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This study addresses the challenge of planogram compliance in convenience stores by proposing a 
scalable, automated shelf monitoring system deployed across over 7,000 7-Eleven stores in Taiwan. 
Traditional manual audits are labor-intensive, error-prone, and costly, creating a growing need for 
reliable, automated solutions. To address this challenge, the proposed system integrates computer 
vision and deep learning techniques into a unified pipeline capable of detecting shelves, recognizing 
products, and comparing shelf layouts against digital planograms through a customized alignment 
algorithm. The system further incorporates multi-image stitching to overcome spatial constraints and 
construct virtual shelves that closely replicate real-world environments, improving adaptability and 
accuracy. Three large-scale datasets were developed to support model training and validation: 15,232 
images for shelf detection, 99,135 images for product detection, and 471 product categories averaging 
210 images each for classification. Automated labeling and clustering processes were introduced to 
substantially reduce manual annotation time. Experimental results demonstrate that the YOLOv8-
based detection models achieve exceptional precision and recall across all stages. For shelf detection, 
the model achieved 99.23% precision, 98.93% recall, and 99.41% mAP@50, while product detection 
reached 94.61% precision, 93.02% recall, and 95.7% mAP@50—both surpassing transformer-based 
alternatives such as Deformable DETR. ResNet101 and FAN-based Transformer models achieved 
99.86% accuracy on real-world retail datasets, indicating strong model stability. In the few-shot 
experiments, the FAN-based model showed strong adaptability and generalization, maintaining high 
accuracy with only five samples per class and achieving 98.39% Top-1 and 99.48% Top-5 accuracy on 
unseen products, demonstrating excellent transfer learning and real-time recognition capability. The 
system offers high accuracy, scalability, and real-time efficiency, making it a strong alternative to 
manual audits and a driver of smart retail innovation.

Keywords  Planogram compliance, Computer vision, Deep learning, Virtual shelves, Automated labeling, 
Clustering processes

Background and motivation
 In the competitive retail industry, product placement on store shelves plays a critical role in influencing 
consumer purchasing behavior1,2. Planograms are schematic tools used by retailers to design shelf layouts that 
aim to optimize product placement and create consistent shopping experiences across store locations3. These 
planograms can come in many forms, such as an image detailing how products are to be placed on a shelf or 
a text file listing the orders of products on each row. Adherence to these planograms, known as planogram 
compliance, is essential for effective inventory management, brand consistency, and customer satisfaction4,5. 
This study introduces a planogram compliance system to be used in 7-Eleven stores across Taiwan—a total of 
over 7,000 retail locations—which presents a great opportunity to test planogram automation methods at scale.

However, planogram compliance is a complex task due to the dynamic nature of retail environments: shelves 
are frequently restocked, customers and staff move products, and new items are regularly introduced. Traditional 
methods of verifying compliance involve manual audits, which are time consuming and error prone. Automated 
systems harnessing computer vision and machine learning offer a promising solution but face remarkable 
challenges.
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Challenges in automated planogram compliance
Retail spaces often have multiple shelves, racks, and other spaces containing a wide variety of products. Given the 
possible differences in retail environments, even within a single location, several challenges must be considered 
when developing a planogram verification system, including the following:

Physical environment
In practical retail settings, automated planogram verification systems assume that an entire shelf can be captured 
within a single image. However, this often proves impossible due to space constraints, tight aisles, and varying 
shelf depths—limitations that previous studies largely overlooked. The Hyb‑SMPC research highlights that 
common issues such as nonfrontal viewpoints, uneven illumination, and cluttered product arrangements lead 
to partial or distorted visual data. When only fragments of the shelf are captured, critical portions of products—
price tags, facings, or entire SKUs—may be absent or misaligned, undermining the system’s ability to detect items 
accurately and verify layout compliance. Consequently, compliance reports may be incomplete or misleading, 
reducing trust in automation and necessitating additional manual checks—defeating the purpose of using 
computer vision in the first place. This limitation underscores the urgent need for approaches that can seamlessly 
stitch multiple shelf segments, adjust for viewing angles, or dynamically adapt capture strategies, ensuring full 
coverage even in confined retail environments—an area largely ignored in earlier work6.

Scale variations
Retail environments are inherently complex and dynamic, characterized by wide variations in store layouts, shelf 
sizes, product dimensions, and stocking patterns across different locations and formats. Automated systems 
designed for tasks such as planogram compliance verification or inventory tracking must therefore operate 
reliably across these diverse scales. A system that performs well in one store configuration may struggle in 
another if it cannot adapt to differences in shelf height, product density, or image resolution. Moreover, real-time 
decision-making in retail hinges on the system’s ability to process inputs with minimal latency—regardless of 
scale—so that frontline staff can act on actionable insights without delay. To be operationally viable, these systems 
must integrate scale-invariant algorithms, adaptive detection models, and dynamic calibration techniques that 
ensure consistent performance across large and small retail spaces alike. Addressing scale variations is not just a 
matter of visual accuracy but a prerequisite for maintaining efficiency, consistency, and responsiveness in high-
velocity retail operations.

These challenges require advanced machine learning models capable of accurate detection and fine-grained 
recognition in complex environments while maintaining real-time performance. Our proposed planogram 
compliance system can reliably manage many of these challenges.

Contributions
 Planogram compliance systems have great potential for retailers if the challenges in Sect.  Challenges in 
automated planogram compliance can be addressed. First, quickly determining whether products are placed 
correctly would allow store employees the time to devote to other tasks. Second, the proposed system can also 
currently detect out-of-stock items, with the future possibility of recommending alternative products, adding to 
the potential efficiency gains. Furthermore, large retailers might be interested in delivering a consistent shopping 
experience across its locations, and such a pipeline would allow the company headquarters to verify this scenario 
on a daily basis. This study introduces a scalable, real-time pipeline for planogram compliance verification that 
addresses the aforementioned challenges. The key contributions include the following:

	(1)	 Large-scale retail shelf detection, product detection, and classification datasets.

To develop the proposed pipeline, we collected and labeled large datasets using automated methods and manual 
supervision to create the most accurate results.

	(2)	 Multiple overlapping image support for limited-space scenarios.

The proposed system can support multiple images of a single shelf, each image containing a fraction of the total 
shelf, and consider it as a single shelf in the virtual shelf component. This system is useful when dealing with 
limited space in real-world retail environments, where narrow aisles or long shelves might not allow to capture 
the entire shelf at one time.

	(3)	 Planogram verification pipeline using virtual shelf mechanism.

The proposed system uses the Needleman–Wunsch7 algorithm to verify compliance in a robust manner, similar 
to Yücel et al.8,9, with the added flexibility of supporting multiple images for a single shelf.

The remainder of this paper is structured as follows: Sect. Problem statement and related work details the 
problem statement and discusses earlier works in the field. Section  Data annotation describes the proposed 
datasets and the annotation process. Section Planogram verification system describes the planogram verification 
system in detail. Section Experimental setup and results presents experimental results. Section Conclusion and 
discussion discusses the strengths and weaknesses of the system derived from the experimental results and 
concludes the study with suggestions for future research.
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Problem statement and related work
Detailed problem definition
Planogram verification, also known as planogram compliance, refers to comparing the actual product layout in 
a store shelf, captured in an image called a realogram by the end user, with the desired product layout described 
in a reference planogram. The problem is then to compare the product arrangement in a reference planogram, 
made beforehand, with the realogram to measure its adherence to the reference planogram. To perform this 
comparison, the products in the shelf image need to be detected, classified, and grouped in accordance with the 
row in which it appears on the shelf. Each of these steps would require a dedicated machine learning model. 
The verification procedure would compare each shelf row in the realogram with its corresponding row in the 
reference planogram, assigning a status to each product in the realogram such as correct, incorrect position, 
incorrect shelf, out-of-stock, etc. Once the comparison has been performed for each shelf row, feedback should 
be returned to the store employee so that necessary changes can be quickly made. Figure  1 shows how the 
planogram and realogram comparison difference report is presented. The goal of planogram compliance 
verification is to compare the realogram with the reference planogram and then pass the report back to the user 
for correction or storage for further processing.

Application scenario
As mentioned, the proposed system is intended to be used across many 7-Eleven stores, where a single shelf 
contain many rows of items. Each shelf should have a predefined planogram file describing the products that 
belong on that shelf and their ordering. For instance, a planogram file could be a comma-separated-values (.csv) 
file, where each line lists the items that should appear in that order in the corresponding row of a store shelf, or 
any other file format more convenient to the final application.

A store employee would use some electronic device to capture an image (or images) of a store shelf. Following 
the image capture, the store employee would send that image to be processed by the system, for example, via a 
mobile or web app. When the pipeline finishes calculating the planogram compliance, a description of the results 
can be returned to the user as appropriate. This process of capturing a shelf image and sending it to the pipeline 
would be repeated for each shelf that is desired, granting the existence of a planogram file. One of the main 
contributions of the present work is to support multiple images for a single shelf via the virtual shelf algorithm, 
for use in the common scenario when not enough space is available to capture the entire shelf in a store. Figure 2 
shows how a shelf can be captured by more than one image, each containing a portion of the total rows. If two 
such images are received, the virtual shelf mechanism estimates the order of the images based on the number of 
matched products with the planogram. The user could thus comfortably capture as many images as needed for 
the shelf and still receive near real-time results.

This pipeline can also be customized for different retail locations. In our use case, the pipeline has planograms 
and has been trained on data corresponding to 25 shelves across several retail locations. Given that the same 
shelf could be stocked differently in different locations, we have generated a unique planogram for each shelf 
across actual retail locations. In the future, each store could have customized planograms and thus could have a 
shelf layout more suited for that location.

Existing solutions and limitations
Machine learning for use in retail has been an active research area for many years10 and can be considered an 
application of the broader areas of object detection and image classification. However, most of the literature 
focuses on detecting and/or classifying retail products and propose novel methods to this end, while only a few 
works combine planogram compliance into the picture.

Earlier detection and classification approaches use traditional feature detectors for retail product detection 
or classification such as SIFT11 and SURF12. While these feature detectors can perform well under some image 
transformations, such as scaling, lighting conditions and other factors commonly present in retail scenarios are 
enough to lower their performance. Methods such as NSURF13 and AB-SURF14 build on these feature detectors 
for retail product detection but they remain less robust than later deep learning-based approaches.

Fig. 1.  Comparison report of planogram and realogram.
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Deep learning-based methods take advantage of convolutional neural networks (CNNs), which can learn 
more robust features across a single product image. Foundational CNNs15–19 paved the way for later image 
classifiers and object detection models applied to retail image detection and classification20,21. Some approaches 
combine object detection and classification with planogram compliance22. Pietrini et al.23 proposed an entire 
pipeline using image retrieval to identify products and localize products based on bounding box coordinates. 
Tonioni and Di Stefano24 pose planogram compliance as a subgraph isomorphism problem, building the graph 
by adding an edge between adjacent products. Laitala et al.25 instead used the RANSAC26 algorithm to find the 
most suitable compliance probabilistically. The most similar planogram compliance approaches to the proposed 
system are those of Yücel et al.8,9, both of which also use the Needleman–Wunsch algorithm to calculate 
compliance. The main differences between our pipeline and theirs are that ours supports more statuses for a 
single product, and we use deep learning shelf detection, object detection, and classification models, whereas 
they rely on more traditional feature detectors.

Summary
Enabling planogram compliance at scale requires a system that can accurately detect and classify products on 
shelves. Furthermore, it requires an algorithm that can correctly account for any edge cases, missing products, 
stacked products on shelves, and many other common edge cases in retail stores, all while making the system 
easy to understand and use for store employees. Furthermore, the system needs to deliver results quickly to store 
employees to make necessary adjustments. Earlier efforts in this space either use less flexible feature detectors 
(perhaps suitable for embedded devices but not for our scenario) or do not provide an end-to-end solution 
combining retail object detection and classification followed by planogram compliance. Our proposed system 
aims to fill this gap by developing a reliable and scalable solution that can be deployed across thousands of retail 
locations. To achieve this, enough data is needed to train the aforementioned detection and classification models.

Data collection and Preparation
The success of any machine learning model hinges on the quality and representativeness of the training data. 
Recognizing this, we curated three datasets, one for each step in our pipeline: shelf detection dataset, product 
detection dataset, and product classification dataset27. This section describes the datasets and data collection 
processes in detail. To ensure that our dataset captures real-world variation, all images were collected on-site 
at actual operational environments. Specifically, we obtained data from four distinct 7-Eleven stores, each 
representing different store sizes and layouts. For each location, our team personally performed data collection 
at different time points throughout each day, covering various periods over three consecutive days. During the 
collection process, we intentionally moved the camera and varied the viewpoints to include as many different 
angles, lighting conditions, and shelf states as possible. As a result, the constructed dataset inherently contains a 
reasonable degree of visual diversity reflective of the realistic scenes encountered in practical deployment.

Dataset description
Shelf detection dataset
The first step in the planogram compliance pipeline is to analyze an image of a shelf for each row, obtaining the 
bounding boxes for each row. In the retail environments surveyed, shelves can vary greatly in appearance; some 
are refrigerated, and some contain hanging foods. The categories of products covered in the dataset include the 
following, and Fig. 3 shows the samples from the different shelf categories covered by the proposed dataset.

	(1)	 Cold drinks: Drinks such as milk cartons, tea, and various fruit juices, which need to be kept at cold tem-
peratures.

Fig. 2.  Virtual shelf assembly using multiple overlapping shelf images.
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	(2)	 Fresh foods: Chicken breasts, vegetables, and meats which hang rather than stand on a shelf.
	(3)	 Room temperature drinks: Sodas, teas, and other sports drinks.
	(4)	 Snacks: Many varieties of chips or cookies.
	(5)	 Instant noodles: Noodles of various shapes and sizes.

Given the large variety of products covered, the dataset must sufficiently cover every product category and shelf 
type to ensure detection models perform equally well on each type of shelf. The quantity and proportions of 
images in the training and testing datasets are described in Table 1. The images were manually annotated using 
an image annotation tool, and the bounding box coordinates of each shelf row saved. In this manner, the new 
dataset can be easily loaded into traditional object detection models.

Product detection dataset
In addition to the shelf detection dataset, we create a product detection dataset by annotating the bounding 
box for each product in the shelf images, shown in Table 2. The dataset was annotated using a pretrained object 
detection model and its outputs manually verified using a dataset annotation tool.

Product recognition dataset
In the proposed pipeline, once the shelves are detected and the products on each shelf are detected, the last step 
involves classifying the product into one of n categories. For that purpose, the final proposed dataset includes 
thousands of images of various retail products, obtained from the large amount of shelf images collected from 
real retail locations belonging to one of the largest retailers in Taiwan. In total, N = 471 categories are present 
in the dataset.

Figure 4 shows the distribution of the recognition dataset, with the classes sorted by descending image 
counts. There are currently 99,135 product images, with an average of 210 images per class and a median of 165 
images per class. The minimum number of images per class is 58 and the maximum is 1917.

Product image count Proportion

Training 79,122 79.8%

Testing 20,013 20.2%

Total 99,135 100%

Table 2.  Product detection dataset size and distribution between testing and training datasets.

 

Shelf image count Proportion

Training 12,255 80.5%

Testing 2,977 19.5%

Total 15,232 100%

Table 1.  Shelf detection dataset size and distribution between training and testing datasets.

 

Fig. 3.  Samples from the different shelf categories covered by the proposed dataset. (a) Cold drinks, (b) Fresh 
foods, (c) Warm drinks.
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Data annotation
Shelf and product detection datasets
Accurate annotations are vital for supervised learning models. We undertook a meticulous annotation process 
to ensure the quality of the data labels for the detection and recognition datasets. For the detection datasets, 
each image has its own annotation file, where each line describes the location of a detected object. In the shelf 
detection dataset, each annotation file corresponds to a shelf row in that image, whereas in the product detection 
dataset, each line corresponds to a detected product. Each line contains five numbers, resembling the following:

0, 0.492727, 0.897019, 0.793297, 0.190870,
where the first number corresponds to the class of the item detected. The shelf and product detection 

datasets only have one class, “shelf ” and “retail item,” respectively; thus, the first number will always be zero. 
The remaining four numbers are normalized coordinates, the first two of which indicate the center x and y 
coordinates, and the last two numbers indicate the height and width of the item’s bounding box.

The first iteration of the detection datasets was annotated entirely manually. Initial shelf and product detection 
models were trained on this manually labeled dataset and used to label subsequent images as the datasets grew. 
Manual inspection ensured the accuracy of the annotations.

Product classification dataset
To label the product classification dataset, we use an automated clustering method and then verify the results 
manually. Initially, shelf data are collected from each store in the form of images or videos, splitting up each 
frame in the case of videos. The resulting images are then run through pretrained shelf and product detection 
models, similar to the proposed pipeline described in Sect. Planogram verification system.

With the resulting product subregions of the image, a pretrained embedding model produces embeddings for 
each product image. A Bayesian optimization process takes the embeddings and produces optimal parameters 
to be used in a later clustering step. Dimensionality reduction methods such as PCA28 reduce the embedding 
size such that a clustering algorithm can more efficiently produce the corresponding clusters. The HDBSCAN29 
algorithm generates the cluster from the image embeddings by building a minimum spanning tree from the 
embedding set, then finding the optimal nc clusters based on the optimal parameters found earlier. Figure 5 
shows the autolabeling process in detail.

The process results in an assignment of the products in the input images to clusters containing mostly products 
from the same class. A final manual inspection of the generated clusters can correct for any misclassifications. 

Fig. 5.  Autolabeling procedure using clustering algorithms to reduce human effort.

 

Fig. 4.  Classification dataset distribution.
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Although the process is not perfect and human intervention is still required throughout the process, generating 
datasets of the scale that we introduce would not have been feasible without the autolabeling process.

Planogram verification system
This section describes in detail the planogram verification system, shown in Fig. 6, starting with a description 
of the detection and recognition models compared in this study and ending with a detailed description of the 
planogram verification algorithm based on a virtual shelf representation. The planogram verification process 
relies on the output of the detection and classification models; thus, they are the first step in the system. This 
algorithm outputs the compliance report that is returned to the store employee.

Deformable detection transformer
In this section, we introduce the Deformable DETR (Detection Transformer)30 and YOLOv831 object detection 
models, which have been successful in many object detection tasks. The former is based on the popular 
Transformer32 architecture, while the latter represents the latest iteration in the long-established YOLO family. 
In recent years, the Transformer architecture has become a popular choice for many tasks due to its ability to 
model various relationships in a single sequence. First, we briefly describe the Transformer architecture, then 
describe the Deformable DETR architecture which we test in the proposed system. We conclude with a brief 
description of the YOLOv8 model.

A Transformer block is composed of a multihead self-attention module and a feedforward neural network. 
Inputs to a Transformer block can be a sequence of text or image patches33, but each modality type undergoes 
some type of initial embedding or projection. The inputs to the self-attention module are three matrices Q, K 
and V, where the first two matrices are representations of the input sequence, and V contains the information 
to be aggregated by the self-attention equation. This operation for a single attention head can be expressed as

	
Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
V,� (1)

where is dk  the dimensionality of the key and query matrices. Multihead self-attention blocks contain h 
attention heads, each learning different relationships between the input sequence elements and each having 
different linear projects W Q

i , W K
i , W V

i  for each attention head i ≤ h. A positional encoding value is also 
added to each input element of the encoder and decoder blocks. The Deformable DETR30 model builds on the 
DETR4 work introducing transformers for object detection. Both models use a CNN backbone (e.g., ResNet5021 
to extract feature maps from an image and obtain the key and query values for the transformer block from this 
feature map. Transformer models normally compare all the query elements with all the key elements, leading to 
a quadratic complexity on the size of these matrices. The deformable attention module introduced in this paper 
utilizes a reference point pq ∈ R2as part of the query vector q, which is compared with K reference points 
close to pq . Given M  attention heads in each attention module, the deformable attention head is defined as

	
DeformAttn

(
zq, pq, x

)
=

∑ M

m=1

[∑ K

k=1
Amqk · W ′

mx
(
pq + ∆ pmqk

)]
� (2)

where W ′
m is the input projection matrix for the m-th attention head, ∆ pmqk are the key offsets to be 

compared against pq, and x ∈ RC× H× W is a feature map coming from the backbone encoder. Given that 
the original DETR model struggles detecting smaller objects, they also introduce multiscale feature maps in 
the decoder. The decoder modules perform cross-attention and self-attention. The cross-attention module uses 

Fig. 6.  Structure of the proposed planogram verification system.
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object queries, which are features that come from the backbone encoder as queries while the keys are the feature 
maps that come from the encoder. The encoder self-attention module also uses the object queries as the query 
and key values.

YOLO family application
The YOLO family of models have become a popular choice in computer vision, specifically with tasks that 
require real-time results17,34 because they are one-stage detectors, predicting bounding boxes and classifying 
the item with a single model. YOLOv831, being the latest YOLO model, makes some improvements on earlier 
architectures. Each YOLO model has three components: the backbone for feature extraction, the neck for feature 
fusion across feature map scales, and the head for predicting bounding box coordinates and object classes.

YOLOv8 uses CSPDarknet35 as the backbone, in which incoming feature maps are split into two parts, X1
and X2. The output at this stage will be

	 Xi+1 = Concat ([fi (X) , X])� (3)

where fi can be a series of operations such as convolutions, activations, etc. This arrangement can maintain 
rich feature representations while reducing the backbone’s computational overhead. The neck is based on a path 
aggregation network36, which aggregates features from multiple feature map scales by introducing a bottom-up 
flow. For a feature map with a given scale pi, this is achieved through

	 Pi = Conv (Ci) + UpSample (Pi+1) ,� (4)

where Ci is an output feature map from the backbone, and Pi+1 is a higher-level feature map. The head is split 
into two branches, one to handle object classification and another for regression. These heads are decoupled and 
do not rely on information from the other branch to avoid feature interference. Given the input feature map F , 
the classification branch is defined as.

	 C = σ (WcF + bc) ,� (5)

where σ indicates the sigmoid activation function, and Wc and bc are a learned weight matrix and bias vector, 
respectively. The output for the regression branch is similarly given as

	 R = WrF + br,� (6)

where Wr  and br  also represent a learned weight matrix and vector for the regression task, respectively. 
The binary cross-entropy loss function is used for the classification head, while the detection head is trained 
with the generalized intersection-over-union (GIoU) loss function37. This version of IoU considers also the 
smallest enclosing convex object between the predicted and ground-truth bounding boxes. YOLOv8 also uses 
an objectness loss, which evaluates the model’s confidence in detecting objects versus the background. The final 
loss function is a linear combination of the classification, detection, and objectness losses.

Now that both detection models have been introduced, we turn our attention to the planogram verification 
system architecture, which relies on the object detection models introduced here to calculate planogram 
compliance.

Planogram verification system
The system has an image or series of shelf images as inputs, runs the images through the model pipeline, and 
returns a compliance report to the user after the virtual shelf algorithm checks for compliance shown as Fig. 6.

The planogram compliance pipeline is responsible for taking the image or set of images I = {I1, I2, . . . , In} 
of a shelf, forwarding the image data through the machine learning models and finally checking the compliance 
with the virtual shelf mechanism. Figure  6 describes the pipeline structure, inputs, and outputs of each 
component. Currently, the pipeline has three models: the shelf detection model f , the product detection model 
g, and product classification model h. A single shelf image or a collection of images first arrives at the backend 
server via an HTTP request from the frontend mobile application, containing the image(s) needed for processing.

Regardless of whether there are one or more than one image in the request, the system processes each 
image individually and only matches the realogram shelf to a particular planogram shelf until the planogram 
compliance step. For example, suppose that there are two incoming images to be processed, one containing the 
top x shelves and the bottom image containing the remaining |S| − x rows in a shelf, where S  is the set of 
product rows in the shelf, and suppose each image contains at least one shelf. The shelf detection model would see 
each incoming realogram image sequentially, identifying the product rows present in each image independently 
for the time being. In a similar way, the product detection and classification models would consider each image 
independently of the others, instead focusing only on the image at hand.

The shelf detection model is trained to detect entire product rows; thus, its output is a set of bounding box 
coordinates for what it detects to be the shelves in the image or a pair of coordinates ( x1, y1, x2, y2) for each 
row Si in Ii. Given that each shelf image is processed independently, we describe the process for a single shelf 
image. Given an incoming image I , the shelf detection model will detect all the m shelf rows in S by

	 S = f (I) = {s1, s2, ..., sm}, where sj = {x1, y1, x2, y2}.� (7)

Cropped image regions obtained with the bounding box coordinates sj or the j-th shelf row form the input to 
the product detection model. We take each region of I defined by the bounding boxes in sj, denoted by I |sj , and 
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feed it as input to the product detection model which outputs a list of coordinates corresponding to the shelf 
row Si given by

	 P j = g (I| sj) = {p1
j , p2

j , . . . , p
kj

j } where pl
j =

{
xj,l

1 , yj,l
1 , xj,l

2 , yj,l
2

}
.� (8)

Now that we have the bounding boxes for each product in I grouped by the shelf row in which they appear, in 
a similar way, we take the cropped image region given by pl

j  or the l-th product in the j-th product row, and 
pass that image region to the classification model h. The output of the recognition model is a vector cl

j ∈ RC

containing the class probabilities of the product image crop:

	 cl
j = h (I|plj) .� (9)

We take the highest of these confidences as the class prediction. We also set a threshold for the classification 
confidence, where the product is marked as “unknown” if the highest confidence falls below that threshold. All 
the images received go through this process independently, and at the end remains the collection of products 
detected in each image. Once the system detects and classifies the products in all the images, the system combines 
each image’s detection and classification results into a single global shelf. However, these results might be initially 
unordered, which would require the virtual shelf mechanism to estimate a global shelf row ordering.

Virtual shelf mechanism
The virtual shelf mechanism mentioned throughout the study is an abstract representation of the shelf. A more 
abstract design facilitates the support multiple images per shelf because some shelves cannot be captured entirely 
in a single image in many stores. The virtual shelf is essentially a representation of the detected shelves and the 
products within those shelves. While the detection models output only the bounding boxes, the pipeline stores 
some additional fields for each shelf in a list defined as

	 S = {(ImageId, GlobalShelfId, ShelfBox, DetectedData)i, i ∈ {0 . . . , |S| }}� (10)

where ImageId represents the index of the shelf image in which the i-th shelf was detected, GlobalShelfId counts 
how many shelves have been detected so far, ShelfBox are the shelf bounding boxes, DetectedData is a list of 
detected products on the shelf, and S  represents the total number of shelves detected in the series of images. 
The field Detected Data in Si is a list containing information about a detected product. The data structure for 
each detected product is as follows:

	 DetectedData = {(label, position, box, confidence)j,j ∈ { 0..., |Pj |},� (11)

where label is the predicted class from the recognition model, position is the center coordinates in the shelf 
image, box denotes the product’s bounding box coordinates in the shelf image, confidence is the classification 
confidence also output by the recognition model, and Psi is the number of products detected in Si. The position 
of the planogram determines where in the global shelf representation it is supposed to be located.

Planogram compliance verification algorithm
To match the detected shelves of multiple images to a single planogram representation, we have to estimate a 
global ordering of the shelves gathered from the incoming images. For a shelf row s, its ordering on the global 
shelf will be determined by the number of matching products it contains with the i-th row of the planogram. We 
form an initial estimate of which detected product row corresponds to each expected product row because the 
planogram compliance verification algorithm operates on single rows.

Ideally, the number of detected items in the shelf row matches the number of items in the planogram row. In 
this case, a simple one-to-one comparison is enough to measure the compliance; however, in case of different 
product quantities, a more precise algorithm is needed. This next step of discrepancy detection is based on 
the Needleman–Wunsch algorithm7, which was initially applied to find the divergence of DNA sequences. In 
checking the planogram compliance, the Needleman–Wunsch algorithm helps calculate the cost of aligning 
the planogram and realogram once the virtual shelf has been created and the shelves have been ordered. The 
algorithm uses dynamic programming to find correctly placed products, out-of-stock products, products in 
incorrect locations, and products on wrong shelves. It takes as input the labels of expected products on the i-th 
row Pexp and the labels of detected products on the shelf estimated to be the i-th row Pdet, so this algorithm only 
takes as input one shelf row at a time. Given the possible statuses of a product, we introduce our own penalty 
values shown in Table 3, which we set to constant values.

First, the algorithm evenly divides the shelf into d/nexp equal segments, where d is the shelf width given by the 
difference of x-coordinates and nexp is tne number of expected products in this row. The resulting blocks indicate 
sections where a product is expected on the shelf, although this can only be a rough approximation because 
products vary in dimensions.

The algorithm then constructs a two-dimensional matrix Aε Rnexp+1,ndet+1, where ndet is the number of 
detected products. We can think of aligning each item of Pdet along the top row and likewise align the items of 
Pexp along the first column. The first item a0,0 is set to 0, and the items along the first row a0,i and first column 
aj,0 are set as follows:
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a0, i = a0, i − 1 + λep,

aj, 0 = aj − 1, 0 + λoos.� (12)

Figure 7 shown cell a2,2 is the minimum cost of out-of-stock products, extra products, or the other possible 
statuses, which depend on the distance d to box center Bi.

Next, we proceed to fill in the matrix A. At each value ai, j we first calculate the distance d between the i-th and 
j-th products, resulting in increased distances as we compare products that are further from each other. If Pi

det 
= Pi

exp, we consider only the distance between these two products; otherwise, we consider whether the product 
was classified as unknown, in the incorrect position on the shelf, or whether the product is on the wrong shelf 
and add the appropriate penalty. In any case, we use d and add the appropriate penalty depending on the product 
status which can be determined by checks on the expected and detected product at that position. We call this 
initial value dp to simplify the notation. The final value ai, j can be written as

	 ai,j = min(dp, ai−1,j + λoos, ai,j−1 + λep).� (13)

After setting each ai, j, the algorithm backtracks through the array to find the optimal alignment for both 
sequences. Starting from the bottom right element, the algorithm calculates the optimal alignment cost by 
measuring whether ai, j is the result of adding λoos or λep to ai−1,j and ai, j−1, respectively. Essentially, the algorithm 
traces the path back to the origin point, and at each ai, j, it records the local result at that stage. Algorithm 1 in the 
Appendix shows the pseudocode for our implementation of the virtual shelf based on the Needleman–Wunsch 
algorithm.

Our pipeline also has to consider some special conditions. Some of the item statuses, specifically the out-of-
stock status, require special considerations. Out-of-stock items are also calculated by the gap size between the 
detected products and their bounding boxes. If the gap between the i-th and i + 1-th product in a row is larger 
than some threshold, an item is considered to be missing between them. Another special situation occurs when 
some types of retail items in one shelf row items are stacked on top of each other. Instant noodles, for example, 
which appear in flat, bowl-like containers are sometimes stacked two or three boxes high in the same product 
row. The pipeline considers such overlaps and checks whether all stacked products belong to the same class 
before considering them as a single product.

Fig. 7.  Example step in the Needleman–Wunsch algorithm.

 

Penalty Description

λoos Out-of-stock item penalty

λep Extra product penalty

λunk Unknown product penalty

λnm Name mismatch penalty

λws Item on wrong shelf penalty

Table 3.  Penalties for possible status values in the virtual shelf algorithm.
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Experimental setup and results
To validate the proposed datasets collected from 7-Eleven stores in Taiwan, we design an experiment suite for 
the detection and classification datasets. Given that the planogram compliance verification algorithm relies on 
bounding boxes and product category information, the models must perform well on the data they encounter. For 
the shelf and product detection tasks, we compare leading object detection models YOLOv838 and Deformable 
DETR30 as representative CNN and Transformer-based models, respectively. For the detection experiments, we 
compare both training from scratch and fine-tuning models pretrained on the COCO39 dataset. This evaluation 
regime allows measuring whether our datasets allow for high-quality models and whether detection models 
can apply features learned from standard detection datasets to our own. For the classification tasks, we train 
an EfficientNet-B4 model and a ResNet101 model as representative CNN-based architectures and an NVIDIA 
Fan-based hybrid model40, on the basis of a Transformer32 architecture to compare against a newer and popular 
model architecture. To assess the model’s generalization capabilities, we partitioned the dataset on a store-level. 
Training set come from three 7-Eleven stores, while data from the fourth, unseen store was reserved for the test 
set. This approach ensures our evaluation is based on the model’s performance in a completely new environment.

Evaluation metrics
To gain a full understanding of our model performance, we report several metrics for our models. For the 
detection and classification models, we report the precision, recall, and F1 score, while we add the mAP@50 for 
our detection experiments and the accuracy for our classification experiments.

Shelf detection
We train both models using the hyperparameters described in Varghese et al.31 and Zhu et al.30, respectively. 
Table 4 shows the results product row detection on the proposed shelf detection dataset.

This result indicates a strong overlap between the features learned from the pretraining stage and our current 
dataset, enabling both models to bring over the features from COCO to the proposed shelf detection dataset. 
A possible reason for this could be the difference between a shelf and the objects commonly seen in COCO; 
however, the models still leverage their pretrained features and achieve high scores on the shelf dataset. Both 
the YOLOv8 models trained from scratch and fine-tuned on our datasets outperform the Deformable DETR in 
their respective categories. The fine-tuned YOLOv8 shows slight gains over the from-scratch version, suggesting 
the model can transfer knowledge gained during pretraining to our dataset. By contrast, Deformable DETR is 
negatively affected when fine-tuned versus trained from scratch on our dataset. In the future, larger training 
datasets could allow for improved performance from Deformable DETR.

Product detection
For the product detection experiments, we train a Deformable DETR model for 50 epochs, using hyperparameters 
described Zhu et al.30 on the NVIDIA TAO platform. For a comparison with a different model family, we also 
train a YOLOv8 model with a patience of five epochs, stopping the training process if the metrics do not improve 
above a threshold. Similar to the shelf detection experiments, we also compare the difference between models 
trained from scratch and models pretrained on COCO. We train the Deformable DETR mostly with the same 
hyperparameters described in30. Table 5 shows the detection results.

YOLOv8 outperforms Deformable DETR in from-scratch and pretrained scenarios. Both pretrained models 
show slight gains over their counterparts trained from scratch. However, the Deformable DETR models show a 
more noticeable drop overall compared with the YOLOv8 models in this experiment and the Deformable DETR 
models. Possible remedies for such Transformer-based models include further hyperparameter tuning and 
warmup epochs, which the TAO platform did not support for the Deformable DETR and which can be critical 
for Transformers, given their increased sensitivity to hyperparameters. Given the difference in size between 

Model Precision Recall F1 Score mAP@50

YOLOv8 93.82% 91.46% 92.67% 96.10%

Deformable DETR 63.15% 71.79% 67.16% 83.45%

Pretr. YOLOv8 94.61% 93.02% 93.84% 95.73%

Pretr. Deformable DETR 64.93% 73.36% 68.89% 84.52%

Table 5.  Product detection results after training on the proposed detection dataset.

 

Model Precision Recall F1 Score mAP@50

YOLOv8 98.88% 98.94% 98.87% 99.32%

Deformable DETR 97.12% 98.03% 97.73% 98.72%

Pretr. YoloV8 99.23% 98.93% 99.18% 99.41%

Pretr. Deformable DETR 81.02% 87.27% 84.03% 98.71%

Table 4.  Shelf detection results after training models from scratch and fine-tuning pretrained models on the 
proposed dataset.
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the shelf and product detection datasets, a slight decrease in performance might be expected on the product 
detection experiment, but a more refined training pipeline could do much to increase the performance.

Product classification
In this section, we compare various classification models on the proposed classification dataset. To obtain a 
more representative comparison, we test two established CNN-based models EfficientNet-B4 and ResNet101 
and newer Transformer-based architectures using a FAN-based hybrid model with a VIT-B33 backbone. We 
train the models for 100 epochs, and we use the Focal Loss41 function with γ = 2 to reduce the effect of easier 
samples on the model updates only for the CNN-based models. For the FAN-based model, we test using the 
original settings in Zhou et al.40.

To address the class imbalance, present in the product recognition dataset, as highlighted in Fig.  4, we 
employed weighted sampling strategy during model training. First, we utilized weighted sampling, designing 
the sampling probability for each class based on its frequency so that under-represented categories were sampled 
more frequently and over-represented ones less so. This approach ensures that each batch during training 
contains a more balanced class distribution, mitigating biases caused by data imbalance.

To address the limited diversity in our product recognition dataset—where many images of the same product 
were captured from similar angles due to typical store display practices—we implemented an extensive data 
augmentation strategy during model training. This regimen included a combination of random horizontal and 
vertical flips, rotations, affine transformations, perspective changes, and color jittering, all applied to the training 
images to artificially increase visual variety. Additionally, we employed random masking of rectangular regions 
following the method of Zhong et al.40 to further enhance data variation. These augmentation techniques were 
designed specifically to enrich the diversity of training samples and help the model generalize better by reducing 
the risk of overfitting to limited viewpoints or repetitive scenes in the original dataset. The results and the 
number of trainable parameters are shown in Table 6.

All three models—ResNet101, EfficientNet-B4, and the FAN-based hybrid model—achieved highly similar 
results on our testing dataset, with scores on key metrics consistently exceeding 99%. Although the FAN-
based hybrid model demonstrated the best overall performance among the three, the margin is not statistically 
significant. As shown in Table 6, all models maintained high precision, recall, and F1 scores, indicating robust 
recognition capability even in the presence of a heavily imbalanced training dataset. This can be attributed to our 
adoption of weighted sampling and focal loss during training, which effectively mitigated class imbalance and 
enabled strong performance across all evaluation metrics.

Few-shot classification
7-Eleven stores frequently introduce new or limited-edition products, requiring constantly updated data. 
Rapidly deploying classification models to stores is crucial to maintain a robust system, and being able to reduce 
data collection costs would be greatly beneficial. This section along with zero-shot experiments in Sect. 5.6 aim 
to measure whether recognition models can still learn valuable information with scarce training data, a common 
situation in retail environments. Few-shot learning (FSL)42 is a subproblem in machine learning, where the 
training dataset contains only K labeled samples per class and N classes, where K is usually a small number such 
as 1 or 5.

Our experiments are conducted as follows: We randomly sample five images from each training class to 
create a five-shot subset of our training dataset and repeat this process three times for three five-shot splits of 
our datasets with N set as 471. We use models pretrained on ImageNet-1 K43 as the baseline and fine-tune each 
model for 15 epochs, replacing the final classification layer to match our dataset’s class number. As in44, the slight 
domain shift between ImageNet and our dataset might require a large initial learning rate for transfer learning. 
For the FAN-based hybrid model, we use three warmup epochs and reduce the number of augmentations. 
Table 7 shows the average accuracy on the three dataset splits and the standard deviation. Average accuracy and 
standard deviation when fine-tuning models on three randomly selected splits of the recognition dataset, where 
each class has five training samples. Testing was conducted on the unmodified testing dataset.

Model Few-shot accuracy

EfficientNet-B4 87.75%± 5.68%

ResNet101 64.54%±11.39%

FAN-based Hybrid Model 98.33%±0.03%

Table 7.  Comparison of few-shot accuracy in different models.

 

Model Precision Recall F1 Score Accuracy Params. (M)

EfficientNet-B438 99.72% 99.70% 99.67% 99.70% 18.39

ResNet10113 99.86% 99.86% 99.85% 99.86% 43.47

FAN-Based Hybrid Model2 99.87% 99.86% 99.85% 99.86% 50.24

Table 6.  Product classification results.
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Among the three evaluated models, the FAN-based hybrid model delivered the highest few-shot accuracy 
at 98.33% with the lowest variance (± 0.03%), demonstrating exceptional generalization and robustness even 
with minimal labeled data. Its low standard deviation across multiple training splits highlights consistent 
performance, making it highly suitable for real-world retail deployment. The model’s hybrid architecture, 
which integrates Vision Transformers (ViTs) and attention mechanisms, enhances its ability to capture fine-
grained visual distinctions, especially among visually similar products. EfficientNet-B4 also performed relatively 
well, achieving 87.75% accuracy with a moderate variance of ± 5.68%. Its compact design and efficient scaling 
contribute to its adaptability in data-limited settings; however, its performance lags behind the FAN-based model, 
suggesting that CNN architectures may be less effective in learning fine-grained distinctions under constrained 
data. By contrast, ResNet101 exhibited the lowest performance at 64.54% with the highest variance (± 11.39%), 
indicating sensitivity to class imbalance and limited generalization capacity. The substantial variability further 
suggests potential overfitting and instability when trained with only a few examples per class, limiting its 
reliability in practical few-shot scenarios.

Zero-shot recognition
We also measure each model’s ability to classify images from classes it has not encountered during training—a 
task known as zero-shot learning (ZSL). In contrast to FSL, ZSL involves no fine-tuning; instead, we apply 
pretrained models directly to the testing dataset, showing we could leverage pretrained models to our retail 
scenarios if needed. Following the procedure in Sect. 5.5, we use models pretrained on ImageNet1k and report 
top-1 and top-5 accuracies. To compute the top-1 and top-5 accuracies, we collect the output embeddings from 
the model’s penultimate layer and calculate the cosine similarity between each embedding pair. We increase the 
top-1 accuracy if the embedding’s nearest neighbor belongs to the same class, and the top-5 accuracy if any of 
the five closest samples belong to the same class. Given that we are not fine-tuning the backbone’s weights or 
training a linear classifier, the performance on this experiment might differ from the few-shot scenario. Table 8 
shows the results on the classification dataset.

Overall, the pretrained models generalize well to the proposed classification dataset, further reducing the 
cost and effort to deploy models in retail environments. Even with many visually similar items in our dataset, 
features learned from other general datasets transfer effectively to our dataset. Although Transformer-based 
and CNN models perform well, the FAN-based hybrid model performs slightly better in the top-1 and top-5 
accuracies, which could be highly valuable as the system scales to thousands of product categories.

Deployment and scalability analysis
To evaluate the practical scalability and efficiency of our planogram compliance system under realistic 
deployment scenarios, we conducted a series of throughput and load tests on our deployment environment. The 
deployment was carried out on a Google Cloud Platform (GCP) machine. Table 9 shows the detailed hardware 
specifications.

Table  10 summarizes the results of our load test experiments, in which the system was subjected to an 
increasing number of simultaneous requests. For each run, we recorded the total number of processed requests, 
total test duration, average duration per request, and the final response rate (RPS, responses per second).

It is important to note that the increase in RPS was not linear with the number of requests. As the workload 
increased, the RPS growth rate gradually slowed, exhibiting a pattern similar to logarithmic growth. This reflects 
the system approaching saturation, where further increases in request volume resulted in diminishing gains 
in throughput. In addition, during model deployment we adopted NVIDIA’s Tensor RT inference acceleration 
engine, which optimizes trained models through techniques such as layer fusion, precision calibration, and 
memory optimization to achieve faster and more efficient execution on NVIDIA GPUs. With Tensor RT, our 
system’s response speed was boosted by an average of 1.5× to 2×. Overall, these results confirm the practical 
scalability and robustness of our solution for deployment in high-traffic retail environments.

Components Specification

Machine type g2-standard-16

CPU Intel Cascade Lake processors 16 virtual cores

RAM 64 GB

Architecture x86/64

GPUs 1 × NVIDIA L4

Table 9.  Hardware of the deployment environment.

 

Model Top-1 Top-5

EfficientNet-B4 97.66% 99.12%

ResNet101 97.98% 99.29%

FAN-Based Hybrid Mode 98.39% 99.48%

Table 8.  Top-1 and top-5 nearest neighbor accuracies on unseen classes.
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Conclusion and discussion
Conclusion
This study presents a comprehensive and scalable framework for real-time planogram compliance verification 
using computer vision and virtual shelf mechanisms, specifically designed for deployment across more than 
7,000 7-Eleven stores in Taiwan. Through the integration of deep learning-based shelf detection, product 
detection, and classification models, alongside a Needleman–Wunsch-based compliance algorithm, the system 
effectively addresses key challenges in retail automation, such as limited imaging conditions, product occlusion, 
real-time inference demands, and human error. Experimental validation and findings are as follows:

Shelf detection
The YOLOv8 model, fine-tuned on the custom dataset, achieved outstanding performance (Precision: 99.23%, 
Recall: 98.93%, mAP@50: 99.41%), surpassing Deformable DETR. This result underscores YOLOv8’s superior 
generalization ability and robustness to the structural variance of shelves in convenience stores.

Product detectionh
Again, YOLOv8 outperformed Deformable DETR, reaching 94.61% precision and 95.73% mAP@50 in the 
pretrained setting. The experiment highlights YOLOv8’s architectural efficiency in dense product environments. 
The relatively poor performance of Deformable DETR (Precision: 64.93%, Recall: 73.36%) reveals a potential 
mismatch between its Transformer-based architecture and the high spatial granularity required in retail images.

Product classification
Among CNN and Transformer-based architectures, the FAN-based hybrid model delivered the highest accuracy 
(99.86%) and outperformed ResNet101 and EfficientNet-B4. The result indicates that Transformer-based models 
with visual token embedding provide a stronger representation capability for diverse, fine-grained retail product 
classes.

Few-shot learning
The FAN-based hybrid model exhibited remarkable FSL performance (Accuracy: 98.33% ± 0.03%), remarkably 
outperforming both CNN models. This finding is particularly relevant for retail environments where new or 
seasonal products are frequently introduced and annotated data may be limited. The minimal standard deviation 
further demonstrates the model’s stability and suitability for low-resource classification tasks.

Zero-shot learning
In zero-shot scenarios, the FAN-based model achieved the highest top-1 (98.39%) and top-5 (99.48%) accuracies, 
validating its capacity to generalize across unseen product categories. This result implies that the model can be 
used for immediate classification of novel items without requiring retraining—an essential feature for dynamic 
retail settings.

Virtual shelf construction
The introduction of a multi-image virtual shelf mechanism, backed by a modified Needleman–Wunsch 
alignment algorithm, allows accurate reconstruction and compliance verification even under limited capture 
conditions. This innovation extends practical applicability to narrow aisle environments and improves audit 
completeness without imposing additional burdens on store employees.

The system’s high accuracy and scalability directly support operational efficiency, real-time shelf auditing, and 
centralized compliance monitoring across distributed retail networks. Its robustness across few-shot and zero-
shot settings ensures long-term adaptability as product assortments evolve. Moreover, the modular architecture 
enables integration with edge computing platforms for latency reduction and future incorporation of active 
learning pipelines to update the model continuously.

Limitations of the study
As summarized in Sect.  1.3, this study contributes an end-to-end planogram compliance framework that 
integrates multi-image virtual shelf reconstruction, product detection and classification, and scalable deployment 
for real-world retail environments. These contributions demonstrate the feasibility and practicality of AI-driven 
shelf management at nationwide scale.

To improve the real-world applicability and robustness of the proposed planogram compliance system, 
several limitations should be acknowledged:

Run # # of requests
Total duration
(sec) Avg. per req. duration (sec) RPS

1 1124 230 0.6–0.9 4.88

2 2185 445 0.6–0.7 4.91

3 3215 646 0.6–0.7 4.98

Table 10.  Results of system load tests.
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	1.	 Product occlusion is common in retail shelves, affecting accurate planogram compliance checks. However, 
this study does not provide a detailed solution for addressing scenarios where products are occluded, facing 
backward, or overlapping with other merchandise.

	2.	 As the primary focus of this study is on constructing virtual shelves rather than evaluating deep learning 
model performance, our experiments utilize only classic models such as YOLOv8, Deformable DETR, Effi-
cientNet-B4, ResNet101, and FAN-Based Hybrid Model for comparison, rather than the most state-of-the-
art model selections.

Discussion
As revealed from the experiments, both models trained from scratch on the proposed detection and classification 
datasets and fine-tuned achieve good results on the proposed datasets. When deployed using a specialized 
inference server, described in Table 9, these models can provide quick inference on the images taken by users, 
reducing the need for manual planogram checking. Given the future deployment to thousands of 7-Eleven stores 
in Taiwan, these time savings quickly add up.

While our datasets and system may still have some limitations in visual diversity, it is important to note that 
all data were collected on-site in three different 7-Eleven stores, at various times and from different angles, to 
closely reflect real operational environments. Additionally, We applied extensive data augmentation—including 
flips, rotations, affine and perspective transformations, color jittering, and random masking—to increase visual 
diversity in our product recognition dataset and improve model generalization. Our product classification 
model, FAN transformer, achieves very high accuracy on independently collected test sets, demonstrating 
sufficient reliability for the defined application scenario. Nevertheless, we recognize that incorporating even 
greater diversity, such as more store types or rare viewpoints, could further improve the robustness of the model, 
and this remains a direction for future enhancement.

Our study has effectively addressed the challenge of class imbalance, which is inherent in the product 
recognition dataset, by employing a weighted sampling strategy and focal loss during model training. These 
approaches not only ensured a more balanced representation of each class in the training batches but also 
enhanced the model’s ability to learn from minority classes. The consistently high precision, recall, and F1 scores 
observed in Table 6, indicating the success in mitigating the potential negative impacts of data imbalance. These 
results underscore the practical applicability and reliability of our methodology for real-world retail scenarios.

Our deployment and scalability analysis demonstrates that the proposed planogram compliance system is 
capable of robust and efficient operation under high load conditions, as might be encountered in real-world 
retail scenarios. The observed throughput trends reveal that while the system approaches saturation under 
heavy workloads, it maintains stable response rates without critical performance degradation. The integration 
of NVIDIA Tensor RT inference acceleration proved to be highly effective, improving response speed by up to 
1.5× and ensuring timely processing even as request volumes increase. These findings collectively affirm the 
scalability and deployment readiness of our solution, making it well-suited for large-scale, high-traffic retail 
environments.

At present, our dataset is comprised primarily of standard shelf images, where products are correctly 
positioned with their front packaging facing forward. As a result, the current model has not been trained or 
evaluated specifically for complex scenarios such as severe occlusion, products facing backward, or overlapping 
merchandise. Nevertheless, the system has already been successfully deployed in real 7-Eleven stores, where it 
operates effectively under typical conditions and has demonstrated a clear ability to address the vast majority 
of practical issues encountered in daily operations. This deployment has led to substantial savings in manual 
inspection time for store staff. In real-world operations, the occurrence of such complex scenarios is relatively 
rare, and dealing with these situations does not impose a significant burden on store personnel. In cases where 
the system encounters shelf conditions that deviate significantly from its training data, it outputs an “Unknown” 
result to indicate uncertainty. To further enhance the real-world applicability and robustness of our planogram 
compliance system, future work will focus on:

the systematic collection and annotation of more challenging scenarios, including highly occluded, irregularly 
stocked, or anomalously arranged shelves. These additional data will allow for more comprehensive analysis 
and model adaptation, enabling the system to better manage real-world complexities commonly observed in 
dynamic retail environments.

 

 	 1.	  Handling occlusion: Product occlusion is common in retail shelves, affecting accurate planogram compli-
ance checks. In the future, we will explore some methods on solving this issue such as the GOAL approach 
for improved detection under cluttered conditions45.

 	 2.	  Broaden the model comparison: The next steps could involve experimenting with a wider range of deep 
learning models, including recently introduced state-of-the-art architectures. This would help determine 
if more advanced models can further boost recognition accuracy when working with complex cases such 
as occlusion, overlapping, or product package facing backwards.

 	 3.	  Edge computing integration: Integrating edge computing by deploying models directly on devices within 
the retail store could significantly reduce latency and enable real-time shelf monitoring.

 	 4.	  Data imbalance: The product recognition dataset has somewhat of a data imbalance issue, which can be 
handled in some ways, such as imbalanced learning approaches that can be used during model training. In 
recent years, synthetic dataset generation has become a viable way of alleviating data collection overhead. 
Platforms such as NVIDIA Omniverse46 allow high-quality realistic 3D models to serve as dataset samples 
by writing simulation scripts to generate datasets.
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 	 5.	  Parallelizing workloads: Once the shelf rows have been identified in an image, the product detection and 
classification can be parallelized for quick inference. How to parallelize efficiently across shelf rows in a 
single image and across images could further reduce inference costs. 

 

Data availability
The source code will be made available after cleaning and organizing the training and evaluation scripts. The 
datasets generated and analyzed in this study can be made available from the corresponding author upon rea-
sonable request without disclosing sensitive company information.

A: Virtual shelf
The full pseudocode. for the virtual shelf algorithm is placed here.
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Algorithm 1.  Planogram Compliance Using the Needleman-Wunsch Algorithm.
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