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Detection of cortical arousals in
sleep using multimodal wearable
sensors and machine learning
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Quang Dang?, Golshan Kargosha'?, Justin Brooks'%3, Cody Feltch? & Nilanjan Banerjee*3

Cortical arousals are brief brain activations that disrupt sleep continuity and contribute to
cardiovascular, cognitive, and behavioral impairments. Although polysomnography is the gold
standard for arousal detection, its cost and complexity limit use in long-term or home-based
monitoring. This study presents a noninvasive, machine learning-based framework for detecting
cortical arousals using the RestEaze™ system, a leg-worn wearable that records multimodal
physiological signals including accelerometry, gyroscope, photoplethysmography (PPG), and
temperature. Across multiple methods tested, including logistic regression, XGBoost, and Random
Forest classifiers, we found that features related to movement intensity were the most effective

in identifying cortical arousals, while heart rate variability had a comparatively lower impact.

The framework was evaluated in 14 children with attention-deficit/hyperactivity disorder (ADHD)
undergoing assessment for restless leg syndrome-related sleep disruption. The Random Forest model
achieved the best overall performance, with a ROC-AUC of 0.94 and an AUPRC of 0.55, substantially
higher than the baseline prevalence of arousals (~0.07). For the arousal class specifically, it reached a
precision of 0.57, recall of 0.78, and F1-score of 0.65. These findings support the feasibility of wearable-
based machine learning for real-world arousal detection, demonstrated here in a pediatric ADHD
cohort with sleep-related behavioral concerns.
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Abbreviations

AASM American academy of sleep medicine
ADHD Attention-deficit/hyperactivity disorder
AUC Area under the curve

CSI Cardiac sympathetic index (HRV-derived)
FuzzyEn  Fuzzy entropy (HRV-derived)

HRV Heart rate variability

HFD Higuchi fractal dimension (HRV-derived)
LOOCV  Leave-one-subject-out cross-validation
PPG Photoplethysmography

REM Rapid eye movement

SDNN Standard deviation of NN intervals

Cortical arousals are brief interruptions in electroencephalographic (EEG) activity that fragment sleep without
full awakening. Although transient, these arousals contribute to autonomic activation and disrupted sleep pattern,
with growing evidence linking them to hypertension, cognitive decline, and elevated cardiovascular risk!.
Total sleep duration less than 5 h per night is considered high-risk for cardiovascular morbidity and mortality*.
Disrupted or insufficient sleep has also been associated with systemic inflammation, metabolic dysfunction, and
increased all-cause mortality®. Elevated rates of sleep disturbances, including cortical and autonomic arousals,
have also been observed in children with attention-deficit/hyperactivity disorder (ADHD)®%. Early and accurate
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detection of these arousals may offer clinical insights into the relationship between poor sleep quality and
daytime behavioral symptoms that may reveal patterns that differ by clinical subtype.

Polysomnography remains the gold standard for detecting cortical arousals®'?, yet its high cost, complexity,
and requirement for overnight clinical supervision limit its use for large-scale or long-term monitoring!!.
Consumer sleep technologies, such as sleep trackers, offer a non-invasive, scalable approach to sleep monitoring,
with the potential to support early identification of sleep fragmentation in home environments. While these
devices offer greater accessibility, they often suffer from poor agreement with polysomnography, particularly
in detecting brief or motionless arousals'”. A multicenter validation study involving 11 wearable, nearable,
and airable consumer sleep trackers confirmed substantial variation in performance across devices, with
some showing macro Fl-scores as low as 0.26 when compared to Polysomnography'®. However, the growing
integration of wearable sleep technologies into daily life offers a valuable opportunity to develop advanced
frameworks that can effectively use these technologies to detect clinically relevant features of sleep.

One promising solution involves tracking leg movements during sleep, which frequently occur alongside
cortical arousals, especially in populations with conditions like restless leg syndrome, periodic limb movement
disorder, or ADHD!*-!7. Recent studies using wearable leg sensors have shown that leg movements during sleep
features can effectively distinguish arousals, and that leg-EEG signal coupling may reflect deeper physiological
mechanisms of sleep disruption'®!°. In this study, we evaluate multimodal sensor data from a leg-worn wearable,
RestEaze™, to detect cortical arousals using interpretable machine learning models, with the aim of advancing
practical and reliable sleep health monitoring solutions outside of traditional clinical settings.

The RestEaze™ system integrates accelerometry, gyroscope, photoplethysmography (PPG), and temperature
sensors, offering a comprehensive view of movement and physiological dynamics during sleep. In a prior
pilot study using a similar platform, we introduced neuro-extremity analysis, a novel approach that employed
Granger causal modeling to assess the temporal and directional relationships between cortical arousals and leg
movements'®. That study revealed that textile-based capacitive sensors showed stronger temporal and spectral
coupling with EEG-theta oscillations than inertial sensors, and more accurately identified expert-labeled
cortical arousals. These findings support the hypothesis that leg movements and cortical arousals are driven
by coordinated activity within a shared central arousal system. The current study builds upon this work by
incorporating PPG and temperature sensors into the previously studied system and focusing exclusively on
inertial sensors for movement detection, as they were found to reliably capture arousal-related leg movements
while avoiding the redundancy and implementation challenges associated with textile-based capacitive sensors.
This setup allows extraction of heart rate (HR) and heart rate variability (HRV) features that may offer additional
insight into autonomic activation during sleep?*-22.

Results

Sleep is composed of two main states: rapid eye movement (REM) sleep and non-rapid eye movement (NREM)
sleep. NREM includes three stages: N1, N2, and N3, which progress from light to deep sleep. These stages repeat
in cycles throughout the night?>. We began by examining the distribution of cortical arousals across sleep stages
to establish a physiological context for the classification task. Arousals occurred most frequently during N2 sleep,
with a mean proportion of 56.77% (95% confidence interval [CI]: 46.14-67.40%), followed by N1 at 17.47%
(95% CI: 8.15-26.79%), REM at 13.17% (95% CI: 4.43-21.90%), and N3 at 12.60% (95% CI: 7.17-18.02%),
averaged across subjects. This distribution aligns with established sleep physiology: N2 sleep not only comprises
a larger portion of total sleep time but also has a lower arousal threshold, making it more prone to cortical
arousals due to its transitional nature between wakefulness and deeper sleep stages?. Similarly, the elevated rate
of arousals during N1 reflects its light sleep status and proximity to wakefulness. Interestingly, we also observed
notable levels of arousals during N3 and REM sleep, suggesting increased cortical arousal beyond the lighter
stages. This pattern may support prior findings showing that adolescents with ADHD and learning disorders
exhibit increased cortical arousal during N2 and N3 sleep, particularly in central and frontal brain regions?*.

We quantified the ratio of windows with an arousal during epochs with versus without respiratory events,
averaging equally across subjects to avoid overweighting longer recordings. For obstructive apnea, the
proportion of windows containing an arousal during non-apnea epochs was 6.68% (95% CI 5.17-8.18%, N=14)
and increased to 26.8% (95% CI 1.31-52.3%, N=28) during apnea epochs. For central apnea, the proportion of
arousal windows during non-apnea epochs was 6.54% (95% CI 5.04-8.04%, N=14) and 16.4% (95% CI 0.65-
32.2%, N=12) during apnea epochs. The wider CIs for apnea-present conditions reflect that only subjects with
>1 apnea epoch contribute to those estimates; notably, 6 of the 14 subjects had no obstructive-apnea epochs and
2 had no central-apnea epochs. Consistent with this, apnea prevalence in the analysis windows was low across
subjects; 0.53% of windows for obstructive apnea (95% CI 0.15-0.92%, N=14) and 0.85% for central apnea (95%
CI0.23-1.47%, N=14).

To enable real-time detection of these arousal events using wearable data, we implemented and evaluated
machine learning models designed to classify arousals from multimodal physiological signals. We evaluated
the performance of three machine learning classifiers: Logistic Regression, XGBoost, and Random Forest for
detecting cortical arousals based on multimodal physiological data from a leg-worn wearable device on full
cohort of 14 children with ADHD, a population known to experience elevated levels of sleep fragmentation and
frequent cortical arousals®. We chose these models to represent different levels of complexity and explainability:
Logistic Regression as a simple linear baseline, Random Forest as a robust ensemble method, and XGBoost
as a state-of-the-art gradient boosting algorithm. The results of model performance are summarized in Table
1, including class-wise precision, recall, F1-score, Receiver Operating Characteristic - Area Under the Curve
(ROC-AUQ), and Area Under the Precision-Recall Curve (AUPRC).

For context, the baseline AUPRC expected from random guessing equals the arousal prevalence (~0.07).
All models substantially exceed this baseline, confirming that they successfully learned discriminative patterns
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Model Class | Precision | Recall | F1-Score | ROC-AUC | AUPRC
0 0.99 0.94 0.96
Logistic regression 0.90 0.46
1 0.45 0.84 0.57
0 0.99 0.95 0.97
XGBoost 0.93 0.52
1 0.50 0.82 0.61
0 0.99 0.96 0.98
Random forest 0.94 0.55
1 0.57 0.77 0.65

Table 1. Model performance Summary.

Top 30 features

Acceleromoter X_Std
Acceleromoter X_RMS_Max
Acceleromoter Y_Min
Acceleromoter X_RMS_AUC
Gyroscope Z_Spectral Entropy
Acceleromoter Y_Spectral Entropy
Gyroscope X_Spectral Entropy
Acceleromoter Y_Range
Gyroscope X_Std

Gyroscope X_RMS_Max
Acceleromoter Y_RMS_AUC
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Fig. 1. Top 30 Features for cortical arousal classification. Top features ranked by importance using a Random
Forest model. Feature importance was determined based on the mean decrease in impurity.

beyond chance despite the class imbalance. Among the classifiers, Random Forest achieved the best overall
performance (ROC-AUC=0.94, AUPRC=0.55) with a balanced precision-recall profile and was therefore
selected for all subsequent analyses.

Feature importance

Figure 1 presents the ranked list of the most important features contributing to cortical arousal classification,
as determined by the Random Forest model. These features were predominantly derived from accelerometer
and gyroscope signals, with a smaller contribution from HR and HRV metrics. The most important features
included statistical, energy-based, and entropy-related measures. Importantly, standard deviation, root mean
square (RMS), maximum, and range from the x-axis of the accelerometer appeared prominently in the ranking.
This suggests that lateral leg movement (x-direction) plays a critical role in arousal episodes, consistent with
biomechanical patterns observed during limb movement-related arousals.

Entropy-based features such as spectral entropy from both accelerometer and gyroscope signals were also
among the top-ranked predictors. These features reflect the signal complexity or irregularity during sleep and are
useful for capturing subtle variations in movement associated with arousals. Similarly, RMS AUC (Root Mean
Square Area Under the Curve) quantifies camulative signal energy, which is often elevated during microarousals
due to brief bursts of leg activity.
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Other contributing features included HRV-derived indices such as HRV Higuchi fractal dimension (HRV-
HFD), HRV Cardiac Sympathetic Index (HRV-CSI), and HRV Fuzzy Entropy (HRV-FuzzyEn), all of which
reflect beat-to-beat HRV complexity, physiological markers known to fluctuate during autonomic arousals?.
However, they were less important than movement-based metrics, suggesting a stronger motor component
to arousals in children with ADHD. Similarly, temperature-based features were not among the top-ranked
predictors, indicating minimal relevance to arousal classification in this context.

In addition to feature rankings, we analyzed PPG signal quality across arousal categories. The mean PPG
quality score was 0.818 (95% CI: 0.738-0.899) during non-arousal periods and 0.488 (95% CI: 0.420-0.556)
during arousal events. This significant decline in signal quality during arousals suggests increased motion
artifacts or sensor dropout, which may explain the lower importance of PPG-derived features in the final model.

Agreement with ground truth

Figure 2 shows the model prediction of the arousal rates against the true arousal rates (ground truth). In this
study, arousal rate refers to the number of 60-second windows that contain at least one cortical arousal event,
normalized per hour of total sleep time. The predicted rates exhibited a strong correlation with the ground truth,
yielding a Spearman’s rank correlation coefficient.

p=0.89 (p=2.00x10"%) and a Kendall’s t=0.76 (p=3.95x10°).

These results show a strong relationship, suggesting that the model successfully preserves subject-wise
ranking in arousal frequency, which is crucial for estimating severity and comparing individuals.

The fitted linear regression line further supports the alignment between predicted and true values. The slope
below 1.0 indicates underestimation at higher arousal rates, yet the close clustering of points around the line
reflects consistency in the overall prediction trend. The regression slope was statistically significant (p <0.01),
with a 95% CI of [0.383, 1.050].

To further assess agreement, a Bland—Altman analysis was conducted (Fig. 3). This plot shows the differences
between predicted and true arousal rates as a function of their average, both expressed in arousals per hour. The
mean difference was +0.88 arousals/hour (Predicted — True), indicating a slight overall tendency of the model to
overestimate arousal frequency. The 95% limits of agreement ranged from — 1.40 to +3.17 arousals/hour.
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Fig. 2. Arousal rate correlation. Correlation between predicted and true arousal rates (n=14). Strong positive
correlations were observed (Spearman’s p=0.89, p=2.00 x 10~%; Kendall's t=0.76, p=3.95x 107%). The solid line
represents the best-fit linear regression: y=0.72x+0.32.
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Fig. 3. Bland-Altman plot for arousal rates. Bland-Altman plot comparing predicted and true (expert-labeled)
arousal rates. The mean difference was +0.88 arousals/hour (Predicted — True), with 95% limits of agreement
ranging from —1.40 to +3.17.

Temporal prediction patterns

To evaluate model behavior across time, we visualized prediction sequences for three subjects who showed
distinct arousal patterns. Figure 4 shows minute-by-minute comparisons between predicted and true arousals
across the sleep duration.

For Subject A (Fig. 4a), who exhibited frequent and widely distributed arousals, the model effectively
captured both isolated and clustered events throughout the night. Minute-by-minute inspection showed that
most predictions were temporally aligned with ground truth, with several pre-arousal predictions appearing
within one to two minutes of labeled events.

In contrast, Subject B (Fig. 4b) presented arousals that occurred in distinct temporal clusters during the
early and late portions of the recording. The model maintained high temporal precision, correctly identifying
contiguous arousal periods while avoiding false positives during quiescent intervals. Subject C (Fig. 4c)
exhibited a sparser distribution of arousals. The model’s predictions closely matched the few true events, with
overclassification toward the end.

The agreement between predicted and true arousals is quantified using Arousals (Class 1) F1-scores: 0.62
(a), 0.68 (b), and 0.54 (c). These scores indicate strong model performance given the substantial class imbalance,
where arousals make up only ~ 7% of the data. For context, random guessing would yield an F1-score near 0.07,
making the observed values highly meaningful. These subject-level, minute-by-minute visualizations highlight
the model’s adaptability to inter-individual variability in sleep and arousal patterns.

Error characterization and event-level visualization

Event-level inspection of Subject C (shown in Fig. 4.c) revealed that the model successfully detected the first
two arousal-related activations (Fig. 5). Pred 1 (~2.0 h) coincided precisely with a manually scored EEG arousal,
representing a true positive. Pred 2 (~2.5 h) also aligned with a distinct burst of accelerometer and gyroscope
activity that was labeled by expert scorers, indicating another correctly identified event. In contrast, the
subsequent EEG-labeled arousal near 2.6 h was not detected by the model, constituting a false negative. Beyond
3.0 h, the model generated one true positive and one false positive prediction. The false positive coincided with
a brief episode of high motion amplitude, suggesting that transient movement artifacts may have contributed to
an incorrect arousal classification. For clearer visualization, we focused the time window between 1.8 and 3.8 h,
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Fig. 4. Temporal prediction of cortical arousals. Predicted versus true cortical arousal events for three ADHD
participants. Each subplot shows 1-minute window predictions across the sleep period (x-axis in hours). Blue
crosses represent model-predicted arousals, and red circles indicate ground truth events.

which captured representative examples of all event types; true positives, false negatives, and false positives;
within a continuous and interpretable segment of the recording.

Discussion
This study demonstrates the feasibility of using multimodal wearable sensors and machine learning to detect
cortical arousals during sleep, offering an accessible alternative to traditional in-clinic polysomnography. Among
the tested classifiers, the Random Forest model achieved the best overall balance between recall and precision,
with an AUPRC of 0.55; a substantial improvement over the random baseline (~0.07) given the low prevalence
of cortical arousals (~7% of total windows). These results are consistent with Random Forest’s ability to model
complex patterns, feature interactions, and imbalanced data. Its ensemble-based architecture and embedded
feature selection likely contributed to its robustness in this multimodal sleep dataset. Compared to Logistic
Regression, which assumes linear relationships, and XGBoost, which can be sensitive to hyperparameter tuning
in small datasets, Random Forest proved particularly effective at capturing subtle, subject-specific arousal
signatures.

Feature importance analysis further revealed that the most predictive signals were derived from accelerometry
and gyroscope data, particularly features reflecting signal variability and complexity, such as root mean square
amplitude, standard deviation, and spectral entropy. These findings are consistent with prior work suggesting that
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Fig. 5. Event-level characterization of cortical arousal predictions for Subject C. Accelerometer (top) and
gyroscope (bottom) traces show model-predicted arousals (blue dashed lines) and expert-labeled EEG arousals
(red markers).

leg movements are linked with cortical arousals'*!®!”. Entropy-based features likely captured the fragmented or
irregular movement patterns characteristic of arousal events. In contrast, HR and HRV features extracted from
PPG contributed less prominently to model performance. This outcome was expected, as the original sampling
rate of 25 Hz may be insufficient for accurate HRV estimation. Prior work has shown that HRV metrics like
Standard Deviation of NN Intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD) require
significantly higher sampling rates to ensure reliability, at least 50 Hz for SDNN and 100 Hz or more for RMSSD
without interpolation?®. Additionally, signal quality issues further limited the reliability of PPG-derived features.
These noises, primarily motion artifacts and high-frequency noise, are inevitable in wearable-based health
and well-being monitoring systems and can significantly impact peak detection accuracy”. In our dataset, the
average PPG signal quality declined from 0.818 during non-arousal periods to 0.488 during arousal, indicating
a consistent reduction in signal integrity during arousal events.

Interestingly, the model predicted more arousals than were annotated by experts, particularly in subjects
with sparse arousal profiles (Subject C). Rather than representing pure false positives, these predictions may
reflect physiological events, such as sub-threshold arousals or autonomic activations, that were not captured
by EEG-based criteria. This suggests that wearable sensors may detect some physiological markers of sleep
disruption that fall outside the boundaries of current clinical scoring systems. Indeed, prior research has shown
that physiological changes surrounding arousal events can be significant, often extending beyond the boundaries
of EEG-defined arousals?*?. These findings highlight how machine learning and wearables can improve sleep
assessment beyond conventional methods. The use of fixed 60-second windows may also have contributed
to these discrepancies by grouping multiple arousals into a single segment. While some predicted arousals
occurred outside manually labeled EEG events, inspection of the corresponding sensor data revealed short-lived
motion bursts and physiological fluctuations that may represent autonomic or subthreshold arousals described
in prior work. Nevertheless, we acknowledge that other false positives may arise from benign movement or stage
transitions.

Despite the model’s overall strong performance, its AUPRC of 0.55 indicates that there remains substantial
room for improvement in sensitivity and temporal precision. Event-level inspection of Subject C (Fig. 5)
confirmed that the model accurately detected the first two arousal-related activations but missed a subsequent
EEG-labeled event, with one additional false positive likely caused by transient movement artifacts. These
observations illustrate that while the Random Forest classifier can identify clear multimodal arousal signatures,
it may struggle to generalize across variations in arousal intensity and morphology. The use of fixed 60-second
analysis windows likely introduced temporal smoothing. Future iterations should incorporate sequence-
aware architectures, such as convolutional-recurrent or attention-based networks, to better capture contextual
dependencies and subtler temporal dynamics.

Although the cohort size was modest (N=14), several design choices were implemented to ensure sufficient
statistical power and generalizability. Subject-level cross-validation and recursive feature elimination helped
reduce overfitting, while the large number of per-window observations (> 6,000) supported stable model training
and evaluation. While current results demonstrate the feasibility of multimodal arousal detection, future work
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should focus on improving both sensitivity (reducing false negatives) and specificity (minimizing false positives)
through expanded data collection and model refinement in the next phase.

Lastly, our subject-independent and interpretable framework provides minute-level temporal precision,
making it suitable for clinical applications that require generalizable detection. It shows promise for individuals
with ADHD, a group often underserved by traditional sleep diagnostics. Pediatric restless legs syndrome, for
example, can cause significant sleep disruption, behavioral issues, and impaired daytime functioning that mimic
ADHD symptoms®®3!. While ADHD’s recognized subtypes (inattentive, hyperactive-impulsive, and combined)
are well-described, their association with distinct sleep profiles remains unclear, highlighting the need for
detailed pediatric sleep assessment™. Refined at-home monitoring could help identify specific sleep disorders
and support more personalized, subtype-targeted treatments for pediatric ADHD. Building on these findings,
this work presents multiple opportunities for future development. Priorities include expanding to larger and
more diverse datasets, using deep learning to model long-range patterns, and incorporating continuous arousal
scoring to reflect subtle physiological changes. Real-world feedback such as sleep staging, user experiences,
and device usability will be vital for transforming this research into a practical home-based health solution.
Ultimately, these efforts aim to bring clinical-quality sleep analytics into everyday environments through smart
and accessible wearables.

Conclusion

This study presents a non-invasive, wearable-based framework for detecting cortical arousals using multimodal
physiological signals from a leg-worn device. Among the classifiers evaluated, the Random Forest model
achieved the best overall performance, with a ROC-AUC of 0.94 and an AUPRC of 0.55, demonstrating
strong agreement with expert-labeled EEG arousal annotations. Key predictive features, such as leg movement
variability and signal entropy, support the role of movement-related physiological signals as markers of central
arousals. These findings demonstrate the potential of systems like RestEaze™ for clinically meaningful, at-home
sleep monitoring. Future work should include larger, more diverse populations and explore continuous arousal
scoring to enhance clinical relevance.

Methods

Participants and data acquisition
Fourteencommunity-livingchildren (7males,7 females) betweentheagesof6and 16years(mean + SD=11.54 +3.85
years) participated in the study. All participants met inclusion criteria defined for community-living males and
females between 5 and 18 years of age with a clinically confirmed diagnosis of ADHD based on structured
interview and/or the ADHD Rating Scale-5 (ADRS-5). ADHD subtype information was not available for these
participants; however, it is important to note that subtype classification is considered developmentally unstable
and may vary with age rather than reflecting fixed diagnostic categories. Additional inclusion requirements
included a positive screen for the B, E, and A components of the BEARS sleep screening tool (Bedtime, Excessive
daytime sleepiness, Awakenings), the ability to provide informed consent or assent with caregiver proxy, and the
availability of a family caregiver to assist with data collection using the mobile application. Exclusion criteria
included neurological disorders associated with extrapyramidal signs or symptoms and acute, unstable, or
unmanaged medical conditions that could influence sleep patterns. These criteria ensured a well-characterized
ADHD cohort while minimizing confounding medical factors that might affect sleep physiology. Cardiovascular
disease (CVD) or other chronic comorbidities were not specifically included or excluded, but children with
unstable or unmanaged medical conditions were screened out. Consequently, the sample represented generally
healthy children with ADHD who exhibited sleep disturbance symptoms suggestive of restless legs syndrome
(RLS) or frequent nocturnal arousals.

Each participant underwent a full overnight polysomnography according to American Academy of Sleep
Medicine (AASM) standards while concurrently wearing the RestEaze™ leg-worn wearable. Cortical arousals
were manually scored by trained technicians from EEG recordings using AASM criteria, and all scorings were
reviewed by a board-certified sleep physician. The manually scored EEG-based arousals served as the ground
truth labels for wearable-based model training and evaluation.

Physiological and movement data were collected from these participants using the RestEaze™ Movement
Analyzer, a wireless, leg-worn wearable designed for non-intrusive sleep monitoring and arousal detection.
More details about the RestEaze™ can be found in previous publication®. As illustrated in Fig. 6, the RestEaze™
device integrates multiple synchronized sensors:

o A 3-D accelerometer and 3-D gyroscope embedded within an inertial measurement unit (IMU) for leg move-
ment and orientation tracking,

o A PPG sensor for capturing cardiovascular dynamics, and.

« Object and ambient temperature sensors for thermal signature during sleep.

The accelerometer (X, Y, Z axes), gyroscope (X, Y, Z axes), and PPG channels (IR, red, green LEDs) were all
sampled at 25 Hz, providing high-resolution capture of biomechanical and cardiovascular signals. Temperature
data was sampled at 0.2 Hz, appropriate for monitoring slow-changing thermal conditions.

This setup enables continuous, multimodal recording throughout the night, capturing both fine-grained
leg movements and physiological fluctuations associated with cortical arousals. Across the 14 participants, the
average total sleep time was approximately 7.25 h per subject, totaling 101.5 h of recorded sleep data. Data
collection was conducted during natural sleep in a home or clinical setting.
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Fig. 6. Multimodal data preprocessing pipeline for arousal classification. Raw data from the RestEaze™
wearable system included PPG, 3-D accelerometer, 3-D gyroscope, and temperature sensors.

All study procedures were approved by the Institutional Review Board of Johns Hopkins University. Research
was conducted in accordance with the Declaration of Helsinki and all relevant ethical guidelines and regulations,
including obtaining informed consent from all participants and/or their legal guardians.

A total of 169 quantitative features were extracted across accelerometer, gyroscope, PPG, temperature, and
HRV-derived signals. Inertial features included statistical, spectral, and energy descriptors (mean, standard
deviation, variance, skewness, kurtosis, dominant frequency, spectral entropy, RMS amplitude, and RMS area)
computed for each of the three motion axes (X, Y, Z) to capture directional asymmetries in leg movements. PPG
features captured waveform morphology (skewness and kurtosis), while thermal features reflected both object
and ambient temperature variability. HR and HRV features spanned time-, frequency-, and nonlinear-domain
indices (e.g., SDNN, RMSSD, LF/HF ratio, DFA, MFDFA, entropy, and fractal dimensions). To mitigate the curse
of dimensionality and reduce overfitting, a feature selection pipeline combining recursive feature elimination
(RFE) and cross-validation-based ranking was applied, retaining the 30 most informative features for model
training. A complete list of all extracted features, grouped by modality, is provided in Supplementary Table S1.

Cortical arousals rate

Cortical arousals (ground truth) were identified and scored according to the guidelines set by the AASM*,
which define arousals as abrupt shifts in EEG frequency, including alpha, theta, or activity exceeding 16 Hz, that
last for at least 3 s and occur after a minimum of 10 s of uninterrupted sleep?’. Arousal rate was calculated as
the number of 60-second windows labeled with at least one cortical arousal event, normalized per hour of total
sleep time. Specifically, if any arousal occurred within a given 60-second segment, the entire window was labeled
as an arousal window (Class 1). The resulting arousal rate, expressed in arousal windows per hour, provides a
temporally consistent metric for comparing arousal frequency across individuals.

In addition to cortical arousals, sleep stages, and limb movements were scored manually by trained
technicians according to the AASM guidelines®*. Bilateral limb movement events were also manually annotated,
whereas leg movement channels were scored using an automated algorithm via the Sleepware G3 platform
(Philips Respironics, US). Final scoring was reviewed and confirmed by a board-certified sleep physician and
AASM fellow.

Preprocessing and feature generation

All raw sensor signals were processed using a unified preprocessing pipeline (see Fig. 6), which included filtering,
segmentation into 60-second non-overlapping windows, and modality-specific feature extraction. The choice of
a 60-second window was guided by the need to balance temporal resolution with physiological interpretability.
Each one-minute segment contains sufficient cardiac cycles (typically 60-100 beats) to allow reliable estimation
of HR and HRYV, while also being short enough to detect changes in physiological state over time.

For the PPG signal, the preprocessing began with upsampling to 200 Hz using linear interpolation. This step
was essential for achieving the temporal resolution required for accurate peak detection and compatibility with
feature extraction functions that assume higher sampling rates. Several methods did not perform at the native
25 Hz resolution, especially those involving frequency-domain HRV metrics. The upsampled signal was then
bandpass filtered between 0.2 and 5 Hz using a Butterworth filter to remove baseline drift and suppress motion
artifacts. The filter was implemented in Python 3.11 using the butter and filtfilt functions from the scipy.signal
module, which apply zero-phase forward and reverse filtering to avoid phase distortion>*.

Following filtering, we evaluated several peak detection strategies to identify heartbeats from the PPG
waveform. Among these, the ppg-findpeaks function from the NeuroKit2 library® provided reliable results in
terms of peak timing consistency and robustness to signal noise. Figure 7 shows the effects of preprocessing: the
top panel displays the raw PPG signal with notable baseline fluctuations (Fig. 7a), the middle panel shows the
filtered waveform with clearly resolved peaks (Fig. 7b), and the bottom panel plots the computed PPG signal
quality over time (Fig. 7c). This quality metric, ranging from 0 to 1, reflects the reliability of the signal for
physiological analysis.
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Fig. 7. PPG signal preprocessing and peak detection. The top panel (a) shows the raw LED green PPG signal,
which contains low-frequency drift and movement-related noise. The middle panel (b) displays the same
signal after linear interpolation to 200 Hz and bandpass filtering (0.2-5 Hz). The bottom panel (c) shows the
corresponding PPG signal quality over time, with values closer to 1 indicating cleaner, more reliable signal
segments.

Once peaks were detected, HR and HRV features were extracted from each 60-second window. HR metrics
included minimum, maximum, and mean HR. HRV features encompassed time-domain measures (e.g.,
RMSSD, SDNN), frequency-domain indices (e.g., low-frequency/high-frequency ratio), and nonlinear metrics
such as entropy, coefficient of signal irregularity, coefficient of variation of intervals, and fractal complexity (e.g.,
Higuchi fractal dimension).

Signals from the 3-D accelerometer and 3-D gyroscope were high-pass filtered with a cutoff frequency of
0.2 Hz to reduce low-frequency drift and artifacts. Each axis (X, Y, Z) was segmented into non-overlapping
60-second windows and processed to extract statistical features (mean, standard deviation, variance, skewness,
kurtosis, minimum, maximum, and range), signal energy features (RMS and AUC), and spectral characteristics
(dominant frequency and spectral entropy). Object and ambient temperature signals were not filtered but were
similarly segmented into 60-second windows and processed to extract basic descriptive statistics, including
mean, median, standard deviation, minimum, maximum, and range.

All features across modalities were combined into a unified feature matrix indexed by timestamp and subject
ID. Arousal labels were resampled into 60-second non-overlapping windows to match the feature segmentation.
A window was labeled as an arousal event if it contained any arousal occurrence within its duration, ensuring
sensitivity to even brief arousal activity. This binary labeling approach allowed the model to learn from both
isolated and clustered arousal events, supporting robust temporal prediction. The dataset was imbalanced, with
arousal windows (Class 1) comprising 6.6% of the data and non-arousal windows (Class 0) accounting for 93.4%,
reflecting the rarity of cortical arousals during sleep.

Figure 8 shows the temporal evolution of these two features across a full night of sleep for a representative
subject. Notably, arousal events tend to co-occur with spikes in accelerometer variability and drops in gyroscope
entropy, suggesting more structured and intense leg movement during arousals. This visualization highlights
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Fig. 8. Accelerometer and gyroscope feature trends across sleep. The top panel (a) shows the standard
deviation of the X-axis accelerometer signal, reflecting variability in leg movement amplitude. The bottom
panel (b) displays the spectral entropy of the Z-axis gyroscope signal, which quantifies the irregularity or
complexity of rotational motion. Red markers indicate windows labeled as arousals, while blue markers denote
non-arousal periods.

the temporal coupling between movement features and arousal occurrences, demonstrating that arousal-labeled
periods coincide with distinct bursts of movement activity, a key physiological basis for the model’s predictions.

While this approach simplifies the classification task, it introduces a limitation: multiple arousals occurring
within the same 60-second window are treated as a single event. This may underestimate the actual number of
arousals in windows with dense activity. We initially experimented with shorter windows (e.g., 30 s) to capture
finer temporal dynamics. However, this led to increased false positives, likely because pre- and post-arousal
changes over the signals extended beyond the arousal itself. Thus, the 60-second window length was selected
as an optimal trade-off between capturing relevant signal changes and maintaining specificity. Additionally,
arousals that spanned multiple windows, a potential source of edge effects, were observed in approximately
10% of cases. Given that most arousals lasted 8 to 12 s, this level of boundary overlap was considered acceptable
within the 60-second segmentation framework.

Machine learning framework and feature selection
We evaluated and compared the performance of three classifiers:

Logistic regression

As a baseline, we trained a Logistic Regression model with L2 regularization (Ridge penalty), which helps
prevent overfitting and handles multicollinearity. The model was trained with subject-level z-scored features,
class balancing, and LOOCV. Hyperparameters, including the regularization strength, were tuned using
RandomizedSearchCV with 50 randomized iterations. While it offers greater interpretability, it lacks the capacity
to model nonlinear interactions present in physiological time-series data.
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Classifier Best hyperparameters

Logistic regression | C=0.1336, penalty = 12} solver = ‘liblinear’ fit_intercept = True, max_iter = 1000, tol =0.0039

colsample_bytree =0.7547, gamma =4.6836, learning_rate =0.0513, max_depth=6, n_

XGBoost estimators =91, reg_alpha=0.2579, reg_lambda=2.9800, scale_pos_weight =2, subsample =0.9929

ccp_alpha=0.0036, criterion = ‘entropy, max_depth =15, max_features =0.3986, min_samples_

Random forest leaf=3, min_samples_split=6, min_weight_fraction_leaf=0.0037, n_estimators = 120

Table 2. Best-performing hyperparameters for each classifier.

Gradient-boosted decision tree model (XGBoost)
We also implemented XGBoost, a high-performance gradient-boosted decision tree model that incorporates both
first- and second-order gradients. We tuned hyperparameters including learning rate, tree depth, subsampling
rate, and L1/L2 penalties using RandomizedSearchCV with 50 randomized iterations. All training followed the
same LOOCYV protocol as the previous model.

Bagged tree ensemble model (Random forest)

We used a Random Forest classifier, known for its robustness to noise, ability to model nonlinear relationships
and embedded feature importance analysis. Hyperparameters were optimized using RandomizedSearchCV
with 50 randomized iterations. Tuned parameters included the number of trees, maximum depth, minimum
samples per split and leaf node, and feature subsampling ratio. All training followed the same LOOCYV protocol
as the other models. The best-performing hyperparameters for each model, selected based on cross-validation
performance across folds, are summarized in Table 2. Importantly, all hyperparameter tuning was conducted
strictly within the training folds of each LOOCYV iteration using an inner GroupKFold cross-validation. The
left-out subject in each iteration was never used during hyperparameter optimization and remained completely
unseen until final evaluation.

To account for inter-individual variability in physiological signals, all features were standardized per subject
using z-score normalization. Columns with excessive missingness were removed, and the remaining missing
values were imputed using subject-level k-nearest neighbors®. This method estimates missing values by
averaging the feature values from the most similar observations in the dataset. Dimensionality reduction and
feature selection were performed using Recursive Feature Elimination®” within the training folds to retain only
the most informative features for classification.

A LOOCYV scheme was used, where each subject was held out in turn as the test fold while the remaining
subjects were used for training. This approach ensured strict subject-level separation and prevented data leakage,
supporting robust evaluation of model generalizability.

To address the natural class imbalance between arousal and non-arousal events, a two-step resampling
strategy was applied within each training fold. First, Tomek Links* were removed to clean the decision boundary,
followed by Random Undersampling®® to balance the class distribution during model fitting. As a sensitivity
analysis, we also trained class-weighted models (XGBoost with scale_pos_weight; Random Forest with class_
weight="balanced’) and observed performance comparable to the Tomek-links + undersampling pipeline, so
we retained the latter as our primary approach. Importantly, the held-out test subject was never undersampled,
preserving the original data distribution for evaluation. Thresholds for classification were selected based on the
precision-recall curve computed on the raw (non-resampled) version of the training data, ensuring that decision
thresholds reflected realistic class ratios. The selected threshold was then applied to the test fold.

Together, these classifiers enabled direct performance comparisons. The outputs were evaluated using
window-based overlap metrics and correlation analyses, described in the next section.

Model comparison and evaluation

Model performance was assessed using both classification-based metrics and agreement-based statistical
analyses, with careful consideration given to subject-level separation through LOOCYV. For each model, the area
under the ROC-AUC and the AUPRC were computed to quantify overall discriminative ability, with AUPRC
providing a more informative measure of performance under class imbalance. In addition, precision, recall, and
F1-score, defined in Eq. (1) through (3), were calculated separately for arousal (Class 1) and non-arousal (Class
0) classes on a per-window basis. These equations quantify the performance of the model in different aspects:

True Positives

Precision = 1
True Positives + False Positives v

Recall — True Positives 2
" True Positives + False Negatives

Precision x Recall
Fr=2 3
! % Precision + Recall ®

To ensure equal contribution from each subject and prevent performance estimates from being skewed by
subjects with longer recordings or more events, all metrics (precision, recall, F1-score) were first computed
individually for each left-out subject in the LOOCYV framework. The final reported values (Table 1) represent the
mean of per-subject metrics, formalized as:
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Where:
M Subject-averaged metric (e.g., precision, recall, F1-score, ROC-AUC, AUPRC).
S: Total number of subjects.

True Positives(®)
M Metric value (e.g., Precision® = ue - OSILIVES
True Positives'®) + False Positives(®)

In addition to discrete classification metrics, we evaluated the agreement between predicted arousals and ground
truth arousals across subjects. The predicted arousal rate for each subject, defined as the number of arousal
events per hour of total sleep time, was compared with the true arousal rate using Spearman’s rank correlation
coefficient (p) and Kendall’s tau (1) to assess monotonic relationships. Agreement between predicted and true
arousal rate were further examined using Bland-Altman analysis®’, which visualizes the bias and limits of
agreement between model estimates and expert-scored references.

Feature importance analysis

After model training and evaluation, we analyzed feature importances using the Random Forest model trained
on the entire dataset to capture generalizable patterns across all subjects. Random Forest determines feature
importance by evaluating the total decrease in node impurity, such as Gini impurity, each feature contributes
across all decision trees in the ensemble. Features that result in larger impurity reductions when used for splitting
are considered more important*!. This approach allows the model to naturally account for nonlinear relationships
and feature interactions. To enhance interpretability and reduce noise from low-importance variables, we
selected the top ranked features for post hoc analysis. This number was chosen empirically: including more
than 30 features resulted in only marginal improvements in classification performance while increasing model
complexity and risk of overfitting. The selected features represented a balanced trade-off between performance
and interpretability and were used in downstream visualizations and interpretation.

Data availability
All data generated and analyzed during the current study are not publicly available but are available from the
senior author (NB) on reasonable request and the University of Maryland, Baltimore County’ approval.
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