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Hepatocellular carcinoma (HCC) poses a significant global health burden with limited therapeutic 
efficacy. Chinese herbal medicines (CHMs) offer multi-target potential, yet their systematic screening 
and mechanistic elucidation remain challenging. We established a high-throughput multi-omics 
platform integrating transcriptomics, proteomics, and deep learning (autoencoder and multiple 
kernel learning) to screen 187 medicinal plants. Five CHMs candidates were identified and shown 
to modulate hub genes (e.g., AKR1B10, HMGCR, THBS1) and key pathways (TNF/IL-17/MAPK, 
apoptosis, ferroptosis). Proteomic validation and functional assays confirmed their roles in suppressing 
proliferation, migration, and inducing apoptosis in HCC cells. This study provides a robust, data-driven 
pipeline for natural anti-HCC drug discovery, linking specific hub genes to CHM efficacy and offering 
novel insights into precision ethnopharmacology.
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Cancer persists as a major cause of global mortality, with hepatocellular carcinoma (HCC) posing a significant 
public health burden. In 2022, HCC was responsible for approximately 866,136 new cases and ranked as the 
third leading cause of cancer-related deaths worldwide, exhibiting a disproportionately high incidence in Asia, 
particularly in China1. Current standard treatments—including surgical resection, transplantation, tyrosine 
kinase inhibitors, and immunotherapy—are often compromised by drug resistance, systemic toxicity, and 
metastatic recurrence2. These challenges highlight the urgent need for novel therapeutic strategies that offer 
improved efficacy and reduced side effects.

Chinese herbal medicine (CHM) has gained increasing attention as a complementary modality due to its 
multi-component, multi-target nature, which may synergize with conventional therapies to alleviate toxicity 
and enhance clinical outcomes3,4. Numerous medicinal plants, such as Zanthoxylum bungeanum Maxim., Salvia 
miltiorrhiza Bunge., Panax ginseng., Euphorbia pekinensis Rupr., Forsythia suspensa., Aristolochia debilis Siebold. 
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& Zucc, Crataegus pinnatifida Bunge. among others, have shown anticancer potential. Bioactive constituents 
including terpenoids, flavonoids, alkaloids, and quinones exert antitumor effects through the modulation 
of apoptosis, cytokine signaling, and metabolic pathways5,6. However, the systematic identification of active 
compounds and their mechanisms of action remains challenging, necessitating advanced and efficient screening 
platforms.

High-throughput transcriptomic and proteomic technologies have revolutionized natural product research by 
enabling comprehensive profiling of gene expression and protein interactions, thus accelerating the elucidation 
of phytochemical mechanisms7,8. The integration of machine learning further augments the predictive power 
of omics data, as evidenced by recent studies applying single-cell RNA sequencing and xenograft models to 
evaluate drug responses,9–11 In particular, deep learning (DL) approaches such as autoencoders (AE) and 
multiple kernel learning (MKL) have emerged as powerful tools for extracting meaningful biological patterns 
from complex datasets, facilitating drug repositioning and mechanistic clustering12,13. For example, a dual-omics 
screening platform applied to breast cancer revealed herbal extracts that modulate apoptosis and NF-κB/MAPK 
signaling, enabling prioritization of promising candidates10. Similarly, integrated machine learning identified 
neuroactive drugs targeting a Ca2⁺-dependent AP-1/BTG pathway in glioblastoma, illustrating the potential of 
computational approaches in uncovering novel therapeutic vulnerabilities11.

In this study, we employed an integrated DL-enhanced omics framework to screen 187 medicinal plant 
extracts for anti-HCC activity. By combining high-throughput transcriptomics and proteomics with AE and 
MKL modeling, we identified conserved regulatory modules and hub genes associated with metastasis and 
inflammation. Proteomic validation and functional assays further confirmed the therapeutic potential of 
selected candidates. Our work establishes a robust, data-driven pipeline for natural anticancer drug discovery 
and provides new insights into the mechanistic basis of CHM in liver cancer treatment.

Material and methods
Preparation and selection of medicinal plant extracts
In this study, the initial selection of medicinal plants was based on literature reports retrieved from databases 
such as PubMed and CNKI. Plants with preliminary documented anti-inflammatory or antitumor activities, or 
those known to be rich in bioactive constituents such as alkaloids, terpenoids, and flavonoids, were included 
(Supplementary Table 1). The selected medicinal plants were procured and processed into fine powder by the 
Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement. Each sample was assigned 
a unique identifier according to the extraction method: sample “W” was prepared by hot water immersion 
followed by freeze-drying; sample “GX” was obtained through ethanol extraction, purification via resin column 
chromatography, and vacuum concentration; and sample “S” was produced by supercritical CO₂ extraction 
followed by sequential solvent extraction and vacuum drying. Detailed extraction procedures are provided in 
Supplementary Fig. 6, 7, 8. Ten commercial anticancer drugs were used as positive controls (Table 1). All samples 
and controls were dissolved in dimethyl sulfoxide (DMSO) for bioactivity assays evaluating anticancer efficacy. 
Based on their pharmacological profiles, the medicinal plants were categorized into 20 groups, with group details 
available in Supplementary (Table 1). The overall workflow for screening and validation of medicinal plants in 
this study is summarized in (Supplementary Fig. 1).

Cell culture and drug preparation
The HepG2 cell line was provided by the Key Laboratory of Phytochemistry and Natural Medicines, Kunming 
Institute of Botany, Chinese Academy of Sciences, and maintained in Dulbecco’s Modified Eagle Medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS) and incubated at 37  °C containing 5% CO₂. 
Subculturing was performed when the cells reached 80–90% confluency, using 0.25% trypsin for detachment. 
Cell viability was assessed 24 h post-treatment using a standard viability assay (Supplemental Fig. 1). Initial 
screening of the 187 medicinal plant extracts was performed at a concentration of 100 mg/mL, with subsequent 
concentration adjustments based on viability thresholds. Screening concentrations for transcriptome sequencing 
were determined based on cell viability approaching 80%. In this study, the anticancer drug was used as the 
positive control group, the medicinal plant was the experimental group, and the negative control was treated 
with 0.1% DMSO.

Positive drug Gradient dose Starting dose Product code Specification (%) Manufacturer

Doxorubicin hydrochloride 0.1/1/5/10(uM) 20 mM S17092-25 mg 98 Shanghai yuanye Bio-Technology Co., Ltd

Docetaxel 0.1/1/10/100/1000(uM) 20 mM D807092-250 mg 98 Guangzhou BaoHui Biomedical Technology Co., Ltd

Gefitinib 0.1/1/5/10(uM) 20 mM G828597-1 g 98 Shanghai Macklin Biochemical Co., Ltd

HHT (Homoharringtonine) 0.1/1/10/100(nM) 20 mM H111922-20 mg  ≥ 98 Shanghai Aladdin Biochemical Technology Co.,Ltd

gemcitabine 1/10/50/100(nM) 20 mM G824361 99 Shanghai Macklin Biochemical Co., Ltd

Cisplatin 0.01/0.1/1/5/10/20(uM) 20 mM C14330-500 mg 99 Shanghai JiZhi Biochemical Technology Co., Ltd

Lenvatinib 0.1/1/10/50(uM) 20 mM E856914-1 g 99 Shanghai Macklin Biochemical Co., Ltd

Benzenepropanoic acid 0.001/0.0002/0.00004/0.000008(uM) 20 mM P106869-250 mg 99 Shanghai Aladdin Biochemical Technology Co.,Ltd

Sorafenib 0.1/1/5/10(uM) 20 mM S125098-1 g  ≥ 99 Shanghai Aladdin Biochemical Technology Co.,Ltd

Cabozantinib 5000/1000/100/10/1/0.1/0.01(nM) 500uM S41123-10 mg  ≥ 99 Shanghai yuanye Bio-Technology Co., Ltd

Table 1.  Positive control drug information.
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Cellular MTT assay
HepG2 cells were seeded at 5 × 103 cells/well in 96-well plates, incubated for 24 h, and treated with anti-cancer 
drugs (5 μg/mL) as positive control,while, gradient concentrations of medicinal plants as experimental group. 
After 24 h, cell viability was assessed using MTT assay14, with absorbance measured at 490 nm. Apoptosis was 
evaluated using Annexin V-FITC/PI staining followed by flow cytometry analysis15. (Supplemental Fig. 3E).

Wound healing assay
HepG2 cells were cultured in 6-well plates. When the cells reached almost 90% confluence, they were scratched 
directly. The cells were then treated with different concentrations of stigmas for 24 h16. Cell migration activity was 
photographed at 0 and 24 h, and the quantified values were compared via ImageJ (version 2.0.0) (Supplemental 
Fig. 3D).

Transcriptomic sequencing analysis
Total RNA was extracted using the FastPure Mini Kit, with RNA integrity confirmed by NanoDrop 2000 and 
Agilent 2100 Bioanalyzer (RIN > 8, OD260/280: 1.8–2.0). cDNA libraries were prepared using the MGIEasy kit 
and sequenced on the BGISEQ-2000 with 150 bp paired-end reads. Sequencing data underwent quality control 
using FastQC and Trimmomatic17,18, and detailed quality metrics were provided in (Supplemental Table 2). 
After quality control and adapter trimming, cleaned data were deposited in the NCBI, the data has not been 
released. (Accession number: PRJNA1115821)19. Positive controls included conventional cancer drugs, while 
DMSO treated samples served as negative controls.

RNA-seq data were analyzed using the “New Tuxedo” pipeline HISAT20 for alignment, String Tie21 for 
transcript assembly/quantification, and DESeq2 for differential expression analysis, with differentially expressed 
genes (DEGs) defined as p ≤ 0.05 and |log2FC|≥ 122. A comparative analysis was conducted involving 187 
medicinal plant groups alongside positive and negative controls to identify genes associated with antitumor 
activity. Gene Ontology (GO) enrichment analysis of differentially expressed proteins (DEPs) and DEGs was 
performed using the GOseq R package, based on the Wallenius noncentral hypergeometric distribution ​(​​​h​t​t​p​:​/​
/​g​e​n​e​o​n​t​o​l​o​g​y​.​o​r​g​/​​​​​)​​​2​3​​​. Pathway analysis of DEPs and DEGs was conducted using the KEGG database ​(​​​h​t​t​p​:​/​/​w​
w​w​.​k​e​g​g​.​j​p​/​​​​​)​​​2​4​​​, with statistical enrichment of DEGs in KEGG pathways assessed via KOBAS software25. Gene 
ontology and KEGG pathway analyses (cluster Profiler) highlighted inflammation and metastasis pathways, with 
expression visualized via TBtools heatmaps.

Machine learning-based screening of medicinal plants
This study utilized 178 transcriptomic profiles derived from differential gene expression analysis—each 
containing gene-level statistics such as logFC, P-value, and adj.P. Val—along with a consolidated gene expression 
matrix as input. An Autoencoder (AE) model was trained to comprehensively evaluate the mechanistic similarity 
between each medicinal plant extract and sorafenib12. The autoencoder was constructed with a symmetrical 
encoder–decoder architecture. The encoder network nonlinearly transformed high-dimensional input logFC 
feature vectors into a low-dimensional latent space representation. The decoder network then attempted to 
reconstruct the original input from this latent representation. The model was trained by minimizing the mean 
squared error between the input and reconstructed output.

Subsequently, multiple kernel learning (MKL) was applied to integrate a linear kernel based on the original 
features and a radial basis function (RBF) kernel derived from the latent features, thereby identifying an 
optimal linear combination13. The similarity between each plant extract and sorafenib was quantified as the 
corresponding element in the fused kernel matrix. Results from both analytical approaches are presented in 
Supplementary Fig. 5.

Weighted gene co-expression network analysis (WGCNA)
The WGCNA package in R was used to construct a weighted co-expression network, identifying 18 modules with 
a soft threshold of b = 11 (scale-free R2 = 0.8) and merging similar modules at MEDiss Thres = 0.25. Functional 
enrichment analysis of these modules revealed key cancer-associated pathways, with hub genes visualized in 
Cytoscape (v3.8.1)26,27 using weight thresholds of > 0.035 (Orange module) and > 0.24 (blue module). These hub 
genes may represent potential therapeutic targets for cancer. Supplemental Table 3 lists analysis steps, software 
and main scripts in our pipeline.

Proteomic analysis
Proteomic analysis was conducted on fractions treated with 2% sodium deoxycholate (SDC) and 100  mM 
Tris–HCl (pH 8.5), followed by sonication and centrifugation at 12,000 × _g for 5 min. Protein concentrations 
were determined using the bicinchoninic acid (BCA) assay. Subsequently, proteins were reduced with tris 
(2-carboxyethyl) phosphine (TCEP) and alkylated with chloroacetamide (CAA) at 37 °C for 1 h. After dilution 
to < 0.5% SDC, proteins were digested with trypsin at a 1:50 enzyme-to-protein ratio at 37_°C overnight.

Peptide samples were analyzed using an Orbitrap Astral mass spectrometer coupled with a Vanquish NEO 
LC–MS system. Separation was performed on a C18 analytical column (150  μm × 150  mm) with a 14-min 
gradient of mobile phases A (0.1% formic acid) and B (0.1% formic acid, 80% acetonitrile) at 1.8 μL/min. Data 
were acquired in data-independent acquisition (DIA) mode.

Mass spectrometry data were analyzed using Proteome Discoverer software with UniProt’s Human Proteome 
Reference Database. Key parameters included variable modifications (methionine oxidation, N-terminal 
acetylation), fixed modification (cysteine carbamidomethylating), and trypsin/P digestion. Proteins with 
|log2FC|≥ 1.5 and p ≤ 0.05 were identified as significantly differentially expressed proteins (DEPs). Data were 
analyzed using GraphPad Prism 7, with three technical replicates per sample. Mean comparisons were made 
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using least significant differences (LSDs), with statistical significance thresholds set at **** p < 0.0001, *** 
p ≤ 0.001, ** p ≤ 0.01, and * p ≤ 0.05.

Results
Transcriptomics combined with deep learning to screen potential anti-cancer CHMs
In this study, we sequenced 606 cDNA libraries, resulting in approximately 9.69 Tb of raw data, which included 
6,456,873,861 reads with an average read length of 100 bp (Supplemental Table 2). The total sequencing reads 
(9.69 Tb and 64,568,738,618 reads) have been submitted to the NCBI Sequence Read Archive. The fraction with 
the largest number of DEGs was Pinus massoniana Lamb., which comprised 1,379 DEGs, of which 696 were 
upregulated and 683 were downregulated (Supplemental Fig. 2A). The highest agreement between the number 
of DEGs and positive controls was Amomum compactum Solander ex Maton , which comprised 336 upregulated 
DEGs and 5 downregulated DEGs. (Supplemental Table 4). The top 20 CHMs screened by the two methods were 
obtained according to the deep learning AE and MKL (Supplemental Fig. 5).The results from above conditions, 
along with the MTT results, were utilized to comprehensively screen five candidate CHMs (Fig. 1A,D). Detailed 
information of the five CHMs are provided in (Table 2). All these species contain anti-inflammatory compounds 
that have demonstrated anticancer effects in previous studies.

GO & KEGG pathway analysis implicated DEGs for tumor progression and metastasis
Throughout the course of its development, the recruitment of resident or circulating immune cells primarily 
controls the tumor microenvironment, which is crucial to its process28,29. We separated the gene sets in the 
positive control alignment analysis results into up-regulated and down-regulated gene sets for KEGG analysis to 
determine the biological pathways, networks, and functional categories of the DEGs. In each treatment group, 
the genes whose expression was markedly upregulated were primarily involved in proinflammatory pathways, 
carcinogenic transformation, tumor necrosis, and apoptosis. Previous research has demonstrated the importance 
of biological processes with proinflammatory effects in the development of tumors and cancer30–32; one such 
biological process in cancer metastasis is transcriptional regulation.33. Additionally, key pathways, such as the 
TNF signaling pathway, the IL-17 signaling pathway, cytokine-receptor interactions, the transcriptional signaling 
pathway, dysregulation in cancer, and the MAPK signaling pathway, have been identified as being involved in 
proinflammatory and metastatic processes (Fig. 1C). Interestingly, they are somewhat related. TNF-α has been 
shown to trigger apoptosis in specific pathological circumstances, and the exochemical function of major TNFs 
is accomplished by activating MAPK prosurvival kinase activity and NF-kappa B34,35. The expression of TNFα, 
IL-6, and other inflammatory cytokine genes can be increased by activating NF-kappa B.36. In addition to the 
activation signal of the innate IL-17 family of proinflammatory factor NF-kappa B, the NF-kappa B and MAPK 
pathways are the primary activators of the IL-17 signaling pathway. Many studies have demonstrated that IL-
17A can activate a range of MAPKs and that the MAPK pathway is crucial for controlling mR and the stability 
of NA transcripts, which in turn regulates the expression of IL-17A-induced genes37. Similarly, transcriptional 
dysregulation also works with other pathways, and the immune response transcription regulator NF-kappa B 
is dysregulated with respect to genes and transcription factors that are chronically active in the inflammatory 
process of cancer38.

Among the set of down-regulated genes, CHM were identified to be involved primarily in the cAMP signaling 
pathway, steroid biosynthesis, the TGF-β signaling pathway, the p53 signaling pathway, and the cGMP-PKG 
signaling pathway (Fig. 1C). Notably, the cAMP signaling pathway serves as a pleiotropic second messenger 
within the tumor microenvironment (TME). Downstream effectors of cAMP include cAMP-dependent protein 
kinases (PKAs), exchange proteins activated by cAMP (EPACs), and various ion channels. While cAMP 
can activate PKA or EPAC to promote cancer cell growth, it may also inhibit cell proliferation and survival, 
depending on the specific environment and cancer type. Tumor-associated stromal cells, such as cancer-
associated fibroblasts (CAFs) and immune cells, can release cytokines and growth factors that modulate cAMP 
production within the TME. Recent studies indicate that targeting cAMP signaling within the TME represents 
a promising avenue for cancer therapy39. Small molecule drugs that inhibit adenylyl cyclase and PKA have been 
demonstrated to suppress tumor growth. The role of steroid biosynthesis in liver cancer involves the metabolism 
of cholesterol and bile acids, which significantly influence cell proliferation, differentiation, metabolism, and 
the immune response. Cholesterol is recognized as a key lipotoxic molecule in the progression of nonalcoholic 
fatty liver disease (NAFLD) to liver cancer, as it facilitates the proliferation of liver cancer cells via the mTOR 
signaling pathway. The TGF-β signaling pathway plays a complex role in liver cancer development, functioning 
both as a tumor suppressor and as a promoter of tumor metastasis and invasion40. In HCC, the TGF-β signaling 
pathway may promote HCC progression by influencing epithelial-mesenchymal transition (EMT) and the tumor 
microenvironment. Additionally, the p53 signaling pathway is crucial for regulating the cell cycle, promoting 
apoptosis, and maintaining genomic stability41. In the context of liver cancer, activation of the p53 signaling 
pathway can induce apoptosis in cancer cells and inhibit their proliferation.

The five CHMs were enriched primarily in the extracellular space and extracellular region in the cellular 
component category, and they were strongly correlated with the extracellular vesicle and extracellular exosome 
categories according to the GO enrichment analysis (Fig. 1B, Supplemental Fig. 2B). The activity of signaling 
receptor regulators is strongly correlated with functional processes. Among these biological processes, 
Kaempferia galanga Linn. is also linked to cell migration. The biological process pathway is associated primarily 
with the regulation of apoptosis, programmed cell death, and small molecule metabolism. The strong correlations 
between the regulation of angiogenesis, epithelial development, and cell motility imply that Kaempferia galanga 
Linn. may be crucial in regulating the process by which cancer cells spread.
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Gene expression and regulation of enrichment in five medicinal plants
Among the core pathways of the five CHMs, IL6, LIF, ATF4, JAG1, JUN, and CXCL2/3 were significantly 
upregulated in the three-candidate CHMs associated with the TNF signaling pathway. In the IL-17 signaling 
pathways, IL6, FOSL1, LCN2, and JUN were commonly significantly upregulated across the four CHMs 
candidates. Among the five CHM candidates involved in the apoptosis signaling pathway, ATF4, GADD45A, 
DDIT3, and BBC3 were upregulated. Additionally, ERN1 was significantly upregulated in Amomum compactum 
Solander ex Maton., Pinus massoniana Lamb., and Commelina communis Linn., whereas the TNFRSF10B gene 
was upregulated exclusively in Amomum compactum Solander ex Maton. The genes encoding IL32, CXCL2/3, 

Fig. 1.  Difference analysis, functional analysis and heatmap of key gene expression. (A) the variance analysis 
volcano map, and the Y axis is the average log2FC. a measure that indicates whether the statistical test is 
statistically significant; the abscissa is indicated for each fraction-treated group and the positive drug group, 
and the identified genes are the core genes screened in each treatment group. The orange dots in the figure are 
the up-regulated genes for which p < 0.05 and |log2fc|≥ 1, the blue dots in the figure are the down-regulated 
genes for which p < 0.05 and |log2fc|≥ -1, and the other genes that do not meet the up-regulation and down-
regulation thresholds are the gray dots in the figure. (B) the GO enrichment of differential genes, the outermost 
circle is GO term, and the size of the middle point is the gene count value. (C) the changes in gene expression 
in the core pathway after different fraction treatments. The line chart on the left is a clustering of all core genes, 
and 8 clusters are determined according to the inflection point. Gene expression and function classification 
diagram of the pathways associated with the fraction experimental group, blank control group and positive 
control group, and the violin diagram on the left represents the proportion of gene expression of each 
component in the cluster. The intermediate heatmap shows the change in gene expression of each component; 
on the right is a comment on the cluster function. (D) Deep learning and positive control comparison to 
screen medicinal plants, the relationship between three sets of conditions, one of which represents a set, and 
the number represents the number of intersecting elements in each region.
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LIF, GDF15, NHBE, and BMP6 were upregulated in pathways related to cytokine and receptor interactions. 
Notably, the IL15RA gene was uniquely upregulated among the top 10 contributors. Furthermore, RELB, 
FGF21, GADD45A/B, AREG, and DUSP4/5 were upregulated across the five CHMs. (Supplemental Fig. 2C) 
summarizes the key genes associated with the five candidate CHMs and their linkages to core pathways, while 
(Supplemental Fig. 9) illustrates the expression of key genes in the different treatment groups. The expression 
trends of most genes in the fraction treatment group were consistent with those in the positive control group, 
suggesting that the distillation group and anticancer drugs share common targets. Notably, some common 
genes have been implicated in the inflammatory processes or metastasis of cancer, particularly in liver cancer 
development. All the common genes analyzed exhibited differential expression across various CHMs treatments, 
with IL6, LIF, ROSL1, and DUSP4/5 showing significant upregulation (Supplemental Fig. 9). The enrichment 
analysis of the down-regulated genes revealed that the genes downregulated by traditional Chinese medicine, 
and the positive control drug were associated with several pathways, including the aldosterone-regulating 
sodium reabsorption pathway, cAMP signaling pathway, TGF-β signaling pathway, and folic acid biosynthesis 
pathway. Notably, genes such as AKR1B1042 have been shown to inhibit the proliferation and metastasis of HCC 
by modulating the PI3K/AKT pathway. Additionally, the RDH10 gene is considered a potential target for glioma 
treatment; its downregulation can impede tumor development by influencing various signaling pathways and 
cellular processes, such as inhibiting cell proliferation, regulating apoptosis, and affecting cell migration and 
invasion43. The HMGCR gene44, a key rate-limiting enzyme in the mevalonate pathway, is closely associated 
with tumor occurrence and progression, with studies indicating that HMGCR knockdown inhibits the growth, 
migration, and clonal formation of ESCC cells. Furthermore, downregulation of ATP1B1 has been shown to 
inhibit the proliferation, migration, invasion, and adhesion of DLBCL cells45. The downregulation of the MVK 
gene may influence cancer progression through multiple mechanisms, including reducing tumor risk, affecting 
cyclin expression, regulating cholesterol metabolism pathways, and modifying the tumor microenvironment46. 
The significant downregulation of these genes suggests that the Chinese herbal fraction can inhibit tumor cell 
proliferation and migration by regulating gene expression across various signaling pathways, thus providing a 
new foundation for future research on the identification and isolation of effective compounds.

Weighted gene co-expression network analysis identifies key modules associated with 
traditional Chinese medicine efficacy
To investigate the relationship between the efficacy of Chinese medicine ingredients and module characteristic 
genes (MEs), a weighted co-expression network was constructed, and co-expression modules were identified 
via the “WGCNA” package in R. The sample dendrogram and feature heatmap are presented in (Supplemental 
Fig.  3C). In this study, a power of b = 8 was selected to achieve high scale independence and low average 
connectivity (Supplemental Fig. 3A). The dissimilarity threshold between modules was set at 0.2, resulting in the 
generation of 23 distinct modules (Fig. 2A). The module relationship diagram revealed that Pinus., Commelina., 
Kaempferia. and Amomum. were strongly correlated with the blue module and that Mahonia. was significantly 
correlated with the orange module (Supplemental Fig.  3B). These findings suggest that these modules are 
effective for identifying hub genes related to cancer staging. Furthermore, the independence of each module 
indicates both high scale independence and differential gene expression among the modules.

Identification of hub genes in selected modules
Typically, genes included in co-expression modules and exhibiting high connectivity are selected as hub genes. 
In this study, we identified 48 central genes (blue module: 16, orange module: 20), as shown in (Fig. 2C–D) and 
(Supplemental Table 5). These genes were screened from the blue module under the conditions of degree ≥ 20 
and weight ≥ 0.1. After the data were imported into Cytoscape (v3.8.1), a total of 72 nodes were identified. 
Among these nodes, two upregulated genes are indicated by red triangles, whereas 14 downregulated genes 
are marked by green circles in (Fig. 2C). The analysis focused primarily on the AMPK pathway and the amino 
acid synthesis pathway. The orange module identified 81 nodes (Fig.  2D), of which three core genes were 
significantly upregulated and 17 genes were downregulated, with primary enrichment in the RIG-I-like receptor 
signaling pathway, the Toll-like receptor signaling pathway, the NOD-like receptor signaling pathway, the PD-L1 
expression and PD-1 checkpoint pathways in cancer, and the chemokine signaling pathway.

KEGG enrichment of modules
The genes in the two core modules were screened based on the criterion of module membership (MM) > 0.8 
to obtain the core gene set (Supplemental Fig.  3B). The genes within each module were extracted, and a 
KEGG pathway was constructed. As illustrated in (Fig. 2C–D), the genes in the blue module were enriched 
predominantly in pathways such as the TNF signaling pathway, necroptosis pathway, p53 signaling pathway, 

Latin name Family Genus Up-regulation genes Down-regulation genes Efficacy

Amomum compactum. Solander ex Maton Zingiberaceae Amomum 473 624 Qi-regulating drug

Pinus massoniana Lamb Pinaceae Pinus 696 683 Qi-regulating drug

Commelina communis Linn Commelinaceae Commelina 641 448 Heat-clearing and dampness-eliminating drug

Mahonia fortunei (Lindl.) Fedde Berberidaceae Mahonia 561 394 Heat-clearing and dampness-eliminating drug

Kaempferia galanga Linn Zingiberaceae Kaempferia 273 267 Qi-regulating drug

Table 2.  List of candidate CHMs.
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apoptosis pathway, and ferroptosis pathway, all of which play significant roles in cancer development. Notably, 
p53 is a tumor suppressor that is crucial for inducing ferroptosis and influencing the onset and progression 
of liver cancer. P53 enhances the sensitivity of liver cancer cells to ferroptosis inducers by transcriptionally 
inhibiting the expression of the ferroptosis-related protein SLC7A1147 (Fig. 2B). The genes in the orange module 
are involved primarily in the NOD-like receptor signaling pathway, the JAK-STAT signaling pathway, the RIG-
I-like receptor signaling pathway, necroptosis, and the TNF signaling pathway, all of which are vital for cancer 
development (Fig. 2B).

MTT, apoptosis, and migration verification
To further verify the stability of the inhibitory effect of Chinese herbal fractions on the growth of cancer cells, we 
conducted an MTT gradient experiment. The results demonstrated that the inhibitory effect of the distillation 
mixture on liver cancer cells progressively increased with increasing dose, with Pinus massoniana Lamb. and 
Amomum compactum Solander ex Maton. exhibit the m ost pronounced effects (Fig. 2E). Additionally, apoptosis 
assays confirmed the apoptotic effects of the CHMs fractions on cancer cells. (Fig.  2F–G) show the rates of 
apoptosis in each treatment group at the transcriptome concentration (Survival ≥ 80%) and IC50concentration. 
The fraction treatment groups exhibited varying degrees of apoptosis promotion, with trends consistent with 
those observed in the positive control group treated with sorafenib. Notably, the low-concentration groups of 
Amomum compactum Solander ex Maton. and Kaempferia galanga Linn. demonstrated the greatest promotion of 
apoptosis, with an apoptosis rate of 46% (Fig. 2F; Supplemental Fig. 3D). The apoptosis rates of Pinus massoniana 
Lamb., Commelina communis Linn., and Mahonia fortunei (Lindl.) Fedde., Amomum compactum Solander ex 
Maton. exceeded 50%, whereas the percentage of Commelina communis Linn. apoptotic cells reached 62.33%. 
The cell migration results are presented in (Fig. 2H; Supplemental Fig. 3E), which shows the state of cell migration 
from 0 to 24 h. Each fraction treatment clearly significantly inhibited cell migration, as indicated by the scratch 
width at 24 h being greater than or equal to that at 0 h. The histogram further corroborates that the trends in the 
fraction treatment groups align with those of the positive control group, with Commelina communis Linn., Pinus 
massoniana Lamb., and Mahonia fortunei (Lindl.) demonstrating superior inhibition of cell migration compared 
with the positive control. These cell experiments confirmed that the five distillation groups strongly promoted 
apoptosis and significantly inhibited cell migration in hepatoma cells.

Proteomics statistical analysis
Peptide Length Distribution: The mass spectrometry (MS1) scanning range typically spans 350–1500 m/z. Upon 
ionization, most peptides exhibit charge states of + 2, with some displaying + 3, + 4, and so forth, decreasing in 
sequence. The average molecular weight of amino acid residues in proteins is approximately 110  Da, which 
results in most detected peptides falling within the range of 7–27 amino acids (Supplemental Fig. 4A). Peptide 
number distribution: The relative abundance of a protein is typically greater in large-scale proteomic data with 
more protein data, and there is some positive correlation between the two. The reliability of the proteomics 
results at the protein level increases with the percentage of protein in the polypeptide. (Supplemental Fig. 4B). 
Distribution of Missed Cleavage Sites: To perform protein sample mass spectrometry before detection, trypsin is 
used to hydrolyze the protein enzymatically. For mass spectrometry, trypsin breaks down intact proteolysis into 
peptides of varying lengths by specifically hydrolyzing the arginine and lysine C-telopeptide bonds in proteins. 
A tiny percentage of peptides have one or two missed sites, whereas many detected peptides typically have 
no missed sites. (Supplemental Fig. 4C). In this investigation, (Supplemental Fig. 4D) displays the quantity of 
proteins and peptides in each sample. To assess the quantitative repeatability between replicate samples and the 
quantitative correlation between various sample groups, the Pearson correlation coefficient (R) between samples 
can be computed based on the quantitative data of each protein. In this project, (Supplemental Fig. 4, E) displays 
the quantitative correlation coefficient between pairs of all samples. Principal component analysis (PCA) is one of 
the most popular techniques for dimensionality reduction analysis. Proteins’ quantitative information is utilized 
as a variable for orthogonal transformation, and the quantitative information of many proteins is transformed 
into group variables to create PCA principal component analysis diagrams. These diagrams intuitively illustrate 
how the spatial distribution of data varies between samples. Various samples in the same group were clustered 
within a relatively concentrated range in this study (Fig.  3B), making them distinct from other data cluster 
groups.

Protein difference analysis and KEGG enrichment analysis
By conducting a database search on the raw mass spectrometry data, the detection signal intensity for each 
peptide can be obtained, allowing for the calculation of quantitative information corresponding to each protein. 
Following normalization of the results, quantitative comparisons of the same protein across different samples 
can be performed. Based on sample grouping, effective data screening and the filling of missing data enable 
the calculation of the protein quantitative ratio distribution within the samples of each comparison group. The 
statistics of the differential proteins in each fraction group are presented in (Fig. 3A). A comparative analysis 
between the fraction group and the blank control revealed a total of 8095 differentially expressed proteins, 
comprising 4264 upregulated proteins and 3,831 downregulated proteins. (Fig. 3C) displays the total differential 
proteins as well as the associated core differential proteins between each experimental group and the positive 
control group. KEGG analysis of these differentially expressed proteins revealed numerous pathways associated 
with cancer development, including necroptosis, the IL-17 signaling pathway, the TNF signaling pathway, the 
MAPK signaling pathway, and the p53 signaling pathway, among others. (Fig. 3D) indicates that the pathways 
most significantly enriched in the experimental group are the MAPK signaling pathway, the TNF signaling 
pathway, and apoptosis; the pathways significantly enriched among the top ten contributors include the p53 
signaling pathway and the cell cycle.
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Joint transcriptome‒proteome analysis
To further validate the screening of fractions, we present a comprehensive overview that spans from genes 
to proteins, integrating various data sources to increase the reliability and interpretability of our results. 
A nine-quadrant joint analysis of the transcriptome and proteome was conducted for each treatment group 
(Supplemental Fig. 4F). The differential gene and protein expression patterns observed in quadrants 1 and 9 
are inconsistent, suggesting the potential for deeper exploration at the posttranscriptional or translational level. 
Quadrants 2 and 8 illustrate the differential expression of genes without corresponding changes in proteins, 
indicating the possibility of posttranscriptional regulatory mechanisms. In contrast, quadrants 4 and 6 show 
differential expression of proteins without changes in the corresponding genes, warranting consideration of 
translation-level regulation or protein accumulation. All genes and proteins in the remaining five quadrants 
were not differentially expressed. Quadrants 3 and 7 revealed consistent trends in the changes in both genes and 
their corresponding proteins, indicating synchronous alterations at the transcriptional and translational levels. 
This aspect is a significant focus of our study.
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Further KEGG analysis was performed on the genes and corresponding proteins in quadrants 3 and 7. 
In particular, the genes and corresponding proteins in these quadrants were all upregulated, with the main 
enriched pathways closely linked to cancer progression, including the NOD-like receptor signaling pathway, 
cellular senescence, insulin resistance, the TNF signaling pathway, the IL-17 signaling pathway, necroptosis, 
and the VEGF signaling pathway (Fig. 3E). The ten genes and proteins upregulated by Commelina communis 
Linn. significantly converge in the ferroptosis pathway, leading to increased cell death, which in turn inhibits 
tumor cell proliferation, migration, and invasion. For example, they regulate GPX4 through Krüppel-like factor 
2 to prevent cancer cell migration and invasion48. KEGG analysis (Fig. 3F) of the significantly downregulated 
genes and corresponding proteins across the seven quadrants revealed substantial enrichment in pathways 
such as retinol metabolism, the cell cycle, AMPK signaling, metabolic pathways, and Rap1 signaling. Notably, 
Kaempferia galanga Linn. and Commelina communis Linn. significantly enriched in the focal adhesion pathway, 
which may inhibit the proliferation, migration, and invasion of tumor cells, thereby slowing tumor growth and 
metastasis49. Additionally, downregulation of the cGMP‒PKG signaling pathway in Commelina communis Linn. 
promoted cell apoptosis and inhibited cell growth. Furthermore, the downregulation of metabolic pathways, 
terpenoid backbone biosynthesis, and the AMPK signaling pathway may hinder the metabolic reprogramming 
of tumor cells, consequently slowing tumor growth and progression. This may also involve the inhibition of 
tumor cell growth through the disruption of metabolites and signaling pathways, thereby retarding tumor 
progression and metastasis50,51. These pathways are also significantly enriched in Amomum compactum Solander 
ex Maton., Mahonia fortunei (Lindl.) Fedde, and Pinus massoniana Lamb.

Discussion
CHM has a long history in treating and preventing malignant tumors, not only by directly inhibiting tumor 
growth but also by reducing the toxic side effects of radiotherapy and chemotherapy, improving patients’ quality 
of life, and enhancing survival rates52. With its unique dialectical and holistic approach, CHM offers a distinct 
perspective on disease management compared to Western medicine. However, the complexity and diversity of 
CHM formulations make determining their chemical composition highly challenging. Chemical composition 
analysis of medicinal plants is essential for elucidating the pharmacological effects and therapeutic mechanisms 
of CHM, providing a scientific basis for its clinical application. Key chemical constituents include Volatile oils, 
Alkaloids, Flavonoids, Polysaccharides, Tannins, and Saponins53–55, which exhibit diverse biological activities 
such as antibacterial, antitumor, anti-inflammatory, and antioxidant effects. For instance, Flavonoids have 
been shown to induce apoptosis and inhibit tumor cell proliferation56, while certain alkaloids disrupt tumor 
cell signaling pathways, suppressing tumor growth and metastasis57. Despite these advances, the chemical 
characterization of CHM remains a complex and time-intensive process, requiring the integration of multiple 
analytical techniques to identify active components and their mechanisms of action.

Chinese herbal medicines screened
Pinus massoniana Lamb. needles are rich in bioactive compounds such as Volatile oils, Flavonoids, 
Polysaccharides, and Lignans, which exhibit significant anticancer potential. Lignans demonstrate antitumor, 
antiviral, anti-inflammatory, and antioxidant properties, while also enhancing cardiovascular health58,59. 
Extracts obtained using petroleum ether and ethyl acetate show the most potent antitumor activity. Shikimic 
acid, another key compound, exhibits diverse pharmacological effects, including antitumor, antibacterial, and 
anti-inflammatory properties60. Proanthocyanidins, the primary active component in pine bark extract (PMBE), 
inhibit cancer cell growth in vitro by upregulating p53 and p21 to arrest the cell cycle and downregulating Bcl2 to 
induce apoptosis61. Additionally, Masson pine bark extract induces apoptosis and inhibits cancer cell migration, 
demonstrating antitumor activity against HepG2, HeLa, and S180 cells60,62,63.

Kaempferia galanga Linn. gained attention for their anticancer mechanisms, attributed to their rich chemical 
composition. Kaempferol, a flavonoid in Kaempferia galanga, inhibits the progression of liver, colon, lung, and 
ovarian cancers by inducing apoptosis, generating reactive oxygen species (ROS), and disrupting cell cycle and 
autophagy pathways. It targets key signaling pathways, including PI3K/Akt, EGFR, MAPK, and Wnt, with PI3K/
Akt regulation being particularly significant64–66. Similarly, gingerol, an active component of ginger, exhibits 

Fig. 2.  KEGG Analysis of Key Modules and Cytological validation. (A) showed the relationship between each 
module and the processing group; the leftmost color block represents the module, and the rightmost color 
bar represents the correlation range. In the middle part of the heatmap, the darker the color is, the greater 
the correlation. The numbers in each cell indicate relevance and significance. (B) the KEGG bubble diagram 
of the key genes in the blue module, and e shows the KEGG bubble diagram of the key genes in the orange 
module, where the abscissa is the Rich factor, the ordinate is the enrichment pathway, the darker the red, the 
more significant, and the bubble size is the number of genes in the pathway. (C–D) the network diagram of 
the core genes in the key module, where the dots represent the genes in the module (degree ≥ 20, weight ≥ 0.1), 
where the circles are the core genes (red is upregulated, and green is downregulated), and the pink square 
nodes are the pathways to which the core genes converge. (E) the trend of cell viability under the gradient 
concentration of each experimental group(D345-B: Pinus massoniana Lamb., D550-A: Mahonia fortunei 
(Lindl.) Fedde, GX0899-C: Amomum compactum Solander ex Maton. GX1084-C: Kaempferia galanga Linn., 
D303-A: Commelina communis Linn.). F-G: Bar graph of cell apoptosis at different concentrations, with the 
horizontal axis representing each treatment group and the vertical axis representing the apoptosis rate. H: 
the experimental diagram of cell migration after 24 h of drug treatment, where the abscissa of the histogram 
represents each treatment group and the ordinate denotes the migration distance (μm).
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anti-inflammatory, antioxidant, and immune-regulatory properties, while inhibiting cancer cell proliferation 
and promoting apoptosis67,68. These findings highlight the therapeutic potential of natural compounds in cancer 
treatment.

Amomum compactum Solander ex Maton. is rich in Volatile oils, which exhibit anticancer properties by 
inhibiting cancer cell proliferation and inducing apoptosis, potentially through cell cycle modulation69. Dry 
extracts of Amomum subulate seeds have been shown to target TP53, demonstrating strong antioxidant and 
anti-inflammatory activities in cancer cells70. Beyond volatile oils, flavonoids, phenolic acids, and ethyl EMC 
are key anticancer constituents in cardamom plants. Flavonoids may suppress tumor invasion and metastasis 
by modulating growth factor signaling pathways, proteases, and E-cadherin, while phenolic acids influence 
oxidative stress and NF-κB signaling pathway71,72.
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Mahonia fortunei (Lindl.) Fedde., a major bioactive compound from Berberidaceae. plants, exhibits potent 
antitumor effects through mechanisms including cell proliferation inhibition, apoptosis induction, cell cycle 
disruption, and autophagy activation73. It also possesses anti-inflammatory, antioxidant, and immunomodulatory 
properties, mediated by regulation of PI3K/AKT/mTOR, Wnt/β-catenin, and MAPK/ERK pathways64,74,75. 
Additionally, benzylisoquinoline alkaloids (BIAs) such as spattering and aquathlons, isolated from Mahonia 
species, show lipoxygenase inhibition and potential anticancer activity76,77.The genus Commelina communis 
Linn. (Commelinaceae), comprising over 200 species, has been traditionally used to treat various diseases. 
Despite limited research, these species contain diverse bioactive phytochemicals, including Alkaloids, Phenols, 
Flavonoids, and Tannins, which are believed to contribute to their pharmacological activities78,79. These findings 
underscore the therapeutic potential of plant-derived compounds in cancer treatment.

Anticancer pathways of Chinese herbal medicines
CHMs play a pivotal role in anticancer therapy by modulating cancer cell behavior and altering key signaling 
pathways. They offer significant advantages in mitigating the adverse effects of conventional cancer treatments 
while enhancing therapeutic efficacy. Compared to traditional chemotherapy, CHMs are characterized by high 
efficiency, low cost, and minimal side effects, making them a vital component of cancer treatment strategies. 
Research has identified multiple anticancer active ingredients in CHMs, including terpenoids, flavonoids, 
and alkaloids, which interact with critical signaling pathways in liver cancer, such as epithelial‒mesenchymal 
transition (EMT), TGF-β, IL-7, NF-κB, MAPK, p53, and TNF pathways. These pathways are instrumental in 
regulating the initiation and progression of liver cancer. In addition to their direct anticancer effects, CHMs 
exhibit immune-modulatory, anti-inflammatory, antioxidant, and blood circulation-promoting properties, 
which help alleviate the adverse reactions associated with chemotherapy and radiotherapy, ultimately improving 
patients’ quality of life. Despite these benefits, the active components and molecular mechanisms underlying 
the anticancer effects of CHMs remain poorly understood. Further research is needed to elucidate their efficacy 
and identify their active ingredients. High-throughput in vitro gene expression profiling screening of CHMs 
can provide insights into their effects on cancer cells and associated signaling pathway alterations, advancing 
our understanding of their anticancer mechanisms. In summary, CHMs exert significant anticancer effects 
by modulating multiple signaling pathways and exhibiting diverse pharmacological activities. Continued 
investigation into their active components and molecular mechanisms is essential for the development of novel 
anticancer drugs and innovative therapeutic strategies for liver cancer.

Identification of core hub genes and proteins from integrated omics analysis
In this study, we employed transcriptomic and proteomic analyses to identify specific hub genes regulated by five 
CHM candidates in liver cancer, revealing novel targets beyond broadly established pathways. These candidates 
significantly modulated genes involved in key pathways, including AMPK, ErbB, TNF, apoptosis, p53, cGMP-PKG, 
and cytokine‒cytokine receptor interactions. Key genes affected included CTH, AKR1B10, AOX1, AREG, ATP1B1, 
CA9, FOSL1, GDF15, HMGCR, JUN, LCN2, MVK, RDH10, and THBS1. Among these, AKR1B10, AOX1, ATP1B1, 
CA9, HMGCR, MVK, RDH10, and THBS1 were downregulated, while the remaining six genes were upregulated.

Our analysis identified AKR1B10 as a key hub gene downregulated by Pinus massoniana Lamb. and 
Commelina communis Linn. This gene, encoding an aldehyde-ketone reductase, is uniquely regulated in our 
study and plays a critical role in detoxification and carcinogenesis. Specifically, it modulates the retinoic acid 
signaling pathway by converting retinal to retinol, and its downregulation may disrupt retinoic acid availability, 
thereby influencing liver cancer cell behavior5,80. Proteomic validation confirmed the consistent downregulation 
of the corresponding protein O60218, underscoring its potential as a novel therapeutic target.

HMGCR emerged as another hub gene, downregulated by Kaempferia galanga Linn. While HMGCR is known 
for its role in the mevalonate pathway, our findings highlight its specific regulation in liver cancer by CHMs. The 
downregulation of HMGCR may suppress cancer progression by inhibiting cholesterol and isoprenoid synthesis, 
essential for malignant cells32,81. Importantly, we link this to AMPK-mediated effects, but our data suggest a unique 

Fig. 3.  Proteomic validation and KEGG bubble chart of quadrants 3 (a) and 7 (b). A: a statistical table of 
differentially expressed genes and proteins in each treatment group, with the horizontal axis representing each 
treatment group and the vertical axis representing the number of differentially expressed genes and proteins. 
Red represents upregulated proteins, and blue represents downregulated proteins. (B) three-dimensional PCA 
principal component analysis diagram between samples: the differences between different samples can be 
intuitively displayed through the differences in data spatial distribution. The smaller the spatial distribution 
difference, the closer the data. Each point in the PCA distribution diagram represents an experimental 
sample, and different groups are distinguished by different colors. (C) volcano plot of the differential protein 
distribution in each treatment group, with the horizontal axis representing each treatment group and the 
vertical axis representing the A-weighted log2FC value. Dark orange represents upregulated proteins, and blue 
represents downregulated proteins. The marked proteins correspond to the key genes. (D) KEGG bubble plot 
of the differentially expressed proteins. The abscissa represents the treatment group, the ordinate represents the 
enriched pathway, the darker the bubble color is, the greater the significance, and the bubble size represents 
the number of proteins enriched in the pathway. (E–F) KEGG enrichment analysis of the two quadrants of 
each treatment group that were significantly associated in the transcriptome‒proteome association analysis. 
The horizontal axis represents the treatment group, and the vertical axis represents the enriched pathway. The 
darker the bubble color is, the greater the significance. The greater the number of genes and proteins in the 
pathway.
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regulatory mechanism involving the HMGCR-p38 MAPK-GSK3B axis, which enhances antitumor immunity82. The 
proteomic data for protein P04035 corroborate this regulation.

THBS1 was identified as a central hub gene downregulated by Kaempferia galanga Linn. and Commelina communis 
Linn. Beyond its known role in p53 signaling, our analysis reveals its unique involvement in TGF-β interactions in 
the context of CHM treatment. Silencing THBS1 inhibits liver cancer cell proliferation and invasion83,84. and our data 
suggest that its downregulation by CHMs may mitigate liver fibrosis and cancer progression by specifically blocking 
TGF-β signaling84. The corresponding protein P07996 shows consistent downregulation, validating THBS1 as a novel 
target. These findings underscore the ability of CHMs to target specific hub genes such as AKR1B10, HMGCR, and 
THBS1, which are critically involved in liver cancer progression. By focusing on these novel targets, our study provides 
original insights into the mechanistic actions of CHMs beyond conventional pathways.

Our integrated transcriptomic and proteomic analysis identified five traditional Chinese medicines (TCMs)—
Amomum compactum Solander ex Maton., Pinus massoniana Lamb., Commelina communis Linn., Mahonia fortunei 
(Lindl.) Fedde, and Kaempferia galanga Linn. —with potential anti-hepatocellular carcinoma (HCC) activity. Moving 
beyond generalized pathway descriptions, we focused on specific hub genes validated by this multi-omics approach. 
Potential medicinal plants were screened using deep learning and positive drug comparisons, while functional analysis 
and weighted gene co-expression network analysis (WGCNA) pinpointed 40 core genes for further validation. 
Critically, proteomic data confirmed consistent expression trends for 14 corresponding gene-protein pairs. Notably, 
the significant downregulation of key hub genes, including AKR1B10, HMGCR, and THBS1, was strongly associated 
with the suppression of HCC cell proliferation and the induction of apoptosis. Thus, our study leverages a robust data-
driven framework to directly link the cooperative regulation of these specific hub genes to the anti-HCC effects of the 
identified TCMs, providing novel, mechanistic insights into their mode of action.

Conclusions
In this study, we developed an integrated drug discovery platform synergizing big data-driven computational 
modeling with high-throughput functional genomics to systematically identify anti-cancer CHMs and delineate their 
molecular targets. By leveraging machine learning algorithms trained on multi-omics datasets and coupling them 
with high-content screening, this framework accelerates the discovery of novel therapeutic candidates. Crucially, 
our work bridges the gap between CHM’s empirical knowledge and modern precision medicine by enabling data-
driven rationalization of herbal medicine’s pharmacological potential, thereby transforming traditional resources 
into digitized, analyzable assets. The identified CHMs and their associated targets offer mechanistic insights into 
CHM’s anti-tumor activity while providing a blueprint for repurposing natural products in oncology. This paradigm 
exemplifies how interdisciplinary approaches can unlock the untapped value of traditional medicine in the era of 
artificial intelligence and systems biology, ultimately advancing both cancer research and global drug discovery 
pipelines.

Abbreviations
 Abbreviations in this study are provided in Table 3.
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Abbreviation Full term

CHM Chinese herbal medicine

TGF-β Transforming growth factor-beta signaling pathway

HCC Hepatocellular carcinoma

ESCC Esophageal squamous cell carcinoma

DLBCL Diffuse large B-cell lymphoma

MAPK Mitogen-activated protein kinase signaling pathway

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway

TNF Tumor necrosis factor

IL-17 Interleukin-17

cAMP Cyclic adenosine monophosphate

cGMP-PKG Cyclic guanosine monophosphate-protein kinase G

p53 Tumor protein p53

PI3K/AKT Phosphoinositide 3-kinase/protein kinase B

AMPK AMP-activated protein kinase

RIG-I-like Retinoic acid-inducible gene I-like

NOD-like Nucleotide-binding oligomerization domain-like

PD-L1 Programmed death-ligand 1

Toll-like Toll-like receptor

JAK-STAT anus Kinase-Signal transducer and activator of transcription

VEGF Vascular endothelial growth factor

Wnt Wingless/integrated

EGFR Epidermal Growth Factor Receptor

AP-1/BTG Activator protein 1/B-cell translocation gene signaling pathway

DMSO Dimethyl sulfoxide

DMEM Dulbecco’s modified eagle medium

FBS Fetal bovine serum

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay

BRPS Bicinchoninic acid reducing protein assay

Annexin-VFITC/PI Annexin V-fluorescein Isothiocyanate/propidium iodide staining

DEG Differentially expressed genes

DEP Differentially expressed protein

GO Gene ontology

KEGG Kyoto encyclopedia of genes and genomes

WGCNA Weighted gene coexpression network analysis

SDC Sodium deoxycholate

BCA Bicinchoninic acid

TCEP Tris (2-carboxyethyl) phosphine

CAA Chloroacetamide

DIA Data-independent acquisition

LSDs Least significant differences

TME Tumor microenvironment

PKAs Protein kinases

CAFs
EPACs

Cancer-associated fibroblasts
Exchange proteins activated

NAFLD Nonalcoholic fatty liver disease

EMT Epithelial-mesenchymal transition

PCA Principal component analysis

Table 3.  List of abbreviations.
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