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Time-to-event (TTE) machine learning (ML) algorithms are increasingly utilized in prognostic models,
but systematic evaluation is lacking to identify their strengths and limitations. We compared TTE ML
algorithms — Oblique Random Survival Forest (ORSF) and Random Survival Forest (RSF) to statistical
models (SMs) — Cox Proportional Hazards (Cox PH) and Penalized Cox PH, examining their predictive
performance and computational time. Eighteen scenarios were generated with varying censoring
rates, sample sizes, and predictor effects, assuming the PH assumption. Performance was evaluated
using Harrell’s C-index and IBS, with differences assessed using One-Way Repeated Measures ANOVA.
In the linear with additive effects scenario, SMs outperformed RSF in terms of C-indices and IBS scores,
with negligible differences between ORSF variants and SMs. ORSF variants were slightly higher in
C-indices and comparable in IBS scores to RSF. Under the non-linear scenario with interaction effects,
SMs’ models consistently achieved higher C-indices than RSF, with minimal differences from ORSF.
SMs were similar to RSF and ORSF in IBS scores, except at a high censoring rate of 90%. ORSF yielded
significantly higher C-indices and lower IBS scores than RSF at censoring rates of 50-70%. Overall,
differences between ORSF variants in discrimination and calibration were not significant; however,
ORSF-net had the longest training time among all ML models. Conclusively, RSF showed inferior
discrimination to SMs and ORSF. Traditional SMs outperform ML models in TTE prediction at higher
censoring rates but match ORSF at lower rates.

Keywords Time-to-event data, Oblique random survival forest, Random survival forest, Cox proportional
hazards model, Simulation study

Time-to-event analysis, also known as survival analysis, is a set of statistical methods used to model the time
to the occurrence of an event of interest"%. They are extensively used in the health field when the objective is to
estimate the incidence of an event or to predict the risk of developing the event within a clinically meaningful
period of time. Examples of applications include predicting the risk of death, cardiovascular disease (CVD)
event, or cancer relapse®°. One important characteristic of time-to-event data is right-censoring'. This occurs
when the time to event is partially observed due to study discontinuation or loss to follow-up. More specifically,
in right-censored subjects, only the minimum time-to-event is observed. A widely used statistical model (SM)
to analyze right-censored data in clinical research is the semi-parametric Cox proportional hazards (Cox PH)
model’, valued for its semiparametric flexibility and interpretability.

In recent years, machine learning (ML) algorithms have been increasingly applied to develop diagnostics
and prognostics prediction models and have been recognized as a transformative innovation in healthcare®®.
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However, many of the ML algorithms applied in most of these healthcare applications do not take into account
the fact that observations might be right-censored!®-!2. According to a comprehensive survey conducted by
Wang et al., a number of ML algorithms have now been adapted and developed in order to address the issue of
censorship in survival analysis'>. Random survival forest (RSF), an extension of Breiman’s random forest (RF)!4,
is one of the most frequently employed ML techniques that accommodate right censored time-to-event data'®.
Recently, the Oblique Random Survival Forest (ORSF), an extension of Ishwaran’s RSE, which is an ensemble
of supervised learning methods for right-censored data, was introduced!®!”. ORSF showed inferior prediction
accuracy; nevertheless, evaluating several linear combinations of predictors incurred significant computational
time?®.

It is critical to assess and compare novel and existing methods in different scenarios to reveal their strengths
and weaknesses. This systematic evaluation is frequently implemented using simulation studies'®. A peculiar
advantage of a simulation lies in its ability to allow the estimation of the “true” performance of the method being
used, since the true data-generating mechanism distribution is known'®. Smith et al.'%, in their scoping review,
highlighted the advantages of simulation studies in comparing ML to traditional SM in time-to-event data in
terms of risk prediction. Moreover, the authors of the aforementioned review concluded that limited studies
have compared statistical and ML methods using simulation studies. Furthermore, although several simulation
studies have compared RSF with either the Cox PH or its penalized extension!'**-2%, no independent simulation
study has compared the performance of the novel ORSF with RSE, Cox PH, or Penalized Cox PH?, Therefore,
the significance of this research lies primarily in its systematic, independent, and comprehensive evaluation of
advanced ML models against traditional SM for time-to-event data, specifically addressing a notable gap in the
existing literature and assessing the impact of various characteristics on predictive measures.

The aim of this study is to assess and compare, through extensive simulations, the predictive ability of several
ML algorithms and SMs, including ORSE, standard RSE, Cox PH, and Penalized Cox PH models. Models are
compared under various scenarios, including sample size, censoring rate, and the presence of interaction or
non-linear effects. We also aim to investigate how sensitive the predictive accuracy of ORSF is to different
specifications of the linear combination criteria. Additionally, we compare computational time between ORSF
configurations and standard RSE.

This paper is structured into sections as follows: In Methods, the data-generating process, the selected
algorithms, and additional methodological details are outlined. Following this, the Results detailed the outcomes
of the simulation. Next, in the Discussion, findings are interpreted and discussed, the study’s strengths and
limitations, directions for future work, and implications are presented. Finally, the paper concludes with a
summary.

Methods

In this section, we describe a comprehensive simulation study comparing the predictive performance of SMs
(Cox PH and Penalized Cox PH) and two ML algorithms (RSF and ORSF) in predicting the risk of developing
the event of interest (CVD) when fitted to time-to-event data under varying conditions. We outline the primary
procedures involved in executing our simulation, encompassing the algorithms for comparison, simulation
parameters, performance indicators, and implementation specifics.

Description of the models

The cox proportional hazards model

The Cox PH model is among the most widely used models in survival analysis within medical research?. It
provides a semi-parametric specification of the hazard function, allowing for the estimation of covariate effects
without requiring specification of the baseline hazard. In this model, the hazard of developing an event at time
t is defined as follows:

h(tlz) = ho (t) exp (8" x) (1)

where ho(t) is a non-parametric baseline hazard, and exp(8” ) is the relative risk function. For each risk factor
in the vector z, the association with the incidence of the event is characterized by the hazard ratio exp(p). The
Cox model is typically fitted in two steps. First, the parametric component is estimated by maximizing the partial
likelihood, which is independent of the baseline hazard. Subsequently, the non-parametric baseline hazard is
estimated based on the fitted covariate effects.

Two variations of Cox PH models are used in this paper: (i) the traditional model including all covariates (Cox
PH), (ii) the Penalized Cox PH model that incorporates variable selection through regularization techniques?*?’.
Penalization shrinks the estimates of regression coefficients towards zero relative to maximum likelihood
estimates. This shrinkage helps to prevent overfitting caused by collinearity of covariates or high dimensionality
of the data. L1 (lasso) penalty applies an absolute value constraint to the coeflicients, while L2 (ridge) penalty
applies a quadratic constraint to the coefficients?®?°, Here, we used a combination of both L1 and L2 penalties to
obtain fewer coefficients set to zero than a pure L1 setting, and more shrinkage of other coeflicients.

The random survival forest

The Random Survival Forest (RSF) implementation follows concepts similar to RE. The process involves drawing
B bootstrap samples from the data. For each sample, a survival tree is constructed. During tree construction,
at each node, a random subset of predictor variables is selected (mtry). Among these candidates, the best node
split is chosen based on a splitting criterion that uses the log-rank test and hence accounts for right-censoring.
This process is applied recursively to daughter nodes until a stopping criterion, such as the minimum number of
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unique cases in a terminal node, is satisfied. Finally, the cumulative hazard function (CHF) is calculated for each
tree, and these are averaged over all trees to define the ensemble CHF'>.

The oblique random survival forest

The Oblique Random Survival Forest (ORSF) is an ensemble method for right-censored survival data first
proposed by Janger et al. in 2019'7. The main difference between Jaeger’s ORSF and standard RSF lies in the
splitting strategy: ORSF uses linear combinations of multiple predictors to recursively partition the training data,
while the standard RSF relies on univariate splits using a single predictor at each node.

The ORSF fits Cox PH or similar models into the non-terminal nodes of its survival trees. These models
generate Linear Combinations of Input Variables (LCIVs) using their estimated coefficients, and these LCIVs are
then employed as the variable for splitting non-leave nodes. Evaluating candidate solutions for the coefficients
involves computing LCIVs for each observation in the current node and selecting random candidate cut-points
from the unique LCIV values. For each chosen cut-point, a log-rank statistic is computed to compare the
survival curves between observations in the potential child nodes resulting from the split. A node terminates
early if the maximum log-rank statistic does not exceed a predetermined threshold; otherwise, the cut-point and
the candidate solution that optimize the log-rank statistic are used to partition the node.

Three criteria (fast, cph, and net) are used in the current ORSF implementation to construct LCIVs. In the
fast criterion, a single iteration of Newton-Raphson scoring on the Cox partial likelihood function is used to
fit the LCIVs, the default method in ORSE. In the cph criterion, the coefficients acquired from fitting a Cox PH
regression are used to determine the linear combinations of predictors. The last version (net) uses Penalized Cox
PH regression at each node to construct LCIVs?.

Simulation settings
In this section, we describe in detail the settings for the simulations that we carried out. These include the data-
generating process, the number of simulations, the different scenarios, and the performance metrics used.

The data-generating mechanism

Data were generated to mimic a real-world popular cohort study in CVD, namely the Multi-Ethnic Study of
Atherosclerosis (MESA), as it is essential for the simulated data to conform to real-world data®'. MESA is a
large prospective cohort study based in the United States. The study was initiated in July 2000 to investigate the
burden, associated factors, and progression of subclinical CVDs in a large sample of adults aged 45 to 84 years™®.
The study provides extensive longitudinal data, including clinical, imaging, biomarker, and lifestyle information,
which has been extensively used for developing and validating CVD risk models®’. Due to the multi-ethnic
composition of the MESA cohort and highly standardized data collection protocols employed, MESA data is
ideal for developing CVD prediction models that could be generalized to different populations®.

Continuous potential predictors were simulated from a truncated normal distribution, and binary predictors
from a Bernoulli distribution. To ensure a reasonable correlation structure among the features (predictors), the
means, and probabilities used in the simulation procedure were obtained from models fitted to the MESA data.
Table 1 presents a detailed overview of the distribution parameters utilized for continuous (X1, X4 — X7) and
binary (X2, X3zandXg) predictors. X, X7 and Xg are presented as non-informative variables in this simulation.

Survival times were generated from a parametric Cox PH model where the hazard function follows a Weibull

distribution.
7 (g @A)’
exp (BX)

where U follows a uniform distribution U ~ Uniform (0,1), Aandv represent the scale and shape of the
Weibull distribution. Non-informative right-censoring times were simulated from the Weibull distribution,
where both Aandv were tuned manually to achieve approximately the desired censoring rate (e.g., 50%, 70% and
90%). These censoring rates were selected to evaluate the performance of the algorithms under low, medium,

Feature Type Distribution parameterization

X1 (age) Continuous | X1 ~ Truncated Normal (u = 62.1,0 = 10.4,a = 30,b = 70)
X2 (gender) Binary X2 ~ Bernoulli (p = 0.53)

X 3(current smoking) Binary X3 ~ Bernoulli (p = ;) P~ X1+ Xo

X 4(total cholesterol)

Continuous | Xa ~ Truncated Normal (u =2,0=104,a = 30,b = 70) T~ X1+ Xo o+ X3

X5 (systolic blood pressure)

Continuous | X5 ~ Truncated Normal (= 7,0 = 21,a = 67,b = 205) ;2 ~ X1 + X2 + X3 + X4 + X5

X6

Continuous | X¢ ~ Truncated Normal (u = 49,0 = 14,a = 24,b = 120)

X7

Continuous | X7 ~ Truncated Normal (1 = 25,0 = 5.6,a = 16,b = 54)

Xsg

Binary Xg ~ Bernoulli (p = 0.05)

Table 1. Features characteristics.
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and high censoring scenarios, such as in CVD research. The parameters of the Weibull distribution for survival
and censoring time are presented in Table SI.

We have examined two scenarios to define the underlying true relationships between the informative
predictors (X1, X2, X3, X4, X5) and the hazard function. Table S1 outlines the specific mathematical forms
of the linear predictors (fX) used in each scenario. In Scenario I, which favors SMs, predictors contribute in
a linear and additive manner to the hazard function. This indicates that each predictor (X through Xs) has
a constant, independent effect on the log-hazard. In contrast, Scenario II, which favors ML, introduces non-
linear and interaction effects, reflecting greater complexity of associations between covariates and the hazard
function. Key features of this scenario include non-linear transformations of predictors, such as (X4 A2) as well
as interaction terms wherein the effect of one predictor is conditional on the value of another (e.g., X2 * X3).

We generated various sample sizes of N =500, 1000, and 5000. The small-sized dataset (N =500) was chosen
since SMs usually outperform MLs in small sample sizes, due to their smaller number of hyperparameters,
provided the data meets the model’s assumptions. Conversely, higher sample sizes were selected to determine
whether ML performance enhances with an increase in dataset size.

Eighteen scenarios were investigated assuming different associations between the predictors and the hazard
function (linear and additive/non-linear and interactions), sample sizes (500/1000/5000), and censoring
rates (50%/70%/90%). Nine scenarios showed linear and additive effects, while nine showed non-linear and
interaction effects between predictors and outcomes.

The number of replications in this simulation study was set to 40. This was based on the formula proposed
by Burton et al.*, where the C-index and standard error were set to 0.66 and 0.02, respectively??. The number of
replications specified takes into account the potential model failures during training and/or validation.

The performance metrics

The risks estimated in the validation dataset, along with the actual status, were used to estimate the predictive
ability of each method using measures of discrimination and calibration. “Discrimination” refers to how well the
predictive model can discriminate between individuals who developed an event and those who did not, whereas
“calibration” refers to the agreement between observed and predicted risks*. Discrimination was assessed via
Harrell’s concordance index (C-index)®®, while model calibration was assessed using integrated Brier score
(IBS)™*.

Implementation details

During data preprocessing, only continuous variables were scaled. Fig S1 depicts an illustration of three-fold
nested cross-validation with three-fold outer resampling for unbiased generalization performance estimates,
and hold-out for inner resampling for parameter tuning. Each dataset was randomly split using a static seed into
a threefold cross-validation stratified by the outcome event to maintain the original distribution of incidents,
specifically in the case of high censoring (e.g., 90%). Then, optimal values of hyperparameters that maximized
the performance on the training set were found through a randomized search and hold-out (70%-30%) and 30
repetitions.

For the Penalized Cox PH model, the hyperparameters tuned included L1 and L2 regularization terms.
For RSF and ORSF models, the tuned hyperparameters included: the number of trees, the number of features
considered for splitting in RSF or for constructing the linear combination in ORSEF, and the minimum number
of samples required to be at a leaf node. The splitting criteria used were a gradient-based score (global non-
quantile) for RSF and C-index for ORSE In addition, three LCIV-constructed methods (fast, cph, and net) were
evaluated as part of the model comparison. Table S2 shows the search space of hyperparameters optimized using
randomized search.

Our simulation experiments were conducted between August 2024 and January 2025 on the UAE University
High Performance Computing Cluster (HPC) using a computing node with a maximum wall-time of 480 h
(20 days). It has two physical CPU chips, which are Intel(R) Xeon(R) Gold 6248 CPU @ 2.50 GHz with 20 cores
per CPU and 384 GB RAM, running Red Hat Enterprise Linux. The study was implemented using R version
4.2.1%, utilizing the mlr3 ecosystem®®, along with mlr3proba*, and mlr3extralearners packages*. The R code
used in this study includes the statistical and ML methods, training and validation programs, as well as the
generated tabulated results and figures. This is publicly available in the first author’s GitHub repository (https://g
ithub.com/AbubakerSuliman/simulation_study_compare_predictive_performance/tree/ main)*L.

Statistical analysis

Descriptive analysis of Harrell's C-index, IBS, and training time estimates was conducted in each scenario
utilizing boxplot visualization. Distribution of training time represented in median (IQR). In inferential
statistics, we presented the mean (95% confidence interval) of Harrell’s C-index and IBS estimates. Additionally,
we employed the one-way repeated measures ANOVA test to compare Harrell's C-index and IBS estimates
across the examined methods in each scenario. Following this, post-hoc analyses with a Benjamini & Hochberg
adjustment were carried out for all the pairwise differences between the investigated methods. All statistical tests
were two-sided; p-values <0.05 were considered statistically significant. This analysis utilized R version 4.3.1,
tidyverse R package version 2.0.0%2, and rstatix R package version 0.7.2%,

Results

Scenario |: comparison under proportional hazards with linear and additive effects

Harrell’s C-index comparison

Figure 1 provides box plots of the median C-index for the Cox PH, Penalized Cox PH, RSF, ORSF-fast, ORSF-
cph, and ORSF-net models trained on 40 datasets simulated under the initial scenario. All the models exhibit

Scientific Reports |

(2025) 15:44005 | https://doi.org/10.1038/s41598-025-27747-7 nature portfolio


https://github.com/AbubakerSuliman/simulation_study_compare_predictive_performance/tree/main
https://github.com/AbubakerSuliman/simulation_study_compare_predictive_performance/tree/main
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Harrell C index

Model Type sSM E9 RsF ORSF

N = 5000 N = 1000 N = 500

0.700

0.6754

0.6504

0.625

9,08 = Buuosua)

064

0.54

%40. = Buposuan

++ e

|

%06 = Buliosus)

cox P Pe‘\“\\éf REF ORS'V «n‘:‘ogs;,cv“ ORSF et

Co* Co*

R 2 e T G

ﬂa\\zf

pe 3 oRSF® asF oot oRSF net
cox®

=)
cox PP pcn“‘\é;

Model

Fig. 1. Models’ discrimination performance using Harrell’s C index, averaged over 40 simulated datasets where
linear and additive effects are assumed.

satisfactory discrimination performance on the simulated dataset. However, the C-indices for the RSF model
throughout the nine scenarios were lower than those of the statistical and ORSF models. This trend is more
evident across all sample sizes when a 50% censoring rate is used.

The box plots of the C-index values for the three linear combinations of ORSF are almost symmetrical,
indicating that the prediction ability of the three ORSF linear combinations is equivalent to the simulated time-
to-event data.

The means (and 95% CIs) of the Harrell’s C-indices for Cox PH, Penalized Cox PH, RSE, ORSF-fast, ORSE-
cph, and ORSF-net, averaged from 40 simulations over nine scenarios, are provided in Table 2. The impact of
a growing censoring rate on statistical models is more pronounced in small (N=500) than medium (N'=1000)
and large (N =5000) sample sizes. The average Harrell’s C-indices for Cox PH and Penalized Cox PH diminished
from 0.675 to 0.657 and from 0.676 to 0.644, respectively, when censoring escalated from 50 to 90%. On the
other hand, differences in censoring rates across medium and large sample sizes did not lead to substantial
changes in the C-indices of the two statistical models.

Among ML algorithms, an increase in censoring had a minimal impact on predicted performance when the
sample size remained constant. As the sample size expanded from 500 to 5000 participants, the mean Harrell’s
C-index improved by about 2% across all machine learning models.

The C-indices for SMs were significantly higher than those for RSF models (mean difference [MD]=0.01
to 0.02, p<0.001) across all scenarios, except when the sample size was 500 and the censoring rate was 90%.
SMs had statistically significantly higher C-indices than the two ORSF variants — ORSF-fast and ORSF-cph
(MD=0.01, p<0.05) — except when the sample size was 5,000 and the censoring rates were 50% and 70%;
and when the sample size was 500 at a censoring rate of 90%, where the differences were either negligible or
not statistically significant. Similarly, ORSF-net was outperformed by Cox PH models across all scenarios of
sample size and censoring rate, except when the sample size was 500, and the censoring rate was 90%, where the
difference in C-index was not statistically significant (p>0.05) (Table S3).

Across all scenarios of sample size and censoring rate, RSF models had statistically significantly lower
C-indices than the ORSF variants (MD =-- 0.01 to - 0.02, p <0.001), except when the sample size was 500 and
the censoring rate was 90% where the differences were not statistically significant. The differences in C-indices
between the various ORSF variants were generally negligible or not statistically significant (Table S3).

Integrated brier score comparison

The means (and 95% ClIs) of the integrated Brier scores for the various models — Cox PH, Penalized Cox PH,
RSE, ORSEF-fast, ORSF-cph, and ORSF-net — averaged from 40 simulations over nine scenarios, are provided in
Table 3 All the models exhibit satisfactory calibration performance on the simulated dataset, with IBS ranging
from 0.085 to 0.185.

Across the different scenarios of sample sizes and censoring rates, the Cox PH and Penalized Cox PH had
the best calibration, as indicated by the lowest IBS. On the other hand, the RSF recorded the worst calibration,
as indicated by the highest IBS, except when the sample size was 500 and the censoring rate was 90%, in which
case, the worst performing was the ORSF-net. This performance gap was increasingly evident with larger sample
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Sample size

N=500

N=1000

N=5000

Censoring=50%

Cox PH

0.675 (0.668, 0.682)

0.679 (0.675, 0.683)

0.683 (0.681, 0.685

Penalized Cox PH

0.676 (0.669, 0.683)

0.678 (0.674, 0.682)

0.683 (0.681, 0.685

RSF

0.657 (0.650, 0.664)

0.664 (0.659, 0.668)

0.673 (0.671, 0.675

ORSF-fast

0.669 (0.662, 0.676)

0.673 (0.669, 0.677)

ORSF-cph

0.669 (0.662, 0.676)

0.673 (0.669, 0.677)

0.680 (0.678, 0.682

ORSF-net

0.668 (0.661, 0.675)

0.671 (0.667, 0.676)

(
(
(
0.680 (0.678, 0.682
(
(

0.678 (0.676, 0.680

Censoring=70%

Cox PH

0.672 (0.661, 0.683

0.678 (0.672, 0.684)

0.686 (0.683, 0.689

Penalized Cox PH

0.672 (0.661, 0.683

0.677 (0.671, 0.683)

0.686 (0.683, 0.689

RSF

0.656 (0.645, 0.667

0.662 (0.655, 0.668)

0.675 (0.672, 0.678

ORSF-fast

0.666 (0.655, 0.677

0.670 (0.664, 0.676)

0.682 (0.679, 0.685

ORSF-cph

0.666 (0.655, 0.677

0.670 (0.664, 0.676)

0.682 (0.679, 0.685

ORSF-net

0.664 (0.653, 0.676

0.668 (0.662, 0.674)

(
(
(
(
(
(

0.680 (0.677, 0.683

)
)
)
)
)
)

Censoring=90%

Cox PH

0.657 (0.636, 0.679

0.674 (0.662, 0.686)

0.684 (0.679, 0.689

Penalized Cox PH

0.644 (0.620, 0.668

0.670 (0.658, 0.683)

0.684 (0.679, 0.689

RSF

0.642 (0.620, 0.664

0.652 (0.639, 0.665)

0.669 (0.663, 0.675

ORSF-fast

0.654 (0.633, 0.676

0.667 (0.654, 0.679)

0.676 (0.670, 0.682

ORSF-cph

0.655 (0.634, 0.677

0.668 (0.655, 0.681)

0.677 (0.671, 0.682

ORSF-net

0.651 (0.629, 0.673

0.663 (0.650, 0.676)

(
(
(
(
(
(

0.673 (0.667, 0.679

)
)
)
)
)
)

Table 2. Mean (95% CI) Harrell's C index for competing learning methods, averaged over 40 simulations in

nine scenarios where linear and additive effects are assumed.

Sample size

N=500

N=1000

N=5000

Censoring=50%

Cox PH

0.110 (0.108, 0.113

0.104 (0.101, 0.107)

0.085 (0.083, 0.087

Penalized Cox PH

0.109 (0.107, 0.112

0.104 (0.101, 0.106)

0.085 (0.083, 0.087

RSF

0.117 (0.115, 0.119

0.110 (0.107, 0.112)

0.090 (0.089, 0.092

ORSF-fast

0.113(0.111,0.116

0.106 (0.103, 0.108)

0.086 (0.085, 0.088

ORSF-cph

0.113(0.111, 0.116

0.106 (0.103, 0.108)

0.086 (0.085, 0.088

ORSF-net

)
)
)
)
)
)

0.113(0.111, 0.115

0.106 (0.104, 0.109)

(
(
(
(
(
(

0.087 (0.085, 0.088

Censoring=70%

Cox PH

0.141 (0.133, 0.150)

0.128 (0.121, 0.134)

0.104 (0.102, 0.106

Penalized Cox PH

0.136 (0.131, 0.141)

0.127(0.122, 0.132)

0.104 (0.102, 0.106

RSF

0.147 (0.142, 0.153)

0.139 (0.135, 0.142)

0.118 (0.116, 0.119

ORSF-fast

0.145 (0.139, 0.152)

0.137 (0.130, 0.143)

0.110 (0.108, 0.112

ORSF-cph

0.146 (0.139, 0.152)

0.137(0.130, 0.143)

0.110 (0.108, 0.112

ORSF-net

0.146 (0.140, 0.152)

0.136 (0.131, 0.141)

(
(
(
(
(
0.110 (0.108, 0.112

)
)
)
)
)
)

Censoring=90%

Cox PH

0.182(0.159, 0.205

0.165 (0.153, 0.178)

0.141 (0.137,0.144

Penalized Cox PH

0.171 (0.154, 0.187

0.164 (0.152, 0.176)

0.141 (0.137, 0.144

RSF

0.182(0.167, 0.198

0.182 (0.169, 0.196)

0.176 (0.174, 0.179

ORSF-fast

0.182 (0.166, 0.199

0.180 (0.165, 0.194)

0.164 (0.162, 0.166

ORSF-cph

0.184 (0.168, 0.200

0.181 (0.166, 0.195)

0.164 (0.162, 0.166

ORSF-net

)
)
)
)
)
)

0.185(0.167, 0.202

0.180 (0.166, 0.194)

(
(
(
(
(
(

0.165 (0.162, 0.167

Table 3. Mean (95% CI) integrated Brier scores for competing learning methods, averaged over 40 simulations

in nine scenarios where linear and additive effects are assumed.
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sizes and higher censoring rates. For instance, at a sample size of 5000 and a censoring rate of 90%, the IBS for
Cox PH and RSF were 0.141 and 0.176, respectively.

Moreover, across all models, calibration generally deteriorated with increasing censoring rates, regardless of
sample size, with RSF and ORSF appearing to be the most sensitive to censoring.

Additionally, the box plots of the IBS values for the three linear combinations of ORSF are almost symmetrical
(Fig. 2), indicating that the prediction ability of the three oblique random survival linear combinations is
equivalent in the simulated time-to-event data.

RSF models had significantly higher integrated Brier scores (IBS) than SMs across nearly all scenarios
(MD=-0.01 to -0.04, p<0.05), except when the sample size was 500 and the censoring rates were 70% or 90%,
where the difference between Cox PH and RSF was not statistically significant (p>0.05). Additionally, larger
differences were observed when the sample size was between 1,000 and 5,000 and the censoring rate was 90%.
The ORSF variants yielded statistically higher IBS than the SMs in most cases, particularly when the sample
sizes (1,000-5,000) were large and the censoring rate was high (90%). However, these differences were generally
negligible when the censoring rate was 50%, regardless of sample size (Table S4).

RSF and ORSF were comparable in terms of IBS score in most of the scenarios, with differences being either
negligible or not statistically significant. The only exceptions are when the sample size was 5,000 at 70% and
90% censoring rates, where the IBS scores for the RSF were significantly slightly higher than for ORSF-variants
(MD=0.01, p<0.001). The pairwise differences in IBS among the ORSF variants were generally statistically not
significant and/or negligible (Table S4).

Training time

The training time across RSE, ORSF-fast, and ORSF-cph was consistently minimal across all scenarios, with
ORSEF-fast and ORSF-cph generally taking shorter times to train than the RSE On the other hand, ORSF-net
was the most computationally extensive, requiring significantly longer duration to train across all scenarios of
censoring and sample size (Fig S2, Table S5).

Scenario Il: comparison of prediction models in proportional hazards with non-linearity and
interaction

In the nine simulated situations involving non-linearity with interaction effects, all five models demonstrated a
notable improvement in predictive ability compared to the linear additive relationship.

Harrell's C-index comparison
All examined models attained a C-index of about 90% when the censoring rate and the sample size were set at
90% and 5000, respectively (Fig. 3). Furthermore, the variability in C-indices was greater for small and medium
sample sizes.

Table 4 reports the mean (95% CI) of Harrell's C-indices when modeling non-linearity with interaction for
five competitive learning techniques, averaged across 40 simulations over nine scenarios. The C-indices for SMs
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Fig. 2. Models’ calibration using the Integrated Brier score, averaged over 40 simulated datasets where linear
and additive effects are assumed.
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interaction and non-linear effect are assumed.

Sample size

N=500

N=1000

N=5000

Censoring=50%

Cox PH 0.853 (0.850, 0.856) | 0.854 (0.851,0.856) | 0.857 (0.856, 0.858)
Penalized Cox PH 0.853 (0.850, 0.856) | 0.854 (0.851,0.857) | 0.857 (0.856, 0.858)
Penalized Cox PH (NLI) | 0.855 (0.852, 0.858) | 0.855 (0.850, 0.859) | 0.851 (0.840, 0.863)
RSF 0.821 (0.816, 0.825) | 0.839 (0.835, 0.842) | 0.853 (0.851, 0.854)
ORSE-fast 0.847 (0.844, 0.851) | 0.851 (0.848, 0.854) | 0.856 (0.855, 0.857)
ORSF-cph 0.848 (0.845, 0.851) | 0.851 (0.848, 0.854) | 0.856 (0.855, 0.857)
ORSE-net 0.848 (0.844, 0.852) | 0.851 (0.848, 0.854) | 0.856 (0.854, 0.857)

Censoring=70%

Cox PH 0.869 (0.865, 0.873) | 0.867 (0.864, 0.871) | 0.874 (0.873, 0.876)
Penalized Cox PH 0.868 (0.864, 0.873) | 0.868 (0.864, 0.871) | 0.874 (0.873, 0.876)
Penalized Cox PH (NLI) | 0.871 (0.866, 0.875) | 0.869 (0.866, 0.873) | 0.859 (0.843, 0.875)
RSF 0.848 (0.843, 0.854) | 0.857 (0.854, 0.860) | 0.870 (0.869, 0.872)
ORSE-fast 0.862 (0.858, 0.867) | 0.865 (0.861,0.868) | 0.873 (0.872, 0.875)
ORSE-cph 0.865 (0.860, 0.869) | 0.865 (0.862, 0.869) | 0.873 (0.872, 0.875)
ORSEF-net 0.866 (0.861, 0.870) | 0.865 (0.862, 0.868) | 0.873 (0.871, 0.875)

Censoring=90%

Cox PH 0.883 (0.874, 0.893) | 0.892 (0.886, 0.897) | 0.899 (0.897, 0.902)
Penalized Cox PH 0.882 (0.872, 0.891) | 0.885 (0.874, 0.896) | 0.899 (0.896, 0.901)
Penalized Cox PH (NLI) | 0.885 (0.875, 0.895) | 0.866 (0.845,0.887) | 0.900 (0.897, 0.902)
RSF 0.866 (0.855, 0.877) | 0.881 (0.875, 0.886) | 0.894 (0.891, 0.896)
ORSE-fast 0.842 (0.830, 0.854) | 0.871 (0.866, 0.876) | 0.894 (0.891, 0.897)
ORSF-cph 0.850 (0.839, 0.862) | 0.880 (0.875, 0.885) | 0.896 (0.894, 0.899)
ORSEF-net 0.846 (0.835, 0.857) | 0.874 (0.870, 0.879) | 0.895 (0.892, 0.897)

Table 4. Mean (95% CI) Harrell’s C-index for competing learning methods, averaged over 40 simulations in
nine scenarios where interaction and non-linear effect are assumed.
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and ML models improved with increased censoring across all sample sizes, except in ORSF algorithms. Despite
the minor variations in SMs as the sample size grows at the same censoring rate, the ML models exhibited
comparable patterns at 50% and 70% but not 90% censoring rates. The ORSF-fast exhibits a 1% rise in the
C-index as the sample size increased from 500 to 5000 at 50% and 70% censoring rates; however, it shows a 5%
increase at a 90% censoring rate with the same sample size expansion.

SMs consistently achieved higher C-indices than RSF models across all scenarios (MD=0.01 to 0.03,
p<0.001), especially at smaller sample sizes (N =500) and lower censoring rates (50%). The only exception was
when the sample size was 1,000 and the censoring rate was 90%, in which case the C-indices for the Penalized
Cox PH and Penalized Cox PH (NLI) models and the RSF model were not significantly different. However,
with a sample size of 5,000 and censoring rates of 50% and 70%, the differences in C-index were minimal or
non-significant. The differences in C-indices between SMs and ORSF models were mostly minimal, except at a
sample size of 500 and a censoring rate of 90%, where the C-indices for SMs were significantly higher (MD =0.03
t0 0.04, p<0.001) (Table S6).

At sample sizes of 500-1,000 and censoring rates of 50-70%, ORSF models yielded significantly higher
C-indices than the RSF models (MD =-0.03 to -0.01, p <0.001). Conversely, the RSF models showed significantly
higher c-indices than the ORSF models at a sample size of 500 and a censoring rate of 90% (MD =0.02, p<0.01).
The differences in C-indices among the ORSF variants were largely minimal or statistically not significant, except
at sample sizes of 500-1,000 and a censoring rate of 90%, where ORSF-cph significantly outperformed ORSF-fast
(MD=0.01, p<0.01) (Table S6).

Integrated brier score comparison

Under scenario II — involving interaction and non-linearity, all models demonstrated higher integrated Brier
scores when the sample size was limited to 500 observations, indicating a decline in calibration. Furthermore,
increasing the censoring rate from 70 to 90%, keeping medium-to-large sample sizes (1000 to 5000), led to a
slightly higher increase in the IBS in the ML models compared to the SMs (Fig. 4, Table 5).

The models showed varying calibration performances across various conditions. Penalized Cox PH (NLI)
had the best calibration at a censoring rate of 50% across all sample sizes, and at a censoring rate of 70% when
the sample sizes were 500 or 1000. At a high censoring rate (90%), Cox PH had the best calibration when the
sample sizes were 500 or 1000. RSF and ORSF-fast appeared to be the most frequently worst performing in terms
of calibration under scenarios involving interaction and non-linearity.

While the SMs were mostly similar to the RSF model in terms of IBS, they showed significantly lower IBS at
a high censoring rate of 90% (MD =-0.02 to -0.01, p <0.05). Although the IBS scores for the SMs were generally
similar to those of ORSF models, significantly lower IBS scores (up to a difference of -0.05, p<0.05) were
observed for SMs compared to the ORSF models at a high censoring rate (90%) (Table S7).

RSF models showed significantly higher IBS scores than the ORSF models (MD =0.01, p <0.05) in most of
the scenarios with censoring rates of 50-70%. A notable switch was observed at a 90% censoring rate with sample
sizes of 500 and 1,000, where the IBS scores were significantly lower for the RSF models than the ORSF models
(MD=-0.01 to -0.02, p<0.05). For most cases, there were no significant differences in IBS score between the
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Fig. 4. Models’ calibration using the Integrated Brier score, averaged over 40 simulated datasets where
interaction and non-linear effects are assumed.
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Sample size

N=500

N=1000

N=5000

Censoring=50%

Cox PH

0.113 (0.098, 0.128)

0.099 (0.094, 0.104

0.083 (0.081, 0.085)

Penalized Cox PH

0.104 (0.092, 0.115)

0.095 (0.091, 0.099

0.082 (0.080, 0.083)

Penalized Cox PH (NLI)

0.097 (0.090, 0.105)

0.091 (0.082, 0.099

0.079 (0.074, 0.085)

RSF

0.109 (0.106, 0.112)

0.084 (0.082, 0.085)

ORSF-fast

0.102 (0.096, 0.107)

0.094 (0.092, 0.097

0.079 (0.077, 0.080)

ORSF-cph

0.101 (0.096, 0.105)

0.094 (0.092, 0.097

0.079 (0.078, 0.080)

ORSF-net

0.101 (0.095, 0.106)

( )
( )
( )
0.100 (0.097, 0.102)
( )
( )
( )

0.094 (0.091, 0.096

0.079 (0.078, 0.080)

Censoring=70%

Cox PH

0.150 (0.126, 0.174)

0.126 (0.114, 0.137

0.104 (0.101, 0.106)

Penalized Cox PH

0.142 (0.121, 0.163)

0.120 (0.110, 0.129

0.102 (0.100, 0.104)

Penalized Cox PH (NLI)

0.127 (0.110, 0.143)

0.112 (0.104, 0.119

0.110 (0.095, 0.125)

RSF

0.146 (0.133, 0.159)

0.115(0.113,0.117)

ORSF-fast

0.136 (0.121, 0.151)

0.128 (0.119, 0.138

0.108 (0.106, 0.110)

ORSF-cph

0.137 (0.121, 0.152)

0.128 (0.118, 0.137

0.108 (0.106, 0.110)

ORSF-net

0.137(0.120, 0.155)

( )
( )
( )
0.133 (0.125,0.141)
( )
( )
( )

0.128 (0.119, 0.138

0.108 (0.106, 0.110)

Censoring=90%

Cox PH

0.123 (0.104, 0.142)

0.097 (0.091, 0.104

0.097 (0.089, 0.106)

Penalized Cox PH

0.125(0.110, 0.139)

0.105 (0.096, 0.113

0.097 (0.089, 0.105)

Penalized Cox PH (NLI)

0.135(0.114, 0.156)

0.107 (0.099, 0.114

0.095 (0.089, 0.101)

RSF

0.145 (0.125, 0.166)

0.117 (0.110, 0.124)

ORSEF-fast

0.170 (0.145, 0.195)

0.130 (0.125, 0.135

0.113(0.107, 0.119)

ORSF-cph

0.168 (0.141, 0.195)

0.123 (0.118, 0.128

0.113(0.107, 0.119)

ORSF-net

0.163 (0.137, 0.189)

( )
( )
( )
0.113 (0.108, 0.119)
( )
( )
( )

0.123 (0.119, 0.128

0.112 (0.106, 0.118)

Table 5. Mean (95% CI) integrated Brier scores for competing learning methods, averaged over 40 simulations
in nine scenarios where interaction and non-linear is assumed.

ORSEF variants. However, at a 90% censoring rate, ORSF-fast had statistically significantly higher IBS scores than
ORSF-cph (at N=1,000) and ORSF-net (at N =1,000 and 5,000) (Table S7).

Training time

RSE, ORSF-fast, and ORSF-cph recorded significantly shorter training times than ORSF-net, as ORSF-net
demonstrated a markedly extended duration, up to 53 min, with a larger sample size (N'=5,000). Moreover,
while RSE, ORSF-fast, and ORSF-cph exhibited comparable training times at a smaller sample size (N=500)
and across all censoring scenarios, RSF models recorded significantly longer training times than ORSF-fast and
ORSF-cph at larger sample sizes (N =1,000 - 5,000) across all censoring rates (Fig S3, Table S8).

Discussion

In this study, we designed and implemented an innovative simulation framework to model the time-to-event
of individuals with CVDs. This framework was subsequently used to evaluate the predominant predictive
algorithms for time-to-event data affected by right-censoring. The comparison included classical SMs, including
Cox PH and Penalized Cox PH, as well as ML models, including RSF, and the novel ML algorithm — ORSE
We conducted a comparison across many scenarios: varying sample sizes, varying censoring rates, diverse non-
linear distributions of continuous variables, and risk heterogeneity (interaction) between two variables.

In all scenarios, when linear effects and additive relations are assumed, RSF achieved the lowest performance
among all models considered. Omurlu et al.? demonstrated that Cox PH performed slightly better than RSE,
investigating only scenarios with sample size less than or equal to 500, while Baralou et al.!! reported that Cox
PH outperformed all three splitting criteria of RSF under the linear assumption. Moreover, Billichova et al.*
reported that when the data follow the exponential distribution, the Cox PH model outperforms RSF in terms
of predictive accuracy. Our findings are consistent with these studies, confirming that RSF is inferior to Cox PH.
Moreover, the average relative performance differences between the two models increase when the sample size
increases at a 90% censoring rate. On the other hand, all three ORSF linear combinations slightly outperformed
RSF and performed similarly to Cox PH when censoring rates were 50% and 70%, with a sample size of 5,000.
As expected, the Cox PH and its penalized variant performed slightly better than the ML algorithms in this
scenario, given that the model assumptions are satisfied. Additionally, the Cox models require little to no
hyperparameter tuning—unlike the ML models, which involve numerous tuning parameters and are therefore
more data-intensive?.

When the simulated data exhibited heterogeneity with non-linearity of the risk relationship, performance
varied notably depending on the sample size. In small sample sizes, the Cox PH model surpasses both the RSF
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and the ORSF; nevertheless, in medium and large sample sizes, the Cox PH model exhibits similar accuracy to
that achieved by RSF and ORSE These informative findings are similar to the findings of Billichov4 et al.2. It is
worth mentioning that the effect of increasing the sample size is more apparent in the ML algorithms than the
Cox PH models, especially in high censoring rate (90%) where the average difference between 500 and 5000
samples sizes ranges from 2.8% in RSF to 4.6% in ORSF-cph. Significant publications in ML examined the
non-linearity of risks (e.g., quadratic); however, they used a linear Cox PH model, which predictably resulted
in decreased accuracy, while ML models maintained their accuracy!®?2. In this study, we found that if we use
Penalized Cox PH, which accounts for interaction and non-linearity, the performance is better than that of RSF
and ORSF in a small sample size and is comparable to both RSF and ORSF in a large sample size.

We investigated the predictive performance and computational efficiency of ORSF and its variants, as well
as RSE, a neutral comparison (i.e., conducted by authors not affiliated with the authors who proposed the
algorithms), which, to the best of our knowledge, has never been carried out. There was no difference in C-index
and IBS across all investigated sample sizes and event rates in both scenarios of ORSF-fast and ORSF-cph against
ORSF-net. This is similar to the findings of the ORSF authors’ study'®. While the performance of ORSF is close
to that of RSF in the case of linear and additive scenarios, ORSF algorithms significantly outperformed RSF in
the case of interaction and non-linearity. These findings were similar to the original simulation study of ORSF'”.

The main strength of our paper is in tuning the parameters of RSF and ORSE. Several existing studies in
literature utilized the default, or even arbitrary values, for the ML and deep learning methods!'?2, In this study,
we used random search with 30 repetitions in the inner cross-validation to find the optimal hyperparameters,
which maximized the C-index. The existing data-generating simulations show a lack of plausibility in the sense
that they often use independent simulations of feature values, which is unrealistic in the case of biological data’?.
In this study, we generated correlated features based on the relation magnitude estimated from the MESA study.
Furthermore, we calculated the required number of simulations in this study to achieve a certain accuracy,
which was rarely conducted in previous simulation studies'’.

A limitation of our study is in our data-generating mechanism, which assumes no missing values or
outliers. In real medical data, atypical findings are often seen. Consequently, it is essential for future research
to simulate 5% outliers and independent variables with missing values and examine the models’ performance
in the presence of such anomalies. In our simulated data, we did assume the PH assumption. Although this
assumption is often satisfied in real-life applications*, it may boost the performance of traditional methods and
diminish the performance of ML models. It is, therefore, important in a future study to simulate data where the
PH assumption is violated. Finally, the adaptation of neural networks to time-to-event data was introduced to
ML at an early stage. We did not investigate in the current study the performance of a neural network with time-
to-event data, such as a Cox PH deep neural network (DeepSurv)*’, to allow for a reasonable computation time.
However, we plan for such a comparison in our future studies.

Our findings have important implications for healthcare professionals, researchers, and policymakers,
enabling them to make more informed decisions when selecting models in time-to-event CVD prediction,
particularly in situations with different sample sizes, censoring rates, and effects of predictors on the outcome.
The study confirms that a single model cannot fit all scenarios, meaning no one model consistently guarantees
the best discrimination and calibration across all situations. For instance, the sample size and censoring rate
have a substantial role in the model’s performance. Overall, SMs are credible alternatives to ML algorithms,
with ORSF-fast and ORSF-cph emerging as prominent candidates in prognostic research. Finally, the ORSF-
net model should be avoided as it offers no performance advantages and is less computationally efficient due to
extended training durations.

Conclusion

This simulation study directly addresses the need for systematic evaluation, demonstrating the relative
strengths and weaknesses of popular ML and SM approaches for time-to-event data. We showed that RSF
had lower discrimination performance compared to Cox PH, Penalized Cox PH, and ORSE. In scenarios with
low to moderate censoring rates, ORSF performed similarly to SMs, particularly regarding non-linearity and
interactions. Therefore, ORSF would be advantageous for individual risk prediction in the event that the number
of instances and variables increases significantly, hence the growing relationship complexity between several
covariates. Finally, we observed no significant difference among the various ORSF variations for discrimination
or calibration.

Data availability

The data that support the findings of this study and the code necessary to reproduce the reported results are
publicly available in the first author’s GitHub repository (https://github.com/AbubakerSuliman/simulation_stud
y_compare_predictive_performance/tree/main).
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