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Cortical arousals are brief brain activations that disrupt sleep continuity and contribute to 
cardiovascular, cognitive, and behavioral impairments. Although polysomnography is the gold 
standard for arousal detection, its cost and complexity limit use in long-term or home-based 
monitoring. This study presents a noninvasive, machine learning–based framework for detecting 
cortical arousals using the RestEaze™ system, a leg-worn wearable that records multimodal 
physiological signals including accelerometry, gyroscope, photoplethysmography (PPG), and 
temperature. Across multiple methods tested, including logistic regression, XGBoost, and Random 
Forest classifiers, we found that features related to movement intensity were the most effective 
in identifying cortical arousals, while heart rate variability had a comparatively lower impact. 
The framework was evaluated in 14 children with attention-deficit/hyperactivity disorder (ADHD) 
undergoing assessment for restless leg syndrome–related sleep disruption. The Random Forest model 
achieved the best overall performance, with a ROC-AUC of 0.94 and an AUPRC of 0.55, substantially 
higher than the baseline prevalence of arousals (~ 0.07). For the arousal class specifically, it reached a 
precision of 0.57, recall of 0.78, and F1-score of 0.65. These findings support the feasibility of wearable-
based machine learning for real-world arousal detection, demonstrated here in a pediatric ADHD 
cohort with sleep-related behavioral concerns.
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Abbreviations
AASM	� American academy of sleep medicine
ADHD	� Attention-deficit/hyperactivity disorder
AUC	� Area under the curve
CSI	� Cardiac sympathetic index (HRV-derived)
FuzzyEn	� Fuzzy entropy (HRV-derived)
HRV	� Heart rate variability
HFD	� Higuchi fractal dimension (HRV-derived)
LOOCV	� Leave-one-subject-out cross-validation
PPG	� Photoplethysmography
REM	� Rapid eye movement
SDNN	� Standard deviation of NN intervals

Cortical arousals are brief interruptions in electroencephalographic (EEG) activity that fragment sleep without 
full awakening. Although transient, these arousals contribute to autonomic activation and disrupted sleep pattern, 
with growing evidence linking them to hypertension, cognitive decline, and elevated cardiovascular risk1–3. 
Total sleep duration less than 5 h per night is considered high-risk for cardiovascular morbidity and mortality4. 
Disrupted or insufficient sleep has also been associated with systemic inflammation, metabolic dysfunction, and 
increased all-cause mortality5. Elevated rates of sleep disturbances, including cortical and autonomic arousals, 
have also been observed in children with attention-deficit/hyperactivity disorder (ADHD)6–8. Early and accurate 
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detection of these arousals may offer clinical insights into the relationship between poor sleep quality and 
daytime behavioral symptoms that may reveal patterns that differ by clinical subtype.

Polysomnography remains the gold standard for detecting cortical arousals9,10, yet its high cost, complexity, 
and requirement for overnight clinical supervision limit its use for large-scale or long-term monitoring11. 
Consumer sleep technologies, such as sleep trackers, offer a non-invasive, scalable approach to sleep monitoring, 
with the potential to support early identification of sleep fragmentation in home environments. While these 
devices offer greater accessibility, they often suffer from poor agreement with polysomnography, particularly 
in detecting brief or motionless arousals12. A multicenter validation study involving 11 wearable, nearable, 
and airable consumer sleep trackers confirmed substantial variation in performance across devices, with 
some showing macro F1-scores as low as 0.26 when compared to Polysomnography13. However, the growing 
integration of wearable sleep technologies into daily life offers a valuable opportunity to develop advanced 
frameworks that can effectively use these technologies to detect clinically relevant features of sleep.

One promising solution involves tracking leg movements during sleep, which frequently occur alongside 
cortical arousals, especially in populations with conditions like restless leg syndrome, periodic limb movement 
disorder, or ADHD14–17. Recent studies using wearable leg sensors have shown that leg movements during sleep 
features can effectively distinguish arousals, and that leg-EEG signal coupling may reflect deeper physiological 
mechanisms of sleep disruption18,19. In this study, we evaluate multimodal sensor data from a leg-worn wearable, 
RestEaze™, to detect cortical arousals using interpretable machine learning models, with the aim of advancing 
practical and reliable sleep health monitoring solutions outside of traditional clinical settings.

The RestEaze™ system integrates accelerometry, gyroscope, photoplethysmography (PPG), and temperature 
sensors, offering a comprehensive view of movement and physiological dynamics during sleep. In a prior 
pilot study using a similar platform, we introduced neuro-extremity analysis, a novel approach that employed 
Granger causal modeling to assess the temporal and directional relationships between cortical arousals and leg 
movements15. That study revealed that textile-based capacitive sensors showed stronger temporal and spectral 
coupling with EEG-theta oscillations than inertial sensors, and more accurately identified expert-labeled 
cortical arousals. These findings support the hypothesis that leg movements and cortical arousals are driven 
by coordinated activity within a shared central arousal system. The current study builds upon this work by 
incorporating PPG and temperature sensors into the previously studied system and focusing exclusively on 
inertial sensors for movement detection, as they were found to reliably capture arousal-related leg movements 
while avoiding the redundancy and implementation challenges associated with textile-based capacitive sensors. 
This setup allows extraction of heart rate (HR) and heart rate variability (HRV) features that may offer additional 
insight into autonomic activation during sleep20–22.

Results
Sleep is composed of two main states: rapid eye movement (REM) sleep and non-rapid eye movement (NREM) 
sleep. NREM includes three stages: N1, N2, and N3, which progress from light to deep sleep. These stages repeat 
in cycles throughout the night23. We began by examining the distribution of cortical arousals across sleep stages 
to establish a physiological context for the classification task. Arousals occurred most frequently during N2 sleep, 
with a mean proportion of 56.77% (95% confidence interval [CI]: 46.14–67.40%), followed by N1 at 17.47% 
(95% CI: 8.15–26.79%), REM at 13.17% (95% CI: 4.43–21.90%), and N3 at 12.60% (95% CI: 7.17–18.02%), 
averaged across subjects. This distribution aligns with established sleep physiology: N2 sleep not only comprises 
a larger portion of total sleep time but also has a lower arousal threshold, making it more prone to cortical 
arousals due to its transitional nature between wakefulness and deeper sleep stages23. Similarly, the elevated rate 
of arousals during N1 reflects its light sleep status and proximity to wakefulness. Interestingly, we also observed 
notable levels of arousals during N3 and REM sleep, suggesting increased cortical arousal beyond the lighter 
stages. This pattern may support prior findings showing that adolescents with ADHD and learning disorders 
exhibit increased cortical arousal during N2 and N3 sleep, particularly in central and frontal brain regions24.

We quantified the ratio of windows with an arousal during epochs with versus without respiratory events, 
averaging equally across subjects to avoid overweighting longer recordings. For obstructive apnea, the 
proportion of windows containing an arousal during non-apnea epochs was 6.68% (95% CI 5.17–8.18%, N = 14) 
and increased to 26.8% (95% CI 1.31–52.3%, N = 8) during apnea epochs. For central apnea, the proportion of 
arousal windows during non-apnea epochs was 6.54% (95% CI 5.04–8.04%, N = 14) and 16.4% (95% CI 0.65–
32.2%, N = 12) during apnea epochs. The wider CIs for apnea-present conditions reflect that only subjects with 
≥ 1 apnea epoch contribute to those estimates; notably, 6 of the 14 subjects had no obstructive-apnea epochs and 
2 had no central-apnea epochs. Consistent with this, apnea prevalence in the analysis windows was low across 
subjects; 0.53% of windows for obstructive apnea (95% CI 0.15–0.92%, N = 14) and 0.85% for central apnea (95% 
CI 0.23–1.47%, N = 14).

To enable real-time detection of these arousal events using wearable data, we implemented and evaluated 
machine learning models designed to classify arousals from multimodal physiological signals. We evaluated 
the performance of three machine learning classifiers: Logistic Regression, XGBoost, and Random Forest for 
detecting cortical arousals based on multimodal physiological data from a leg-worn wearable device on full 
cohort of 14 children with ADHD, a population known to experience elevated levels of sleep fragmentation and 
frequent cortical arousals6. We chose these models to represent different levels of complexity and explainability: 
Logistic Regression as a simple linear baseline, Random Forest as a robust ensemble method, and XGBoost 
as a state-of-the-art gradient boosting algorithm. The results of model performance are summarized in Table 
1, including class-wise precision, recall, F1-score, Receiver Operating Characteristic – Area Under the Curve 
(ROC-AUC), and Area Under the Precision-Recall Curve (AUPRC).

For context, the baseline AUPRC expected from random guessing equals the arousal prevalence (~ 0.07). 
All models substantially exceed this baseline, confirming that they successfully learned discriminative patterns 
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beyond chance despite the class imbalance. Among the classifiers, Random Forest achieved the best overall 
performance (ROC-AUC = 0.94, AUPRC = 0.55) with a balanced precision–recall profile and was therefore 
selected for all subsequent analyses.

Feature importance
Figure 1 presents the ranked list of the most important features contributing to cortical arousal classification, 
as determined by the Random Forest model. These features were predominantly derived from accelerometer 
and gyroscope signals, with a smaller contribution from HR and HRV metrics. The most important features 
included statistical, energy-based, and entropy-related measures. Importantly, standard deviation, root mean 
square (RMS), maximum, and range from the x-axis of the accelerometer appeared prominently in the ranking. 
This suggests that lateral leg movement (x-direction) plays a critical role in arousal episodes, consistent with 
biomechanical patterns observed during limb movement–related arousals.

Entropy-based features such as spectral entropy from both accelerometer and gyroscope signals were also 
among the top-ranked predictors. These features reflect the signal complexity or irregularity during sleep and are 
useful for capturing subtle variations in movement associated with arousals. Similarly, RMS AUC (Root Mean 
Square Area Under the Curve) quantifies cumulative signal energy, which is often elevated during microarousals 
due to brief bursts of leg activity.

Fig. 1.  Top 30 Features for cortical arousal classification. Top features ranked by importance using a Random 
Forest model. Feature importance was determined based on the mean decrease in impurity.

 

Model Class Precision Recall F1-Score ROC-AUC AUPRC

Logistic regression
0 0.99 0.94 0.96

0.90 0.46
1 0.45 0.84 0.57

XGBoost
0 0.99 0.95 0.97

0.93 0.52
1 0.50 0.82 0.61

Random forest
0 0.99 0.96 0.98

0.94 0.55
1 0.57 0.77 0.65

Table 1.  Model performance Summary.
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Other contributing features included HRV-derived indices such as HRV Higuchi fractal dimension (HRV-
HFD), HRV Cardiac Sympathetic Index (HRV-CSI), and HRV Fuzzy Entropy (HRV-FuzzyEn), all of which 
reflect beat-to-beat HRV complexity, physiological markers known to fluctuate during autonomic arousals25. 
However, they were less important than movement-based metrics, suggesting a stronger motor component 
to arousals in children with ADHD. Similarly, temperature-based features were not among the top-ranked 
predictors, indicating minimal relevance to arousal classification in this context.

In addition to feature rankings, we analyzed PPG signal quality across arousal categories. The mean PPG 
quality score was 0.818 (95% CI: 0.738–0.899) during non-arousal periods and 0.488 (95% CI: 0.420–0.556) 
during arousal events. This significant decline in signal quality during arousals suggests increased motion 
artifacts or sensor dropout, which may explain the lower importance of PPG-derived features in the final model.

Agreement with ground truth
Figure 2 shows the model prediction of the arousal rates against the true arousal rates (ground truth). In this 
study, arousal rate refers to the number of 60-second windows that contain at least one cortical arousal event, 
normalized per hour of total sleep time. The predicted rates exhibited a strong correlation with the ground truth, 
yielding a Spearman’s rank correlation coefficient.

ρ = 0.89 (p = 2.00 × 10⁻⁵) and a Kendall’s τ = 0.76 (p = 3.95 × 10⁻⁵).
These results show a strong relationship, suggesting that the model successfully preserves subject-wise 

ranking in arousal frequency, which is crucial for estimating severity and comparing individuals.
The fitted linear regression line further supports the alignment between predicted and true values. The slope 

below 1.0 indicates underestimation at higher arousal rates, yet the close clustering of points around the line 
reflects consistency in the overall prediction trend. The regression slope was statistically significant (p < 0.01), 
with a 95% CI of [0.383, 1.050].

To further assess agreement, a Bland–Altman analysis was conducted (Fig. 3). This plot shows the differences 
between predicted and true arousal rates as a function of their average, both expressed in arousals per hour. The 
mean difference was + 0.88 arousals/hour (Predicted − True), indicating a slight overall tendency of the model to 
overestimate arousal frequency. The 95% limits of agreement ranged from − 1.40 to + 3.17 arousals/hour.

Fig. 2.  Arousal rate correlation. Correlation between predicted and true arousal rates (n = 14). Strong positive 
correlations were observed (Spearman’s ρ = 0.89, p = 2.00 × 10⁻⁵; Kendall’s τ = 0.76, p = 3.95 × 10⁻⁵). The solid line 
represents the best-fit linear regression: y = 0.72x + 0.32.
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Temporal prediction patterns
To evaluate model behavior across time, we visualized prediction sequences for three subjects who showed 
distinct arousal patterns. Figure 4 shows minute-by-minute comparisons between predicted and true arousals 
across the sleep duration.

For Subject A (Fig.  4a), who exhibited frequent and widely distributed arousals, the model effectively 
captured both isolated and clustered events throughout the night. Minute-by-minute inspection showed that 
most predictions were temporally aligned with ground truth, with several pre-arousal predictions appearing 
within one to two minutes of labeled events.

In contrast, Subject B (Fig.  4b) presented arousals that occurred in distinct temporal clusters during the 
early and late portions of the recording. The model maintained high temporal precision, correctly identifying 
contiguous arousal periods while avoiding false positives during quiescent intervals. Subject C (Fig.  4c) 
exhibited a sparser distribution of arousals. The model’s predictions closely matched the few true events, with 
overclassification toward the end.

The agreement between predicted and true arousals is quantified using Arousals (Class 1) F1-scores: 0.62 
(a), 0.68 (b), and 0.54 (c). These scores indicate strong model performance given the substantial class imbalance, 
where arousals make up only ~ 7% of the data. For context, random guessing would yield an F1-score near 0.07, 
making the observed values highly meaningful. These subject-level, minute-by-minute visualizations highlight 
the model’s adaptability to inter-individual variability in sleep and arousal patterns.

Error characterization and event-level visualization
Event-level inspection of Subject C (shown in Fig. 4.c) revealed that the model successfully detected the first 
two arousal-related activations (Fig. 5). Pred 1 (~ 2.0 h) coincided precisely with a manually scored EEG arousal, 
representing a true positive. Pred 2 (~ 2.5 h) also aligned with a distinct burst of accelerometer and gyroscope 
activity that was labeled by expert scorers, indicating another correctly identified event. In contrast, the 
subsequent EEG-labeled arousal near 2.6 h was not detected by the model, constituting a false negative. Beyond 
3.0 h, the model generated one true positive and one false positive prediction. The false positive coincided with 
a brief episode of high motion amplitude, suggesting that transient movement artifacts may have contributed to 
an incorrect arousal classification. For clearer visualization, we focused the time window between 1.8 and 3.8 h, 

Fig. 3.  Bland–Altman plot for arousal rates. Bland–Altman plot comparing predicted and true (expert-labeled) 
arousal rates. The mean difference was + 0.88 arousals/hour (Predicted − True), with 95% limits of agreement 
ranging from − 1.40 to + 3.17.
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which captured representative examples of all event types; true positives, false negatives, and false positives; 
within a continuous and interpretable segment of the recording.

Discussion
This study demonstrates the feasibility of using multimodal wearable sensors and machine learning to detect 
cortical arousals during sleep, offering an accessible alternative to traditional in-clinic polysomnography. Among 
the tested classifiers, the Random Forest model achieved the best overall balance between recall and precision, 
with an AUPRC of 0.55; a substantial improvement over the random baseline (~ 0.07) given the low prevalence 
of cortical arousals (~ 7% of total windows). These results are consistent with Random Forest’s ability to model 
complex patterns, feature interactions, and imbalanced data. Its ensemble-based architecture and embedded 
feature selection likely contributed to its robustness in this multimodal sleep dataset. Compared to Logistic 
Regression, which assumes linear relationships, and XGBoost, which can be sensitive to hyperparameter tuning 
in small datasets, Random Forest proved particularly effective at capturing subtle, subject-specific arousal 
signatures.

Feature importance analysis further revealed that the most predictive signals were derived from accelerometry 
and gyroscope data, particularly features reflecting signal variability and complexity, such as root mean square 
amplitude, standard deviation, and spectral entropy. These findings are consistent with prior work suggesting that 

Fig. 4.  Temporal prediction of cortical arousals. Predicted versus true cortical arousal events for three ADHD 
participants. Each subplot shows 1-minute window predictions across the sleep period (x-axis in hours). Blue 
crosses represent model-predicted arousals, and red circles indicate ground truth events.
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leg movements are linked with cortical arousals14,16,17. Entropy-based features likely captured the fragmented or 
irregular movement patterns characteristic of arousal events. In contrast, HR and HRV features extracted from 
PPG contributed less prominently to model performance. This outcome was expected, as the original sampling 
rate of 25 Hz may be insufficient for accurate HRV estimation. Prior work has shown that HRV metrics like 
Standard Deviation of NN Intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD) require 
significantly higher sampling rates to ensure reliability, at least 50 Hz for SDNN and 100 Hz or more for RMSSD 
without interpolation26. Additionally, signal quality issues further limited the reliability of PPG-derived features. 
These noises, primarily motion artifacts and high-frequency noise, are inevitable in wearable-based health 
and well-being monitoring systems and can significantly impact peak detection accuracy27. In our dataset, the 
average PPG signal quality declined from 0.818 during non-arousal periods to 0.488 during arousal, indicating 
a consistent reduction in signal integrity during arousal events.

Interestingly, the model predicted more arousals than were annotated by experts, particularly in subjects 
with sparse arousal profiles (Subject C). Rather than representing pure false positives, these predictions may 
reflect physiological events, such as sub-threshold arousals or autonomic activations, that were not captured 
by EEG-based criteria. This suggests that wearable sensors may detect some physiological markers of sleep 
disruption that fall outside the boundaries of current clinical scoring systems. Indeed, prior research has shown 
that physiological changes surrounding arousal events can be significant, often extending beyond the boundaries 
of EEG-defined arousals28,29. These findings highlight how machine learning and wearables can improve sleep 
assessment beyond conventional methods. The use of fixed 60-second windows may also have contributed 
to these discrepancies by grouping multiple arousals into a single segment. While some predicted arousals 
occurred outside manually labeled EEG events, inspection of the corresponding sensor data revealed short-lived 
motion bursts and physiological fluctuations that may represent autonomic or subthreshold arousals described 
in prior work. Nevertheless, we acknowledge that other false positives may arise from benign movement or stage 
transitions.

Despite the model’s overall strong performance, its AUPRC of 0.55 indicates that there remains substantial 
room for improvement in sensitivity and temporal precision. Event-level inspection of Subject C (Fig.  5) 
confirmed that the model accurately detected the first two arousal-related activations but missed a subsequent 
EEG-labeled event, with one additional false positive likely caused by transient movement artifacts. These 
observations illustrate that while the Random Forest classifier can identify clear multimodal arousal signatures, 
it may struggle to generalize across variations in arousal intensity and morphology. The use of fixed 60-second 
analysis windows likely introduced temporal smoothing. Future iterations should incorporate sequence-
aware architectures, such as convolutional–recurrent or attention-based networks, to better capture contextual 
dependencies and subtler temporal dynamics.

Although the cohort size was modest (N = 14), several design choices were implemented to ensure sufficient 
statistical power and generalizability. Subject-level cross-validation and recursive feature elimination helped 
reduce overfitting, while the large number of per-window observations (> 6,000) supported stable model training 
and evaluation. While current results demonstrate the feasibility of multimodal arousal detection, future work 

Fig. 5.  Event-level characterization of cortical arousal predictions for Subject C. Accelerometer (top) and 
gyroscope (bottom) traces show model-predicted arousals (blue dashed lines) and expert-labeled EEG arousals 
(red markers).
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should focus on improving both sensitivity (reducing false negatives) and specificity (minimizing false positives) 
through expanded data collection and model refinement in the next phase.

Lastly, our subject-independent and interpretable framework provides minute-level temporal precision, 
making it suitable for clinical applications that require generalizable detection. It shows promise for individuals 
with ADHD, a group often underserved by traditional sleep diagnostics. Pediatric restless legs syndrome, for 
example, can cause significant sleep disruption, behavioral issues, and impaired daytime functioning that mimic 
ADHD symptoms30,31. While ADHD’s recognized subtypes (inattentive, hyperactive-impulsive, and combined) 
are well-described, their association with distinct sleep profiles remains unclear, highlighting the need for 
detailed pediatric sleep assessment32. Refined at-home monitoring could help identify specific sleep disorders 
and support more personalized, subtype-targeted treatments for pediatric ADHD. Building on these findings, 
this work presents multiple opportunities for future development. Priorities include expanding to larger and 
more diverse datasets, using deep learning to model long-range patterns, and incorporating continuous arousal 
scoring to reflect subtle physiological changes. Real-world feedback such as sleep staging, user experiences, 
and device usability will be vital for transforming this research into a practical home-based health solution. 
Ultimately, these efforts aim to bring clinical-quality sleep analytics into everyday environments through smart 
and accessible wearables.

Conclusion
This study presents a non-invasive, wearable-based framework for detecting cortical arousals using multimodal 
physiological signals from a leg-worn device. Among the classifiers evaluated, the Random Forest model 
achieved the best overall performance, with a ROC-AUC of 0.94 and an AUPRC of 0.55, demonstrating 
strong agreement with expert-labeled EEG arousal annotations. Key predictive features, such as leg movement 
variability and signal entropy, support the role of movement-related physiological signals as markers of central 
arousals. These findings demonstrate the potential of systems like RestEaze™ for clinically meaningful, at-home 
sleep monitoring. Future work should include larger, more diverse populations and explore continuous arousal 
scoring to enhance clinical relevance.

Methods
Participants and data acquisition
Fourteen community-living children (7 males, 7 females) between the ages of 6 and 16 years (mean ± SD = 11.54 ± 3.85 
years) participated in the study. All participants met inclusion criteria defined for community-living males and 
females between 5 and 18 years of age with a clinically confirmed diagnosis of ADHD based on structured 
interview and/or the ADHD Rating Scale-5 (ADRS-5). ADHD subtype information was not available for these 
participants; however, it is important to note that subtype classification is considered developmentally unstable 
and may vary with age rather than reflecting fixed diagnostic categories. Additional inclusion requirements 
included a positive screen for the B, E, and A components of the BEARS sleep screening tool (Bedtime, Excessive 
daytime sleepiness, Awakenings), the ability to provide informed consent or assent with caregiver proxy, and the 
availability of a family caregiver to assist with data collection using the mobile application. Exclusion criteria 
included neurological disorders associated with extrapyramidal signs or symptoms and acute, unstable, or 
unmanaged medical conditions that could influence sleep patterns. These criteria ensured a well-characterized 
ADHD cohort while minimizing confounding medical factors that might affect sleep physiology. Cardiovascular 
disease (CVD) or other chronic comorbidities were not specifically included or excluded, but children with 
unstable or unmanaged medical conditions were screened out. Consequently, the sample represented generally 
healthy children with ADHD who exhibited sleep disturbance symptoms suggestive of restless legs syndrome 
(RLS) or frequent nocturnal arousals.

Each participant underwent a full overnight polysomnography according to American Academy of Sleep 
Medicine (AASM) standards while concurrently wearing the RestEaze™ leg-worn wearable. Cortical arousals 
were manually scored by trained technicians from EEG recordings using AASM criteria, and all scorings were 
reviewed by a board-certified sleep physician. The manually scored EEG-based arousals served as the ground 
truth labels for wearable-based model training and evaluation.

Physiological and movement data were collected from these participants using the RestEaze™ Movement 
Analyzer, a wireless, leg-worn wearable designed for non-intrusive sleep monitoring and arousal detection. 
More details about the RestEaze™ can be found in previous publication18. As illustrated in Fig. 6, the RestEaze™ 
device integrates multiple synchronized sensors:

•	 A 3-D accelerometer and 3-D gyroscope embedded within an inertial measurement unit (IMU) for leg move-
ment and orientation tracking,

•	 A PPG sensor for capturing cardiovascular dynamics, and.
•	 Object and ambient temperature sensors for thermal signature during sleep.

The accelerometer (X, Y, Z axes), gyroscope (X, Y, Z axes), and PPG channels (IR, red, green LEDs) were all 
sampled at 25 Hz, providing high-resolution capture of biomechanical and cardiovascular signals. Temperature 
data was sampled at 0.2 Hz, appropriate for monitoring slow-changing thermal conditions.

This setup enables continuous, multimodal recording throughout the night, capturing both fine-grained 
leg movements and physiological fluctuations associated with cortical arousals. Across the 14 participants, the 
average total sleep time was approximately 7.25  h per subject, totaling 101.5  h of recorded sleep data. Data 
collection was conducted during natural sleep in a home or clinical setting.
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All study procedures were approved by the Institutional Review Board of Johns Hopkins University. Research 
was conducted in accordance with the Declaration of Helsinki and all relevant ethical guidelines and regulations, 
including obtaining informed consent from all participants and/or their legal guardians.

A total of 169 quantitative features were extracted across accelerometer, gyroscope, PPG, temperature, and 
HRV-derived signals. Inertial features included statistical, spectral, and energy descriptors (mean, standard 
deviation, variance, skewness, kurtosis, dominant frequency, spectral entropy, RMS amplitude, and RMS area) 
computed for each of the three motion axes (X, Y, Z) to capture directional asymmetries in leg movements. PPG 
features captured waveform morphology (skewness and kurtosis), while thermal features reflected both object 
and ambient temperature variability. HR and HRV features spanned time-, frequency-, and nonlinear-domain 
indices (e.g., SDNN, RMSSD, LF/HF ratio, DFA, MFDFA, entropy, and fractal dimensions). To mitigate the curse 
of dimensionality and reduce overfitting, a feature selection pipeline combining recursive feature elimination 
(RFE) and cross-validation–based ranking was applied, retaining the 30 most informative features for model 
training. A complete list of all extracted features, grouped by modality, is provided in Supplementary Table S1.

Cortical arousals rate
Cortical arousals (ground truth) were identified and scored according to the guidelines set by the AASM33, 
which define arousals as abrupt shifts in EEG frequency, including alpha, theta, or activity exceeding 16 Hz, that 
last for at least 3 s and occur after a minimum of 10 s of uninterrupted sleep20. Arousal rate was calculated as 
the number of 60-second windows labeled with at least one cortical arousal event, normalized per hour of total 
sleep time. Specifically, if any arousal occurred within a given 60-second segment, the entire window was labeled 
as an arousal window (Class 1). The resulting arousal rate, expressed in arousal windows per hour, provides a 
temporally consistent metric for comparing arousal frequency across individuals.

In addition to cortical arousals, sleep stages, and limb movements were scored manually by trained 
technicians according to the AASM guidelines33. Bilateral limb movement events were also manually annotated, 
whereas leg movement channels were scored using an automated algorithm via the Sleepware G3 platform 
(Philips Respironics, US). Final scoring was reviewed and confirmed by a board-certified sleep physician and 
AASM fellow.

Preprocessing and feature generation
All raw sensor signals were processed using a unified preprocessing pipeline (see Fig. 6), which included filtering, 
segmentation into 60-second non-overlapping windows, and modality-specific feature extraction. The choice of 
a 60-second window was guided by the need to balance temporal resolution with physiological interpretability. 
Each one-minute segment contains sufficient cardiac cycles (typically 60–100 beats) to allow reliable estimation 
of HR and HRV, while also being short enough to detect changes in physiological state over time.

For the PPG signal, the preprocessing began with upsampling to 200 Hz using linear interpolation. This step 
was essential for achieving the temporal resolution required for accurate peak detection and compatibility with 
feature extraction functions that assume higher sampling rates. Several methods did not perform at the native 
25 Hz resolution, especially those involving frequency-domain HRV metrics. The upsampled signal was then 
bandpass filtered between 0.2 and 5 Hz using a Butterworth filter to remove baseline drift and suppress motion 
artifacts. The filter was implemented in Python 3.11 using the butter and filtfilt functions from the scipy.signal 
module, which apply zero-phase forward and reverse filtering to avoid phase distortion34.

Following filtering, we evaluated several peak detection strategies to identify heartbeats from the PPG 
waveform. Among these, the ppg-findpeaks function from the NeuroKit2 library35 provided reliable results in 
terms of peak timing consistency and robustness to signal noise. Figure 7 shows the effects of preprocessing: the 
top panel displays the raw PPG signal with notable baseline fluctuations (Fig. 7a), the middle panel shows the 
filtered waveform with clearly resolved peaks (Fig. 7b), and the bottom panel plots the computed PPG signal 
quality over time (Fig. 7c). This quality metric, ranging from 0 to 1, reflects the reliability of the signal for 
physiological analysis.

Fig. 6.  Multimodal data preprocessing pipeline for arousal classification. Raw data from the RestEaze™ 
wearable system included PPG, 3-D accelerometer, 3-D gyroscope, and temperature sensors.
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Once peaks were detected, HR and HRV features were extracted from each 60-second window. HR metrics 
included minimum, maximum, and mean HR. HRV features encompassed time-domain measures (e.g., 
RMSSD, SDNN), frequency-domain indices (e.g., low-frequency/high-frequency ratio), and nonlinear metrics 
such as entropy, coefficient of signal irregularity, coefficient of variation of intervals, and fractal complexity (e.g., 
Higuchi fractal dimension).

Signals from the 3-D accelerometer and 3-D gyroscope were high-pass filtered with a cutoff frequency of 
0.2 Hz to reduce low-frequency drift and artifacts. Each axis (X, Y, Z) was segmented into non-overlapping 
60-second windows and processed to extract statistical features (mean, standard deviation, variance, skewness, 
kurtosis, minimum, maximum, and range), signal energy features (RMS and AUC), and spectral characteristics 
(dominant frequency and spectral entropy). Object and ambient temperature signals were not filtered but were 
similarly segmented into 60-second windows and processed to extract basic descriptive statistics, including 
mean, median, standard deviation, minimum, maximum, and range.

All features across modalities were combined into a unified feature matrix indexed by timestamp and subject 
ID. Arousal labels were resampled into 60-second non-overlapping windows to match the feature segmentation. 
A window was labeled as an arousal event if it contained any arousal occurrence within its duration, ensuring 
sensitivity to even brief arousal activity. This binary labeling approach allowed the model to learn from both 
isolated and clustered arousal events, supporting robust temporal prediction. The dataset was imbalanced, with 
arousal windows (Class 1) comprising 6.6% of the data and non-arousal windows (Class 0) accounting for 93.4%, 
reflecting the rarity of cortical arousals during sleep.

Figure 8 shows the temporal evolution of these two features across a full night of sleep for a representative 
subject. Notably, arousal events tend to co-occur with spikes in accelerometer variability and drops in gyroscope 
entropy, suggesting more structured and intense leg movement during arousals. This visualization highlights 

Fig. 7.  PPG signal preprocessing and peak detection. The top panel (a) shows the raw LED green PPG signal, 
which contains low-frequency drift and movement-related noise. The middle panel (b) displays the same 
signal after linear interpolation to 200 Hz and bandpass filtering (0.2–5 Hz). The bottom panel (c) shows the 
corresponding PPG signal quality over time, with values closer to 1 indicating cleaner, more reliable signal 
segments.
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the temporal coupling between movement features and arousal occurrences, demonstrating that arousal-labeled 
periods coincide with distinct bursts of movement activity, a key physiological basis for the model’s predictions.

While this approach simplifies the classification task, it introduces a limitation: multiple arousals occurring 
within the same 60-second window are treated as a single event. This may underestimate the actual number of 
arousals in windows with dense activity. We initially experimented with shorter windows (e.g., 30 s) to capture 
finer temporal dynamics. However, this led to increased false positives, likely because pre- and post-arousal 
changes over the signals extended beyond the arousal itself. Thus, the 60-second window length was selected 
as an optimal trade-off between capturing relevant signal changes and maintaining specificity. Additionally, 
arousals that spanned multiple windows, a potential source of edge effects, were observed in approximately 
10% of cases. Given that most arousals lasted 8 to 12 s, this level of boundary overlap was considered acceptable 
within the 60-second segmentation framework.

Machine learning framework and feature selection
We evaluated and compared the performance of three classifiers:

Logistic regression
As a baseline, we trained a Logistic Regression model with L2 regularization (Ridge penalty), which helps 
prevent overfitting and handles multicollinearity. The model was trained with subject-level z-scored features, 
class balancing, and LOOCV. Hyperparameters, including the regularization strength, were tuned using 
RandomizedSearchCV with 50 randomized iterations. While it offers greater interpretability, it lacks the capacity 
to model nonlinear interactions present in physiological time-series data.

Fig. 8.  Accelerometer and gyroscope feature trends across sleep. The top panel (a) shows the standard 
deviation of the X-axis accelerometer signal, reflecting variability in leg movement amplitude. The bottom 
panel (b) displays the spectral entropy of the Z-axis gyroscope signal, which quantifies the irregularity or 
complexity of rotational motion. Red markers indicate windows labeled as arousals, while blue markers denote 
non-arousal periods.
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Gradient-boosted decision tree model (XGBoost)
We also implemented XGBoost, a high-performance gradient-boosted decision tree model that incorporates both 
first- and second-order gradients. We tuned hyperparameters including learning rate, tree depth, subsampling 
rate, and L1/L2 penalties using RandomizedSearchCV with 50 randomized iterations. All training followed the 
same LOOCV protocol as the previous model.

Bagged tree ensemble model (Random forest)
We used a Random Forest classifier, known for its robustness to noise, ability to model nonlinear relationships 
and embedded feature importance analysis. Hyperparameters were optimized using RandomizedSearchCV 
with 50 randomized iterations. Tuned parameters included the number of trees, maximum depth, minimum 
samples per split and leaf node, and feature subsampling ratio. All training followed the same LOOCV protocol 
as the other models. The best-performing hyperparameters for each model, selected based on cross-validation 
performance across folds, are summarized in Table 2. Importantly, all hyperparameter tuning was conducted 
strictly within the training folds of each LOOCV iteration using an inner GroupKFold cross-validation. The 
left-out subject in each iteration was never used during hyperparameter optimization and remained completely 
unseen until final evaluation.

To account for inter-individual variability in physiological signals, all features were standardized per subject 
using z-score normalization. Columns with excessive missingness were removed, and the remaining missing 
values were imputed using subject-level k-nearest neighbors36. This method estimates missing values by 
averaging the feature values from the most similar observations in the dataset. Dimensionality reduction and 
feature selection were performed using Recursive Feature Elimination37 within the training folds to retain only 
the most informative features for classification.

A LOOCV scheme was used, where each subject was held out in turn as the test fold while the remaining 
subjects were used for training. This approach ensured strict subject-level separation and prevented data leakage, 
supporting robust evaluation of model generalizability.

To address the natural class imbalance between arousal and non-arousal events, a two-step resampling 
strategy was applied within each training fold. First, Tomek Links38 were removed to clean the decision boundary, 
followed by Random Undersampling39 to balance the class distribution during model fitting. As a sensitivity 
analysis, we also trained class-weighted models (XGBoost with scale_pos_weight; Random Forest with class_
weight=’balanced’) and observed performance comparable to the Tomek-links + undersampling pipeline, so 
we retained the latter as our primary approach. Importantly, the held-out test subject was never undersampled, 
preserving the original data distribution for evaluation. Thresholds for classification were selected based on the 
precision-recall curve computed on the raw (non-resampled) version of the training data, ensuring that decision 
thresholds reflected realistic class ratios. The selected threshold was then applied to the test fold.

Together, these classifiers enabled direct performance comparisons. The outputs were evaluated using 
window-based overlap metrics and correlation analyses, described in the next section.

Model comparison and evaluation
Model performance was assessed using both classification-based metrics and agreement-based statistical 
analyses, with careful consideration given to subject-level separation through LOOCV. For each model, the area 
under the ROC-AUC and the AUPRC were computed to quantify overall discriminative ability, with AUPRC 
providing a more informative measure of performance under class imbalance. In addition, precision, recall, and 
F1-score, defined in Eq. (1) through (3), were calculated separately for arousal (Class 1) and non-arousal (Class 
0) classes on a per-window basis. These equations quantify the performance of the model in different aspects:

	
Precision = True Positives

True Positives + False Positives
� (1)

	
Recall = True Positives

True Positives + False Negatives
� (2)

	
F1 = 2 × Precision × Recall

Precision + Recall
� (3)

To ensure equal contribution from each subject and prevent performance estimates from being skewed by 
subjects with longer recordings or more events, all metrics (precision, recall, F1-score) were first computed 
individually for each left-out subject in the LOOCV framework. The final reported values (Table 1) represent the 
mean of per-subject metrics, formalized as:

Classifier Best hyperparameters

Logistic regression C = 0.1336, penalty = ‘l2’, solver = ‘liblinear’, fit_intercept = True, max_iter = 1000, tol = 0.0039

XGBoost colsample_bytree = 0.7547, gamma = 4.6836, learning_rate = 0.0513, max_depth = 6, n_
estimators = 91, reg_alpha = 0.2579, reg_lambda = 2.9800, scale_pos_weight = 2, subsample = 0.9929

Random forest ccp_alpha = 0.0036, criterion = ‘entropy’, max_depth = 15, max_features = 0.3986, min_samples_
leaf = 3, min_samples_split = 6, min_weight_fraction_leaf = 0.0037, n_estimators = 120

Table 2.  Best-performing hyperparameters for each classifier.
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M = 1

S

S∑
s=1

M (s)� (4)

Where:
M  Subject-averaged metric (e.g., precision, recall, F1-score, ROC-AUC, AUPRC).
S: Total number of subjects.

	
M (s) : Metric value (e.g., Precision(s) = True Positives(s)

True Positives(s) + False Positives(s) )

In addition to discrete classification metrics, we evaluated the agreement between predicted arousals and ground 
truth arousals across subjects. The predicted arousal rate for each subject, defined as the number of arousal 
events per hour of total sleep time, was compared with the true arousal rate using Spearman’s rank correlation 
coefficient (ρ) and Kendall’s tau (τ) to assess monotonic relationships. Agreement between predicted and true 
arousal rate were further examined using Bland–Altman analysis40, which visualizes the bias and limits of 
agreement between model estimates and expert-scored references.

Feature importance analysis
After model training and evaluation, we analyzed feature importances using the Random Forest model trained 
on the entire dataset to capture generalizable patterns across all subjects. Random Forest determines feature 
importance by evaluating the total decrease in node impurity, such as Gini impurity, each feature contributes 
across all decision trees in the ensemble. Features that result in larger impurity reductions when used for splitting 
are considered more important41. This approach allows the model to naturally account for nonlinear relationships 
and feature interactions. To enhance interpretability and reduce noise from low-importance variables, we 
selected the top ranked features for post hoc analysis. This number was chosen empirically: including more 
than 30 features resulted in only marginal improvements in classification performance while increasing model 
complexity and risk of overfitting. The selected features represented a balanced trade-off between performance 
and interpretability and were used in downstream visualizations and interpretation.

Data availability
All data generated and analyzed during the current study are not publicly available but are available from the 
senior author (NB) on reasonable request and the University of Maryland, Baltimore County’ approval.
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