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Hepatocellular carcinoma (HCC) poses a significant global health burden with limited therapeutic
efficacy. Chinese herbal medicines (CHMs) offer multi-target potential, yet their systematic screening
and mechanistic elucidation remain challenging. We established a high-throughput multi-omics
platform integrating transcriptomics, proteomics, and deep learning (autoencoder and multiple

kernel learning) to screen 187 medicinal plants. Five CHMs candidates were identified and shown

to modulate hub genes (e.g., AKR1B10, HMGCR, THBS1) and key pathways (TNF/IL-17/MAPK,
apoptosis, ferroptosis). Proteomic validation and functional assays confirmed their roles in suppressing
proliferation, migration, and inducing apoptosis in HCC cells. This study provides a robust, data-driven
pipeline for natural anti-HCC drug discovery, linking specific hub genes to CHM efficacy and offering
novel insights into precision ethnopharmacology.
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Cancer persists as a major cause of global mortality, with hepatocellular carcinoma (HCC) posing a significant
public health burden. In 2022, HCC was responsible for approximately 866,136 new cases and ranked as the
third leading cause of cancer-related deaths worldwide, exhibiting a disproportionately high incidence in Asia,
particularly in China!. Current standard treatments—including surgical resection, transplantation, tyrosine
kinase inhibitors, and immunotherapy—are often compromised by drug resistance, systemic toxicity, and
metastatic recurrence?. These challenges highlight the urgent need for novel therapeutic strategies that offer
improved efficacy and reduced side effects.

Chinese herbal medicine (CHM) has gained increasing attention as a complementary modality due to its
multi-component, multi-target nature, which may synergize with conventional therapies to alleviate toxicity
and enhance clinical outcomes®*. Numerous medicinal plants, such as Zanthoxylum bungeanum Maxim., Salvia
miltiorrhiza Bunge., Panax ginseng., Euphorbia pekinensis Rupr., Forsythia suspensa., Aristolochia debilis Siebold.
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& Zucc, Crataegus pinnatifida Bunge. among others, have shown anticancer potential. Bioactive constituents
including terpenoids, flavonoids, alkaloids, and quinones exert antitumor effects through the modulation
of apoptosis, cytokine signaling, and metabolic pathways>®. However, the systematic identification of active
compounds and their mechanisms of action remains challenging, necessitating advanced and efficient screening
platforms.

High-throughput transcriptomic and proteomic technologies have revolutionized natural product research by
enabling comprehensive profiling of gene expression and protein interactions, thus accelerating the elucidation
of phytochemical mechanisms”®. The integration of machine learning further augments the predictive power
of omics data, as evidenced by recent studies applying single-cell RNA sequencing and xenograft models to
evaluate drug responses,”!! In particular, deep learning (DL) approaches such as autoencoders (AE) and
multiple kernel learning (MKL) have emerged as powerful tools for extracting meaningful biological patterns
from complex datasets, facilitating drug repositioning and mechanistic clustering'?!3. For example, a dual-omics
screening platform applied to breast cancer revealed herbal extracts that modulate apoptosis and NF-kB/MAPK
signaling, enabling prioritization of promising candidates'®. Similarly, integrated machine learning identified
neuroactive drugs targeting a Ca?*-dependent AP-1/BTG pathway in glioblastoma, illustrating the potential of
computational approaches in uncovering novel therapeutic vulnerabilities'!.

In this study, we employed an integrated DL-enhanced omics framework to screen 187 medicinal plant
extracts for anti-HCC activity. By combining high-throughput transcriptomics and proteomics with AE and
MKL modeling, we identified conserved regulatory modules and hub genes associated with metastasis and
inflammation. Proteomic validation and functional assays further confirmed the therapeutic potential of
selected candidates. Our work establishes a robust, data-driven pipeline for natural anticancer drug discovery
and provides new insights into the mechanistic basis of CHM in liver cancer treatment.

Material and methods

Preparation and selection of medicinal plant extracts

In this study, the initial selection of medicinal plants was based on literature reports retrieved from databases
such as PubMed and CNKI. Plants with preliminary documented anti-inflammatory or antitumor activities, or
those known to be rich in bioactive constituents such as alkaloids, terpenoids, and flavonoids, were included
(Supplementary Table 1). The selected medicinal plants were procured and processed into fine powder by the
Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement. Each sample was assigned
a unique identifier according to the extraction method: sample “W” was prepared by hot water immersion
followed by freeze-drying; sample “GX” was obtained through ethanol extraction, purification via resin column
chromatography, and vacuum concentration; and sample “S” was produced by supercritical CO, extraction
followed by sequential solvent extraction and vacuum drying. Detailed extraction procedures are provided in
Supplementary Fig. 6, 7, 8. Ten commercial anticancer drugs were used as positive controls (Table 1). All samples
and controls were dissolved in dimethyl sulfoxide (DMSO) for bioactivity assays evaluating anticancer efficacy.
Based on their pharmacological profiles, the medicinal plants were categorized into 20 groups, with group details
available in Supplementary (Table 1). The overall workflow for screening and validation of medicinal plants in
this study is summarized in (Supplementary Fig. 1).

Cell culture and drug preparation

The HepG2 cell line was provided by the Key Laboratory of Phytochemistry and Natural Medicines, Kunming
Institute of Botany, Chinese Academy of Sciences, and maintained in Dulbeccos Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and incubated at 37 °C containing 5% CO..
Subculturing was performed when the cells reached 80-90% confluency, using 0.25% trypsin for detachment.
Cell viability was assessed 24 h post-treatment using a standard viability assay (Supplemental Fig. 1). Initial
screening of the 187 medicinal plant extracts was performed at a concentration of 100 mg/mL, with subsequent
concentration adjustments based on viability thresholds. Screening concentrations for transcriptome sequencing
were determined based on cell viability approaching 80%. In this study, the anticancer drug was used as the
positive control group, the medicinal plant was the experimental group, and the negative control was treated
with 0.1% DMSO.

Positive drug Gradient dose Starting dose | Product code Specification (%) | Manufacturer

Doxorubicin hydrochloride | 0.1/1/5/10(uM) 20 mM §17092-25 mg 98 Shanghai yuanye Bio-Technology Co., Ltd
Docetaxel 0.1/1/10/100/1000(uM) 20 mM D807092-250 mg | 98 Guangzhou BaoHui Biomedical Technology Co., Ltd
Gefitinib 0.1/1/5/10(uM) 20 mM G828597-1g 98 Shanghai Macklin Biochemical Co., Ltd

HHT (Homoharringtonine) | 0.1/1/10/100(nM) 20 mM H111922-20mg | =298 Shanghai Aladdin Biochemical Technology Co.,Ltd
gemcitabine 1/10/50/100(nM) 20 mM G824361 99 Shanghai Macklin Biochemical Co., Ltd

Cisplatin 0.01/0.1/1/5/10/20(uM) 20 mM C14330-500 mg | 99 Shanghai JiZhi Biochemical Technology Co., Ltd
Lenvatinib 0.1/1/10/50(uM) 20 mM E856914-1¢ 99 Shanghai Macklin Biochemical Co., Ltd
Benzenepropanoic acid 0.001/0.0002/0.00004/0.000008(uM) | 20 mM P106869-250 mg | 99 Shanghai Aladdin Biochemical Technology Co.,Ltd
Sorafenib 0.1/1/5/10(uM) 20 mM $125098-1 g 299 Shanghai Aladdin Biochemical Technology Co.,Ltd
Cabozantinib 5000/1000/100/10/1/0.1/0.01(nM) 500uM $41123-10 mg >99 Shanghai yuanye Bio-Technology Co., Ltd

Table 1. Positive control drug information.
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Cellular MTT assay

HepG2 cells were seeded at 5x 10* cells/well in 96-well plates, incubated for 24 h, and treated with anti-cancer
drugs (5 pg/mL) as positive control,while, gradient concentrations of medicinal plants as experimental group.
After 24 h, cell viability was assessed using MTT assay'*, with absorbance measured at 490 nm. Apoptosis was
evaluated using Annexin V-FITC/PI staining followed by flow cytometry analysis'>. (Supplemental Fig. 3E).

Wound healing assay

HepG2 cells were cultured in 6-well plates. When the cells reached almost 90% confluence, they were scratched
directly. The cells were then treated with different concentrations of stigmas for 24 h'°. Cell migration activity was
photographed at 0 and 24 h, and the quantified values were compared via Image] (version 2.0.0) (Supplemental
Fig. 3D).

Transcriptomic sequencing analysis

Total RNA was extracted using the FastPure Mini Kit, with RNA integrity confirmed by NanoDrop 2000 and
Agilent 2100 Bioanalyzer (RIN >8, OD260/280: 1.8-2.0). cDNA libraries were prepared using the MGIEasy kit
and sequenced on the BGISEQ-2000 with 150 bp paired-end reads. Sequencing data underwent quality control
using FastQC and Trimmomatic'”'%, and detailed quality metrics were provided in (Supplemental Table 2).
After quality control and adapter trimming, cleaned data were deposited in the NCBI, the data has not been
released. (Accession number: PRJNA1115821)%. Positive controls included conventional cancer drugs, while
DMSO treated samples served as negative controls.

RNA-seq data were analyzed using the “New Tuxedo” pipeline HISAT?® for alignment, String Tie?! for
transcript assembly/quantification, and DESeq?2 for differential expression analysis, with differentially expressed
genes (DEGs) defined as p<0.05 and [log2FC|>1?%. A comparative analysis was conducted involving 187
medicinal plant groups alongside positive and negative controls to identify genes associated with antitumor
activity. Gene Ontology (GO) enrichment analysis of differentially expressed proteins (DEPs) and DEGs was
performed using the GOseq R package, based on the Wallenius noncentral hypergeometric distribution (http:/
/geneontology.org/)*. Pathway analysis of DEPs and DEGs was conducted using the KEGG database (http://w
ww.kegg.jp/)**, with statistical enrichment of DEGs in KEGG pathways assessed via KOBAS software®. Gene
ontology and KEGG pathway analyses (cluster Profiler) highlighted inflammation and metastasis pathways, with
expression visualized via TBtools heatmaps.

Machine learning-based screening of medicinal plants

This study utilized 178 transcriptomic profiles derived from differential gene expression analysis—each
containing gene-level statistics such as logFC, P-value, and adj.P. Val—along with a consolidated gene expression
matrix as input. An Autoencoder (AE) model was trained to comprehensively evaluate the mechanistic similarity
between each medicinal plant extract and sorafenib!?. The autoencoder was constructed with a symmetrical
encoder-decoder architecture. The encoder network nonlinearly transformed high-dimensional input logFC
feature vectors into a low-dimensional latent space representation. The decoder network then attempted to
reconstruct the original input from this latent representation. The model was trained by minimizing the mean
squared error between the input and reconstructed output.

Subsequently, multiple kernel learning (MKL) was applied to integrate a linear kernel based on the original
features and a radial basis function (RBF) kernel derived from the latent features, thereby identifying an
optimal linear combination'®. The similarity between each plant extract and sorafenib was quantified as the
corresponding element in the fused kernel matrix. Results from both analytical approaches are presented in
Supplementary Fig. 5.

Weighted gene co-expression network analysis (WGCNA)

The WGCNA package in R was used to construct a weighted co-expression network, identifying 18 modules with
a soft threshold of b=11 (scale-free R*=0.8) and merging similar modules at MEDiss Thres=0.25. Functional
enrichment analysis of these modules revealed key cancer-associated pathways, with hub genes visualized in
Cytoscape (v3.8.1)2%?7 using weight thresholds of >0.035 (Orange module) and > 0.24 (blue module). These hub
genes may represent potential therapeutic targets for cancer. Supplemental Table 3 lists analysis steps, software
and main scripts in our pipeline.

Proteomic analysis

Proteomic analysis was conducted on fractions treated with 2% sodium deoxycholate (SDC) and 100 mM
Tris-HCI (pH 8.5), followed by sonication and centrifugation at 12,000 x _g for 5 min. Protein concentrations
were determined using the bicinchoninic acid (BCA) assay. Subsequently, proteins were reduced with tris
(2-carboxyethyl) phosphine (TCEP) and alkylated with chloroacetamide (CAA) at 37 °C for 1 h. After dilution
t0<0.5% SDC, proteins were digested with trypsin at a 1:50 enzyme-to-protein ratio at 37_°C overnight.

Peptide samples were analyzed using an Orbitrap Astral mass spectrometer coupled with a Vanquish NEO
LC-MS system. Separation was performed on a C18 analytical column (150 umx 150 mm) with a 14-min
gradient of mobile phases A (0.1% formic acid) and B (0.1% formic acid, 80% acetonitrile) at 1.8 pL/min. Data
were acquired in data-independent acquisition (DIA) mode.

Mass spectrometry data were analyzed using Proteome Discoverer software with UniProt's Human Proteome
Reference Database. Key parameters included variable modifications (methionine oxidation, N-terminal
acetylation), fixed modification (cysteine carbamidomethylating), and trypsin/P digestion. Proteins with
[log2FC|>1.5 and p<0.05 were identified as significantly differentially expressed proteins (DEPs). Data were
analyzed using GraphPad Prism 7, with three technical replicates per sample. Mean comparisons were made
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using least significant differences (LSDs), with statistical significance thresholds set at **** p<0.0001, ***
p<0.001,* p<0.01, and * p<0.05.

Results

Transcriptomics combined with deep learning to screen potential anti-cancer CHMs

In this study, we sequenced 606 cDNA libraries, resulting in approximately 9.69 Tb of raw data, which included
6,456,873,861 reads with an average read length of 100 bp (Supplemental Table 2). The total sequencing reads
(9.69 Tb and 64,568,738,618 reads) have been submitted to the NCBI Sequence Read Archive. The fraction with
the largest number of DEGs was Pinus massoniana Lamb., which comprised 1,379 DEGs, of which 696 were
upregulated and 683 were downregulated (Supplemental Fig. 2A). The highest agreement between the number
of DEGs and positive controls was Amomum compactum Solander ex Maton , which comprised 336 upregulated
DEGs and 5 downregulated DEGs. (Supplemental Table 4). The top 20 CHMs screened by the two methods were
obtained according to the deep learning AE and MKL (Supplemental Fig. 5).The results from above conditions,
along with the MTT results, were utilized to comprehensively screen five candidate CHMs (Fig. 1A,D). Detailed
information of the five CHMs are provided in (Table 2). All these species contain anti-inflammatory compounds
that have demonstrated anticancer effects in previous studies.

GO & KEGG pathway analysis implicated DEGs for tumor progression and metastasis
Throughout the course of its development, the recruitment of resident or circulating immune cells primarily
controls the tumor microenvironment, which is crucial to its process?®?°. We separated the gene sets in the
positive control alignment analysis results into up-regulated and down-regulated gene sets for KEGG analysis to
determine the biological pathways, networks, and functional categories of the DEGs. In each treatment group,
the genes whose expression was markedly upregulated were primarily involved in proinflammatory pathways,
carcinogenic transformation, tumor necrosis, and apoptosis. Previous research has demonstrated the importance
of biological processes with proinflammatory effects in the development of tumors and cancer®*-3%; one such
biological process in cancer metastasis is transcriptional regulation.*>. Additionally, key pathways, such as the
TNF signaling pathway, the IL-17 signaling pathway, cytokine-receptor interactions, the transcriptional signaling
pathway, dysregulation in cancer, and the MAPK signaling pathway, have been identified as being involved in
proinflammatory and metastatic processes (Fig. 1C). Interestingly, they are somewhat related. TNF-a has been
shown to trigger apoptosis in specific pathological circumstances, and the exochemical function of major TNFs
is accomplished by activating MAPK prosurvival kinase activity and NF-kappa B>*%. The expression of TNFa,
IL-6, and other inflammatory cytokine genes can be increased by activating NF-kappa B.>. In addition to the
activation signal of the innate IL-17 family of proinflammatory factor NF-kappa B, the NF-kappa B and MAPK
pathways are the primary activators of the IL-17 signaling pathway. Many studies have demonstrated that IL-
17A can activate a range of MAPKs and that the MAPK pathway is crucial for controlling mR and the stability
of NA transcripts, which in turn regulates the expression of IL-17A-induced genes®”. Similarly, transcriptional
dysregulation also works with other pathways, and the immune response transcription regulator NF-kappa B
is dysregulated with respect to genes and transcription factors that are chronically active in the inflammatory
process of cancer?®.

Among the set of down-regulated genes, CHM were identified to be involved primarily in the cAMP signaling
pathway, steroid biosynthesis, the TGF- signaling pathway, the p53 signaling pathway, and the cGMP-PKG
signaling pathway (Fig. 1C). Notably, the cAMP signaling pathway serves as a pleiotropic second messenger
within the tumor microenvironment (TME). Downstream effectors of cAAMP include cAMP-dependent protein
kinases (PKAs), exchange proteins activated by cAMP (EPACs), and various ion channels. While cAMP
can activate PKA or EPAC to promote cancer cell growth, it may also inhibit cell proliferation and survival,
depending on the specific environment and cancer type. Tumor-associated stromal cells, such as cancer-
associated fibroblasts (CAFs) and immune cells, can release cytokines and growth factors that modulate cAMP
production within the TME. Recent studies indicate that targeting cAMP signaling within the TME represents
a promising avenue for cancer therapy®. Small molecule drugs that inhibit adenylyl cyclase and PKA have been
demonstrated to suppress tumor growth. The role of steroid biosynthesis in liver cancer involves the metabolism
of cholesterol and bile acids, which significantly influence cell proliferation, differentiation, metabolism, and
the immune response. Cholesterol is recognized as a key lipotoxic molecule in the progression of nonalcoholic
fatty liver disease (NAFLD) to liver cancer, as it facilitates the proliferation of liver cancer cells via the mTOR
signaling pathway. The TGF-p signaling pathway plays a complex role in liver cancer development, functioning
both as a tumor suppressor and as a promoter of tumor metastasis and invasion*’. In HCC, the TGF-p signaling
pathway may promote HCC progression by influencing epithelial-mesenchymal transition (EMT) and the tumor
microenvironment. Additionally, the p53 signaling pathway is crucial for regulating the cell cycle, promoting
apoptosis, and maintaining genomic stability*!. In the context of liver cancer, activation of the p53 signaling
pathway can induce apoptosis in cancer cells and inhibit their proliferation.

The five CHMs were enriched primarily in the extracellular space and extracellular region in the cellular
component category, and they were strongly correlated with the extracellular vesicle and extracellular exosome
categories according to the GO enrichment analysis (Fig. 1B, Supplemental Fig. 2B). The activity of signaling
receptor regulators is strongly correlated with functional processes. Among these biological processes,
Kaempferia galanga Linn. is also linked to cell migration. The biological process pathway is associated primarily
with the regulation of apoptosis, programmed cell death, and small molecule metabolism. The strong correlations
between the regulation of angiogenesis, epithelial development, and cell motility imply that Kaempferia galanga
Linn. may be crucial in regulating the process by which cancer cells spread.
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Fig. 1. Difference analysis, functional analysis and heatmap of key gene expression. (A) the variance analysis
volcano map, and the Y axis is the average log2FC. a measure that indicates whether the statistical test is
statistically significant; the abscissa is indicated for each fraction-treated group and the positive drug group,
and the identified genes are the core genes screened in each treatment group. The orange dots in the figure are
the up-regulated genes for which p<0.05 and |log2fc|> 1, the blue dots in the figure are the down-regulated
genes for which p <0.05 and |log2fc|>-1, and the other genes that do not meet the up-regulation and down-
regulation thresholds are the gray dots in the figure. (B) the GO enrichment of differential genes, the outermost
circle is GO term, and the size of the middle point is the gene count value. (C) the changes in gene expression
in the core pathway after different fraction treatments. The line chart on the left is a clustering of all core genes,
and 8 clusters are determined according to the inflection point. Gene expression and function classification
diagram of the pathways associated with the fraction experimental group, blank control group and positive
control group, and the violin diagram on the left represents the proportion of gene expression of each
component in the cluster. The intermediate heatmap shows the change in gene expression of each component;
on the right is a comment on the cluster function. (D) Deep learning and positive control comparison to
screen medicinal plants, the relationship between three sets of conditions, one of which represents a set, and
the number represents the number of intersecting elements in each region.

Gene expression and regulation of enrichment in five medicinal plants

Among the core pathways of the five CHMs, IL6, LIF, ATF4, JAG1, JUN, and CXCL2/3 were significantly
upregulated in the three-candidate CHMs associated with the TNF signaling pathway. In the IL-17 signaling
pathways, IL6, FOSL1, LCN2, and JUN were commonly significantly upregulated across the four CHMs
candidates. Among the five CHM candidates involved in the apoptosis signaling pathway, ATF4, GADDA45A,
DDIT3, and BBC3 were upregulated. Additionally, ERN1 was significantly upregulated in Amomum compactum
Solander ex Maton., Pinus massoniana Lamb., and Commelina communis Linn., whereas the TNFRSF10B gene
was upregulated exclusively in Amomum compactum Solander ex Maton. The genes encoding IL32, CXCL2/3,
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Latin name Family Genus Up-regulation genes | Down-regulation genes | Efficacy

Amomum compactum. Solander ex Maton | Zingiberaceae | Amomum | 473 624 Qi-regulating drug

Pinus massoniana Lamb Pinaceae Pinus 696 683 Qi-regulating drug

Commelina communis Linn Commelinaceae | Commelina | 641 448 Heat-clearing and dampness-eliminating drug
Mahonia fortunei (Lindl.) Fedde Berberidaceae | Mahonia 561 394 Heat-clearing and dampness-eliminating drug
Kaempferia galanga Linn Zingiberaceae Kaempferia | 273 267 Qi-regulating drug

Table 2. List of candidate CHMs.

LIE, GDF15, NHBE, and BMP6 were upregulated in pathways related to cytokine and receptor interactions.
Notably, the IL15RA gene was uniquely upregulated among the top 10 contributors. Furthermore, RELB,
FGF21, GADD45A/B, AREG, and DUSP4/5 were upregulated across the five CHMs. (Supplemental Fig. 2C)
summarizes the key genes associated with the five candidate CHMs and their linkages to core pathways, while
(Supplemental Fig. 9) illustrates the expression of key genes in the different treatment groups. The expression
trends of most genes in the fraction treatment group were consistent with those in the positive control group,
suggesting that the distillation group and anticancer drugs share common targets. Notably, some common
genes have been implicated in the inflammatory processes or metastasis of cancer, particularly in liver cancer
development. All the common genes analyzed exhibited differential expression across various CHMs treatments,
with IL6, LIE, ROSL1, and DUSP4/5 showing significant upregulation (Supplemental Fig. 9). The enrichment
analysis of the down-regulated genes revealed that the genes downregulated by traditional Chinese medicine,
and the positive control drug were associated with several pathways, including the aldosterone-regulating
sodium reabsorption pathway, cCAMP signaling pathway, TGF-p signaling pathway, and folic acid biosynthesis
pathway. Notably, genes such as AKR1B10%2 have been shown to inhibit the proliferation and metastasis of HCC
by modulating the PI3K/AKT pathway. Additionally, the RDH10 gene is considered a potential target for glioma
treatment; its downregulation can impede tumor development by influencing various signaling pathways and
cellular processes, such as inhibiting cell proliferation, regulating apoptosis, and affecting cell migration and
invasion®>. The HMGCR gene?!, a key rate-limiting enzyme in the mevalonate pathway, is closely associated
with tumor occurrence and progression, with studies indicating that HMGCR knockdown inhibits the growth,
migration, and clonal formation of ESCC cells. Furthermore, downregulation of ATP1BI has been shown to
inhibit the proliferation, migration, invasion, and adhesion of DLBCL cells*. The downregulation of the MVK
gene may influence cancer progression through multiple mechanisms, including reducing tumor risk, affecting
cyclin expression, regulating cholesterol metabolism pathways, and modifying the tumor microenvironment*.
The significant downregulation of these genes suggests that the Chinese herbal fraction can inhibit tumor cell
proliferation and migration by regulating gene expression across various signaling pathways, thus providing a
new foundation for future research on the identification and isolation of effective compounds.

Weighted gene co-expression network analysis identifies key modules associated with
traditional Chinese medicine efficacy

To investigate the relationship between the efficacy of Chinese medicine ingredients and module characteristic
genes (MEs), a weighted co-expression network was constructed, and co-expression modules were identified
via the “WGCNA” package in R. The sample dendrogram and feature heatmap are presented in (Supplemental
Fig. 3C). In this study, a power of b=8 was selected to achieve high scale independence and low average
connectivity (Supplemental Fig. 3A). The dissimilarity threshold between modules was set at 0.2, resulting in the
generation of 23 distinct modules (Fig. 2A). The module relationship diagram revealed that Pinus., Commelina.,
Kaempferia. and Amomum. were strongly correlated with the blue module and that Mahonia. was significantly
correlated with the orange module (Supplemental Fig. 3B). These findings suggest that these modules are
effective for identifying hub genes related to cancer staging. Furthermore, the independence of each module
indicates both high scale independence and differential gene expression among the modules.

Identification of hub genes in selected modules

Typically, genes included in co-expression modules and exhibiting high connectivity are selected as hub genes.
In this study, we identified 48 central genes (blue module: 16, orange module: 20), as shown in (Fig. 2C-D) and
(Supplemental Table 5). These genes were screened from the blue module under the conditions of degree>20
and weight>0.1. After the data were imported into Cytoscape (v3.8.1), a total of 72 nodes were identified.
Among these nodes, two upregulated genes are indicated by red triangles, whereas 14 downregulated genes
are marked by green circles in (Fig. 2C). The analysis focused primarily on the AMPK pathway and the amino
acid synthesis pathway. The orange module identified 81 nodes (Fig. 2D), of which three core genes were
significantly upregulated and 17 genes were downregulated, with primary enrichment in the RIG-I-like receptor
signaling pathway, the Toll-like receptor signaling pathway, the NOD-like receptor signaling pathway, the PD-L1
expression and PD-1 checkpoint pathways in cancer, and the chemokine signaling pathway.

KEGG enrichment of modules

The genes in the two core modules were screened based on the criterion of module membership (MM) > 0.8
to obtain the core gene set (Supplemental Fig. 3B). The genes within each module were extracted, and a
KEGG pathway was constructed. As illustrated in (Fig. 2C-D), the genes in the blue module were enriched
predominantly in pathways such as the TNF signaling pathway, necroptosis pathway, p53 signaling pathway,
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apoptosis pathway, and ferroptosis pathway, all of which play significant roles in cancer development. Notably,
p53 is a tumor suppressor that is crucial for inducing ferroptosis and influencing the onset and progression
of liver cancer. P53 enhances the sensitivity of liver cancer cells to ferroptosis inducers by transcriptionally
inhibiting the expression of the ferroptosis-related protein SLC7A11% (Fig. 2B). The genes in the orange module
are involved primarily in the NOD-like receptor signaling pathway, the JAK-STAT signaling pathway, the RIG-
I-like receptor signaling pathway, necroptosis, and the TNF signaling pathway, all of which are vital for cancer
development (Fig. 2B).

MTT, apoptosis, and migration verification

To further verify the stability of the inhibitory effect of Chinese herbal fractions on the growth of cancer cells, we
conducted an MTT gradient experiment. The results demonstrated that the inhibitory effect of the distillation
mixture on liver cancer cells progressively increased with increasing dose, with Pinus massoniana Lamb. and
Amomum compactum Solander ex Maton. exhibit the m ost pronounced effects (Fig. 2E). Additionally, apoptosis
assays confirmed the apoptotic effects of the CHMs fractions on cancer cells. (Fig. 2F-G) show the rates of
apoptosis in each treatment group at the transcriptome concentration (Survival >80%) and IC50concentration.
The fraction treatment groups exhibited varying degrees of apoptosis promotion, with trends consistent with
those observed in the positive control group treated with sorafenib. Notably, the low-concentration groups of
Amomum compactum Solander ex Maton. and Kaempferia galanga Linn. demonstrated the greatest promotion of
apoptosis, with an apoptosis rate of 46% (Fig. 2F; Supplemental Fig. 3D). The apoptosis rates of Pinus massoniana
Lamb., Commelina communis Linn., and Mahonia fortunei (Lindl.) Fedde., Amomum compactum Solander ex
Maton. exceeded 50%, whereas the percentage of Commelina communis Linn. apoptotic cells reached 62.33%.
The cell migration results are presented in (Fig. 2H; Supplemental Fig. 3E), which shows the state of cell migration
from 0 to 24 h. Each fraction treatment clearly significantly inhibited cell migration, as indicated by the scratch
width at 24 h being greater than or equal to that at 0 h. The histogram further corroborates that the trends in the
fraction treatment groups align with those of the positive control group, with Commelina communis Linn., Pinus
massoniana Lamb., and Mahonia fortunei (Lindl.) demonstrating superior inhibition of cell migration compared
with the positive control. These cell experiments confirmed that the five distillation groups strongly promoted
apoptosis and significantly inhibited cell migration in hepatoma cells.

Proteomics statistical analysis

Peptide Length Distribution: The mass spectrometry (MS1) scanning range typically spans 350-1500 m/z. Upon
ionization, most peptides exhibit charge states of + 2, with some displaying + 3, +4, and so forth, decreasing in
sequence. The average molecular weight of amino acid residues in proteins is approximately 110 Da, which
results in most detected peptides falling within the range of 7-27 amino acids (Supplemental Fig. 4A). Peptide
number distribution: The relative abundance of a protein is typically greater in large-scale proteomic data with
more protein data, and there is some positive correlation between the two. The reliability of the proteomics
results at the protein level increases with the percentage of protein in the polypeptide. (Supplemental Fig. 4B).
Distribution of Missed Cleavage Sites: To perform protein sample mass spectrometry before detection, trypsin is
used to hydrolyze the protein enzymatically. For mass spectrometry, trypsin breaks down intact proteolysis into
peptides of varying lengths by specifically hydrolyzing the arginine and lysine C-telopeptide bonds in proteins.
A tiny percentage of peptides have one or two missed sites, whereas many detected peptides typically have
no missed sites. (Supplemental Fig. 4C). In this investigation, (Supplemental Fig. 4D) displays the quantity of
proteins and peptides in each sample. To assess the quantitative repeatability between replicate samples and the
quantitative correlation between various sample groups, the Pearson correlation coefficient (R) between samples
can be computed based on the quantitative data of each protein. In this project, (Supplemental Fig. 4, E) displays
the quantitative correlation coefficient between pairs of all samples. Principal component analysis (PCA) is one of
the most popular techniques for dimensionality reduction analysis. Proteins’ quantitative information is utilized
as a variable for orthogonal transformation, and the quantitative information of many proteins is transformed
into group variables to create PCA principal component analysis diagrams. These diagrams intuitively illustrate
how the spatial distribution of data varies between samples. Various samples in the same group were clustered
within a relatively concentrated range in this study (Fig. 3B), making them distinct from other data cluster
groups.

Protein difference analysis and KEGG enrichment analysis

By conducting a database search on the raw mass spectrometry data, the detection signal intensity for each
peptide can be obtained, allowing for the calculation of quantitative information corresponding to each protein.
Following normalization of the results, quantitative comparisons of the same protein across different samples
can be performed. Based on sample grouping, effective data screening and the filling of missing data enable
the calculation of the protein quantitative ratio distribution within the samples of each comparison group. The
statistics of the differential proteins in each fraction group are presented in (Fig. 3A). A comparative analysis
between the fraction group and the blank control revealed a total of 8095 differentially expressed proteins,
comprising 4264 upregulated proteins and 3,831 downregulated proteins. (Fig. 3C) displays the total differential
proteins as well as the associated core differential proteins between each experimental group and the positive
control group. KEGG analysis of these differentially expressed proteins revealed numerous pathways associated
with cancer development, including necroptosis, the IL-17 signaling pathway, the TNF signaling pathway, the
MAPK signaling pathway, and the p53 signaling pathway, among others. (Fig. 3D) indicates that the pathways
most significantly enriched in the experimental group are the MAPK signaling pathway, the TNF signaling
pathway, and apoptosis; the pathways significantly enriched among the top ten contributors include the p53
signaling pathway and the cell cycle.
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Joint transcriptome—proteome analysis

To further validate the screening of fractions, we present a comprehensive overview that spans from genes
to proteins, integrating various data sources to increase the reliability and interpretability of our results.
A nine-quadrant joint analysis of the transcriptome and proteome was conducted for each treatment group
(Supplemental Fig. 4F). The differential gene and protein expression patterns observed in quadrants 1 and 9
are inconsistent, suggesting the potential for deeper exploration at the posttranscriptional or translational level.
Quadrants 2 and 8 illustrate the differential expression of genes without corresponding changes in proteins,
indicating the possibility of posttranscriptional regulatory mechanisms. In contrast, quadrants 4 and 6 show
differential expression of proteins without changes in the corresponding genes, warranting consideration of
translation-level regulation or protein accumulation. All genes and proteins in the remaining five quadrants
were not differentially expressed. Quadrants 3 and 7 revealed consistent trends in the changes in both genes and
their corresponding proteins, indicating synchronous alterations at the transcriptional and translational levels.
This aspect is a significant focus of our study.
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«Fig. 2. KEGG Analysis of Key Modules and Cytological validation. (A) showed the relationship between each
module and the processing group; the leftmost color block represents the module, and the rightmost color
bar represents the correlation range. In the middle part of the heatmap, the darker the color is, the greater
the correlation. The numbers in each cell indicate relevance and significance. (B) the KEGG bubble diagram
of the key genes in the blue module, and e shows the KEGG bubble diagram of the key genes in the orange
module, where the abscissa is the Rich factor, the ordinate is the enrichment pathway, the darker the red, the
more significant, and the bubble size is the number of genes in the pathway. (C-D) the network diagram of
the core genes in the key module, where the dots represent the genes in the module (degree > 20, weight >0.1),
where the circles are the core genes (red is upregulated, and green is downregulated), and the pink square
nodes are the pathways to which the core genes converge. (E) the trend of cell viability under the gradient
concentration of each experimental group(D345-B: Pinus massoniana Lamb., D550-A: Mahonia fortunei
(Lindl.) Fedde, GX0899-C: Amomum compactum Solander ex Maton. GX1084-C: Kaempferia galanga Linn.,
D303-A: Commelina communis Linn.). F-G: Bar graph of cell apoptosis at different concentrations, with the
horizontal axis representing each treatment group and the vertical axis representing the apoptosis rate. H:
the experimental diagram of cell migration after 24 h of drug treatment, where the abscissa of the histogram
represents each treatment group and the ordinate denotes the migration distance (um).

Further KEGG analysis was performed on the genes and corresponding proteins in quadrants 3 and 7.
In particular, the genes and corresponding proteins in these quadrants were all upregulated, with the main
enriched pathways closely linked to cancer progression, including the NOD-like receptor signaling pathway,
cellular senescence, insulin resistance, the TNF signaling pathway, the IL-17 signaling pathway, necroptosis,
and the VEGF signaling pathway (Fig. 3E). The ten genes and proteins upregulated by Commelina communis
Linn. significantly converge in the ferroptosis pathway, leading to increased cell death, which in turn inhibits
tumor cell proliferation, migration, and invasion. For example, they regulate GPX4 through Kriippel-like factor
2 to prevent cancer cell migration and invasion*®. KEGG analysis (Fig. 3F) of the significantly downregulated
genes and corresponding proteins across the seven quadrants revealed substantial enrichment in pathways
such as retinol metabolism, the cell cycle, AMPK signaling, metabolic pathways, and Rap1 signaling. Notably,
Kaempferia galanga Linn. and Commelina communis Linn. significantly enriched in the focal adhesion pathway,
which may inhibit the proliferation, migration, and invasion of tumor cells, thereby slowing tumor growth and
metastasis®. Additionally, downregulation of the cGMP-PKG signaling pathway in Commelina communis Linn.
promoted cell apoptosis and inhibited cell growth. Furthermore, the downregulation of metabolic pathways,
terpenoid backbone biosynthesis, and the AMPK signaling pathway may hinder the metabolic reprogramming
of tumor cells, consequently slowing tumor growth and progression. This may also involve the inhibition of
tumor cell growth through the disruption of metabolites and signaling pathways, thereby retarding tumor
progression and metastasis®**!. These pathways are also significantly enriched in Amomum compactum Solander
ex Maton., Mahonia fortunei (Lindl.) Fedde, and Pinus massoniana Lamb.

Discussion

CHM has a long history in treating and preventing malignant tumors, not only by directly inhibiting tumor
growth but also by reducing the toxic side effects of radiotherapy and chemotherapy, improving patients’ quality
of life, and enhancing survival rates®>. With its unique dialectical and holistic approach, CHM offers a distinct
perspective on disease management compared to Western medicine. However, the complexity and diversity of
CHM formulations make determining their chemical composition highly challenging. Chemical composition
analysis of medicinal plants is essential for elucidating the pharmacological effects and therapeutic mechanisms
of CHM, providing a scientific basis for its clinical application. Key chemical constituents include Volatile oils,
Alkaloids, Flavonoids, Polysaccharides, Tannins, and Saponins®*~>>, which exhibit diverse biological activities
such as antibacterial, antitumor, anti-inflammatory, and antioxidant effects. For instance, Flavonoids have
been shown to induce apoptosis and inhibit tumor cell proliferation®®, while certain alkaloids disrupt tumor
cell signaling pathways, suppressing tumor growth and metastasis®’. Despite these advances, the chemical
characterization of CHM remains a complex and time-intensive process, requiring the integration of multiple
analytical techniques to identify active components and their mechanisms of action.

Chinese herbal medicines screened

Pinus massoniana Lamb. needles are rich in bioactive compounds such as Volatile oils, Flavonoids,
Polysaccharides, and Lignans, which exhibit significant anticancer potential. Lignans demonstrate antitumor,
antiviral, anti-inflammatory, and antioxidant properties, while also enhancing cardiovascular health®.
Extracts obtained using petroleum ether and ethyl acetate show the most potent antitumor activity. Shikimic
acid, another key compound, exhibits diverse pharmacological effects, including antitumor, antibacterial, and
anti-inflammatory properties®’. Proanthocyanidins, the primary active component in pine bark extract (PMBE),
inhibit cancer cell growth in vitro by upregulating p53 and p21 to arrest the cell cycle and downregulating Bcl2 to
induce apoptosis®!. Additionally, Masson pine bark extract induces apoptosis and inhibits cancer cell migration,
demonstrating antitumor activity against HepG2, HeLa, and S180 cells®*6%63,

Kaempferia galanga Linn. gained attention for their anticancer mechanisms, attributed to their rich chemical
composition. Kaempferol, a flavonoid in Kaempferia galanga, inhibits the progression of liver, colon, lung, and
ovarian cancers by inducing apoptosis, generating reactive oxygen species (ROS), and disrupting cell cycle and
autophagy pathways. It targets key signaling pathways, including PI3K/Akt, EGFR, MAPK, and Wnt, with PI3K/
Akt regulation being particularly significant®*-%. Similarly, gingerol, an active component of ginger, exhibits
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anti-inflammatory, antioxidant, and immune-regulatory properties, while inhibiting cancer cell proliferation
and promoting apoptosis®”®%. These findings highlight the therapeutic potential of natural compounds in cancer
treatment.

Amomum compactum Solander ex Maton. is rich in Volatile oils, which exhibit anticancer properties by
inhibiting cancer cell proliferation and inducing apoptosis, potentially through cell cycle modulation®. Dry
extracts of Amomum subulate seeds have been shown to target TP53, demonstrating strong antioxidant and
anti-inflammatory activities in cancer cells’’. Beyond volatile oils, flavonoids, phenolic acids, and ethyl EMC
are key anticancer constituents in cardamom plants. Flavonoids may suppress tumor invasion and metastasis
by modulating growth factor signaling pathways, proteases, and E-cadherin, while phenolic acids influence
oxidative stress and NF-kB signaling pathway’%72.
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«Fig. 3. Proteomic validation and KEGG bubble chart of quadrants 3 (a) and 7 (b). A: a statistical table of
differentially expressed genes and proteins in each treatment group, with the horizontal axis representing each
treatment group and the vertical axis representing the number of differentially expressed genes and proteins.
Red represents upregulated proteins, and blue represents downregulated proteins. (B) three-dimensional PCA
principal component analysis diagram between samples: the differences between different samples can be
intuitively displayed through the differences in data spatial distribution. The smaller the spatial distribution
difference, the closer the data. Each point in the PCA distribution diagram represents an experimental
sample, and different groups are distinguished by different colors. (C) volcano plot of the differential protein
distribution in each treatment group, with the horizontal axis representing each treatment group and the
vertical axis representing the A-weighted log2FC value. Dark orange represents upregulated proteins, and blue
represents downregulated proteins. The marked proteins correspond to the key genes. (D) KEGG bubble plot
of the differentially expressed proteins. The abscissa represents the treatment group, the ordinate represents the
enriched pathway, the darker the bubble color is, the greater the significance, and the bubble size represents
the number of proteins enriched in the pathway. (E-F) KEGG enrichment analysis of the two quadrants of
each treatment group that were significantly associated in the transcriptome-proteome association analysis.
The horizontal axis represents the treatment group, and the vertical axis represents the enriched pathway. The
darker the bubble color is, the greater the significance. The greater the number of genes and proteins in the
pathway.

Mahonia fortunei (Lindl.) Fedde., a major bioactive compound from Berberidaceae. plants, exhibits potent
antitumor effects through mechanisms including cell proliferation inhibition, apoptosis induction, cell cycle
disruption, and autophagy activation”>. It also possesses anti-inflammatory, antioxidant, and immunomodulatory
properties, mediated by regulation of PI3K/AKT/mTOR, Wnt/B-catenin, and MAPK/ERK pathways®4747>,
Additionally, benzylisoquinoline alkaloids (BIAs) such as spattering and aquathlons, isolated from Mahonia
species, show lipoxygenase inhibition and potential anticancer activity’®””.The genus Commelina communis
Linn. (Commelinaceae), comprising over 200 species, has been traditionally used to treat various diseases.
Despite limited research, these species contain diverse bioactive phytochemicals, including Alkaloids, Phenols,
Flavonoids, and Tannins, which are believed to contribute to their pharmacological activities”®”°. These findings
underscore the therapeutic potential of plant-derived compounds in cancer treatment.

Anticancer pathways of Chinese herbal medicines

CHMs play a pivotal role in anticancer therapy by modulating cancer cell behavior and altering key signaling
pathways. They offer significant advantages in mitigating the adverse effects of conventional cancer treatments
while enhancing therapeutic efficacy. Compared to traditional chemotherapy, CHM:s are characterized by high
efficiency, low cost, and minimal side effects, making them a vital component of cancer treatment strategies.
Research has identified multiple anticancer active ingredients in CHMs, including terpenoids, flavonoids,
and alkaloids, which interact with critical signaling pathways in liver cancer, such as epithelial-mesenchymal
transition (EMT), TGF-B, IL-7, NF-kB, MAPK, p53, and TNF pathways. These pathways are instrumental in
regulating the initiation and progression of liver cancer. In addition to their direct anticancer effects, CHMs
exhibit immune-modulatory, anti-inflammatory, antioxidant, and blood circulation-promoting properties,
which help alleviate the adverse reactions associated with chemotherapy and radiotherapy, ultimately improving
patients’ quality of life. Despite these benefits, the active components and molecular mechanisms underlying
the anticancer effects of CHMs remain poorly understood. Further research is needed to elucidate their efficacy
and identify their active ingredients. High-throughput in vitro gene expression profiling screening of CHMs
can provide insights into their effects on cancer cells and associated signaling pathway alterations, advancing
our understanding of their anticancer mechanisms. In summary, CHMs exert significant anticancer effects
by modulating multiple signaling pathways and exhibiting diverse pharmacological activities. Continued
investigation into their active components and molecular mechanisms is essential for the development of novel
anticancer drugs and innovative therapeutic strategies for liver cancer.

Identification of core hub genes and proteins from integrated omics analysis

In this study, we employed transcriptomic and proteomic analyses to identify specific hub genes regulated by five
CHM candidates in liver cancer, revealing novel targets beyond broadly established pathways. These candidates
significantly modulated genes involved in key pathways, including AMPK, ErbB, TNF, apoptosis, p53, cGMP-PKG,
and cytokine-cytokine receptor interactions. Key genes affected included CTH, AKR1B10, AOX1, AREG, ATPIBI,
CA9, FOSL1, GDF15, HMGCR, JUN, LCN2, MVK, RDH10, and THBS1. Among these, AKR1B10, AOX1, ATP1BI,
CA9, HMGCR, MVK, RDH10, and THBS1 were downregulated, while the remaining six genes were upregulated.

Our analysis identified AKR1BIO as a key hub gene downregulated by Pinus massoniana Lamb. and
Commelina communis Linn. This gene, encoding an aldehyde-ketone reductase, is uniquely regulated in our
study and plays a critical role in detoxification and carcinogenesis. Specifically, it modulates the retinoic acid
signaling pathway by converting retinal to retinol, and its downregulation may disrupt retinoic acid availability,
thereby influencing liver cancer cell behavior™®. Proteomic validation confirmed the consistent downregulation
of the corresponding protein 060218, underscoring its potential as a novel therapeutic target.

HMGCR emerged as another hub gene, downregulated by Kaempferia galanga Linn. While HMGCR is known
for its role in the mevalonate pathway, our findings highlight its specific regulation in liver cancer by CHMs. The
downregulation of HMGCR may suppress cancer progression by inhibiting cholesterol and isoprenoid synthesis,
essential for malignant cells**#!. Importantly, we link this to AMPK-mediated effects, but our data suggest a unique
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regulatory mechanism involving the HMGCR-p38 MAPK-GSK3B axis, which enhances antitumor immunity®2. The
proteomic data for protein P04035 corroborate this regulation.

THBS1 was identified as a central hub gene downregulated by Kaempferia galanga Linn. and Commelina communis
Linn. Beyond its known role in p53 signaling, our analysis reveals its unique involvement in TGF-f interactions in
the context of CHM treatment. Silencing THBSI inhibits liver cancer cell proliferation and invasion®*3%. and our data
suggest that its downregulation by CHMs may mitigate liver fibrosis and cancer progression by specifically blocking
TGF- signaling®!. The corresponding protein P07996 shows consistent downregulation, validating THBSI as a novel
target. These findings underscore the ability of CHMs to target specific hub genes such as AKR1B10, HMGCR, and
THBS1, which are critically involved in liver cancer progression. By focusing on these novel targets, our study provides
original insights into the mechanistic actions of CHMs beyond conventional pathways.

Our integrated transcriptomic and proteomic analysis identified five traditional Chinese medicines (TCMs)—
Amomum compactum Solander ex Maton., Pinus massoniana Lamb., Commelina communis Linn., Mahonia fortunei
(Lindl.) Fedde, and Kaempferia galanga Linn. —with potential anti-hepatocellular carcinoma (HCC) activity. Moving
beyond generalized pathway descriptions, we focused on specific hub genes validated by this multi-omics approach.
Potential medicinal plants were screened using deep learning and positive drug comparisons, while functional analysis
and weighted gene co-expression network analysis (WGCNA) pinpointed 40 core genes for further validation.
Critically, proteomic data confirmed consistent expression trends for 14 corresponding gene-protein pairs. Notably,
the significant downregulation of key hub genes, including AKR1B10, HMGCR, and THBS1, was strongly associated
with the suppression of HCC cell proliferation and the induction of apoptosis. Thus, our study leverages a robust data-
driven framework to directly link the cooperative regulation of these specific hub genes to the anti-HCC effects of the
identified TCMs, providing novel, mechanistic insights into their mode of action.

Conclusions

In this study, we developed an integrated drug discovery platform synergizing big data-driven computational
modeling with high-throughput functional genomics to systematically identify anti-cancer CHMs and delineate their
molecular targets. By leveraging machine learning algorithms trained on multi-omics datasets and coupling them
with high-content screening, this framework accelerates the discovery of novel therapeutic candidates. Crucially,
our work bridges the gap between CHM’s empirical knowledge and modern precision medicine by enabling data-
driven rationalization of herbal medicine’s pharmacological potential, thereby transforming traditional resources
into digitized, analyzable assets. The identified CHMs and their associated targets offer mechanistic insights into
CHM’s anti-tumor activity while providing a blueprint for repurposing natural products in oncology. This paradigm
exemplifies how interdisciplinary approaches can unlock the untapped value of traditional medicine in the era of
artificial intelligence and systems biology, ultimately advancing both cancer research and global drug discovery
pipelines.

Abbreviations
Abbreviations in this study are provided in Table 3.
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Abbreviation Full term

CHM Chinese herbal medicine

TGF-p Transforming growth factor-beta signaling pathway

HCC Hepatocellular carcinoma

ESCC Esophageal squamous cell carcinoma

DLBCL Diffuse large B-cell lymphoma

MAPK Mitogen-activated protein kinase signaling pathway

NF-«B Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway
TNF Tumor necrosis factor

IL-17 Interleukin-17

cAMP Cyclic adenosine monophosphate

cGMP-PKG Cyclic guanosine monophosphate-protein kinase G

p53 Tumor protein p53

PI3K/AKT Phosphoinositide 3-kinase/protein kinase B

AMPK AMP-activated protein kinase

RIG-I-like Retinoic acid-inducible gene I-like

NOD-like Nucleotide-binding oligomerization domain-like

PD-L1 Programmed death-ligand 1

Toll-like Toll-like receptor

JAK-STAT anus Kinase-Signal transducer and activator of transcription
VEGF Vascular endothelial growth factor

Wnt Wingless/integrated

EGFR Epidermal Growth Factor Receptor

AP-1/BTG Activator protein 1/B-cell translocation gene signaling pathway
DMSO Dimethyl sulfoxide

DMEM Dulbeccos modified eagle medium

FBS Fetal bovine serum

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay
BRPS Bicinchoninic acid reducing protein assay
Annexin-VFITC/PI | Annexin V-fluorescein Isothiocyanate/propidium iodide staining
DEG Differentially expressed genes

DEP Differentially expressed protein

GO Gene ontology

KEGG Kyoto encyclopedia of genes and genomes

WGCNA Weighted gene coexpression network analysis

SDC Sodium deoxycholate

BCA Bicinchoninic acid

TCEP Tris (2-carboxyethyl) phosphine

CAA Chloroacetamide

DIA Data-independent acquisition

LSDs Least significant differences

TME Tumor microenvironment

PKAs Protein kinases

CAFs Cancer-associated fibroblasts

EPACs Exchange proteins activated

NAFLD Nonalcoholic fatty liver disease

EMT Epithelial-mesenchymal transition

PCA Principal component analysis

Table 3. List of abbreviations.

Data availability
Transcriptomic data has been uploaded to the National Center for Biotechnology Information (NCBI) Sequence
Read Archive team for facilitating the deposition of transcriptomic data (Accession number: PRJNA1115821).
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the iProX
partner repository (https://www.iprox.cn/page/SSV024.html;url=1749719046099GmMC,password: cxyp)
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