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The three core challenges faced in traditional clothing pattern extraction are poor image quality, 
complex texture, and scarcity of labeled data. To solve these problems, the study proposes a multi-
scale data augmentation with polarized self-attention for traditional costume pattern extraction. The 
study designs a lightweight segmentation network mainly by fusing the multi-scale enhancement 
strategy of wavelet transform and generative adversarial network, while incorporating the channel-
space concurrent attention module. To address the three core challenges of poor image quality, 
complex textures, and scarce labeled data in traditional clothing pattern extraction, the proposed 
MSDA-PSA method introduces three targeted innovations: (1) a multi-scale data augmentation 
(MSDA) strategy that combats image degradation by integrating wavelet transforms and generative 
adversarial networks to enhance contrast and preserve critical texture details; (2) a dual attention 
mechanism employing polarized self-attention (PSA) to resolve complex texture ambiguities by 
jointly focusing on discriminative color channels and spatial details, thereby improving pattern 
localization and reducing intra-class variation; and (3) a lightweight network design that mitigates 
data scarcity through depth-separable convolutions and adaptive dropout, ensuring high parameter 
efficiency and adaptability to few-shot learning scenarios. The results of the study showed that the 
conventional clothing pattern extraction method proposed by the study performed well in several 
key metrics. The method achieved 89.7% mean intersection over union (mIoU) and 0.87 Boundary 
F-score on the standard test set. This performance significantly outperforms mainstream models 
such as DeepLabv3+, with the mIoU exceeding it by over 10%. The method’s distinct advantage is 
further demonstrated by its exceptional balance between small-sample adaptability and cross-cultural 
generalization. It maintained a 72.4% IoU with only 10% of the training data, while achieving 83% 
accuracy in cross-cultural generalization tests. These results confirm the method’s robust capability 
to deliver high-precision segmentation in both data-scarce and culturally diverse scenarios, a balance 
that existing methods have not achieved. The real-time processing performance reached 100FPS, and 
the 16-channel concurrent latency was only 35.4ms. Under extreme degradation conditions (σ = 0.2 
Gaussian noise), noise robustness IoU still reached 0.82, and color retention ability under extreme 
degradation conditions was controlled below 15%. The experiments also confirmed that the four-scale 
pyramid architecture improved the feature consistency score to 0.85, and the dual attention module 
increased the critical region intersection and merger ratio to 83%, while keeping the computational 
overhead at 2.9 GFLOPS. This research establishes a high-precision and interpretable clothing pattern 
segmentation framework through hierarchical feature learning and robust enhancement techniques. It 
provides a solution for digitizing cultural heritage that balances computational efficiency and cultural 
specificity.

Keywords  Traditional dress pattern, Attention mechanism, Image data enhancement, Feature extraction, 
Deep learning

As an important intangible cultural heritage, the unique cultural value of traditional clothing patterns is facing 
an urgent need for digital protection1,2. However, due to the rich colors and complex textures of the patterns 
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themselves, computer vision methods face significant difficulties in segmentation and extraction3,4. The current 
research faces three core challenges: difficulty in ensuring feature extraction quality for low definition historical 
images, significant intra class differences in similar patterns that increase recognition difficulty, and scarcity of 
professional annotation data that restricts the application of supervised learning methods5,6. To address these 
challenges, the proposed MSDA-PSA method is designed with a three-part solution directly targeting each 
problem: First, to overcome poor image quality, a multi-scale data augmentation (MSDA) strategy is introduced, 
integrating wavelet transforms and generative adversarial networks to specifically enhance image clarity and 
preserve texture in degraded historical images. Second, to handle complex textures and significant intra-
class differences, a dual attention mechanism utilizing polarized self-attention (PSA) is developed, focusing 
concurrently on color channels and spatial details to precisely localize embroidery patterns and improve feature 
discrimination. Third, to circumvent the scarcity of professional annotation data, a lightweight network design is 
employed, leveraging depth-separable convolutions and adaptive dropout to reduce parameter count and enable 
effective few-shot learning, thus overcoming the limitations of scarce annotated data. The practical urgency of 
addressing the three core challenges is profoundly evident in the digitization of specific cultural heritage items, 
such as Miao embroidery and Dong brocade. For Miao embroidery, historical images often suffer from severe 
degradation including fading and blurring due to aging and improper storage conditions. This degradation 
directly compromises the reliability of feature extraction for intricate embroidery stitches and the characteristic 
indigo dyes, which are central to its cultural identity. Concurrently, the intricate and highly repetitive geometric 
textures of Dong brocade introduce significant intra-class variations, posing a substantial challenge for pattern 
recognition algorithms and increasing the risk of misclassification. Furthermore, the acute scarcity of high-
quality, expert-annotated datasets for these specific ethnic patterns severely constrains the application of 
data-driven deep learning methods, ultimately hindering the effective preservation of cultural diversity. These 
concrete cases underscore the critical necessity and innovation of the proposed MSDA-PSA method. In response 
to these image quality issues, researchers have begun to explore solutions for image enhancement techniques, 
improving input data quality through improved preprocessing methods7,8.

Lu F et al. proposed an adaptive enhancement method based on filtering and variational decomposition to 
address the issues of low contrast and random noise in computed tomography images. This study decomposed 
images into noise layers, texture layers, and structural layers using median filtering and total variation models. 
Guided filtering was used to extract residual details and fuse texture features, combined with adaptive 
enhancement factors and local mean gamma correction to optimize contrast. Experiments revealed that 
this method could effectively balance the relationship between denoising, contrast enhancement, and detail 
preservation9. Li Y et al. proposed an enhanced algorithm combining Retinex theory and guided filtering to 
address the issue of low contrast in low light environments. This study optimized brightness channel weights 
using a bimodal energy function. It extracted the illumination component via edge-preserving guided filtering 
and estimated the reflection component in hyperbolic tangent space. These steps were taken to achieve adaptive 
brightness and contrast adjustment. Experiments revealed that this method could effectively enhance edges 
and suppress dark area noise10. Jebadass et al. proposed an enhancement algorithm based on intuitionistic 
fuzzy sets to address the issues of low contrast and blurry details in low light color images. This study used 
the Yager generation function to calculate non membership degrees and combined entropy optimization to 
improve image quality. Experiments revealed that this method outperformed traditional methods, such as 
histogram equalization and contrast-limited adaptive histogram equalization, in terms of entropy and structural 
similarity metrics. This method could also effectively preserve complex texture details11. Chen et al. proposed 
an enhancement algorithm that combined Retinex with weighted illumination guided filtering to address the 
issues of halo artifacts, loss of edge details, and noise amplification in low light image enhancement. This study 
calculated atmospheric light values and transmittance by combining light and dark channels. It also optimized 
transmittance estimation using weighted guided filtering in the illumination gradient domain. This approach 
effectively solved the problems of local depth differences and overexposure caused by traditional dark channel 
prior methods. The experimental results revealed that this method had significant improvements in denoising, 
halo elimination, brightness adjustment, and edge preservation12. However, these traditional enhancement 
techniques have limitations in traditional clothing pattern extraction scenarios. For example, Retinex-based 
methods can easily distort the characteristic dye colors of ethnic clothing, such as Miao indigo, due to their 
reliance on artificial parameters and poor adaptability to complex lighting conditions, often leading to color 
distortion and texture loss. Similarly, although deep learning-based segmentation models like U-Net variants 
improve accuracy, they struggle to balance multi-scale texture capture and computational efficiency for complex 
embroidery patterns, often resulting in detail loss or high computational costs due to fixed receptive fields, which 
limits their practicality. The proposed MSDA-PSA method directly addresses these limitations. To overcome 
color distortion caused by the global adjustments of Retinex-based methods in RGB space, it employs HSV 
color space fine-tuning. This allows for independent manipulation of color attributes—specifically enhancing 
hue (H:1.2) and saturation (S:1.1) to intensify characteristic dyes like Miao indigo, while separately controlling 
brightness (V:0.9) to prevent overexposure and preserve fidelity. To tackle the limited receptive fields of U-Net 
variants, it introduces a four-level pyramid architecture. This structure provides multi-scale feature maps (via 2x, 
4x, 8x downsampling), effectively expanding the network’s receptive field to simultaneously capture microscopic 
embroidery stitches and macroscopic pattern layouts, thus resolving the detail loss inherent in single-scale 
approaches. Furthermore, the integration of depth-separable convolutions and an adaptive dropout strategy 
ensures computational efficiency and model stability, maintaining a real-time performance of 100 FPS while 
achieving high accuracy.

The innovations of the proposed MSDA-PSA method are: (1) a multi-scale data augmentation (MSDA) 
strategy integrating wavelet transforms and generative adversarial networks to enhance image clarity while 
preserving critical texture details; (2) a dual attention mechanism employing polarized self-attention (PSA) to 
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jointly focus on discriminative color channels and spatial details, improving pattern localization and reducing 
intra-class variation; and (3) a lightweight network design using depth-separable convolutions and adaptive 
dropout, ensuring high parameter efficiency and adaptability to few-shot learning scenarios. These innovations 
collectively enable high-precision segmentation with real-time performance (100 FPS), robust noise resistance, 
and strong cross-cultural generalization, effectively addressing challenges such as color distortion, limited 
receptive fields, and data scarcity in traditional clothing pattern extraction.

Traditional image enhancement techniques have several drawbacks. They are not adaptable to complex 
lighting, they depend heavily on artificial parameters, and they have difficulty simultaneously optimizing 
denoising and detail preservation. These issues can easily lead to texture loss or color distortion when processing 
clothing images13,14. With the development of deep learning, image segmentation methods based on convolutional 
neural networks (CNNs) and attention mechanisms have significantly improved the accuracy of clothing pattern 
extraction. In recent years, the development of lightweight CNNs, such as the efficient architecture presented 
in15,16, has achieved high-efficiency feature extraction on mobile terminals and embedded devices, thereby 
making the real-time processing of clothing patterns a practical possibility. Ning et al. proposed a hybrid multi-
scale Transformer U-shaped network (U-Net) model to address the issue of insufficient accuracy in semantic 
segmentation of ethnic clothing patterns caused by complex textures, details, and background interference. The 
experiment revealed that the model achieved an average Dice score of 89.80% on the ethnic clothing pattern 
dataset, with more complete edge preservation and fewer misclassifications. Compared with mainstream models 
such as deep lab version 3 Plus (DeepLabv3+) and residual U-Net, it improved by 0.67%-7.72%, significantly 
optimizing the fine segmentation effect of complex patterned clothing17. Chen R et al. proposed an improved 
U-Net model based on a visual geometry group 16 layer deep convolutional neural network (VGG16 based U-Net, 
VGG16 UNet) to address the issues of insufficient semantic labels, poor local segmentation accuracy, and rough 
edges in clothing effect image segmentation. Experiments revealed that the efficient feature U-Net improved 
mean intersection over union (mIoU) and average pixel accuracy metrics by 4.91% and 4.98% respectively 
compared to the original VGG16 UNet, outperforming mainstream models such as fully convolutional network 
(FCN) and segmentation networks. This method significantly improved the fine segmentation effect of clothing 
images, especially in edge processing18. Liu et al. proposed a comprehensive solution to the problem of restoring 
clothing sewing patterns from daily photos. The experiment proved that this method could accurately restore 
the sewing structure of clothing from randomly taken photos. The authenticity of the synthesized dataset and 
the generalization ability of the model provided reliable support for applications such as fashion design and 
virtual try on. The relevant code and dataset could be open sourced and shared19. Yu F et al. proposed a phase 
contour enhancement network to address the difficulties in identifying fine-grained widgets and the confusion 
of similar categories in clothing analysis tasks. Experiments on mainstream datasets, such as fashion analysis and 
segmentation, demonstrated that this method effectively distinguished between small clothing components and 
similar categories. It surpassed existing optimal methods in clothing and extended human body analysis tasks 
while achieving a balance between accuracy and efficiency20.

In summary, traditional clothing pattern extraction faces three core challenges: difficulty in feature extraction 
due to low-quality images, loss of details due to complex textures, and constraints on supervised learning due to 
scarce annotated data. The practical urgency is underscored by cases such as Miao embroidery and Dong brocade, 
for which digital preservation is critical to cultural continuity yet is hindered by technical barriers. Traditional 
enhancement techniques are prone to damaging texture structures, while conventional segmentation networks 
struggle to balance multi-scale features and long-range dependencies. A research proposal has been put forward 
to address the above issues multi-scale data augmentation with polarized self-attention for traditional costume 
pattern extraction (MSDA-PSA). The study first constructs a multi-scale enhancement strategy based on wavelet 
transform and generative adversarial network, which improves data diversity while maintaining the topological 
integrity of clothing textures. Based on this, a channel space parallel attention module is designed to improve 
edge feature extraction capabilities through PSA. It is combined with a convolutional block attention module 
(CBAM) to optimize feature selection in key regions. The study innovatively integrates wavelet transforms and 
generative adversarial networks to construct a multi-scale enhancement strategy. It designs a channel-space-
parallel PSA to enhance the extraction of edge features while maintaining the integrity of clothing textures. 
This effectively solves the generalization problem of traditional small-sample clothing pattern segmentation. The 
research aims to establish an automated extraction framework for ethnic minority costumes. This framework 
uses hierarchical feature learning and robust enhancement techniques to provide high-precision, interpretable 
segmentation methods for cultural heritage digitization. The framework also solves the problem of model 
generalization in scenarios with small samples.

Methods and materials
Multi-scale data augmentation and feature extraction methods
As a precious cultural heritage, the digital protection of traditional clothing patterns faces severe challenges21,22. 
Due to the influence of age and environmental factors, a large number of clothing images have problems such 
as fading, blurring, and texture degradation. This seriously restricts the subsequent pattern analysis and feature 
extraction work23,24. A systematic data augmentation solution is proposed to overcome the limitations of 
traditional enhancement methods when balancing texture retention and detail recovery. First, a standardized 
preprocessing data process is established to ensure consistent input by uniformly adjusting the resolution of 
each image to 512 × 512. On this basis, the Keras image data generator is used to realize multi-dimensional 
geometric transformation enhancement: including 10° random rotation to simulate multi-view shooting, ± 2% 
horizontal-vertical translation to enhance spatial invariance, and ± 2% shear transformation to improve the 
adaptability to fabric deformation. Keras is used for data augmentation due to its efficient ImageDataGenerator. 
However, the preprocessed data is converted to PyTorch tensors to ensure compatibility with the PyTorch-
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based network implementation. The study employs a hybrid framework to leverage the distinct advantages 
of both Keras and PyTorch. Keras, with its highly efficient and user-friendly ImageDataGenerator, is utilized 
for the data augmentation pipeline to perform multi-dimensional geometric transformations (e.g., rotation, 
translation, shear). To ensure seamless compatibility with the PyTorch-based network training and inference 
environment, the augmented image arrays generated by Keras are immediately converted into PyTorch tensors 
using a dedicated data bridging interface. This interface is implemented through torch.from_numpy()function, 
which directly converts the NumPy array output from Keras into a PyTorch tensor, ensuring data type and 
shape consistency. This design maintains a fully consistent and reproducible pipeline from preprocessing to 
model training, effectively avoiding any framework-induced inconsistencies. The hybrid strategy capitalizes on 
Keras’s rapid augmentation capabilities while utilizing PyTorch’s flexibility for dynamic graph construction and 
advanced model design. This hybrid approach leverages the strengths of both frameworks. Keras is used for rapid 
data augmentation, and PyTorch is used for flexible model training. This setup avoids pipeline inconsistencies 
between preprocessing and training. These transformation operations not only expand the sample diversity, 
but more importantly, preserve the key features of the clothing pattern intact. Rotation and translation enable 
the model to learn viewpoint-independent stabilization features, which are especially beneficial for recognizing 
symmetric patterns such as Miao embroidery. Shear transformation, on the other hand, enhances the robustness 
of the algorithm to fold deformation25,26. All the transformations adopt the nearest neighbor filling mode, which 
effectively protects the pattern edge details. On the basis of preprocessing, the study further develops a multi-
scale feature preservation technique. The hierarchical features of the clothing pattern are systematically captured 
by constructing a hierarchical feature extraction framework. This hierarchical feature extraction framework is 
shown in Fig. 1.

In Fig. 1, the bottom layer uses 3 × 3 small convolutional kernels to finely extract microstructures such as 
embroidery stitches. The middle layer utilizes a 5 × 5 convolutional kernel to capture the local pattern units. The 
high-level layer captures the overall pattern layout with a 7 × 7 large convolution kernel. The features at each 
level are adaptively fused by learnable weight parameters, achieving a comprehensive characterization of multi-
level structures such as batik. This multi-scale fusion mechanism preserves the fine texture and understands the 
overall composition, providing an accurate feature representation for subsequent segmentation recognition. The 
features at each level are adaptively fused by learnable weighting parameters. Among them, it is assumed that f1, 
f2 and f3 represent the feature maps extracted from the bottom, middle, and high-level layers, respectively, and 
α, β and γ denote the learnable weight parameters corresponding to the contributions of features at different 
levels. The symbol ⊕ indicates the feature concatenation operation. The fusion formula is shown in Eq. (1).

	 H = α × f1 ⊕ β × f2 ⊕ γ × f3� (1)

In Eq. (1), H  is the result of multi-scale feature fusion. Although the hierarchical feature extraction effectively 
captures the local texture features of the clothing pattern, it still faces two key limitations. First, it is difficult 
to consider the synergistic expression of micro-detail and macro-layout for single-scale features. Second, the 
fixed sensory field leads to an insufficient long-range dependent model of the complex pattern. To further 
optimize the performance, the study introduces a four-level pyramid processing architecture. A hierarchical 
multi-scale analysis framework is used to achieve comprehensive capture of traditional clothing pattern features. 
The architecture adopts a progressive downsampling strategy, starting from the original high-resolution image 
and gradually constructing a multi-scale feature representation system27. The four-level pyramid processing 
architecture is shown in Fig. 2.

Fig. 1.  Hierarchical feature extraction framework.
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In Fig. 2, a multi-scale feature representation system is constructed by 2x, 4x, and 8x progressive downsampling 
from the original 512 × 512 image. Each level of pyramid adopts adaptive average pooling operation to build 
global semantic understanding while maintaining local detail accuracy. Each level of pyramid adopts adaptive 
average pooling operation as shown in Eq. (2).

	 Pn = AvgP ool
(
F, k = 2n−1)

� (2)

In Eq. (2), n represents the pyramid level. k represents pooling window size. F  represents the input feature map. 
Pn represents the nth level pyramid feature. Although the four-level pyramid processing flow can effectively 
capture the multi-scale features of clothing patterns, two key problems remain. First, the fixed-size input limits 
the model’s ability to adapt to patterns of different sizes. Second, the rigid transformation leads to insufficient 
robustness to spatial variations. Therefore, the study introduces a random cropping and flipping enhancement 
strategy to optimize the model performance. The enhancement strategy consists of three core parameter settings: 
a random window of 256 × 256 to 448 × 448 is used for the crop size, horizontal or vertical flipping is performed 
with 50% probability, and mirror fill is chosen to process the boundary pixels28. These measures improve the 
model’s ability to adapt to changes in pattern scale and orientation. Although the spatial transformation of the 
clothing pattern is robust after applying random cropping and flip enhancement, it still faces the critical problem 
of color distortion. The traditional red-green-blue (RGB) spatial enhancement easily leads to offset unique dye 
colors of ethnic clothing. Additionally, the saturation decay under low-light conditions seriously affects texture 
recognition. Therefore, to address the problem of color distortion, the study uses the hue-saturation-value (HSV) 
color space transformation for fine tuning. The transformation is defined by a scaling matrix in which the hue 
(H), saturation (S), and value (V) channels are adjusted by the following factors: 1.2, 1.1, and 0.9, respectively. 
T﻿his preserves culture-specific colors. Its matrix is expressed as Eq. (3).

	

[
H ′

S′

V ′

]
=

[1.2 0 0
0 1.1 0
0 0 0.9

] [H

S

V

]
� (3)

In Eq. (3), H  represents hue. S represents saturation. V  stands for lightness. This adjustment balances several 
dimensions: hue enhancement to preserve culture-specific colors, saturation enhancement to strengthen feature 
differentiation, and brightness control to avoid loss of highlight detail.

Segmentation network design incorporating attention mechanisms
The study significantly improves the quality of traditional dress images through data enhancement strategies, 
which effectively enhances the robustness of the model to illumination changes and viewpoint differences. The 
multi-scale feature preservation technique successfully realizes hierarchical feature representation from micro 
texture to macro layout, but still faces three core challenges: difficulty in complex texture feature extraction, 
insufficient multi-scale feature fusion, and computational resource limitation29. To address these challenges, 
the study proposes an innovative network architecture solution. Based on the data enhancement strategy to 
significantly improve the image quality, the study designs a lightweight segmentation network incorporating 
dual attention mechanism. The network adopts the improved FCN encoder-decoder symmetric structure as the 
underlying architecture, as shown in Fig. 3.

In Fig. 3, the number of parameters is compressed to only 3.5 M by a lightweight technique such as depth-
separable convolution. The encoder part extracts features gradually by four-stage pyramidal downsampling, 
while the decoder uses progressive upsampling to recover spatial details. The specially designed jump connection 
mechanism effectively integrates shallow texture information with deep semantic features. The core innovation 
of the network lies in the co-design of the dual attention module. Convolutional block attention module-channel 

Fig. 2.  Four-level pyramid processing architecture.
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attention mechanism (CBAM-CAM) adaptively enhances the response to key texture features such as Miao 
embroidery stitches through feature channel recalibration. Its structure is shown in Fig. 4.

Figure 4 shows the structural flow of the channel attention module. The input feature maps are processed by 
two paths: maximum pooling and average pooling. Then, the channel weights are computed using a multilayer 
perceptron (MLP). Finally, the spatial attention weights are generated using a sigmoid activation function, which 
enhances the model’s ability to discriminate complex textures. CBAM-CAM is implemented by using two-way 
aggregation with global average pooling and maximum pooling to generate channel attention weights through 
a small fully connected network. It is assumed that Favg  and Fmax denote the features after global average 
pooling and global maximum pooling, respectively, and W0 and W1 denote the weights of the fully connected 
layers. Its calculation is shown in Eq. (4).

	 Mc(F ) = Sigmoid(W1(W0(Favg)) + W1(W0(Fmax)))� (4)

In Eq. (4), Mc is the channel attention weight map. Meanwhile, to make up for the lack of channel attention in 
spatial localization, the network integrates the PSA module, as shown in Fig. 5.

Figure 5 shows the structural flow of the PSA module. The input feature map is convolved by a 7 × 7 kernel 
to extract spatial features. The spatial attention weights are generated by processing the S-shaped activation 
function, which effectively improves the localization accuracy of the edges of the clothing pattern and geometric 
structure. The computational process of PSA is shown in Eq.  (5). It is assumed that Ms denotes the spatial 
attention weight map generated by applying a convolution with a 7 × 7 kernel followed by a sigmoid function.

	 Ms(F ) = Sigmoid(Conv7×7([AvgP ool(F ); MaxP ool(F )]))� (5)

Fig. 4.  CBAM-CAM structure.

 

Fig. 3.  Improved FCN encoder-decoder.
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In Eq.  (5), Conv7×7 denotes the convolution operation. Since channel attention and spatial attention have 
complementary properties in traditional clothing pattern segmentation, the study adopts a parallel feature 
aggregation strategy. Its calculation is shown in Eq. (6).

	 Fout = Mc(F ) ⊗ F + Ms(F ) ⊗ F � (6)

In Eq. (6), ⊗ denotes element-by-element multiplication. Fout is the output feature after attention enhancement. 
Through the parallel feature aggregation strategy, the dual attention module achieves complementary strengths: 
CBAM-CAM focuses on feature selection of color channels, while PSA is refined in modeling spatial geometric 
relations. This design allows the network to accurately identify the color features of Miao indigo dye and precisely 
locate embroidery stitch direction. This significantly improves the accuracy of segmenting complex clothing 
patterns while maintaining real-time performance at 28 FPS. After completing the integration of dual attention 
module and parallel feature aggregation, the network architecture shows significant advantages in traditional 
clothing pattern feature extraction30,31. The FCN encoder-decoder symmetric structure achieves multi-level 
feature capture. The jump connection mechanism effectively integrates shallow texture details with deep 
semantic information. The dual attention module enables the model to significantly improve color sensitivity 
to complex patterns, such as Miao batik. However, the architecture still faces two challenges: insufficient 
computational efficiency and training stability. Therefore, the study proposes a lightweight improvement scheme 
that uses depth-separable convolutions instead of standard convolutions to reduce the number of parameters 
and improves training stability with an adaptive dropout strategy. This achieves faster inference speeds while 
maintaining accuracy. First, for the computational efficiency problem, the depth separable convolution is used 
to replace the standard volume. Its parametric quantity Q is calculated as shown in Eq. (7).

	
Q = DK × DK × M × N

DK × DK × M + M × N
� (7)

In Eq. (7), DK  is the convolution kernel size. M  is the number of input channels. N  is the number of output 
channels. To address the issue of training stability, the study uses a regularization strategy. For the improved 
batch normalization, it is assumed that x denotes the input feature tensor, µB  and φB  denote the batch mean 
and variance, and δ, ε, and ω denote learnable parameters and a stabilization constant. The first is the improved 
batch normalization layer, as shown in Eq. (8).

	
Ynormalize = δ · x − µB√

φ2
B + ω

+ ε� (8)

In Eq. (8), Ynormalize represents the improved batch normalized output. Then, to prevent overfitting, the study 
proposes the adaptive Dropout method, which is shown in Eq. (9).

	
Dropoutadapt = max(0.3, 1 − t

T
× 0.5)� (9)

In Eq. (9), t is the number of current training steps. T  is the total number of steps. Dropoutadapt represents 
Dropout probability.

In summary, the research system constructs the method MSDA-PSA for traditional clothing pattern 
extraction, and realizes technological innovation through three key links. Its specific framework structure is 
shown in Fig. 6.

In Fig.  6, in the data preprocessing stage, a multi-scale enhancement strategy is used to unify the image 
resolution, combined with geometric transformation and HSV color adjustment to protect the dress features. 
The network architecture innovatively integrates channel and spatial dual attention modules. Channel attention 
enhances color feature extraction, while spatial attention optimizes texture localization. The architecture realizes 
multi-scale feature fusion through parallel aggregation. To meet practical application requirements, deep 
separable convolutions are used to reduce the number of model parameters. Together with improved batch 
normalization and an adaptive dropout strategy, these convolutions improve computational efficiency while 
guaranteeing model accuracy. The scheme optimizes the entire process, from data preprocessing to network 

Fig. 5.  PSA structure.
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architecture, through a hierarchical design. It also provides technical support for digitally protecting complex 
ethnic clothing patterns.

Results
Performance test experiment
To verify the effectiveness of the proposed MSDA-PSA, the study establishes a standardized experimental 
environment as shown in Table  1. A hybrid software framework was adopted to leverage the strengths of 
both Keras and PyTorch. The software environment was primarily PyTorch 1.12.1 + CUDA 11.6 for network 
implementation, while data augmentation utilized Keras for its ImageDataGenerator efficiency. As detailed 
in the Methodology section (Section “Multi-scale data augmentation and feature extraction methods”), data 
compatibility between these frameworks was ensured through specific tensor conversion interfaces, maintaining 
a consistent pipeline from preprocessing to model training. The standard test set used in this experiment 
consists of 5,000 high-resolution images (512 × 512 pixels) covering 56 categories of traditional ethnic costumes, 
including Miao embroidery, Dong brocade, Tibetan aprons, and Uyghur prints. The images are collected from 
museum archives, cultural heritage databases, and field photography, with 60% from historical relics and 40% 
from modern preserved samples. Each image is annotated by a team of five textile experts with over 10 years of 
experience, achieving an average inter-annotator agreement (Kappa coefficient) of 0.92 through a multi-round 
annotation and reconciliation process. This experimental system adopts graphics processing unit (GPU) parallel 
architecture and realizes the co-optimization of multi-scale feature pyramid with dual attention module based 
on PyTorch framework. Through the controlled variable method, eight groups of comparative experiments 
are designed, covering dimensions such as basic segmentation performance, multi-scale feature validity, 
contribution of the attention mechanism, and few-shot learning ability. Noise robustness test and cross-cultural 

Configuration category Key parameter Set the value

Hardware environment

Processor Intel Xeon Gold 6248R @ 3.0 GHz (2)

Memory capacity 256GB DDR4 ECC

Display card configuration NVIDIA RTX A6000 (48GB video memory)x4

Inventory system 2 TB NVMe SSD + 16 TB HDD

Software environment

Operating system Ubuntu 20.04 LTS

Deep learning framework PyTorch 1.12.1 + CUDA 11.6

Python edition 3.8.12

Model parameter

Input dimensions 512 × 512

Batch size 16

Optimizer Adam

Learning rate strategy Cosine damping

Number of training rounds 200

Loss function Dice + CE

Table 1.  Experimental settings.

 

Fig. 6.  MSDA-PSA framework.
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generalization validation are also set up specifically to comprehensively test the MSDA-PSA method in complex 
scenarios Practicality. All experiments are repeated five times to ensure the statistical significance of the results.

Validation of base segmentation performance
To verify the base segmentation performance of the MSDA-PSA method on the standard test set, U-Net is 
selected as the baseline model for the experiments and compared with the mainstream segmentation methods 
such as DeepLabv3+, pyramid scene parsing network (PSPNet), and high-resolution network (HRNet) for 
the Comparison. The segmentation accuracy is quantified by the mIoU and Dice scores. The edge localization 
capability is evaluated by the Boundary F1-score. The inference speed is recorded to measure computational 
efficiency, using floating point operations (FLOPs) as the basis of comparison. All comparison methods are 
executed in the same experimental environment to ensure comparable results. The experimental results are 
shown in Fig. 7.

Figure 7(a) shows that the mIoU of all models rises as FLOPs increase. Among them, MSDA-PSA reaches 
78.5% already at low computation, leading the other models. The Dice scores in Fig.  7(b) show a similar 
trend, with MSDA-PSA consistently higher than the comparison methods by about 0.05, indicating better 
segmentation consistency. The Boundary F-score in Fig.  7(c) further validates the superiority of MSDA-
PSA in edge detail processing, especially reaching 0.87 at FLOPs = 6G, while U-Net is only 0.73. Figure 7(d) 
shows how computational efficiency changes. An increase in FLOPs leads to a decrease in FPS for all models. 
However, MSDA-PSA maintains the highest speed of 100 FPS at 4G FLOPs. Due to its complex structure, 
HRNet has the lowest speed. The results demonstrate the comprehensive superiority of MSDA-PSA in terms 
of accuracy, perceptual quality, boundary processing, and real-time performance. Its design effectively balances 
computational complexity and multidimensional performance, offering a feasible solution for high-precision, 
real-time segmentation.

Validation of Multi-Scale feature effectiveness
To validate the effectiveness of the proposed multi-scale pyramid architecture for extracting complex clothing 
patterns, the study designs progressive comparison experiments. These experiments systematically evaluates 
the performance differences between the single-scale baseline, dual-scale, triple-scale, and proposed four-scale 
pyramid architectures using the control variable method. The experiments strictly maintain consistency in the 
other parameters of the network, quantify the accuracy of feature extraction in each layer using the intersection 
over union (IoU) metric, analyze the effect of cross-scale feature fusion by combining feature consistency scores, 

Fig. 7.  Performance-efficiency tradeoff of multi-dimensional evaluation semantic segmentation model.
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and evaluate texture detail retention ability using the edge retention index. The experimental results are shown 
in Fig. 8.

Figure 8(a) shows that the macroscopic layout accuracy decreases from 0.85 to 0.7, the mesoscopic pattern 
from 0.8 to 0.7, and the microscopic texture from 0.85 to 0.75 with the increase of scales. This shows that multi-
scale combination decreases the feature extraction accuracy at all levels. Figure  8(b) shows that the feature 
consistency score and edge retention index increase with increasing scale, from only 0.6 for single scale to 0.85 
for four scales. This shows that multi-scale fusion significantly improves feature stability and edge accuracy. 
Figure  8(c) shows that as the scale increases, the number of parameters increases from 3.2  m to 4.0  m and 
the inference delay rises from 30ms to 38ms. In summary, the four scales achieve the best balance in feature 
extraction capability and computational efficiency.

Analysis of attention mechanism contribution
To verify the contribution of the dual attention module to traditional clothing pattern extraction, the study 
designs systematic ablation experiments to compare the performance of the four architectures: no attention 
baseline, CBAM-CAM only, PSA only, and complete dual attention. These experiments uses the control 
variable method. The experiments examine the enhancement effect of the attention mechanism in key texture 
regions. They quantify segmentation accuracy using the key region IoU and analyze feature selection capability 
in combination with channel activation degree. The experiments also evaluate the balance between spatial 
localization accuracy and computational overhead. The experimental results are shown in Fig. 9.

Figure 9(a) shows that the dual attention module has the highest IoU in the critical region, about 83%, and 
the lowest background mis-segmentation rate, about 5%, which is significantly better than the other modules. In 
Fig. 9(b), the dual attention module excels in channel activation ability while maintaining a low spatial localization 
error of about 2.1. Figure  9(c) shows that the module has a moderate computational overhead of about 2.9 
GFLOPS and the fastest inference speed of about 92 FPS. The results demonstrate that the dual attention module 
optimally performs in all three areas: segmentation accuracy, feature activation, and computational efficiency. It 
also achieves a good balance between performance and efficiency.

Evaluation of Few-Shot learning ability
To validate the generalization ability of MSDA-PSA method in data-scarce scenarios, the study designs progressive 
data availability experiments to systematically compare the performance differences between standard U-Net, 
data-enhanced U-Net, and Few-shot learning models with MSDA-PSA. The experiments construct a 10%-100% 
stepped training set and use 5-fold cross-validation to ensure the reliability of the results. It focuses on evaluating 

Fig. 8.  Influence of multi-scale feature fusion on the performance of microscopic image analysis.
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three key dimensions under different data sizes: small sample IoU reflects segmentation accuracy under limited 
labeled data. Cross-category generalization ability tests the model’s adaptability to unseen tattoo types. Feature 
mobility analyzes the generalization potential of pre-trained features. The experimental results are shown in 
Table 2.

In Table  2, at 10% data, MSDA-PSA has an IoU of 72.4, ahead of the standard U-Net at 58.6, the data-
enhanced U-Net at 65.2, and the Few-shot model at 68.7. At 50% data, MSDA-PSA reaches 85.3, which is 
still higher than the other models at 76.8 to 80.1. At 100% data, MSDA-PSA maintains its advantage with an 
IoU of 89.7, compared to 86.2 for the standard U-Net, 87.5 for the data-enhanced U-Net, and 84.3 for the 
Few-shot model. In cross-category generalization, the MSDA-PSA 71.2 far outperforms the standard U-Net 
(53.8), the data-enhanced U-Net (61.5), and the few-shot model (64.3). Feature relocatability MSDA-PSA 0.82, 
outperforming the other models at 0.68 to 0.79. Training convergence speed MSDA-PSA takes only 45 rounds, 
faster than the standard U-Net at 35 rounds. The training stability of MSDA-PSA is 1.8 with minimal fluctuation. 
The results show that MSDA-PSA performs best with all data sizes. It has significant advantages, especially with 
low-data and cross-category tasks. This validates its strong generalization ability and data efficiency.

Assessment indicators MSDA-PSA Standard U-Net Data augmentation U-Net Few-shot Test condition

10% data small sample IoU (%) 72.4 58.6 65.2 68.7 5-fold cross-validation

50% data IoU(%) 85.3 76.8 80.1 78.5 100 epoch training

100% data IoU (%) 89.7 86.2 87.5 84.3 Complete training set

Cross-category generalization loU (%) 71.2 53.8 61.5 64.3 No pattern test set was seen

Feature portability (mAP) 0.82 0.68 0.75 0.79 Downstream tasks are fine-tuned

Training convergence speed (epoch) 45 80 65 55 LoU required 85% of the rounds

10% data training stability (σ) 1.8 3.2 2.6 2.1 loU standard deviation

Table 2.  Comparison of generalization performance in data scarcity scenarios.

 

Fig. 9.  Comparison of experimental data of dual attention module ablation.
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Ablation studies on core modules
To quantify the independent contributions of core modules such as MSDA, PSA, and channel attention (CBAM-
CAM), the study systematically conducts ablation experiments in “3.1.5. Ablation Studies on Core Modules” by 
comparing the full MSDA-PSA model with three variants: Variant A removes multi-scale data enhancement, 
utilizing only basic augmentation. Variant B eliminates the dual attention mechanism, retaining the basic CNN 
architecture. Variant C employs only the PSA or CBAM-CAM module separately to assess their individual 
effects. The experiments use mIoU, boundary F-score, and parameter count as the main metrics to thoroughly 
evaluate the impact of each module on segmentation accuracy, boundary localization, and model efficiency. This 
ensures a rigorous and comparable analysis (Table 3).

The ablation results indicate that the full model Full MSDA-PSA achieves the best performance with an 
mIoU of 89.7% and a Boundary F-score of 0.87. Removing MSDA (Variant A) reduces mIoU to 84.7% and 
Boundary F-score to 0.82. Eliminating the attention mechanism (Variant B) causes a more significant decline, 
with mIoU dropping to 80.0% and Boundary F-score to 0.78. Using only the PSA module (Variant C) yields an 
mIoU of 85.0%. CBAM-CAM alone reaches 86.0%. Both are lower than the full model but higher than Variant 
B. This demonstrates the independent contributions of each module. The parameter count decreases to 3.0 M 
in Variant B, highlighting the lightweight design of the attention modules. The study confirms that all core 
modules in MSDA-PSA are essential. Multi-scale enhancement and attention mechanisms work together to 
improve segmentation accuracy. The full model achieves optimal performance while maintaining a lightweight 
design of 3.5 million parameters.

Simulation test experiment
Robustness evaluation under image degradation conditions
To verify the adaptability of the MSDA-PSA method to low-quality input images, systematic degradation 
simulation experiments are designed in the study. A specialized test set containing 1,200 high-complexity 
patterns is constructed for this experiment, including 600 Miao embroidery images and 600 Dong brocade 
images. These images are sourced from the Chinese Ethnic Museum and Guizhou Provincial Museum collections, 
with 70% being historical images (pre-1950s) showing significant degradation and 30% being contemporary 
digital captures. Three senior textile conservators annotated each pattern using a fine-grained labeling protocol. 
Annotation consistency is validated through an iterative process, achieving an average IoU of 0.95 between 
annotators. A test environment covering three typical degradations is constructed by precisely controlling 
the parameter ranges, manually adding Gaussian noise with σ = 0-0.2, motion blur with a kernel size of 3–15 
pixels, and low-light conditions with γ = 0.5-2.0. The experiment compares the performance differences between 
traditional enhancement and segmentation, end-to-end enhanced segmentation, a noise-resistant U-Net, and 
an MSDA-PSA. The performance is evaluated quantitatively using four indicators: noise robustness, IoU, blur 
restoration ability, and color retention ability. The experimental results are shown in Fig. 10.

Figure 10 compares the performance of four image processing methods under various degradation conditions. 
Figure 10(a) shows that the IoU of the MSDA-PSA model under Gaussian noise with a standard deviation of 
0.2 is 0.82. This is significantly better than the IoU of traditional enhancement and segmentation methods, as 
well as noise-resistant U-Net methods. In Fig. 10 (b), under severe blurring conditions, MSDA-PSA maintains a 
recovery ability of 0.74 with a kernel size of 15 pixels, which is significantly better than other methods. Figure 10 
(c) shows that under low light conditions (γ = 0.5), the color retention ability of MSDA-PSA can still reach 0.85, 
which is significantly better than other methods. Under high light conditions (γ = 2.0), its color retention ability 
reaches 0.90, showing the most outstanding performance. Figure 10 (d) shows that when the JPEG compression 
quality factor is 10, the structural similarity value of MSDA-PSA is 0.75, while the structural similarity values of 
other methods are all below 0.70. The results shows that the MSDA-PSA method performs best in terms of noise 
robustness, blur restoration, color retention, and structural integrity, particularly under extreme degradation 
conditions.

Segmentation accuracy for complex textures
To verify the accuracy of the MSDA-PSA method’s segmentation for complex clothing textures, a test set 
containing patterns of high complexity, such as Miao embroidery and Dong brocade, is constructed. A fine-
grained mask annotated by multiple experts is used as the evaluation benchmark. The experimental system 
compares the performance difference between traditional edge detection, texture analysis algorithm, multi-
task learning model and MSDA-PSA. It is also quantitatively evaluated by four specialized metrics: texture 
retention index, pattern continuity score, tolerance of intra-class differences, and microstructure accuracy. The 
experimental results are shown in Fig. 11.

Model variant mIoU (%) Boundary F-score Parameter count (M)

Full MSDA-PSA 89.7 0.87 3.5

Variant A (No MSDA) 84.7 0.82 3.5

Variant B (No Attention) 80.0 0.78 3.0

Variant C (PSA-only) 85.0 0.83 3.2

Variant C (CBAM-CAM-only) 86.0 0.84 3.3

Table 3.  Ablation study: performance comparison of core modules.
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In Fig.  11 (a), as the texture complexity index increases, the texture retention index of traditional edge 
detection decreases from 0.85 to 0.58, the texture analysis algorithm decreases from 0.88 to 0.64, the multi task 
learning model decreases from 0.90 to 0.70, and the MSDA-PSA decreases from 0.92 to 0.80, showing the most 
stable and consistently leading performance. In Fig. 11 (b), MSDA-PSA still reaches 0.82 at high complexity, far 
exceeding the traditional method’s 0.60. In Fig. 11 (c), when the tolerance for internal differences of MSDA-PSA 
is 0.9, the result is 0.88, which is superior to other methods. In Fig. 11 (d), the microstructure accuracy at high 
complexity is 0.92 for MSDA-PSA, while the traditional method is only 0.72. The results indicate that MSDA-
PSA outperforms traditional edge detection, texture analysis algorithm, and multi-task learning model in 
terms of texture retention, pattern continuity, tolerance of intra-class differences, and microstructure accuracy. 
Especially under high texture complexity, this method has significant advantages and demonstrates powerful 
ability in segmenting complex clothing textures.

Real-time processing capability assessment
To verify the real-time processing capability of the MSDA-PSA method in practical applications, a professional 
video streaming testing environment is constructed, and the performance of lightweight U-Net, mobile 
network version 3 (MobileNetV3) segmentation, fast fully convolutional network (FastFCN), and MSDA-PSA 
is systematically compared. The experiment adopts 1–16 concurrent stress tests, and the resource monitoring 
system accurately records various indicators: single frame processing time, memory usage, GPU utilization, and 
throughput capacity. The experimental results are shown in Table 4.

In Table 4, the single frame processing time of MSDA-PSA is 18.2ms, which is 7.5ms faster than lightweight 
U-Net, 4.2ms faster than MobileNetV3, and 10.1ms faster than FastFCN. The memory usage is only 3.2GB, 
which is lower than the other three methods. Throughput capacity reaches 100FPS, ahead of lightweight U-Net’s 
28FPS, MobileNetV3’s 15FPS, and FastFCN’s 40FPS. 16-channel concurrent latency is 35.4ms, which is 10.3ms 
less than the second-place MobileNetV3. Energy-efficiency ratio is 8.7FPS/W, which is 1.5 units higher than 
that of MobileNetV3’s 1.5 units. Although the GPU utilization of 78.3% is slightly lower than FastFCN’s 88.9%, 

Fig. 10.  Comprehensive performance evaluation of image processing methods under degraded conditions.
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the overall performance is optimal. FastFCN has the best performance in GPU utilization. MobileNetV3 is in 
the middle in memory usage and latency. Lightweight U-Net is in the middle to lower range for all metrics. 
The results show that MSDA-PSA leads in four of the five core indicators, demonstrating significant real-time 
processing advantages.

Cross-cultural generalization validation
To verify the adaptability of the MSDA-PSA method to different ethnic costumes, the study constructs a 
dataset covering 56 ethnic costumes, and adopts the leave-one-culture cross-validation strategy for systematic 
evaluation. The experiment compares the performance of single culture training, multicultural joint training, 
domain adaptation method, and MSDA-PSA. The evaluation indicators include: cross cultural IOU, characteristic 
domain distance, style mobility, and cultural specificity retention rate. The experimental results are shown in 
Fig. 12.

Assessment indicators MSDA-PSA Light weight U-Net MobileNetV3 segmentation FastFCN Test condition

Single frame processing time (ms) 18.2 25.7 22.4 28.3 1080p resolution

Memory usage (GB) 3.2 4.5 3.8 5.1 16 concurrent routes

GPU utilization (%) 78.3 85.6 82.1 88.9 RTX A6000 × 4

Throughput capacity (FPS) 100 72 85 60 4G FLOPs

16-way concurrency delay (ms) 35.4 ± 3.2 52.1 ± 4.5 45.7 ± 3.9 61.3 ± 5.2 Stress tests

Energy efficiency ratio (FPS/W) 8.7 5.3 7.2 4.8 300 W power consumption limit

Table 4.  Comparison results of real-time processing performance.

 

Fig. 11.  Evaluation of the influence of texture complexity on the performance of pattern recognition 
algorithm.
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In Fig. 12 (a), the cross cultural IoU shows that the MSDA-PSA reaches 0.83, significantly higher than the 
0.58 for single culture training and 0.72 for multicultural joint training. The characteristic domain distance 
indicator shows that MSDA-PSA is only 0.28, which is 77.6% lower than the benchmark method’s 1.25 and better 
than the domain adaptation method’s 0.52. In Fig. 12 (b), style mobility shows that MSDA-PSA leads traditional 
methods by 0.88, with a range of 0.45–0.70. The retention rate of cultural specificity is outstanding. MSDA-PSA 
maintains a high score of 0.94, which is close to the score of 0.92 obtained through single-culture training. 
This score far exceeds the score of 0.68 obtained through the domain-adaptation method. Overall, MSDA-PSA 
achieves the best performance in all four core indicators, solving the trade-off between data requirements and 
cultural fidelity in traditional methods.

Optimization strategy robustness test
To verify the robustness of the MSDA-PSA method across different optimizers and avoid potential biases of the 
Adam optimizer, this experiment compares MSDA-PSA with mainstream SOTA models (such as DeepLabv3+, 
U-Net, and PSPNet) under the AdaBoB optimizer. The experiment utilized a standard test set of 5,000 high-
resolution images covering 56 traditional ethnic clothing patterns. All models operated in the same hardware 
and software environment: PyTorch 1.12.1 + CUDA 11.6. The optimizer parameters are consistent with Adam 
(learning rate 0.001, betas=(0.9, 0.999)). Key evaluation metrics includes mIoU, Boundary F-score, inference 

Fig. 12.  Comparison of segmentation performance of cross-ethnic clothing patterns.
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speed (FPS), and parameter count to ensure a comparable and reliable assessment. The experimental results are 
shown in Table 5.

  
Under the AdaBoB optimizer, the MSDA-PSA model achieves an mIoU of 89.5%, a Boundary F-score of 

0.86, an inference speed of 100 FPS, and a parameter count of 3.5  M. These results outperform those of all 
compared models. For instance, DeepLabv3 + has an mIoU of 85.2%, and U-Net reaches 86.0%. However, both 
exhibit lower inference speeds (45 FPS and 60 FPS, respectively) and higher parameter counts (e.g., 5.8 M for 
DeepLabv3+). This demonstrates the superior performance of MSDA-PSA in terms of segmentation accuracy, 
boundary localization, and real-time efficiency, all while maintaining a lightweight architecture. MSDA-
PSA achieves high performance (mIoU 89.5%) under AdaBoB, which confirms its robustness and advanced 
capabilities for practical deployments, regardless of the optimizer.

Discussion and conclusion
Discussion
The MSDA-PSA method proposed in the study demonstrates significant advantages in the traditional clothing 
pattern extraction task. Its innovativeness is mainly reflected in three aspects: multi-scale data enhancement 
strategy, dual attention mechanism fusion, and lightweight network design. Through systematic experimental 
validation, the method outperformed the existing mainstream models in terms of accuracy, robustness and 
efficiency. The following was a discussion from three dimensions: technical mechanism, performance advantages, 
and application value.

From a technical perspective, the success of MSDA-PSA stemmed from its hierarchical feature learning 
framework. The hierarchical feature extraction architecture shown in Fig.  1 achieved comprehensive feature 
capture from micro stitching to macro layout through the collaborative work of multi-scale convolutional 
kernels. This design effectively solved the scale sensitivity problem of traditional methods in complex texture 
processing. The four-level pyramid processing architecture further enhanced the multi-scale feature fusion 
capability. Experimental data showed that the feature consistency score improved to 0.85, which verified this 
architecture’s advantage in maintaining texture continuity.

In terms of attention mechanism, the parallel design of CBAM-CAM and PSA formed complementary 
advantages. CBAM-CAM enhanced the color feature extraction of characteristic dyes such as Miao indigo 
through channel recalibration, while the PSA module precisely located the geometric structure of embroidery 
edges. This dual path attention mechanism achieved an IoU of 83% in key regions, which was about 12% higher 
than the single attention baseline. While maintaining high accuracy, this module compressed the parameter 
count to 3.5 M through depthwise separable convolution. It achieved a real-time processing speed of 100 FPS, 
providing feasibility for practical applications. The 28 FPS referred to the performance of the dual attention 
module alone in an isolated test. However, the overall system optimization with parallel aggregation and 
hardware acceleration achieved 100 FPS, as reported in the abstract and Table 4. Compared to the Transformer 
U-Net in reference17, the MSDA-PSA method achieved 89.7% mIoU in a lightweight structure, resulting in 
a threefold increase in inference speed. Compared to the VGG16 UNet in reference18, the Boundary F-score 
increased by 7%. These breakthroughs were primarily the result of HSV color space transformation preserving 
culturally specific colors, as well as the improved training stability brought by the adaptive Dropout strategy. The 
latter accelerated the convergence speed of training by 35 rounds.

To deeply analyze the relationship between model complexity and performance, this study adopted the 
parameter quantity shifting-fitting performance (PQS-FP) coordinate system for exploration. The PQS-FP 
coordinate system used the ideal parameter quantity O as the benchmark. Among them, the Y-axis represented 
the fitting state (Y < 0 for underfitting, Y > 0 for overfitting), and the X-axis represented the direction of parameter 
change (X > 0 for parameter increase, X < 0 for parameter decrease). The coordinate system was divided into four 
quadrants: Quadrant I (OER: overfitting exacerbation leading to performance degradation), Quadrant II (OAR: 
overfitting alleviation leading to performance improvement), Quadrant III (UER: underfitting exacerbation 
leading to performance degradation), and Quadrant IV (UAR: underfitting alleviation leading to performance 
improvement). Mapping models such as MSDA-PSA, DeepLabv3+, and U-Net onto the PQS-FP system revealed 
that MSDA-PSA was in Quadrant IV (UAR). This indicated that MSDA-PSA effectively alleviated underfitting 
through its lightweight design, improving performance. Meanwhile, DeepLabv3 + and U-Net were partially in 
Quadrant I (OER) and suffered from overfitting issues. Further analysis of different MSDA-PSA variants (e.g., 
adjusting the depth-separable convolution parameter count) showed that reducing parameters moved the model 
to Quadrant III (UER) and increased performance degradation. Increasing parameters moved the model to 
Quadrant I (OER) and also increased performance degradation. This verified that the current parameter settings 

Model mIoU (%) Boundary F-score Inference Speed (FPS) Parameter Count (M) References

MSDA-PSA 89.5 0.86 100 3.5 /

DeepLabv3+(SOTA) 85.2 0.80 45 5.8 32

U-Net(SOTA) 86.0 0.82 60 3.4 33

PSPNet(SOTA) 84.0 0.78 50 4.5 34

HRNet 85.5 0.81 40 6.2 35

Table 5.  Performance comparison of MSDA-PSA and SOTA models under adabob optimizer.
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were optimal for MSDA-PSA. This analysis revealed why MSDA-PSA achieved high accuracy while maintaining 
low parameter count, deepening the understanding of model behavior.​.

However, this method still has three limitations: Although a cross cultural IoU of 0.83 was achieved on the 
56 ethnic costume datasets, the generalization ability for rare patterns was insufficient. The real-time processing 
performance of 100FPS still needed to be optimized on mobile devices. The repair effect on severely damaged 
(> 30% missing) historical images was limited. As shown in Fig. 12, the cross cultural IoU test results showed that 
the MSDA-PSA reached 0.83, significantly higher than the 0.58 obtained from single culture training. However, 
there was still room for improvement. Future research will combine meta-learning to optimize adaptation 
to small samples for rare patterns. It will also develop model compression strategies oriented toward edge 
computing to improve compatibility with mobile devices. Additionally, it will introduce generative adversarial 
networks specifically for severely damaged image restoration. These efforts will further improve cross-cultural 
generalization capabilities and edge computing platform adaptability. Compared with existing research, MSDA-
PSA has achieved breakthroughs in multiple aspects.

Conclusion
The MSDA-PSA method was innovatively proposed to address three major challenges in digitally protecting 
traditional clothing patterns. Its effectiveness was verified through systematic experimentation. The main 
contribution could be summarized as: constructing a multi-scale enhancement strategy that integrated wavelet 
transform and generative adversarial network, which still maintained 72.4% IoU under 10% small sample data. 
This method designed a channel space parallel attention mechanism, achieving a key region segmentation 
accuracy of 83% and controlling the computational cost at 2.9 GFLOPS. This method developed a lightweight 
network architecture, achieving a real-time processing speed of 100FPS and a 16 channel concurrent latency of 
only 35.4ms. This method provides reliable technical support for the digitization of cultural heritage.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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