency-aware 
attention in enhancing subtle expression cues.

 

Scientific Reports |        (2025) 15:43977 7| https://doi.org/10.1038/s41598-025-27666-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In summary, FEP provides SPAYOLO with an efficient, frequency-aware modeling path grounded in 
signal processing theory. It offers a compelling trade-off between expressive power and computational cost, 
demonstrating strong performance and application potential in complex facial expression recognition scenarios.

GAM
The Gated Attention Mechanism (GAM) serves as the core component for spatial–frequency feature fusion in 
the SPAYOLO architecture. Its primary goal is to enable efficient interaction and adaptive integration between 
heterogeneous feature representations originating from distinct perceptual domains.

Specifically, the HRM branch encodes local and mid-level spatial semantics, whereas the FEP branch 
captures high-frequency textures and fine-grained temporal dynamics. Due to significant differences in scale, 
sparsity, and semantic focus, direct fusion strategies—such as simple concatenation or fixed weighting—can 
lead to semantic mismatch, misaligned attention responses, and diminished discriminative power caused by 
information imbalance.

To address these issues, GAM adopts a gated modulation strategy that facilitates cross-domain attention 
fusion in a dynamic and context-aware manner. By adaptively regulating the contribution of each feature stream, 
GAM enhances fusion accuracy and stability, while preserving spatial–frequency alignment throughout the 
network.

Let the query vector Q ∈ RC× H× W be derived from the HRM output, and the value vector V ∈ RC× H× W 
from the FEP output. GAM first computes a spatial attention map A by applying a sigmoid activation to the 
query and performing element-wise modulation with the value:

	 A = σ (Q ⊗ V )� (8)

where⊗denotes element-wise multiplication across corresponding spatial locations. This formulation offers a 
lightweight alternative to standard attention by enabling dynamic gating of frequency-enhanced features while 
preserving spatial alignment.

To further enhance semantic coherence during fusion, GAM incorporates a global context modulation path. 
Specifically, a global average pooling operation is applied to the fused feature map, followed by two lightweight 
fully connected (MLP) layers to generate a soft gating signal:

	 g = σ (W 2 δ (W 1 · GAP (V )))� (9)

where:
W1 and W2 are learnable weight matrices, δ (·) is a non-linear activation function.

This gate vector g captures global-level feature importance and acts as a dynamic controller to modulate local 
attention fusion.

The final fused feature output is computed by integrating attention weighting, gated modulation, and residual 
information as follows:

	 F out = (A ⊙ V ) × g + X � (10)

where:
X denotes the residual feature from the input branch,
⊙represents element-wise multiplication between the attention map A and value feature V.
This fusion strategy captures key responses at the local spatial level while dynamically reweighting features 

globally, effectively mitigating common biases in local attention mechanisms such as overfitting to dominant 
regions.

From a design perspective, GAM enhances adaptive integration of multi-source features by mitigating 
mutual interference through gating, while global context guidance promotes semantic consistency and regional 
alignment. This ultimately strengthens the network’s capacity for fine-grained discrimination and robust feature 
representation.

In summary, GAM not only unifies spatial and frequency-domain features structurally, but also introduces a 
lightweight, dynamically tunable, and generalizable fusion paradigm. It plays a vital role in enabling SPAYOLO 
to achieve strong performance in complex facial expression recognition tasks.

Module collaboration and overall integration strategy
To balance computational efficiency with representational power, SPAYOLO adopts a modular collaboration 
and hierarchical integration strategy that fully exploits the complementary strengths of its three key pathways—
HRM, FEP, and GAM. This design systematically enhances the network’s depth of feature perception and its 
discriminative capacity across both spatial and frequency domains.

Specifically, the SPAM module serves as a unified feature processing unit that integrates three sub-paths: 
multi-receptive field spatial modeling (HRM), frequency component enhancement (FEP), and gated dynamic 
fusion (GAM). During the feature extraction stage:

	1)	 The HRM path first encodes spatial features at varying granularities, capturing local to mid-scale structural 
responses;

	2)	 The FEP path concurrently models frequency-domain representations using Fourier Transform, reinforcing 
high-frequency detail and compensating for the spatial path’s limitations in modeling rapid variations;

	3)	 The GAM module then acts as a fusion hub, dynamically aligning and weighting features from both domains 
via joint spatial-frequency attention mechanisms.
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This modular collaboration process can be formally represented as:

	 F HRM = HRM (X) , F FEP = FEP (X)� (11)

	 F SPAM = GAM (F HRM, F FEP)� (12)

where:
FHRM represents the spatial features extracted by the Hierarchical Receptive Modeling (HRM) module, 

representing multi-scale spatial responses,
FFEP represents the frequency-domain features extracted by the Frequency Enhancement Path (FEP), 

representing high-frequency responses critical for facial expression recognition.
FSPAM represents the fused features obtained by the Gated Attention Mechanism (GAM), integrating spatial 

and frequency-domain features adaptively.
Within the overall SPAYOLO architecture, the SPAM module is embedded in a lightweight fashion into 

the mid-to-high-level semantic stages of the YOLOv8 backbone, typically at feature layers C3 or C4. These 
integration points strike a balance between local detail richness and high-level semantic context. The resulting 
feature maps are then merged with the original backbone outputs via residual connections, ensuring stable 
information flow and consistent gradient propagation throughout training. Finally, the fused features are passed 
to the classification and detection heads, allowing the model to maintain both fine-grained expression resolution 
and overall inference efficiency.

Importantly, SPAM is explicitly designed to be computationally efficient, with lightweight implementation 
achieved through three core strategies:

	1)	 The HRM path employs depthwise separable convolutions to reduce the parameter overhead associated with 
large receptive fields;

	2)	 The FEP path retains only the real component of the Fourier spectrum and incorporates a compression 
projection to minimize redundancy;

	3)	 The GAM module uses a shallow fully connected gating branch, avoiding excessive computation in the fu-
sion process.

In conclusion, SPAYOLO’s modular and structural integration forms a unified feature processing system that 
combines multi-scale spatial modeling, frequency-enhanced perception, and cross-domain dynamic fusion. 
This design achieves substantial improvements in recognition accuracy, sensitivity to fine details, and system 
robustness—all while maintaining fast inference speeds, making the model suitable for practical deployment in 
real-time facial expression recognition scenarios.

Code availability
The custom code used in this study, including the implementation of the SPAYOLO network and its components 
(Spectral-aware Perception and Aggregation Module), is available at the following GitHub repository.

The repository contains all the necessary files to reproduce the results presented in this paper, including pre-
trained models, training scripts, and evaluation code.

Experiments and results
Datasets
This study utilizes two widely adopted benchmark datasets for facial expression recognition: FER2013 and 
AffectNet.

The FER2013 dataset contains a total of 35,887 labeled facial images, spanning seven emotion categories: 
Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprised. The dataset is divided according to the standard 
protocol into a training set of 28,709 images, and validation and test sets each consisting of 7,178 images.

The AffectNet dataset was originally annotated with eight emotion classes. However, for consistency with 
FER2013, we select only the seven categories shared across both datasets, resulting in a subset of 41,553 images. 
To ensure balanced distribution and consistent evaluation, we randomly divide this subset into a training set 
with 37,553 samples, and validation and test sets each containing 4,000 images.

All experiments in this study are conducted based on the above-defined data splits.

Experimental setup
All experiments are conducted under consistent hardware and software environments. The implementation is 
based on PyTorch 2.5.1, and training is performed on a workstation equipped with an Intel i5-12400 F CPU and 
NVIDIA GeForce RTX 4060 Ti GPU.

For model optimization, we adopt the Adan optimizer (details of the optimizer comparison are provided 
later) for SPAYOLO, with a learning rate of 1e-3, batch size of 64, and training for 200 epochs. For all baseline 
models, we follow the optimization settings and hyperparameters recommended in their respective original 
papers, using their official implementations whenever available.

To ensure fairness, all models are trained and evaluated on the same dataset splits. The loss function used is 
cross-entropy loss, and accuracy serves as the primary evaluation metric throughout our experiments.
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Optimizer comparison
We compared the performance of six optimizers—Adan, SGD, AdaBoB, Adam, Adamax, and Lion—on 
SPAYOLO using the FER2013 dataset. All models were trained under the same conditions (batch size of 64, 
learning rate of 1e-3, and 200 epochs).

As shown in Table  1, Adan achieved the highest accuracy (70.74%) and the lowest final loss (0.00934), 
reaching convergence around epoch 151. SGD was slightly lower in accuracy (70.10%) but stable. AdaBoB 
demonstrated excellent potential, with 69.8% accuracy and strong convergence, showing it to be a competitive 
optimizer for FER tasks.

Adam and Adamax had moderate accuracy (68.42% and 68.83%, respectively) but took longer to converge 
and exhibited higher final loss. Lion converged the fastest (~ 102 epochs) but yielded the lowest accuracy 
(68.95%).

Experimental results
Model performance evaluation and comparison
We evaluate the proposed SPAYOLO framework on the FER2013 and AffectNet datasets, and conduct 
comparative experiments against several recent state-of-the-art methods under identical hardware and software 
conditions. Due to variations in experimental setups—such as input resolution, preprocessing strategies, and 
training schedules—the reproduced results of some baseline models may slightly differ from those reported in 
their original publications. Nevertheless, all models were retrained using unified FER-specific settings to ensure 
fair and consistent comparison.

As shown in Table 2, SPAYOLO achieves classification accuracies of 70.74% on FER2013 and 67.88% on 
AffectNet. While its performance on AffectNet is marginally lower than that of ISONet (67.94%) and ResEmoteNet 
(67.90%), it consistently outperforms them on FER2013, indicating superior generalization on low-resolution, 
challenging datasets. This suggests that SPAYOLO strikes a favorable trade-off between accuracy and efficiency, 
validating the robustness and effectiveness of the proposed architecture across diverse FER benchmarks.

As shown in Fig. 4 (left), we visualize the training and validation loss curves along with the Top-1 and Top-5 
accuracy trends throughout the training process. The steady decline in training loss indicates that the model is 
progressively learning discriminative features for facial expression recognition. The consistent rise in both Top-1 
and Top-5 accuracy suggests improved performance and convergence stability over time.

Furthermore, Fig. 4 (right) presents the confusion matrix of the trained model on the FER2013 test set. The 
model achieves the highest classification accuracy in the “Happy” and “Surprised” categories, reflecting strong 
capability in identifying high-salience emotions. However, moderate confusion is observed between “Fear” 
and “Disgust”, indicating some challenges in distinguishing fine-grained expressions with subtle differences. 
Despite this, the overall classification performance surpasses that of the baseline and other mainstream models, 
demonstrating the robustness and generalizability of the proposed method.

Model efficiency and PQS-FP analysis
In real-world applications, model efficiency plays a crucial role in determining the feasibility of deployment. To 
evaluate the computational performance of our proposed method, we compare SPAYOLO with two representative 

Method FER2013 AffectNet

SPAYOLO(ours) 70.74 67.88

YOLOv8(original) 67.15 62.15

ISONet42 70.32 67.94

ResEmoteNet43 69.02 67.90

Mini-ResEmoteNet44 68.63 66.05

EmoNeXt-Tiny-22k45 64.54 65.30

LHC-Net46 63.17 64.72

QCS47 68.33 66.03

POSTER++ 65.27 65.95

Table 2.  Classification accuracy (%) of various models on the FER2013 and AffectNet dataset.

 

Model Accuracy (%) Final loss Epoch to plateau Remarks

Adan37 70.74 0.00934 ~ 151 Best performance overall

SGD38 70.10 0.01113 ~ 171 Stable, slower convergence

AdaBoB39 70.13 0.01044 ~ 148 Competitive

Adam40 68.42 0.01208 ~ 146 Fast convergence, less stable

Adamax 68.83 0.01167 ~ 144 Similar to Adam

Lion41 68.95 0.01153 ~ 131 Fastest but lower accuracy

Table 1.  Optimizer benchmarking for SPAYOLO on FER2013.
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baselines: ResEmoteNet and EmoNeXt-Tiny-22k. The comparison includes floating-point operations (FLOPs), 
number of parameters, training time per epoch, and inference time per image, highlighting differences in 
computational resource utilization.

Table 3 summarizes the computational statistics of the three models. Notably, SPAYOLO demonstrates high 
efficiency while maintaining strong accuracy. Under the same batch size conditions, it achieves a training time of 
just 13 s per epoch, significantly faster than ResEmoteNet (43 s) and EmoNeXt-Tiny-22k (150 s).

In terms of FLOPs, SPAYOLO requires approximately 3.3× more computation than ResEmoteNet, yet it 
trains 3.3× faster, indicating superior computational efficiency. This is largely attributed to the highly optimized 
YOLOv8 backbone, which leverages depthwise separable convolutions and CSPNet to reduce redundancy in 
feature extraction, resulting in higher throughput despite increased theoretical complexity.

By contrast, ResEmoteNet—though lower in FLOPs—contains over 80 million parameters, primarily due 
to SE modules and fully connected layers. This leads to increased memory consumption and slower training. 
EmoNeXt-Tiny-22k, based on a ConvNeXt-Transformer hybrid architecture, exhibits slightly higher FLOPs 
than SPAYOLO but suffers from high training latency due to the computational complexity of self-attention 
operations.

Regarding inference speed, SPAYOLO achieves 2.1 ms per image, making it approximately 2.8× faster than 
ResEmoteNet and nearly 4× faster than EmoNeXt-Tiny-22k. The reduced parameter count and streamlined 
backbone make SPAYOLO well-suited for real-time facial expression recognition tasks in latency-sensitive 
environments.

To further interpret the comparative results, we adopt the PQS-FP (Parameter Quantity Shift–Fitting 
Performance) coordinate system48 as a theoretical tool to analyze the trade-off between model complexity and 
performance. In this framework, the X-axis denotes the deviation in parameter quantity from an ideal reference, 
while the Y-axis reflects the corresponding deviation in model accuracy. Based on the direction and magnitude 
of these shifts, models are categorized into four quadrants, each representing a distinct fitting behavior.

We empirically set the ideal parameter count O = 30  million, which aligns with the scale of compact yet 
expressive architectures such as EmoNeXt-Tiny-22k. The performance baseline P* = 70.74% corresponds to the 
highest FER2013 accuracy achieved by SPAYOLO. Together, these define the coordinate origin (X = 0,Y = 0), 
representing a model that achieves an optimal balance between complexity and fitting capacity.

Under this framework (illustrated in Fig. 5): SPAYOLO falls in Quadrant IV (UAR), where reduced complexity 
correlates with improved performance, suggesting that the model effectively alleviates underfitting through its 
spectral-spatial design. ResEmoteNet appears in Quadrant I (OER), indicating that its excessive parameter count 
may lead to overfitting and redundant computation. EmoNeXt-Tiny-22k trends toward Quadrant III (UER), 
reflecting stagnant performance despite a reasonable parameter scale—implying ineffective utilization of its 
capacity.

This analysis reinforces that SPAYOLO not only achieves competitive accuracy and efficiency, but also 
occupies a theoretically favorable position in the PQS-FP space, confirming the practical value of its lightweight 
design in real-world FER applications.

Model Computation (GFLOPs) Parameters (M) Training Time per Epoch (s) Inference Time per Image (ms)

SPAYOLO(ours) 14.4 5.7 13 2.1

ResEmoteNet 4.35 80.24 43 5.8

EmoNeXt-Tiny-22k 4.57 30.56 150 8.4

Table 3.  Computational efficiency comparison of SPAYOLO and baseline models in terms of FLOPs, 
parameter count, training time per epoch, and average inference time per image.

 

Fig. 4.  Training and validation performance of SPAYOLO on the FER2013 dataset. Left: Loss and accuracy 
curves over training epochs. Right: Normalized confusion matrix illustrating classification performance across 
emotion categories.
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Ablation study
To further validate the individual contributions of components within the SPA module, we conduct a series of 
ablation experiments based on the full SPAYOLO model. The experiments selectively modify key subcomponents 
of SPA to assess their impact on final performance. The following configurations are evaluated:

	1)	 YOLOv8 Baseline: The original YOLOv8 model without any SPA integration.
	2)	 SPAYOLO (Full Model): The proposed model with the complete SPA module.
	3)	 SPAYOLO w/o FFT: The model with the frequency enhancement path removed—i.e., no FFT is applied, but 

the multi-scale convolution and Gated Attention Mechanism (GAM) remain.
	4)	 SPAYOLO w/o Multi-scale Convolution: The model with multi-scale convolution removed—query and key 

vectors are generated from a unified transformation, while FFT and GAM are retained.

The results in Table 4 demonstrate that both the frequency enhancement (FFT) and multi-scale spatial modeling 
significantly contribute to the overall performance of SPAYOLO. Removing either component leads to a 
noticeable drop in classification accuracy. Notably, the exclusion of the FFT component reduces the model’s 
ability to capture high-frequency details—such as subtle texture changes—thereby lowering the expression 
recognition accuracy. The removal of multi-scale convolution leads to even sharper performance degradation, 
especially on AffectNet, suggesting that modeling expressions at multiple receptive fields is essential for robust 
FER in real-world conditions.

Figure 6 illustrates the attention heatmaps under different SPA configurations, offering visual insights into 
the model’s attention focus: (A) shows the original input facial image. (B) displays the attention map generated 
by the full SPA module. The model focuses accurately on critical facial regions such as the eyes, eyebrows, and 
mouth, indicating precise localization of expression-related cues. (C) shows the attention map when FFT is 
removed. Compared to (B), attention is more dispersed, and key regions—especially for classes like Happy and 
Sad—receive less emphasis on mouth corners and eye edges, reflecting weakened sensitivity to fine-grained 
details. (D) depicts the attention map without multi-scale convolution. The spatial coverage is significantly 

No. Model variant FER2013 AffectNet

1 YOLOv8 (Baseline) 67.45 62.55

2 SPAYOLO (ours) 70.74 68.28

3 SPAYOLO w/o FFT 69.95 65.42

4 SPAYOLO w/o multi-scale 67.66 54.13

Table 4.  Ablation study: accuracy (%) of SPAYOLO variants on FER2013 and AffectNet.

 

Fig. 5.  The PQS-FP coordinate system: Y-axis: larger values indicate a higher existing parameter quantity of 
models; X-axis: larger values indicate an increase in the parameter quantity of models.
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narrowed. For categories like Surprised and Fearful, the model fails to attend to the full extent of facial expression 
regions, underscoring the importance of multi-scale feature extraction.

Overall, the full SPA module ensures effective attention distribution and rich feature extraction across spatial 
and frequency domains. Removing either FFT or multi-scale convolution degrades the model’s representational 
power and hinders expression classification performance.

Table 5 further presents the per-class accuracy across different methods. The full SPAYOLO model, with 
the complete SPA module, achieves consistent performance improvements across all emotion categories, with 
particularly strong results in the “Happy” and “Surprised” classes. This indicates that multi-scale feature fusion 
and frequency-domain enhancement effectively capture key facial regions, improving the discriminability of 
expression-related features.

When the FFT component is removed, the recognition accuracy for “Sad” and “Neutral” drops significantly. 
This highlights the critical role of frequency-domain modeling in representing subtle facial details. For these 
expression types, high-frequency components carry essential information about micro-level variations; their 
absence makes it difficult for the model to accurately capture emotional nuances.

On the other hand, removing multi-scale convolution results in the most pronounced accuracy drop for the 
“Fearful” category. This suggests that scale-aware feature integration plays a vital role in distinguishing between 
visually similar emotions. Without this mechanism, the model struggles to effectively combine local and global 
features, ultimately impairing its ability to recognize complex expressions.

Conclusion
This paper presents SPAYOLO, a novel facial expression recognition framework built upon the YOLOv8 
architecture and enhanced by the proposed Spectral-aware Perception and Aggregation Module (SPAM). 
The SPAM module strengthens the model’s ability to capture fine-grained emotional cues by integrating 
multi-scale spatial features and frequency-domain information. Extensive experiments on the FER2013 and 

Emotion Label 1 2 3 4

Angry 60 63 60 59

Disgusted 64 70 68 67

Fearful 51 54 52 51

Happy 87 89 89 87

Neutral 63 68 66 65

Sad 58 59 61 61

Surprised 82 83 83 81

Table 5.  Ablation study: per-class accuracy (%) of different SPAYOLO configurations on FER2013.

 

Fig. 6.  Ablation study: attention heatmaps generated under different SPA configurations across various 
expression categories. (A) Original input images, (B) Attention maps produced by the full SPA module, (C) 
Attention maps after removing the frequency enhancement component (FFT), (D) Attention maps after 
removing the multi-scale convolution component.The full SPA module enables precise focus on critical facial 
regions such as the eyes, eyebrows, and mouth. In contrast, removing frequency or multi-scale components 
results in more dispersed or incomplete attention, indicating their importance for fine-grained expression 
modeling.
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AffectNet datasets demonstrate that SPAYOLO achieves superior recognition accuracy while maintaining high 
computational efficiency. Ablation studies further verify that both the frequency-domain modeling and the 
multi-scale receptive mechanism are critical to boosting expression discriminability.

Thanks to its lightweight architecture and low-latency performance, SPAYOLO shows strong potential for 
deployment in real-time and resource-constrained environments such as mobile platforms or edge devices. 
Nevertheless, the relatively high GFLOPs compared to ultra-efficient networks highlight opportunities for further 
improvement. In this regard, future work will explore model compression strategies to reduce computational 
complexity while retaining accuracy. Recent advances in low-bit quantization, binarized networks, and adaptive 
learning-rate compression—such as BiVM49, AdaLoRA50, and QuantSR51  —provide valuable insights for 
developing even more compact FER models.

In parallel, the recognition of visually similar categories such as “Fear” and “Disgust” may benefit from 
class-specific adaptive modeling or temporal cue integration. Incorporating multimodal signals like speech or 
physiological data could also improve robustness in real-world scenarios. Finally, hybridizing YOLOv8 with 
Transformer-based modules may further enhance global context modeling without significantly increasing 
computational cost. Overall, SPAYOLO strikes a compelling balance between accuracy, efficiency, and 
extensibility, making it a practical and scalable solution for modern facial expression recognition.`.

Data availability
The datasets used in this study, FER2013 and AffectNet, are publicly available. FER2013 can be accessed at 
https://paperswithcode.com/dataset/fer2013, and AffectNet can be accessed at ​h​t​t​p​s​:​/​/​p​a​p​e​r​s​w​i​t​h​c​o​d​e​.​c​o​m​/​d​a​t​
a​s​e​t​/​a​f​f​e​c​t​n​e​t​. The processed subsets used for training and evaluation in this study are available from the corre-
sponding author upon reasonable request.
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