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Time-to-event (TTE) machine learning (ML) algorithms are increasingly utilized in prognostic models, 
but systematic evaluation is lacking to identify their strengths and limitations. We compared TTE ML 
algorithms — Oblique Random Survival Forest (ORSF) and Random Survival Forest (RSF) to statistical 
models (SMs) — Cox Proportional Hazards (Cox PH) and Penalized Cox PH, examining their predictive 
performance and computational time. Eighteen scenarios were generated with varying censoring 
rates, sample sizes, and predictor effects, assuming the PH assumption. Performance was evaluated 
using Harrell’s C-index and IBS, with differences assessed using One-Way Repeated Measures ANOVA. 
In the linear with additive effects scenario, SMs outperformed RSF in terms of C-indices and IBS scores, 
with negligible differences between ORSF variants and SMs. ORSF variants were slightly higher in 
C-indices and comparable in IBS scores to RSF. Under the non-linear scenario with interaction effects, 
SMs’ models consistently achieved higher C-indices than RSF, with minimal differences from ORSF. 
SMs were similar to RSF and ORSF in IBS scores, except at a high censoring rate of 90%. ORSF yielded 
significantly higher C-indices and lower IBS scores than RSF at censoring rates of 50–70%. Overall, 
differences between ORSF variants in discrimination and calibration were not significant; however, 
ORSF-net had the longest training time among all ML models. Conclusively, RSF showed inferior 
discrimination to SMs and ORSF. Traditional SMs outperform ML models in TTE prediction at higher 
censoring rates but match ORSF at lower rates.

Keywords  Time-to-event data, Oblique random survival forest, Random survival forest, Cox proportional 
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Time-to-event analysis, also known as survival analysis, is a set of statistical methods used to model the time 
to the occurrence of an event of interest1,2. They are extensively used in the health field when the objective is to 
estimate the incidence of an event or to predict the risk of developing the event within a clinically meaningful 
period of time. Examples of applications include predicting the risk of death, cardiovascular disease (CVD) 
event, or cancer relapse3–6. One important characteristic of time-to-event data is right-censoring1. This occurs 
when the time to event is partially observed due to study discontinuation or loss to follow-up. More specifically, 
in right-censored subjects, only the minimum time-to-event is observed. A widely used statistical model (SM) 
to analyze right-censored data in clinical research is the semi-parametric Cox proportional hazards (Cox PH) 
model7, valued for its semiparametric flexibility and interpretability.

In recent years, machine learning (ML) algorithms have been increasingly applied to develop diagnostics 
and prognostics prediction models and have been recognized as a transformative innovation in healthcare3,8,9. 
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However, many of the ML algorithms applied in most of these healthcare applications do not take into account 
the fact that observations might be right-censored10–12. According to a comprehensive survey conducted by 
Wang et al., a number of ML algorithms have now been adapted and developed in order to address the issue of 
censorship in survival analysis13. Random survival forest (RSF), an extension of Breiman’s random forest (RF)14, 
is one of the most frequently employed ML techniques that accommodate right censored time-to-event data15. 
Recently, the Oblique Random Survival Forest (ORSF), an extension of Ishwaran’s RSF, which is an ensemble 
of supervised learning methods for right-censored data, was introduced16,17. ORSF showed inferior prediction 
accuracy; nevertheless, evaluating several linear combinations of predictors incurred significant computational 
time16.

It is critical to assess and compare novel and existing methods in different scenarios to reveal their strengths 
and weaknesses. This systematic evaluation is frequently implemented using simulation studies18. A peculiar 
advantage of a simulation lies in its ability to allow the estimation of the “true” performance of the method being 
used, since the true data-generating mechanism distribution is known18. Smith et al.19, in their scoping review, 
highlighted the advantages of simulation studies in comparing ML to traditional SM in time-to-event data in 
terms of risk prediction. Moreover, the authors of the aforementioned review concluded that limited studies 
have compared statistical and ML methods using simulation studies. Furthermore, although several simulation 
studies have compared RSF with either the Cox PH or its penalized extension11,20–23, no independent simulation 
study has compared the performance of the novel ORSF with RSF, Cox PH, or Penalized Cox PH24. Therefore, 
the significance of this research lies primarily in its systematic, independent, and comprehensive evaluation of 
advanced ML models against traditional SM for time-to-event data, specifically addressing a notable gap in the 
existing literature and assessing the impact of various characteristics on predictive measures.

The aim of this study is to assess and compare, through extensive simulations, the predictive ability of several 
ML algorithms and SMs, including ORSF, standard RSF, Cox PH, and Penalized Cox PH models. Models are 
compared under various scenarios, including sample size, censoring rate, and the presence of interaction or 
non-linear effects. We also aim to investigate how sensitive the predictive accuracy of ORSF is to different 
specifications of the linear combination criteria. Additionally, we compare computational time between ORSF 
configurations and standard RSF.

This paper is structured into sections as follows: In Methods, the data-generating process, the selected 
algorithms, and additional methodological details are outlined. Following this, the Results detailed the outcomes 
of the simulation. Next, in the Discussion, findings are interpreted and discussed, the study’s strengths and 
limitations, directions for future work, and implications are presented. Finally, the paper concludes with a 
summary.

Methods
In this section, we describe a comprehensive simulation study comparing the predictive performance of SMs 
(Cox PH and Penalized Cox PH) and two ML algorithms (RSF and ORSF) in predicting the risk of developing 
the event of interest (CVD) when fitted to time-to-event data under varying conditions. We outline the primary 
procedures involved in executing our simulation, encompassing the algorithms for comparison, simulation 
parameters, performance indicators, and implementation specifics.

Description of the models
The cox proportional hazards model
The Cox PH model is among the most widely used models in survival analysis within medical research25. It 
provides a semi-parametric specification of the hazard function, allowing for the estimation of covariate effects 
without requiring specification of the baseline hazard. In this model, the hazard of developing an event at time 
t is defined as follows:

	 h(t|x) = h0 (t) exp
(
βT x

)
� (1)

where h0(t) is a non-parametric baseline hazard, and exp(βT x) is the relative risk function. For each risk factor 
in the vector x, the association with the incidence of the event is characterized by the hazard ratio exp(β). The 
Cox model is typically fitted in two steps. First, the parametric component is estimated by maximizing the partial 
likelihood, which is independent of the baseline hazard. Subsequently, the non-parametric baseline hazard is 
estimated based on the fitted covariate effects.

Two variations of Cox PH models are used in this paper: (i) the traditional model including all covariates (Cox 
PH), (ii) the Penalized Cox PH model that incorporates variable selection through regularization techniques26,27. 
Penalization shrinks the estimates of regression coefficients towards zero relative to maximum likelihood 
estimates. This shrinkage helps to prevent overfitting caused by collinearity of covariates or high dimensionality 
of the data. L1 (lasso) penalty applies an absolute value constraint to the coefficients, while L2 (ridge) penalty 
applies a quadratic constraint to the coefficients28,29. Here, we used a combination of both L1 and L2 penalties to 
obtain fewer coefficients set to zero than a pure L1 setting, and more shrinkage of other coefficients.

The random survival forest
The Random Survival Forest (RSF) implementation follows concepts similar to RF. The process involves drawing 
B bootstrap samples from the data. For each sample, a survival tree is constructed. During tree construction, 
at each node, a random subset of predictor variables is selected (mtry). Among these candidates, the best node 
split is chosen based on a splitting criterion that uses the log-rank test and hence accounts for right-censoring. 
This process is applied recursively to daughter nodes until a stopping criterion, such as the minimum number of 
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unique cases in a terminal node, is satisfied. Finally, the cumulative hazard function (CHF) is calculated for each 
tree, and these are averaged over all trees to define the ensemble CHF15.

The oblique random survival forest
The Oblique Random Survival Forest (ORSF) is an ensemble method for right-censored survival data first 
proposed by Janger et al. in 201917. The main difference between Jaeger’s ORSF and standard RSF lies in the 
splitting strategy: ORSF uses linear combinations of multiple predictors to recursively partition the training data, 
while the standard RSF relies on univariate splits using a single predictor at each node.

The ORSF fits Cox PH or similar models into the non-terminal nodes of its survival trees. These models 
generate Linear Combinations of Input Variables (LCIVs) using their estimated coefficients, and these LCIVs are 
then employed as the variable for splitting non-leave nodes. Evaluating candidate solutions for the coefficients 
involves computing LCIVs for each observation in the current node and selecting random candidate cut-points 
from the unique LCIV values. For each chosen cut-point, a log-rank statistic is computed to compare the 
survival curves between observations in the potential child nodes resulting from the split. A node terminates 
early if the maximum log-rank statistic does not exceed a predetermined threshold; otherwise, the cut-point and 
the candidate solution that optimize the log-rank statistic are used to partition the node.

Three criteria (fast, cph, and net) are used in the current ORSF implementation to construct LCIVs. In the 
fast criterion, a single iteration of Newton–Raphson scoring on the Cox partial likelihood function is used to 
fit the LCIVs, the default method in ORSF. In the cph criterion, the coefficients acquired from fitting a Cox PH 
regression are used to determine the linear combinations of predictors. The last version (net) uses Penalized Cox 
PH regression at each node to construct LCIVs24.

Simulation settings
In this section, we describe in detail the settings for the simulations that we carried out. These include the data-
generating process, the number of simulations, the different scenarios, and the performance metrics used.

The data-generating mechanism
Data were generated to mimic a real-world popular cohort study in CVD, namely the Multi-Ethnic Study of 
Atherosclerosis (MESA)30, as it is essential for the simulated data to conform to real-world data31. MESA is a 
large prospective cohort study based in the United States. The study was initiated in July 2000 to investigate the 
burden, associated factors, and progression of subclinical CVDs in a large sample of adults aged 45 to 84 years30. 
The study provides extensive longitudinal data, including clinical, imaging, biomarker, and lifestyle information, 
which has been extensively used for developing and validating CVD risk models32. Due to the multi-ethnic 
composition of the MESA cohort and highly standardized data collection protocols employed, MESA data is 
ideal for developing CVD prediction models that could be generalized to different populations30.

Continuous potential predictors were simulated from a truncated normal distribution, and binary predictors 
from a Bernoulli distribution. To ensure a reasonable correlation structure among the features (predictors), the 
means, and probabilities used in the simulation procedure were obtained from models fitted to the MESA data. 
Table 1 presents a detailed overview of the distribution parameters utilized for continuous (X1, X4 − X7) and 
binary (X2, X3andX8) predictors. X6, X7 and X8 are presented as non-informative variables in this simulation.

Survival times were generated from a parametric Cox PH model where the hazard function follows a Weibull 
distribution.

	
T =

(
− log (U) λ

exp (βX)

)ν

 

where U follows a uniform distribution U ∼ Uniform (0, 1), λandν represent the scale and shape of the 
Weibull distribution. Non-informative right-censoring times were simulated from the Weibull distribution, 
where both λandν were tuned manually to achieve approximately the desired censoring rate (e.g., 50%, 70% and 
90%). These censoring rates were selected to evaluate the performance of the algorithms under low, medium, 

Feature Type Distribution parameterization

X1(age) Continuous X1 ∼ Truncated Normal (µ = 62.1, σ = 10.4, a = 30, b = 70)

X2(gender) Binary X2 ∼ Bernoulli (p = 0.53)

X3(current smoking) Binary X3 ∼ Bernoulli
(

p = p̂
)

; p̂ ∼ X1 + X2

X4(total cholesterol) Continuous X4 ∼ Truncated Normal
(

µ = x̂, σ = 10.4, a = 30, b = 70
)

; x̂ ∼ X1 + X2 + X3

X5(systolic blood pressure) Continuous X5 ∼ Truncated Normal
(

µ = x̂, σ = 21, a = 67, b = 205
)

; x̂ ∼ X1 + X2 + X3 + X4 + X5

X6 Continuous X6 ∼ Truncated Normal (µ = 49, σ = 14, a = 24, b = 120)

X7 Continuous X7 ∼ Truncated Normal (µ = 25, σ = 5.6, a = 16, b = 54)

X8 Binary X8 ∼ Bernoulli (p = 0.05)

Table 1.  Features characteristics.

 

Scientific Reports |        (2025) 15:44005 3| https://doi.org/10.1038/s41598-025-27747-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and high censoring scenarios, such as in CVD research. The parameters of the Weibull distribution for survival 
and censoring time are presented in Table S1.

We have examined two scenarios to define the underlying true relationships between the informative 
predictors (X1, X2, X3, X4, X5) and the hazard function. Table S1 outlines the specific mathematical forms 
of the linear predictors (βˊX) used in each scenario. In Scenario I, which favors SMs, predictors contribute in 
a linear and additive manner to the hazard function. This indicates that each predictor (X1 through X5) has 
a constant, independent effect on the log-hazard. In contrast, Scenario II, which favors ML, introduces non-
linear and interaction effects, reflecting greater complexity of associations between covariates and the hazard 
function. Key features of this scenario include non-linear transformations of predictors, such as (X4^2), as well 
as interaction terms wherein the effect of one predictor is conditional on the value of another (e.g., X2 ∗ X3).

We generated various sample sizes of N = 500, 1000, and 5000. The small-sized dataset (N = 500) was chosen 
since SMs usually outperform MLs in small sample sizes, due to their smaller number of hyperparameters, 
provided the data meets the model’s assumptions. Conversely, higher sample sizes were selected to determine 
whether ML performance enhances with an increase in dataset size.

Eighteen scenarios were investigated assuming different associations between the predictors and the hazard 
function (linear and additive/non-linear and interactions), sample sizes (500/1000/5000), and censoring 
rates (50%/70%/90%). Nine scenarios showed linear and additive effects, while nine showed non-linear and 
interaction effects between predictors and outcomes.

The number of replications in this simulation study was set to 40. This was based on the formula proposed 
by Burton et al.33, where the C-index and standard error were set to 0.66 and 0.02, respectively22. The number of 
replications specified takes into account the potential model failures during training and/or validation.

The performance metrics
The risks estimated in the validation dataset, along with the actual status, were used to estimate the predictive 
ability of each method using measures of discrimination and calibration. “Discrimination” refers to how well the 
predictive model can discriminate between individuals who developed an event and those who did not, whereas 
“calibration” refers to the agreement between observed and predicted risks34. Discrimination was assessed via 
Harrell’s concordance index (C-index)35, while model calibration was assessed using integrated Brier score 
(IBS)36.

Implementation details
During data preprocessing, only continuous variables were scaled. Fig S1 depicts an illustration of three-fold 
nested cross-validation with three-fold outer resampling for unbiased generalization performance estimates, 
and hold-out for inner resampling for parameter tuning. Each dataset was randomly split using a static seed into 
a threefold cross-validation stratified by the outcome event to maintain the original distribution of incidents, 
specifically in the case of high censoring (e.g., 90%). Then, optimal values of hyperparameters that maximized 
the performance on the training set were found through a randomized search and hold-out (70%-30%) and 30 
repetitions.

For the Penalized Cox PH model, the hyperparameters tuned included L1 and L2 regularization terms. 
For RSF and ORSF models, the tuned hyperparameters included: the number of trees, the number of features 
considered for splitting in RSF or for constructing the linear combination in ORSF, and the minimum number 
of samples required to be at a leaf node. The splitting criteria used were a gradient-based score (global non-
quantile) for RSF and C-index for ORSF. In addition, three LCIV-constructed methods (fast, cph, and net) were 
evaluated as part of the model comparison. Table S2 shows the search space of hyperparameters optimized using 
randomized search.

Our simulation experiments were conducted between August 2024 and January 2025 on the UAE University 
High Performance Computing Cluster (HPC) using a computing node with a maximum wall-time of 480 h 
(20 days). It has two physical CPU chips, which are Intel(R) Xeon(R) Gold 6248 CPU @ 2.50 GHz with 20 cores 
per CPU and 384 GB RAM, running Red Hat Enterprise Linux. The study was implemented using R version 
4.2.137, utilizing the mlr3 ecosystem38, along with mlr3proba39, and mlr3extralearners packages40. The R code 
used in this study includes the statistical and ML methods, training and validation programs, as well as the 
generated tabulated results and figures. This is publicly available in the first author’s GitHub repository (​h​t​t​p​s​:​​/​/​g​
i​t​h​​u​b​.​c​o​m​​/​A​b​u​b​a​​k​e​r​S​u​​l​i​m​a​n​/​​s​i​m​u​l​a​​t​i​o​n​_​s​​t​u​d​y​_​​c​o​m​p​a​r​​e​_​p​r​e​d​​i​c​t​i​v​e​​_​p​e​r​f​o​r​m​a​n​c​e​/​t​r​e​e​/​m​a​i​n)41.

Statistical analysis
Descriptive analysis of Harrell’s C-index, IBS, and training time estimates was conducted in each scenario 
utilizing boxplot visualization. Distribution of training time represented in median (IQR). In inferential 
statistics, we presented the mean (95% confidence interval) of Harrell’s C-index and IBS estimates. Additionally, 
we employed the one-way repeated measures ANOVA test to compare Harrell’s C-index and IBS estimates 
across the examined methods in each scenario. Following this, post-hoc analyses with a Benjamini & Hochberg 
adjustment were carried out for all the pairwise differences between the investigated methods. All statistical tests 
were two-sided; p-values < 0.05 were considered statistically significant. This analysis utilized R version 4.3.1, 
tidyverse R package version 2.0.042, and rstatix R package version 0.7.243.

Results
Scenario I: comparison under proportional hazards with linear and additive effects
Harrell’s C-index comparison
Figure 1 provides box plots of the median C-index for the Cox PH, Penalized Cox PH, RSF, ORSF-fast, ORSF-
cph, and ORSF-net models trained on 40 datasets simulated under the initial scenario. All the models exhibit 
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satisfactory discrimination performance on the simulated dataset. However, the C-indices for the RSF model 
throughout the nine scenarios were lower than those of the statistical and ORSF models. This trend is more 
evident across all sample sizes when a 50% censoring rate is used.

The box plots of the C-index values for the three linear combinations of ORSF are almost symmetrical, 
indicating that the prediction ability of the three ORSF linear combinations is equivalent to the simulated time-
to-event data.

The means (and 95% CIs) of the Harrell’s C-indices for Cox PH, Penalized Cox PH, RSF, ORSF-fast, ORSF-
cph, and ORSF-net, averaged from 40 simulations over nine scenarios, are provided in Table 2. The impact of 
a growing censoring rate on statistical models is more pronounced in small (N = 500) than medium (N = 1000) 
and large (N = 5000) sample sizes. The average Harrell’s C-indices for Cox PH and Penalized Cox PH diminished 
from 0.675 to 0.657 and from 0.676 to 0.644, respectively, when censoring escalated from 50 to 90%. On the 
other hand, differences in censoring rates across medium and large sample sizes did not lead to substantial 
changes in the C-indices of the two statistical models.

Among ML algorithms, an increase in censoring had a minimal impact on predicted performance when the 
sample size remained constant. As the sample size expanded from 500 to 5000 participants, the mean Harrell’s 
C-index improved by about 2% across all machine learning models.

The C-indices for SMs were significantly higher than those for RSF models (mean difference [MD] = 0.01 
to 0.02, p < 0.001) across all scenarios, except when the sample size was 500 and the censoring rate was 90%. 
SMs had statistically significantly higher C-indices than the two ORSF variants — ORSF-fast and ORSF-cph 
(MD = 0.01, p < 0.05) — except when the sample size was 5,000 and the censoring rates were 50% and 70%; 
and when the sample size was 500 at a censoring rate of 90%, where the differences were either negligible or 
not statistically significant. Similarly, ORSF-net was outperformed by Cox PH models across all scenarios of 
sample size and censoring rate, except when the sample size was 500, and the censoring rate was 90%, where the 
difference in C-index was not statistically significant (p > 0.05) (Table S3).

Across all scenarios of sample size and censoring rate, RSF models had statistically significantly lower 
C-indices than the ORSF variants (MD = -– 0.01 to – 0.02, p < 0.001), except when the sample size was 500 and 
the censoring rate was 90% where the differences were not statistically significant. The differences in C-indices 
between the various ORSF variants were generally negligible or not statistically significant (Table S3).

Integrated brier score comparison
The means (and 95% CIs) of the integrated Brier scores for the various models — Cox PH, Penalized Cox PH, 
RSF, ORSF-fast, ORSF-cph, and ORSF-net — averaged from 40 simulations over nine scenarios, are provided in 
Table 3 All the models exhibit satisfactory calibration performance on the simulated dataset, with IBS ranging 
from 0.085 to 0.185.

Across the different scenarios of sample sizes and censoring rates, the Cox PH and Penalized Cox PH had 
the best calibration, as indicated by the lowest IBS. On the other hand, the RSF recorded the worst calibration, 
as indicated by the highest IBS, except when the sample size was 500 and the censoring rate was 90%, in which 
case, the worst performing was the ORSF-net. This performance gap was increasingly evident with larger sample 

Fig. 1.  Models’ discrimination performance using Harrell’s C index, averaged over 40 simulated datasets where 
linear and additive effects are assumed.
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Sample size

N = 500 N = 1000 N = 5000

Censoring = 50%

Cox PH 0.110 (0.108, 0.113) 0.104 (0.101, 0.107) 0.085 (0.083, 0.087)

Penalized Cox PH 0.109 (0.107, 0.112) 0.104 (0.101, 0.106) 0.085 (0.083, 0.087)

RSF 0.117 (0.115, 0.119) 0.110 (0.107, 0.112) 0.090 (0.089, 0.092)

ORSF-fast 0.113 (0.111, 0.116) 0.106 (0.103, 0.108) 0.086 (0.085, 0.088)

ORSF-cph 0.113 (0.111, 0.116) 0.106 (0.103, 0.108) 0.086 (0.085, 0.088)

ORSF-net 0.113 (0.111, 0.115) 0.106 (0.104, 0.109) 0.087 (0.085, 0.088)

Censoring = 70%

Cox PH 0.141 (0.133, 0.150) 0.128 (0.121, 0.134) 0.104 (0.102, 0.106)

Penalized Cox PH 0.136 (0.131, 0.141) 0.127 (0.122, 0.132) 0.104 (0.102, 0.106)

RSF 0.147 (0.142, 0.153) 0.139 (0.135, 0.142) 0.118 (0.116, 0.119)

ORSF-fast 0.145 (0.139, 0.152) 0.137 (0.130, 0.143) 0.110 (0.108, 0.112)

ORSF-cph 0.146 (0.139, 0.152) 0.137 (0.130, 0.143) 0.110 (0.108, 0.112)

ORSF-net 0.146 (0.140, 0.152) 0.136 (0.131, 0.141) 0.110 (0.108, 0.112)

Censoring = 90%

Cox PH 0.182 (0.159, 0.205) 0.165 (0.153, 0.178) 0.141 (0.137, 0.144)

Penalized Cox PH 0.171 (0.154, 0.187) 0.164 (0.152, 0.176) 0.141 (0.137, 0.144)

RSF 0.182 (0.167, 0.198) 0.182 (0.169, 0.196) 0.176 (0.174, 0.179)

ORSF-fast 0.182 (0.166, 0.199) 0.180 (0.165, 0.194) 0.164 (0.162, 0.166)

ORSF-cph 0.184 (0.168, 0.200) 0.181 (0.166, 0.195) 0.164 (0.162, 0.166)

ORSF-net 0.185 (0.167, 0.202) 0.180 (0.166, 0.194) 0.165 (0.162, 0.167)

Table 3.  Mean (95% CI) integrated Brier scores for competing learning methods, averaged over 40 simulations 
in nine scenarios where linear and additive effects are assumed.

 

Sample size

N = 500 N = 1000 N = 5000

Censoring = 50%

Cox PH 0.675 (0.668, 0.682) 0.679 (0.675, 0.683) 0.683 (0.681, 0.685)

Penalized Cox PH 0.676 (0.669, 0.683) 0.678 (0.674, 0.682) 0.683 (0.681, 0.685)

RSF 0.657 (0.650, 0.664) 0.664 (0.659, 0.668) 0.673 (0.671, 0.675)

ORSF-fast 0.669 (0.662, 0.676) 0.673 (0.669, 0.677) 0.680 (0.678, 0.682)

ORSF-cph 0.669 (0.662, 0.676) 0.673 (0.669, 0.677) 0.680 (0.678, 0.682)

ORSF-net 0.668 (0.661, 0.675) 0.671 (0.667, 0.676) 0.678 (0.676, 0.680)

Censoring = 70%

Cox PH 0.672 (0.661, 0.683) 0.678 (0.672, 0.684) 0.686 (0.683, 0.689)

Penalized Cox PH 0.672 (0.661, 0.683) 0.677 (0.671, 0.683) 0.686 (0.683, 0.689)

RSF 0.656 (0.645, 0.667) 0.662 (0.655, 0.668) 0.675 (0.672, 0.678)

ORSF-fast 0.666 (0.655, 0.677) 0.670 (0.664, 0.676) 0.682 (0.679, 0.685)

ORSF-cph 0.666 (0.655, 0.677) 0.670 (0.664, 0.676) 0.682 (0.679, 0.685)

ORSF-net 0.664 (0.653, 0.676) 0.668 (0.662, 0.674) 0.680 (0.677, 0.683)

Censoring = 90%

Cox PH 0.657 (0.636, 0.679) 0.674 (0.662, 0.686) 0.684 (0.679, 0.689)

Penalized Cox PH 0.644 (0.620, 0.668) 0.670 (0.658, 0.683) 0.684 (0.679, 0.689)

RSF 0.642 (0.620, 0.664) 0.652 (0.639, 0.665) 0.669 (0.663, 0.675)

ORSF-fast 0.654 (0.633, 0.676) 0.667 (0.654, 0.679) 0.676 (0.670, 0.682)

ORSF-cph 0.655 (0.634, 0.677) 0.668 (0.655, 0.681) 0.677 (0.671, 0.682)

ORSF-net 0.651 (0.629, 0.673) 0.663 (0.650, 0.676) 0.673 (0.667, 0.679)

Table 2.  Mean (95% CI) Harrell’s C index for competing learning methods, averaged over 40 simulations in 
nine scenarios where linear and additive effects are assumed.
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sizes and higher censoring rates. For instance, at a sample size of 5000 and a censoring rate of 90%, the IBS for 
Cox PH and RSF were 0.141 and 0.176, respectively.

Moreover, across all models, calibration generally deteriorated with increasing censoring rates, regardless of 
sample size, with RSF and ORSF appearing to be the most sensitive to censoring.

Additionally, the box plots of the IBS values for the three linear combinations of ORSF are almost symmetrical 
(Fig.  2), indicating that the prediction ability of the three oblique random survival linear combinations is 
equivalent in the simulated time-to-event data.

RSF models had significantly higher integrated Brier scores (IBS) than SMs across nearly all scenarios 
(MD = –0.01 to –0.04, p < 0.05), except when the sample size was 500 and the censoring rates were 70% or 90%, 
where the difference between Cox PH and RSF was not statistically significant (p > 0.05). Additionally, larger 
differences were observed when the sample size was between 1,000 and 5,000 and the censoring rate was 90%. 
The ORSF variants yielded statistically higher IBS than the SMs in most cases, particularly when the sample 
sizes (1,000–5,000) were large and the censoring rate was high (90%). However, these differences were generally 
negligible when the censoring rate was 50%, regardless of sample size (Table S4).

RSF and ORSF were comparable in terms of IBS score in most of the scenarios, with differences being either 
negligible or not statistically significant. The only exceptions are when the sample size was 5,000 at 70% and 
90% censoring rates, where the IBS scores for the RSF were significantly slightly higher than for ORSF-variants 
(MD = 0.01, p < 0.001). The pairwise differences in IBS among the ORSF variants were generally statistically not 
significant and/or negligible (Table S4).

Training time
The training time across RSF, ORSF-fast, and ORSF-cph was consistently minimal across all scenarios, with 
ORSF-fast and ORSF-cph generally taking shorter times to train than the RSF. On the other hand, ORSF-net 
was the most computationally extensive, requiring significantly longer duration to train across all scenarios of 
censoring and sample size (Fig S2, Table S5).

Scenario II: comparison of prediction models in proportional hazards with non-linearity and 
interaction
In the nine simulated situations involving non-linearity with interaction effects, all five models demonstrated a 
notable improvement in predictive ability compared to the linear additive relationship.

Harrell’s C-index comparison
All examined models attained a C-index of about 90% when the censoring rate and the sample size were set at 
90% and 5000, respectively (Fig. 3). Furthermore, the variability in C-indices was greater for small and medium 
sample sizes.

Table 4 reports the mean (95% CI) of Harrell’s C-indices when modeling non-linearity with interaction for 
five competitive learning techniques, averaged across 40 simulations over nine scenarios. The C-indices for SMs 

Fig. 2.  Models’ calibration using the Integrated Brier score, averaged over 40 simulated datasets where linear 
and additive effects are assumed.
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Sample size

N = 500 N = 1000 N = 5000

Censoring = 50%

 Cox PH 0.853 (0.850, 0.856) 0.854 (0.851, 0.856) 0.857 (0.856, 0.858)

 Penalized Cox PH 0.853 (0.850, 0.856) 0.854 (0.851, 0.857) 0.857 (0.856, 0.858)

 Penalized Cox PH (NLI) 0.855 (0.852, 0.858) 0.855 (0.850, 0.859) 0.851 (0.840, 0.863)

 RSF 0.821 (0.816, 0.825) 0.839 (0.835, 0.842) 0.853 (0.851, 0.854)

 ORSF-fast 0.847 (0.844, 0.851) 0.851 (0.848, 0.854) 0.856 (0.855, 0.857)

 ORSF-cph 0.848 (0.845, 0.851) 0.851 (0.848, 0.854) 0.856 (0.855, 0.857)

 ORSF-net 0.848 (0.844, 0.852) 0.851 (0.848, 0.854) 0.856 (0.854, 0.857)

Censoring = 70%

 Cox PH 0.869 (0.865, 0.873) 0.867 (0.864, 0.871) 0.874 (0.873, 0.876)

 Penalized Cox PH 0.868 (0.864, 0.873) 0.868 (0.864, 0.871) 0.874 (0.873, 0.876)

 Penalized Cox PH (NLI) 0.871 (0.866, 0.875) 0.869 (0.866, 0.873) 0.859 (0.843, 0.875)

 RSF 0.848 (0.843, 0.854) 0.857 (0.854, 0.860) 0.870 (0.869, 0.872)

 ORSF-fast 0.862 (0.858, 0.867) 0.865 (0.861, 0.868) 0.873 (0.872, 0.875)

 ORSF-cph 0.865 (0.860, 0.869) 0.865 (0.862, 0.869) 0.873 (0.872, 0.875)

 ORSF-net 0.866 (0.861, 0.870) 0.865 (0.862, 0.868) 0.873 (0.871, 0.875)

Censoring = 90%

 Cox PH 0.883 (0.874, 0.893) 0.892 (0.886, 0.897) 0.899 (0.897, 0.902)

 Penalized Cox PH 0.882 (0.872, 0.891) 0.885 (0.874, 0.896) 0.899 (0.896, 0.901)

 Penalized Cox PH (NLI) 0.885 (0.875, 0.895) 0.866 (0.845, 0.887) 0.900 (0.897, 0.902)

 RSF 0.866 (0.855, 0.877) 0.881 (0.875, 0.886) 0.894 (0.891, 0.896)

 ORSF-fast 0.842 (0.830, 0.854) 0.871 (0.866, 0.876) 0.894 (0.891, 0.897)

 ORSF-cph 0.850 (0.839, 0.862) 0.880 (0.875, 0.885) 0.896 (0.894, 0.899)

 ORSF-net 0.846 (0.835, 0.857) 0.874 (0.870, 0.879) 0.895 (0.892, 0.897)

Table 4.  Mean (95% CI) Harrell’s C-index for competing learning methods, averaged over 40 simulations in 
nine scenarios where interaction and non-linear effect are assumed.

 

Fig. 3.  Models’ discrimination performance using Harrell’s C index, averaged over 40 simulated datasets where 
interaction and non-linear effect are assumed.
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and ML models improved with increased censoring across all sample sizes, except in ORSF algorithms. Despite 
the minor variations in SMs as the sample size grows at the same censoring rate, the ML models exhibited 
comparable patterns at 50% and 70% but not 90% censoring rates. The ORSF-fast exhibits a 1% rise in the 
C-index as the sample size increased from 500 to 5000 at 50% and 70% censoring rates; however, it shows a 5% 
increase at a 90% censoring rate with the same sample size expansion.

SMs consistently achieved higher C-indices than RSF models across all scenarios (MD = 0.01 to 0.03, 
p < 0.001), especially at smaller sample sizes (N = 500) and lower censoring rates (50%). The only exception was 
when the sample size was 1,000 and the censoring rate was 90%, in which case the C-indices for the Penalized 
Cox PH and Penalized Cox PH (NLI) models and the RSF model were not significantly different. However, 
with a sample size of 5,000 and censoring rates of 50% and 70%, the differences in C-index were minimal or 
non-significant. The differences in C-indices between SMs and ORSF models were mostly minimal, except at a 
sample size of 500 and a censoring rate of 90%, where the C-indices for SMs were significantly higher (MD = 0.03 
to 0.04, p < 0.001) (Table S6).

At sample sizes of 500–1,000 and censoring rates of 50–70%, ORSF models yielded significantly higher 
C-indices than the RSF models (MD = –0.03 to –0.01, p < 0.001). Conversely, the RSF models showed significantly 
higher c-indices than the ORSF models at a sample size of 500 and a censoring rate of 90% (MD = 0.02, p < 0.01). 
The differences in C-indices among the ORSF variants were largely minimal or statistically not significant, except 
at sample sizes of 500–1,000 and a censoring rate of 90%, where ORSF-cph significantly outperformed ORSF-fast 
(MD = 0.01, p < 0.01) (Table S6).

Integrated brier score comparison
Under scenario II — involving interaction and non-linearity, all models demonstrated higher integrated Brier 
scores when the sample size was limited to 500 observations, indicating a decline in calibration. Furthermore, 
increasing the censoring rate from 70 to 90%, keeping medium-to-large sample sizes (1000 to 5000), led to a 
slightly higher increase in the IBS in the ML models compared to the SMs (Fig. 4, Table 5).

The models showed varying calibration performances across various conditions. Penalized Cox PH (NLI) 
had the best calibration at a censoring rate of 50% across all sample sizes, and at a censoring rate of 70% when 
the sample sizes were 500 or 1000. At a high censoring rate (90%), Cox PH had the best calibration when the 
sample sizes were 500 or 1000. RSF and ORSF-fast appeared to be the most frequently worst performing in terms 
of calibration under scenarios involving interaction and non-linearity.

While the SMs were mostly similar to the RSF model in terms of IBS, they showed significantly lower IBS at 
a high censoring rate of 90% (MD = –0.02 to –0.01, p < 0.05). Although the IBS scores for the SMs were generally 
similar to those of ORSF models, significantly lower IBS scores (up to a difference of -0.05, p < 0.05) were 
observed for SMs compared to the ORSF models at a high censoring rate (90%) (Table S7).

RSF models showed significantly higher IBS scores than the ORSF models (MD = 0.01, p < 0.05) in most of 
the scenarios with censoring rates of 50–70%. A notable switch was observed at a 90% censoring rate with sample 
sizes of 500 and 1,000, where the IBS scores were significantly lower for the RSF models than the ORSF models 
(MD = –0.01 to –0.02, p < 0.05). For most cases, there were no significant differences in IBS score between the 

Fig. 4.  Models’ calibration using the Integrated Brier score, averaged over 40 simulated datasets where 
interaction and non-linear effects are assumed.
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ORSF variants. However, at a 90% censoring rate, ORSF-fast had statistically significantly higher IBS scores than 
ORSF-cph (at N = 1,000) and ORSF-net (at N = 1,000 and 5,000) (Table S7).

Training time
RSF, ORSF-fast, and ORSF-cph recorded significantly shorter training times than ORSF-net, as ORSF-net 
demonstrated a markedly extended duration, up to 53 min, with a larger sample size (N = 5,000). Moreover, 
while RSF, ORSF-fast, and ORSF-cph exhibited comparable training times at a smaller sample size (N = 500) 
and across all censoring scenarios, RSF models recorded significantly longer training times than ORSF-fast and 
ORSF-cph at larger sample sizes (N = 1,000 – 5,000) across all censoring rates (Fig S3, Table S8).

Discussion
In this study, we designed and implemented an innovative simulation framework to model the time-to-event 
of individuals with CVDs. This framework was subsequently used to evaluate the predominant predictive 
algorithms for time-to-event data affected by right-censoring. The comparison included classical SMs, including 
Cox PH and Penalized Cox PH, as well as ML models, including RSF, and the novel ML algorithm — ORSF. 
We conducted a comparison across many scenarios: varying sample sizes, varying censoring rates, diverse non-
linear distributions of continuous variables, and risk heterogeneity (interaction) between two variables.

In all scenarios, when linear effects and additive relations are assumed, RSF achieved the lowest performance 
among all models considered. Omurlu et al.20 demonstrated that Cox PH performed slightly better than RSF, 
investigating only scenarios with sample size less than or equal to 500, while Baralou et al.11 reported that Cox 
PH outperformed all three splitting criteria of RSF under the linear assumption. Moreover, Billichová et al.22 
reported that when the data follow the exponential distribution, the Cox PH model outperforms RSF in terms 
of predictive accuracy. Our findings are consistent with these studies, confirming that RSF is inferior to Cox PH. 
Moreover, the average relative performance differences between the two models increase when the sample size 
increases at a 90% censoring rate. On the other hand, all three ORSF linear combinations slightly outperformed 
RSF and performed similarly to Cox PH when censoring rates were 50% and 70%, with a sample size of 5,000. 
As expected, the Cox PH and its penalized variant performed slightly better than the ML algorithms in this 
scenario, given that the model assumptions are satisfied. Additionally, the Cox models require little to no 
hyperparameter tuning—unlike the ML models, which involve numerous tuning parameters and are therefore 
more data-intensive22.

When the simulated data exhibited heterogeneity with non-linearity of the risk relationship, performance 
varied notably depending on the sample size. In small sample sizes, the Cox PH model surpasses both the RSF 

Sample size

N = 500 N = 1000 N = 5000

Censoring = 50%

 Cox PH 0.113 (0.098, 0.128) 0.099 (0.094, 0.104) 0.083 (0.081, 0.085)

 Penalized Cox PH 0.104 (0.092, 0.115) 0.095 (0.091, 0.099) 0.082 (0.080, 0.083)

 Penalized Cox PH (NLI) 0.097 (0.090, 0.105) 0.091 (0.082, 0.099) 0.079 (0.074, 0.085)

 RSF 0.109 (0.106, 0.112) 0.100 (0.097, 0.102) 0.084 (0.082, 0.085)

 ORSF-fast 0.102 (0.096, 0.107) 0.094 (0.092, 0.097) 0.079 (0.077, 0.080)

 ORSF-cph 0.101 (0.096, 0.105) 0.094 (0.092, 0.097) 0.079 (0.078, 0.080)

 ORSF-net 0.101 (0.095, 0.106) 0.094 (0.091, 0.096) 0.079 (0.078, 0.080)

Censoring = 70%

 Cox PH 0.150 (0.126, 0.174) 0.126 (0.114, 0.137) 0.104 (0.101, 0.106)

 Penalized Cox PH 0.142 (0.121, 0.163) 0.120 (0.110, 0.129) 0.102 (0.100, 0.104)

 Penalized Cox PH (NLI) 0.127 (0.110, 0.143) 0.112 (0.104, 0.119) 0.110 (0.095, 0.125)

 RSF 0.146 (0.133, 0.159) 0.133 (0.125, 0.141) 0.115 (0.113, 0.117)

 ORSF-fast 0.136 (0.121, 0.151) 0.128 (0.119, 0.138) 0.108 (0.106, 0.110)

 ORSF-cph 0.137 (0.121, 0.152) 0.128 (0.118, 0.137) 0.108 (0.106, 0.110)

 ORSF-net 0.137 (0.120, 0.155) 0.128 (0.119, 0.138) 0.108 (0.106, 0.110)

Censoring = 90%

 Cox PH 0.123 (0.104, 0.142) 0.097 (0.091, 0.104) 0.097 (0.089, 0.106)

 Penalized Cox PH 0.125 (0.110, 0.139) 0.105 (0.096, 0.113) 0.097 (0.089, 0.105)

 Penalized Cox PH (NLI) 0.135 (0.114, 0.156) 0.107 (0.099, 0.114) 0.095 (0.089, 0.101)

 RSF 0.145 (0.125, 0.166) 0.113 (0.108, 0.119) 0.117 (0.110, 0.124)

 ORSF-fast 0.170 (0.145, 0.195) 0.130 (0.125, 0.135) 0.113 (0.107, 0.119)

 ORSF-cph 0.168 (0.141, 0.195) 0.123 (0.118, 0.128) 0.113 (0.107, 0.119)

 ORSF-net 0.163 (0.137, 0.189) 0.123 (0.119, 0.128) 0.112 (0.106, 0.118)

Table 5.  Mean (95% CI) integrated Brier scores for competing learning methods, averaged over 40 simulations 
in nine scenarios where interaction and non-linear is assumed.
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and the ORSF; nevertheless, in medium and large sample sizes, the Cox PH model exhibits similar accuracy to 
that achieved by RSF and ORSF. These informative findings are similar to the findings of Billichová et al.22. It is 
worth mentioning that the effect of increasing the sample size is more apparent in the ML algorithms than the 
Cox PH models, especially in high censoring rate (90%) where the average difference between 500 and 5000 
samples sizes ranges from 2.8% in RSF to 4.6% in ORSF-cph. Significant publications in ML examined the 
non-linearity of risks (e.g., quadratic); however, they used a linear Cox PH model, which predictably resulted 
in decreased accuracy, while ML models maintained their accuracy19,22. In this study, we found that if we use 
Penalized Cox PH, which accounts for interaction and non-linearity, the performance is better than that of RSF 
and ORSF in a small sample size and is comparable to both RSF and ORSF in a large sample size.

We investigated the predictive performance and computational efficiency of ORSF and its variants, as well 
as RSF, a neutral comparison (i.e., conducted by authors not affiliated with the authors who proposed the 
algorithms), which, to the best of our knowledge, has never been carried out. There was no difference in C-index 
and IBS across all investigated sample sizes and event rates in both scenarios of ORSF-fast and ORSF-cph against 
ORSF-net. This is similar to the findings of the ORSF authors’ study16. While the performance of ORSF is close 
to that of RSF in the case of linear and additive scenarios, ORSF algorithms significantly outperformed RSF in 
the case of interaction and non-linearity. These findings were similar to the original simulation study of ORSF17.

The main strength of our paper is in tuning the parameters of RSF and ORSF. Several existing studies in 
literature utilized the default, or even arbitrary values, for the ML and deep learning methods11,22. In this study, 
we used random search with 30 repetitions in the inner cross-validation to find the optimal hyperparameters, 
which maximized the C-index. The existing data-generating simulations show a lack of plausibility in the sense 
that they often use independent simulations of feature values, which is unrealistic in the case of biological data33. 
In this study, we generated correlated features based on the relation magnitude estimated from the MESA study. 
Furthermore, we calculated the required number of simulations in this study to achieve a certain accuracy, 
which was rarely conducted in previous simulation studies19.

A limitation of our study is in our data-generating mechanism, which assumes no missing values or 
outliers. In real medical data, atypical findings are often seen. Consequently, it is essential for future research 
to simulate 5% outliers and independent variables with missing values and examine the models’ performance 
in the presence of such anomalies. In our simulated data, we did assume the PH assumption. Although this 
assumption is often satisfied in real-life applications44, it may boost the performance of traditional methods and 
diminish the performance of ML models. It is, therefore, important in a future study to simulate data where the 
PH assumption is violated. Finally, the adaptation of neural networks to time-to-event data was introduced to 
ML at an early stage. We did not investigate in the current study the performance of a neural network with time-
to-event data, such as a Cox PH deep neural network (DeepSurv)45, to allow for a reasonable computation time. 
However, we plan for such a comparison in our future studies.

Our findings have important implications for healthcare professionals, researchers, and policymakers, 
enabling them to make more informed decisions when selecting models in time-to-event CVD prediction, 
particularly in situations with different sample sizes, censoring rates, and effects of predictors on the outcome. 
The study confirms that a single model cannot fit all scenarios, meaning no one model consistently guarantees 
the best discrimination and calibration across all situations. For instance, the sample size and censoring rate 
have a substantial role in the model’s performance. Overall, SMs are credible alternatives to ML algorithms, 
with ORSF-fast and ORSF-cph emerging as prominent candidates in prognostic research. Finally, the ORSF-
net model should be avoided as it offers no performance advantages and is less computationally efficient due to 
extended training durations.

Conclusion
This simulation study directly addresses the need for systematic evaluation, demonstrating the relative 
strengths and weaknesses of popular ML and SM approaches for time-to-event data. We showed that RSF 
had lower discrimination performance compared to Cox PH, Penalized Cox PH, and ORSF. In scenarios with 
low to moderate censoring rates, ORSF performed similarly to SMs, particularly regarding non-linearity and 
interactions. Therefore, ORSF would be advantageous for individual risk prediction in the event that the number 
of instances and variables increases significantly, hence the growing relationship complexity between several 
covariates. Finally, we observed no significant difference among the various ORSF variations for discrimination 
or calibration.

Data availability
The data that support the findings of this study and the code necessary to reproduce the reported results are 
publicly available in the first author’s GitHub repository (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​A​b​u​b​a​​k​e​r​S​u​​l​i​m​a​n​/​​s​i​m​u​l​a​​t​i​o​n​_​s​​t​u​d​
y​_​​c​o​m​p​a​r​​e​_​p​r​e​d​​i​c​t​i​v​e​​_​p​e​r​f​o​r​m​a​n​c​e​/​t​r​e​e​/​m​a​i​n).
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