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Over the last decade, researchers have been working to improve a crucial aspect of quantum
computing to predict Hamiltonian energy of solids. Quantum algorithms such as Variational Quantum
Eigensolver (VQE) and Variational Quantum Deflation (VQD) have been used to study the molecular
systems. However, there is growing interest in adapting and applying these methods to periodic solid-
state materials. In this work, we have integrated first-principles density functional theory with VQE
and VaD algorithms and utilizing the Wannier Tight-Binding Hamiltonian (WTBH) method to predict
the electronic characteristics of solids. We demonstrate that VOQE and VQD algorithms can be used

to accurately predict electronic characteristics in a variety of multi-component prototype solid-state
materials such as - Silicon (semiconductor), Gold (metallic), Boron Nitrile (insulator), Graphene (semi-
metal). Efficient SU2 performs well among all the predefined ansatz used in the study. COBYLA is the
fastest optimizer among the classical optimizers with minimum number of iterations for convergence.
Results of noise models help to understand the band structure when calculated on real quantum
hardware. As quantum hardware advances, our method might be a starting point for using quantum
computers to study materials and could help make material discovery more automatic in the future.

Keywords Quantum computing, Density functional theory, Tight-binding models, Wannier functions,
Electronics band structure, Quantum circuits

Quantum computation of the electronic structure of solids is expected to be a future alternative to the
computation based on classical computers2. Using this approach, even a small number of qubits can represent
the essential electronic structure of an entire material>=>. A crucial aspect of quantum computing in solid state
systems is to predict energy levels of given Hamiltonian®’. Researchers have been working for improving the
estimation of Hamiltonian energy over the last decade by applying a variety of quantum techniques® such as
variational quantum deflation (VQD)?, variational quantum eigensolver (VQE)!?, and quantum phase estimation
(QPE)!. These techniques help in the effectively calculating the energy states along with the improvement in
the values of these states by augmenting additional methods such as quantum amplitude estimation (QAE)'2,
quantum equation of motion(qEOM)!?, and quantum subspace expansion (QSE)'. Also, the quantum
approximate optimization algorithm (QAQA)', quantum annealing'®, and the witness-assisted variational
eigenspectra solver!” methods have been used to reduce time of calculating energy states and accelerate the
energy convergence. These techniques have been primarily used for the prediction of ground and excited states
of Hamiltonian. However, their uses have been limited to molecular systems such as BeH,, LiH, and H218‘20.

Electronic structure calculations for solid-state systems are complex due to their periodic nature as quantum
computation is mainly applied to the molecular systems. The electronic band structure of solids is important
because it governs their electronic, optical, and thermal properties. Understanding band structure is thus critical
in solid state physics research for designing and optimizing current technologies. Solid-state simulations are
highly important to develop the design of superconductors, low-dimensional materials, and topological systems,
which can ultimately improve noisy intermediate-scale quantum (NISQ) technologies®!*2.

VQE is acknowledged as an effective approach for calculating a Hamiltonian’s ground state utilizing quantum
mechanical principles in quantum computers. VQE involves developing an ansatz with configurable parameters
and iteratively refining the parameters to reduce the Hamiltonian’s expectation value with arbitrary accuracy?.
Classical computers can develop Hamiltonian terms (decomposition in terms of Pauli matrices) as well as
updating adjustable parameters during optimization. Quantum computers works on quantum states constructed
using ansatz parameters and measuring interaction terms®*. Researchers have been working to enhance the
VQE technique for determining Hamiltonian energy levels beyond the ground state®>>2°. Due to the limitations
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of VQE algorithm in calculating higher energy states, new algorithms have been developed. VQD is a popular
method for calculating higher energy levels which work on overlap estimation between the states and remove
previously discovered eigenstates, allowing for the computation of excited-state energies and degeneracies. It has
been noted that VQD uses the same number of qubits as that of VQE, and also VQE has restricted control of
errors and enhancement in the accuracy®.

VQD has been effectively used to determine higher energy levels in a variety of molecular systems™*” but
still challenging for calculating periodic solid state systems. Integrating VQD technique with Wannier Tight-
Binding Hamiltonian (WTBH) can be a promising approach for calculating energy bands of solids*>*. Wannier
functions provide a comprehensive and orthonormal basis that bridges the gap between the delocalized plane-
wave formalism commonly employed in electronic structure calculations, and a localized atomic orbital
framework, which describes the chemical bonding more accurately*®3!. WTBHs offer a computationally efficient
way to investigate the electronic characteristics of solids. The Hamiltonian produced by WTBHs**-3* are smaller,
ranging from tens to hundreds of orbitals, making them ideal for noisy intermediate-scale quantum (NISQ)
devices while plane-wave basis sets, which generate Hamiltonians that are too large to represent quantum
hardware.

Recently, electronic structure of solids has been investigated using quantum algorithms?®3>. Particularly,
Cerasoli et al.,*> have constructed Hamiltonians manually and the values of hopping parameters and energies
were directly taken to construct the Hamiltonian matrices. However, limited data of hopping parameters and on-
site energies make it difficult to create Hamiltonian matrix for variety of solid state systems*°. The approach by
Choudhary et al.,”® relies on manually chosen materials based on JARVIS IDs and used the padded Hamiltonians
which results in flat bands and prone to accumulate numerical errors.

Recent advancements in quantum simulation are addressing the unique challenges of periodic systems,
which are fundamental to materials research and condensed matter physics. Periodic Hamiltonians, unlike
those in molecular systems, need detailed control of translational symmetry, Bloch-type boundary conditions,
and naturally delocalized electronic states. Algorithms involving symmetry-adapted ansatzes, momentum-
space formulations, and optimized block encodings shown potential for lowering the demand on resources and
improving scalability®”-3%, Notably, approaches such as symmetry-preserving VQE and spectrum amplification
techniques have enabled more accurate and cost-effective ground-state energy estimation for crystalline
materials and extended systems. These developments are particularly relevant for band structure calculations,
where respecting periodicity is essential for physical fidelity. Although our current approach is designed for finite
systems, future enhancements will include symmetry-aware frameworks to enable scalable quantum simulations
of periodic materials.

Our approach systematically extracts electronic Hamiltonians from Wannier functions generated via density
functional theory (DFT). This enhances the scalability and generality of our method. Our approach also uses
the widely used Qiskit platform®> for calculating excited state which may enhance the accuracy of result when
interfacing with actual quantum hardware. Four different prototype solids, namely silicon (semiconductor), gold
(metal), graphene (semi-metal) and boron nitride (insulator) have been considered in the current study.

Theoretical and computational methodology
The electronic Hamiltonian has been obtained utilizing Wannier functions which are generated from the DFT
implemented in the Vienna Ab initio Simulation Package?!. The GGA approximation parameterized by Perdew-
Burke-Ernzerhof (PBE) has been used to obtain exchange-correlation functionals while the PAW technique was
used to study the exchange of information between core and valence electrons*. The electronic Hamiltonian
using hybrid HSE06 and GW method has also been obtained for semiconductor solid. A plane wave cutoff
energy of 400 eV has been utilized having an 8 x 8 x 8 Monkhorst-Pack k-point grid throughout the simulations.
For the structural relaxations, an energy convergence of 10~ ° eV has been fixed. These models serve as input for
quantum variational algorithms, allowing for accurate electronic structure simulations on Aer simulators (State
vector simulators)*3.

The Brillouin zone is sampled using an uniform Monkhorst-Pack grid*4, where Bloch states are evaluated
at each grid point. In this discretized k-space setting, differential operators (gradient and Laplacian) are
approximated through finite-difference methods:

Vif (k)= wiblf (k+b)— f (k)] ()
(FR)|VE|FR)) =1V of (B) [P = swolf (k+b) = f(B)]* @)

Here, each vector b corresponds to a displacement in k-space, and the magnitude b=|b| identifies a specific
shell of neighbors. The weight factor w, is assigned to each shell and accounts for the symmetry and spacing of
the grid, ensuring proper averaging and normalization in the finite-difference approximations of derivatives.
Here k describes the wave vector and V , V 7 helps to convert spread functional to matrix elements. The set
represents vectors that connect a given k-point on the Monkhorst-Pack mesh to its nearest neighboring points.
These approximations are both accurate and efficient for functions that change smoothly with respect to the
crystal momentum k.

The flow diagram of methodology used for band structure calculations is described in Fig. 1. Maximally
Localized Wannier functions (MLWFs) are defined using independent particle within.

first principles calculations. Electronic characteristics of solids are described by single-particle Bloch wave
functions(vnx ()) in periodic potential (u , (r)) within the first Brillouin zone (BZ), where the wavefunctions
are identified by their band number (n) and crystal momentum (k).
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Fig. 1. Flow diagram representing the quantum algorithmic steps for calculating electronic band structure of
solids.

Hamiltonian generation using Wannier functions

The Wannier functions for periodic crystal can be derived from Bloch states by applying appropriate unitary

transformations as* :

dk
| ’ll)nR) = V/ Bz (271_ )36 k'RZ ;]n:1‘ ’LUnR> Unmnk (3)

Here, V represents the volume of the unit cell, and U__, are unitary matrices that combine Bloch states at each
k-point. These matrices encapsulate the gauge freedom present in the Bloch functions, a freedom that is carried
over to the corresponding Wannier functions. The Marzari-Vanderbilt (MV) strategy which involves selecting

the set of unitary matrices U(k), minimizes the total quadratic spatial spread of the Wannier functions*®. This
spread is quantified by a spread function as:

Q=0+ (4)

Where,
Qr = Z n [(wno ‘7“2’ Wno) — Z mR| {(WmR |7| Wno) |2} (5)
Q=" 0> mrznol (War |r| wao) (6)

The matrix elements of position operator in reciprocal space is represented as*’:

.V i
(Wnr |r| Wmo) = l(27l’ E / e* I (i, |V | e d) (7)
(wnr |r2’ Wmo) = Z(27r )3 / ethR (Unk ’Vﬁ| Umk) dk (8)

These formulations allow the spread function to be expressed in terms of matrix elements involving the
gradients of the Bloch functions with respect to crystal momentum V, and their second derivatives V ;. The
two components of the spread function can be expressed as*3:

— 1 N N (k,b) 2
Ql—mz k,bwbz m:l[l_z m;&nann ‘ } (9)
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Here N, represents the number of k-points obtained using Monkhorst-Pack grid. 7, is the centre of the n

Wannier function represented as:

1
Nep

Tn =

Z koW pb I l’nMT(LI:L’b) (11)

2 is further decomposed into diagonal and off-diagonal parts as:

5:QD+QOD (12)

Where,

Q=3 a D rrol war lr| wio)* =
-1 N k0 _p 1)
Q= m Z kbW b[z n=1 <_Im In Mnn —b. 771’)

1 N N k,b
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After calculating these elements, we can create Hamiltonian in MLWF’s*. We find the Hamiltonian rotation of
the Bloch states basis as:

(13)

Where,
1 —ik.R 77(w)
Hyum = Hnm K
(B) =+ > ¢ (K) (16)
1 Z —ik.R 17 (W)

The elements H__(R) can be interpreted as the Hamiltonian matrix elements between MLWF’s centered at lattice
sites separated by the vector R. Owing to the strong spatial localization of the MLWF’s, these matrix elements
decay rapidly as the distance |R| increases. This localization property forms the foundation for applying a Slater-
Koster-like interpolation scheme?®, which enables efficient reconstruction of the Hamiltonian on a much denser
grid of k-points within the original Bloch representation. This is achieved by performing an inverse Fourier
transform of the real-space Hamiltonian elements as:

Hnm(k’ ) = Z Reik/ ARHn'm (R) (18)

After getting Hamiltonian H(k), it has to be mapped on the system of qubits.

Pauli operators for qubit operations

In practical quantum computing, qubit operations are performed using a set of Pauli matrices: X, Y, Z, and I,
where L is the 2 x 2 identity matrix’’, where an Hermitian operator is represented as a linear combination of these
Pauli matrices, forming a complete basis for matrices of size N = 2", with n =log,N. This basis is constructed by
taking tensor products of the Pauli matrices across multiple qubits as:

{6}, =11, X,Y, Z]®" (19)

Decomposed Hamiltonian is than expressed as:
Hy = Z icnd (20)
Here, the set { '} _ represents the complete set of 4" Pauli basis matrices formed from tensor products over n

qubits, and (c,),, denotes the corresponding set of complex coefficients. These coefficients constitute the spectral
decomposition of the Hermitian matrix with trace of the product defined as:

Tr (&ZT&J) = 2"(5 ij (21)

This orthogonality allows each coefficient ¢, to be easily calculated using:
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where H is the Hermitian matrix being decomposed. As a result, a linear combination of the 4" Pauli basis
matrices form a Hamiltonian with each term weighted by a corresponding coefficient.

Variational quantum eigensolver (VQE)

VQE is a prominent hybrid quantum-classical algorithm designed to find the minimum or maximum eigenvalue
of an operator with relatively low quantum resource requirements*2. It achieves this by alternating between
quantum measurements and classical optimization routines!®?%?*, The method is grounded in the Rayleigh-Ritz
variational principle, which asserts that the ground state energy of a system can be approximated by minimizing
the expectation value of the Hamiltonian over a trial wavefunction, parameterized by a set of variables. In a
typical implementation, the preparation of quantum states and the measurement of expectation values are
carried out on quantum hardware, while the parameter optimization is handled by classical algorithms.

The algorithm for estimating the ground state follows three key steps: Ansatz Preparation, Energy
Measurement and Classical Optimization, as described in Figure S1, Supporting Information. In the first step,
a parameterized quantum circuit V'(0), known as the variational form or ansatz, is constructed. This circuit
prepares a trial quantum state |¥ (§) = V' (0) is the initialized reference state of all qubits. In the next step,
expectation Value of the Hamiltonian H,, is measured with respect to the parameterized state, yielding the
energy E (0) = |H © U (0)) The Hamiltonian is expressed as a weighted sum of Pauli strings:

H; = Z ;ilclké'\l (23)

where (o) are tensor products of Pauli matrices and c,_are real coefficients. The wavefunction is measured in
the Pauli basis to obtain (o;), which are then comblned to compute the expectation value <H k> As quantum

measurements are inherently probabilistic, multiple repetitions are needed to achieve desired accuracy. In the
last step, a classical optimizer iteratively updates the parameter 6 to minimize the energy function E(0). The
minimum value obtained corresponding to ground state energy is:

where 0 . are the optimal parameters yielding the lowest energy.

Recent progress in optimizer development has enhanced the efficiency and stability of variational quantum
algorithms. The Sequential Optimization with Approximate Parabola (SOAP) method, which demonstrates
improved convergence performance for unitary coupled-cluster (UCC) ansatz formulated in the second-
quantized framework. Although the present study employs a direct matrix-to-Pauli decomposition approach
rather than UCC-type circuits, such algorithmic advances provide valuable insights for future extensions to

second-quantized Hamiltonians™.

Variational quantum deflation (VQD)
The modified Hamiltonian of VQD algorithm for higher energy states is represented as®':

Hy(m)=H(m)+ 8ol (00)) (% (00)] (25)
Where, the expectation value of Hamiltonian is given as:
(@ (0) [Hi(m)| v (0)) = (¥ (0) [H (m)| ¢ (0))+Bol (v ()¢ (00)) (26)
Subsequently, the first excited energy band is determined as:
Ei(m)= (¥ (62) [H (m)| v (01)). (27)

The parameter o should be chosen large enough to act as a penalty term, enforcing orthogonality between
the current trial state |¥ (01))and the previously optimized state|¥ (6o)). The n excited energy band is
determined by altering the original Hamiltonian as:

Hy(m)=H(m)+ Y 1238510 (05)) ((0,)] (28)
The expectation value is given by:
(¥ (0) |Ha (m)] ¢ (0)) = (¥ (0) [H(m)| v (0)+> 1% O () (29)

The n' excited energy band is obtained by computing E, (m) = ) (6,) |H (m) |4 { () at each k-point.
To maintain orthogonality with the previously determined states, the parameters P, are selected such that
[5).>En - E The implementation of VQD algorithm is summarized in Figure S2, Supporting Information. For
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a chosen initial set of parameters 8, and a specific k-point, the Quantum Processing Unit (QPU) generates
the trial wavefunction(ty» (o)) and carries out Z-basis measurements as dictated by the qubit Hamiltonian.
This Hamiltonian acts like a guideline, detailing how the trial wavefunction should be measured to evaluate
its expectation value. The Classical Processing Unit (CPU) repeatedly suggests new parameter values 6, based
on a classical optimization algorithm and invokes the QPU each time to compute the expectation value. This
iterative process continues until either the maximum number of iterations, denoted as N .o is reached or the
convergence criteria are met. The result of this loop is a parameter set 8, that minimizes the expectation value.
Notably, this procedure is carried out iteratively for each energy eigenvalue n=0, 1, ..., 8. The same steps are
repeated for each next k-point. This methodology offers a novel route for addressing band structure, balancing
computational cost and accuracy.

Our computational protocol employed 3000 shots for the statistical estimation of each expectation value. A
critical parameter, the number of qubits, was tailored to each material system based on the underlying physics
of our approach. The WTBH is derived from a set of MLWFs, and the number of these functions defines the
rank of the Hamiltonian matrix as it is found to be (8 x8) for Silicon and Au, (16 x 16) for BN and Graphene.
Consequently, the simulations for gold and silicon utilized 3-qubit systems, whereas the more complex electronic
structures of graphene and boron nitride required a larger Wannier basis, leading to 4-qubit implementations.

Results and discussion

We investigated the electronic band structure for a variety of representative systems, including Gold, Silicon,
Graphene and hexagonal Boron nitride. For each material, relevant atomic orbitals are determined to create
Hermitian Hamiltonian matrices, which are subsequently encoded into quantum circuits suited for short-term
quantum simulations. While these matrices can be diagonalized classically, they act as essential parameters
for evaluating quantum technologies. The Hamiltonians are written as weighted sums of Pauli operators using
unitary transformations, and the VQE is used to calculate the ground state at each k-point in the Brillouin zone.
The final quantum circuits, which are built with qubits ordered sequentially from top (qubit 0) to bottom, provide
the quantum system’s complete instruction set. These circuits are then customized using classical optimizers in
the Qiskit framework to reduce the Hamiltonian’s estimated value.

To evaluate the accuracy and efficiency of this quantum workflow, we implemented multiple ansatzes—
including hardware-efficient, real-amplitude, Excited State and Two local (Fig. 2 and Figure S3, Supporting
Information). Among these, EfficientSU2 has been constantly performing in terms of convergence speed, final
energy accuracy, and circuit resource efficiency (Table S1, Supporting Information). Its structured design,
which includes alternating layers of Ry, Rz rotations and CNOT entanglers connected linearly, enables efficient
entanglement across all qubits while reducing circuit depth and gate count. In contrast, the Real Amplitudes,
Excited State and Two Local ansatzes either lack sufficient expressibility or incur additional overhead from
deeper circuits and redundant parameters. Therefore, we adopted EfficientSU2 as the default.

circuit model in the calculations of electronic band structure as it offers a favorable path between expressivity
and circuit depth, making it particularly suitable for small-scale systems under noisy conditions. To ensure
generalizability, we used a fixed depth with five repetition layers for each circuit across all prototype solids. For
better circuit design, we also investigated many classical optimizers including COBYLA>?, L-BFGS-B>3, SLSQP,
CG™, and SPSA%—that are critical for optimizing the expectation value in the VQE loop. Each optimizer has
distinct advantages: COBYLA shines in low-dimensional situations via its derivative-free linear approximations,
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Fig. 2. A collection of quantum circuit models with four key ansatzes for Graphene and BN: (a) EfficientSU2
(b) Two Local (c) Real Amplitudes (d) Excited state. These circuits incorporate parameterized rotation gates
(RY and R,), denoted by angles 6.
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whereas L-BFGS-B relies on quasi-Newton updates, making it appropriate for systems with large parameter
spaces and bound constraints. The convergence behavior of these optimizers was observed during simulations
of various solids at different k-points. COBYLA performs exceptionally well in low- to moderate-dimensional
parameter spaces due to its use of derivative-free, trust-region-based linear approximations, which are robust in
navigating rugged or noisy optimization landscapes common in variational quantum algorithms. As can be seen
in Fig. 3, COBYLA has the fastest convergence, whereas CG requires more iterations to achieve stability. SLSQP
also performed well, converging at a similar rate to COBYLA. Once convergence was reached, the optimized
parameters were utilized to calculate the system’s ground-state energy as well as its quantum state. Further all
calculations are carried out using COBYLA optimizer due to its best performance among these.

After determining ground-state energy with the VQE, excited states were calculated using the VQD approach.
This method was performed for all relevant k-points in the Brillouin zone to create the electronic band structures
of the chosen materials. The simulations were carried out utilizing IBM’s state vector simulator backend to
confirm the approach, VQE-VQD findings were compared to classical reference eigenvalues produced using
NumPy-based diagonalization®®, which repeatedly demonstrated high agreement between quantum and
classical predictions. VQE is used for calculating lowest band energies which are carried out as a reference for
calculating the higher band energies using the VQD algorithm.

Quantum computed band structures for various prototype solids are compared to classical reference
calculations derived from density functional theory (DFT) as shown in Fig. 4. This demonstrates that WTBH,
when paired with quantum algorithms like VQE and VQD, can accurately reproduce electronic band structures.
One of the prototypes solid, Silicon, is also investigated beyond density functional level of theory utilizing hybrid
HSEO06 functional and GW method as these approaches accurately predicts the band gap of semiconductors. We
have calculated the bandgap of 0.6 eV using PBE functional while the bandgap of 1.2 eV and 1.6 eV have been
evaluated using HSE06 hybrid and GW level of theory as depicted from the electronic band structure in Fig. 5.

The selection of quantum circuit structures for variational quantum algorithms is usually problem-dependent,
driven by both expressibility and hardware compatibility*’. In this study, we used four different ansatzes and
implemented to calculate band structure for all prototype solids as shown in Figure S4, Supporting Information.
Among the four, EfficientSU2 consistently delivered more accurate energy predictions across all systems, albeit
with increased gate complexity and parameter count.

Although a few ansatz layers (typically 2-3) are sufficient to capture the overall electronic structure of
materials, accurately estimating the band gap often requires increasing the ansatz depth to achieve higher
precision. Selecting the optimal ansatz and depth manually can be effective, developing an automated,
system-aware ansatz selection framework would greatly enhance simulation efficiency. This comprehensive
benchmarking framework not only validates the effectiveness of variational quantum algorithms for practical
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Fig. 3. VQE convergence behavior for (a) Silicon (b) Gold (¢) Graphene (d) Boron Nitride electronic WTBH
at the Gamma point using different classical optimizers.
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Fig. 5. The comparison of the electronic band structure using VQD algorithm with hybrid HSE06 functional
and GW-level of theory in classical computation for Silicon.

material simulations but also highlights how ansatz architecture and optimizer selection affect convergence,
energy accuracy, and overall circuit performance across different electronic systems.

To test possible quantum circuits under practical situations, noise models were used to imitate real quantum
hardware behavior. Noise models are errors implemented to every gate that are connected to ansatz circuit. The
study investigated how the EfficientSU2, Two Local, and Real Amplitudes ansatzes responded to defects inherent
in near-term quantum devices by accounting for noise effects such as gate failures, decoherence, and readout
inaccuracies. These noisy simulations were run with Qiskit’s noise module, which simulates backend-specific
error characteristics found in actual IBM quantum computers. The presence of noise significantly influenced the
convergence rate and precision of computed eigenvalues as shown in Figure S5, Supporting Information.

In actual quantum simulations, particularly on noisy intermediate-scale quantum (NISQ) devices,
decoherence, gate problems, and readout noise may significantly decrease the accuracy of variational algorithms
like VQE and VQD. To simulate these defects in classical simulations, we use a noise model, which quantitatively
characterizes the physical error processes that occur during quantum computation. A noise model contains
parameters like T, (relaxation time) and T, (dephasing time) to simulate qubit decoherence, as well as gate error
probability (e.g., depolarizing or Pauli errors) and readout assignment errors. Noise models are implemented into
Qiskits Aer’® backend by adding stochastic error channels after each gate operation or measurement, thereby
simulating real-device behavior. The inclusion of a noise model is critical for assessing the resilience of ansatz
circuits, optimizers, and algorithms under realistic conditions, allowing for benchmarking and error mitigation
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measures prior to execution on real hardware. In our study, we evaluate our quantum circuits against such
noise models to analyze the fidelity loss, convergence behavior, and energy correctness of the computed band
structures, guaranteeing that the suggested approaches are still viable for future deployment on real quantum
processors. This process ensures that algorithmic choices remain effective even under noise and helps identify
optimization and mitigation strategies to enhance result accuracy without full-scale error correction.

The electronic band structure with noise-module is shown in Fig. 6. While the accuracy with noise-module
is lower than in ideal (noise-free) simulations, the circuits, particularly EfficientSU2 still produced reasonably
accurate results, exhibiting resilience in noisy situations. These findings imply that such quantum circuits could
be installed on real quantum hardware with proper error mitigation measures.

The higher errors in the electronic band structure of graphene and h-BN in Fig. 6 stem from their more
complex electronic structures, which require deeper variational circuits and additional entangling operations
to accurately represent multi-band n-m* manifolds with closely spaced states. These deeper circuits are more
sensitive to gate errors, decoherence (T, and T), and readout noise, which accumulate rapidly under the Qiskit
Aer noise models®®*. Furthermore, the VQD algorithm introduces extra controlled operations for overlap
estimation, amplifying stochastic error propagation in excited-state calculations®?’, while measurement shot
noise from non-commuting Pauli terms adds additional statistical uncertainty. This behavior is consistent
with prior studies showing that low-dimensional materials with delocalized Bloch-type states are particularly
vulnerable to NISQ-era noise”. In contrast, silicon and gold involve fewer orbitals and shallower circuits,
resulting in lower overall noise accumulation.

Error mitigation strategies are critical in quantum computing because current NISQ systems produce
noise due to decoherence, gate defects, and readout mistakes®. These errors build during circuit execution,
resulting in misguided outputs, particularly in algorithms such as VQE or VQD, which depend on precise
energy calculations. Because comprehensive quantum error correction is not yet possible, error mitigation offers
realistic solutions to lessen the influence of noise without adding more qubits.

Other than hardware-induced errors captured by Qiskit's noise backends, a core limitation of VQE is
shot noise that arises from the inherently probabilistic nature of quantum measurements. VQE estimates the
expectation value of the Hamiltonian by decomposing it into a weighted sum of Pauli operators, each of which
must be sampled repeatedly to obtain statistically reliable estimates. The variance in these estimates scales as
O(1/Nghots ), where Ngnotsis the number of measurements per term. Hamiltonians that include several non-
commuting Pauli terms have high measurement overhead and short noise, which perturbs the optimization
landscape and causes convergence to local minima. This challenge is particularly critical in materials simulations,
where accurate evaluation of energy gradients is essential. Several strategies have been proposed to alleviate
shot noise, including grouping of commuting Pauli terms®!, adaptive shot allocation based on variance®?, and
classical shadow techniques®. The current computations include state vector backends and device-level noise
models that neglect shot noise effects; however, the future prospects can be sampling-aware techniques to enable
physically grounded and scalable VQE and VQD on actual quantum hardware.

While VQE holds promise for its potential to solve certain quantum mechanical problems with high
accuracy, it is not yet a viable alternative to DFT for practical applications. Future advancements may not see
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VQE replacing DFT, but rather the two methods working together. Many of the current approaches are hybrid
methods or focus on specific parts of the calculation. Researchers have proposed hybrid algorithms, such as
Quantum-Enhanced DFT (QEDFT), where a quantum computer could be used to calculate a more accurate
exchange-correlation functional for a classical DFT calculations®*. This synergistic approach could leverage the
strengths of both classical and quantum computation to provide a “quantum advantage” for specific, challenging
problems.

Conclusions

This study redefines the frontier of quantum simulation by extending excited-state quantum algorithms from
molecules to realistic solid-state materials. Through the synergy of WTBH and VQD, we establish a pathway for
momentum-resolved band structure computation on quantum devices. Our approach transforms dense ab initio
data into qubit-ready Hamiltonians, enabling quantum circuits to explore the electronic landscape of materials
with both efficiency and precision. This represents a paradigm shift in materials exploration from classical
approximations to quantum-native methods. We performed all the calculations using some predefined ansatz
from which Efficient SU2 performs better. We also performed calculations using various type of optimizers
among them COBYLA performed with precise number of iterations for energy convergence. Different kinds of
error mitigation techniques are required for capturing results more accurately. Our results not only validate the
use of VQD for solid state Hamiltonians but also demonstrate the viability of this hybrid workflow for excited-
state band structure calculations. This study represents one of the early efforts to bring together ab-initio solid-
state physics tools and quantum computing in a single pipeline.

Data availability
All data generated or analysed during this study are included in this article [and its supplementary information
files].
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