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Orthogonal frequency division multiplexing (OFDM) is a promising solution for underwater acoustic
communication (UWA); however, it requires careful handling of the challenges of large multipath and
severe Doppler effects inherent in underwater acoustic communication. This paper proposes a novel
feedforward backpropagated neural network (FBNN) implementation for Doppler scaling estimation
using UWA cyclic-prefix (CP) OFDM communication. A two-layered input-output feedforward network
is utilized with three different backpropagated training algorithm variants: Fletcher-Reeves Conjugate
Gradient (CGF), Polak-Ribiére Conjugate Gradient (CGP), and Conjugate Gradient with Powell/Beale
Restarts (CGB). The proposed approach calculates the Doppler scale factor by combining the neural
computational power with the accuracies offered by the three training algorithms. To evaluate the
effectiveness of the proposed FBNN implementation, root mean square error (RMSE) is used as a
performance metric for different multipath and signal-to-noise ratio (SNR) channel conditions. The
paper also presents a comparison of the proposed FBNN-based training algorithms’ performance with
that of the benchmark offered by conventional methods.

Keywords Underwater acoustic communication, Orthogonal frequency division multiplexing, Doppler scale
factor, Feedforward neural network, Conjugate gradient

UWA channel is quite a challenging communication medium for its susceptibility to environmental factors
such as temperature, salinity, and pressure!. Furthermore, due to the slow propagation speed and tidal moment
of acoustic waves in underwater medium, underwater wireless acoustic communication becomes even more
challenging, resulting in severe multipath, delay-spread, and Doppler spread?. Consequently, the challenges of
inter-symbol interference (ISI) and inter-carrier interference (ICI) occur. To cope with these challenges, OFDM
has been widely utilized for the last few decades and is considered a promising choice for efficiently handling
the frequency-selective channel and enabling high data rate communication®~°. Different variants have also been
proposed in literature to provide better noise immunity and bit error rate performance while maintaining low
implementation costs®. One such variant is CP-OFDM that has been widely studied for underwater acoustic
communication. The use of cyclic prefix and orthogonal subcarriers offers various advantages, however, it also
requires delicate tackling of rapid time variation that is present due to the severe Doppler effect in the case of
underwater channel>*”. If rapid time variation is not handled carefully, the frequency shift due to the Doppler
effect compromises the orthogonality between the OFDM subcarriers, leading to ICI*. The mitigation of the
Doppler effect and its compensation therefore, become essential in UWA OFDM communication to fully exploit
the potential of OFDM technology.
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Various methods have thus been developed in the literature to estimate the Doppler effect for underwater
acoustic OFDM communication systems, including Doppler-insensitive waveforms, Doppler-sensitive
waveforms, the least-square methods, cross-correlation-based methods, and auto-correlation-based
methods®”~1°. Among them, the classical approach is the use of a signal structure that contains a Doppler-
insensitive preamble, and postamble’ like a linear frequency modulated waveform and hyperbolic frequency
modulated waveform!"!2, Similarly, the Doppler sensitive waveform is developed to estimate the Doppler scale
factor that uses the preamble, consisting of an m-sequence-coded waveform and the Costas waveform®. Doppler
sensitive waveform method uses a cross-correlator bank, where the correlator resulting in a maximum peak is
selected as the true Doppler scale estimate®. One of the common disadvantages of these Doppler-insensitive and
Doppler-sensitive waveform methods is the signal overhead’. Other disadvantages include a large delay time and
high computational complexity’. A least-square (LS) method is also introduced to estimate the Doppler scale
factor in!, however, this method requires an iterative solution and needs to be channel equalized first. Therefore,
the LS method may not be a viable option in a practical UWA communication system. On the other hand, a
more common method used in UWA is auto-correlation-based Doppler scale estimation. Instead of preamble
and postamble, auto-correlation method uses CP on the receiver side to estimate the Doppler scale factor®”13:14,
The accuracy of auto-correlation-based Doppler scale estimation directly depends on the sampling rate of the
received signal. A higher sampling rate of the received signal provides a better estimate of a Doppler scale factor,
but at the cost of computational complexity*. To resolve this issue of computational complexity, an interpolation
technique is introduced®”"!>!6, To summarize, serious efforts are made to estimate and compensate the Doppler
effect through conventional approaches®’~1%, with each one having its advantages and limitations.

With the rapid development and progress in the use of deep learning algorithms, and their advantages in
terms of performance, recently, non-conventional deep learning methods have been introduced for UWA OFDM
communication!’~2°. However, deep learning-based methods so far used in UWA OFDM communication are
mainly related to channel estimation. For example, Liu et. al propose a deep neural network-based model:
CsiPreNet, where a convolutional neural network (CNN) and long short-term memory (LSTM) are integrated
to predict channel state information for an adaptive UWA downlink orthogonal frequency division multiple
access!’. Similarly, Li et. al, in another study, propose a denoising autoencoder deep neural network (DAE-
DNN) to improve channel estimation of a UWA OFDM communication by suppressing the impulsive noise!s.
Although deep learning-based methods are applied to channel estimation, little to no work is done towards
time-varying channels, including the Doppler effect, a crucial factor in UWA communication. Jia et.el'® exploits
the sparse nature of the UWA communication channel and considers the time-varying channel with a uniform
Doppler, however, they did not explicitly estimate the Doppler scale factor. In another work?!, Hassan et.al
propose a deep learning-based channel estimator in the presence of Doppler shifts, however, their study also
predicts the transmitted information bits directly without explicitly estimating the Doppler scale factor. We,
therefore, identify this gap and consider a time-varying UWA channel having both multipath and the Doppler
effect. We further exploit the novel application of a feedforward neural network for estimating the Doppler scale
factor in a time-varying UWA CP-OFDM communication channel.

Feedforward neural networks have been widely used in several real-world applications such as the
healthcare sector?-%4, structural health monitoring®>%, mechanics?’, environmental monitoring?, and wireless
communication?>*’. Driven by these diverse applications of feedforward neural networks, we in this work
plan to investigate its performance in estimating the Doppler scale factor in UWA CP-OFDM communication.
Toward this end, we use an FFBN with three different training algorithms. The main contributions in the paper
are summarized below:

« In this paper, we introduce the novel application of a feedforward backpropagation neural network for esti-
mating the Doppler scale factor in UWA CP-OFDM communication. Unlike the conventional method, where
two CP-OFDM symbols are used to improve the Doppler scale factor estimation accuracy, we use a single
OFDM symbol approach, achieving spectral efficiency.

o In FBNN, we utilize three different training algorithms, namely FBNN-based Fletcher-Reeves Conjugate
Gradient (FBNN-CGF), FBNN-based Polak-Ribiere Conjugate Gradient (FBNN-CGP), and FBNN-based
Conjugate Gradient with Powell/Beale Restarts (FBNN-CGB).

« The performance comparison of the three FBNN-based training algorithms is carried out in terms of mean
square error (MSE) and error histograms under dynamic channel conditions of varying SNR and number of
paths.

« A synthetic dataset is generated with all real-time and key parameters such as multipath, uniformly distribut-
ed Doppler scale factor, and signal-to-noise ratio.

« The performance analysis of the FBNN-CGF, FBNN-CGP, and FBNN-CGB is carried out through the perfor-
mance metric of RMSE of Doppler speed in m/s by estimating the difference between the true and estimated
Doppler scale factor. In addition, a comparison has been made with the conventional signal processing meth-
od, such as pilot-assisted autocorrelation and pilot-assisted cross-correlation-based Doppler scale estimation.
Additionally, the results are further verified using a watermark NOF1 channel dataset.

o Finally, we calculate the bit error rate (BER) performance of the relatively best FBNN-based training algo-
rithm achieved from the RMSE performance comparison.

UWA CP-OFDM system model

Since CP-OFDM is most commonly used in underwater acoustic communication, we therefore start with the
CP-OFDM communication system model that includes time-varying information of underwater channel.
Consider a CP-OFDM communication system‘”, that has a total number of subcarrier K, s[k] is the baseband
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modulated (phase shift keying (PSK) or quadrature amplitude modulation (QAM)) symbol on the kth subcarrier,
the transmit CP-OFDM passband signal in continuous time domain Z(t) can be written as

K
K

B(t)=Req > slkle”™ () 3, (1)

— K
k=—%

where fr = fc + % denotes the frequency of the kth subcarrier, here f. is the carrier frequency, T represents
OFDM symbol duration, and the rectangular pulse shaping window is denoted by g(#). The rectangular pulse
shaping window ¢(t) can be written in two different signal formats based on a single OFDM symbol, that is, T
or two identical OFDM symbols, that is, 2T as depicted in Fig. 1* Let’s denote the duration of CP with T, the
q(t) can be written as

_ [ Lte [T, 2T];

q(t) = { 0, elsewhere. 2)
— 17t € [_TC ) T} 5

q(t) = { 0, elsewhere. (3)

We use (3) instead of (2) in our proposed FBNN-based Doppler scale estimation as it uses single OFDM
symbols? to help in efficiently utilizing the scarce underwater spectrum. Next, the channel impulse response
with L number of paths can be expressed as

L—1
h(t) - Z Al(s[(]- + atTue)t - TZL (4)
=0

where A;, 7, and a¢rue denote the amplitude, time delay of the Ith path, and true Doppler scale factor,
respectively. After passing the passband CP-OFDM signal through a multipath channel, the received passband
signal can be written as

L—1

G(t) = 2(t) x > Ab[(1+ avrue)t — 7] + ilt), (5)

1=0

where 71(¢) denotes the noise. The modified received passband signal after insertion of (1) in (5) can be expressed
4,7

as
L—1 K1
. k . k
g(t) = Re{ Z A Z S[k}eﬂﬂ(fﬁrT)(1+aw-ue)tefj27r(fc+7)Tz X q[(1 + @prue )t — Tl]} + A(t). (6)
1=0 k:,%

Next, the received passband signal is downshifted and passed through a low-pass filter. The final received
baseband signal y(t) can then be written as*’

K
L—1 o5 -1
j —jonkr jomk a t
y(t) = Afel?reciruet N ggle 2R AR ()t s gl(1 )t — 7] + 2(1), 7)
=0 k=— &K

2

where AS = A;e=72™fe™ denotes the baseband equivalent complex path amplitude, while z(t) is the baseband
noise. With an assumption that the signal sampling frequency is fs = AB = A?K, where B and A denote the

1+atrue 1+atrue
maximum delay spread, then from (7), the sampled digital signal from can be expressed as:

OFDM signal bandwidth and oversampling factor. When n € [f Tep—Tmex f 2T =Tumax f s:| , where Timax is the

CP X Cp X X

(a) (b)

Fig. 1. CP-OFDM signal structures (a) Single CP-OFDM symbol and (b) Two CP-OFDM symbols, where CP
represents cyclic prefix, and X is the OFDM symbol’.
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y[n] _ ZAlcej%rea”ueﬁ S[k}67j2ﬂ%n6j2ﬂ—%(1+atru5)n + U)(’I’L), (8)

=0 k=—

o

where €4,,.,. = fc@trueT denotes the normalized Doppler shift, and here f. is the carrier frequency.

Proposed FBNN-based Doppler scale estimation approach

The Doppler scaling factors estimation for underwater acoustic communication requires dealing with complex
data, and therefore the paper proposed employs a feedforward neural network with back-propagated training
algorithm. Both the neural network and training algorithms are further explained in the following subsections:

Feedforward Backpropagation Neural Network (FBNN)

Figure 2 shows a block diagram of an OFDM receiver with Doppler scale estimation. The Doppler Estimation
block utilizes FBNN to estimate Doppler scaling factors. The input of this block is y[n] (eq 8) where atrye is
the target Doppler scaling factor needs to be estimated. FBNN takes y[n] as input, and a¢rue as target during
the training phase. The FBNN consists of an input layer and one or more hidden layers to estimate the Doppler
scale factor (aes¢) in its output layer. A typical workflow at the level of neurons in different layers in an FBNN
is listed below.

o Each hidden layer neuron receives an input that is a weighted combination of the input from the prior layer,
which is then passed through a nonlinear activation function. Therefore, weighted output z; k] of the j-th
neuron in the hidden layer is specified using a nonlinear activation function g and utilizing the weight c;;
from input neuron i to hidden neuron j as

n

5k =g | Y e vilkl +; ), ©)

i=1
where b; is the bias of the hidden neuron j and n represents the number of input samples.

o The output neuron r yields a value a4 [k] by using a nonlinear activation function 4 and utilizing the weight
vr; from hidden neuron j to output neuron r as

m

alolkl =h | > vy 2K+ |, (10)

Jj=1

where b, is the bias of the output neuron r and m represents the number of hidden neurons.
The weight factor between two neurons in the adjacent layers is updated during the training phase. Next, details
of the training algorithms are presented along with its different variants.

Conjugate gradient-based training algorithms
During the training phase, an FBNN uses various numerical optimization methods to optimize a cost function
that measures the error between the estimated values (aes¢) and the actual target values (a¢rue). The most
preferred optimization methods are conjugate gradient (CG) algorithms due to their precision, robustness, and
faster convergence?!. Multiple variants of the CG algorithm include the Fletcher-Reeves conjugate gradient, the
Polak-Ribiére conjugate gradient, and the conjugate gradient with Powell/Beale restarts.

A CG-based algorithm is an iterative method. Like a general numerical optimization method, it begins by
defining an objective function for a minimization problem as follows:

FBNN-based Doppler Scale Estimation

Noise, 7(?) T

Downshifting E]s)t(i’:ll;ltei;n Rx Processing Blocks l;:::(;;e;:?a

Fig. 2. An underwater acoustic CP-OFDM communication system with FBNN-based Doppler scales
estimation.
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min f(a,u) = %uTAu, (11)

where a is a vector of Doppler scales, and A is a Hessian matrix with elements A; ;)

92 f(a,u)
Agy = 2120 12
(4,9) duiou, (12)
andu = [u1, ua,- - ,un]” with i-th value u; denoted as
Ui = airue - aist (13)

represents the error between the i-th values a’,.,,. and a’; of the true and estimated Doppler scales, respectively.

Let u® denote the current estimate of the weights; then, the solution algorithm seeks an update, u* "t which
results in: f(a, u* 1) < f(a, u®), termed the descent condition. Consequently, u is updated as per the following
rule:

=k + akdk, (14)

where d” represents a search direction and v, is the step size that gets updated by minimizing f (a, u) along d*.
The iteration in (14) can be solved in two steps as listed below.

1. Finding the suitable search direction d* along which the value of the function locally decreases.
2. Performing a line search along d* to find u""* such that f(u**") reaches its minimum value.

In the context of the CG algorithm, let d®,d',d?,-.. ,d* !, where d‘'A d’ =0, # j denote conjugate
directions with respect to the Hessian matrix A. This ensures that the search directions are orthogonal with
respect to the matrix A, leading to an efficient descent in the solution space. Starting from d°, taken to be the
steepest descent direction, we can use the following procedure to generate initial and next directions denoted d°
and d**, respectively as

d’ = —vf?), (15)

dk+1 — _vf(uk:+1) + ﬁkdk, (16)

where d° is chosen arbitrarily and V f(-) denotes the gradient.
Multiplying both sides in (16) by d* A and equating to zero gives Sy, as

B vf(uk+1)TA dk

Br (AVTA D

17)

where ()T denotes the matrix transpose. Having found S, leads to finding d*** that can be utilized in (14) to
finally compute u**!,

Figure 3 shows the learning process of the CG algorithm (as formulated in (11) to (17)) in the form of a
flowchart. The expression in (17) can be further simplified if additional assumptions about the function and the
line search algorithm are made, leading to different versions of the CG methods, such as CGE, CGP, and CGB,

as described in the following subsections.

Fletcher-Reeves Conjugate Gradient (CGF)
For the Fletcher-Reeve update, 3y, is calculated using the procedure listed below.
Because

Vf(uk+l)Tdk :Vf(uk+1)TX

(=Vf@*) + Be1d™ ) =0, (18)
where for quadratic functions
Vi) = Vi) + agAdy, (19)
therefore by exact line search condition
VIV (") =B
(20)

(Vi(") + arAdy) " d* ! =0,

results in By as the ratio of the squared-norm of the current gradient to the squared-norm of the previous
gradient using the following relation
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Compute f; using CGF, or CGP, or CGB

1

dk+1 — _Vf(uk+1) +ﬁkdk

1
(a,ut+) Update index k
f(a,u
1
No k
Update u —

Stop

Fig. 3. A flow chart of the conjugate gradient algorithm where /51 is computed under three different variants:
CGE, CGP, and CGB.

B = Vi@Vt
FT VTV (R

(1)

Polak-Ribiére Conjugate Gradient (CGP)

For the Polak-Ribiére update, the constant 8 is calculated as the inner product of the previous change in the
gradient with the current gradient divided by the squared norm of the previous gradient. Firstly, in the case of
exact line search, we notice that

ViEtH)Tak = o. (22)
Thus,

VT (VM) = Vb))
Vf(F)TV f(uF)

Br = (23)

Typically, the CGP algorithm performs similarly to the CGF algorithm. For a given Doppler scale estimation
problem, it may not be possible to predict which algorithm will perform best, however, the storage requirements
for the CGP algorithm are slightly larger than those for the CGF algorithm.

Conjugate Gradient with Powell/Beale Restarts (CGB)
To improve the efficiency during the search for optimal direction, the Powell-Beale technique verifies if there

is any orthogonality between the current gradient V f(u**1) and the previous gradient V f(u”) using an
inequality
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CGF CGP CGB
Problem scale (Number of variables) N N N
Computational complexity (per iteration) | O(N?) O(N?) O(N?)
Computational complexity (k iteration) | O(kN?) O(kN?) O(kN?)
Memory requirement lesser than both CGP and CGB | larger than CGF and less than CGB | larger than both CGF and CGP

Table 1. A comparison of the training algorithms in terms of scale, computational complexity, and memory

requirements.
Hidden ‘ Output
b b
Input + A}T + / Jﬁ Output
12992 W - ‘ 1
e 3 1

Fig. 4. FBNN-based Doppler scale estimation implementation diagram; 3 neurons in a single hidden layer and
three different backpropagated learning algorithms: CGE, CGP, and CGB are used.

[V TV F(u?)] > 0.2V F (") (24)

The search direction is reset to the negative of the gradient if this condition is satisfied. In some implementations,
B might be calculated as

v k+1 Tdk
Br = Vi) d - ; — (25)
Vf*)Td
For some problems, the CGB algorithm usually performs slightly better than the CGF and CGP algorithms. In the
next section, we evaluate the performance of the three training algorithms. However, the storage requirements
for the CGB algorithm are slightly higher than those for the CGP algorithm.

Computational complexity of training algorithms

The three conjugate gradient methods, that is, CGF, CGP, and CGB, that have been presented as candidate
training algorithms in the preceding subsections, have multiple key factors that influence their complexity. These
include problem scale, computational complexity, and memory requirements. Table 1 shows a comparison of the
CGF, CGP, and CGB algorithms. As can be seen, all three algorithms exhibit the same computational complexity
for a given number of variables N. However, the CGF algorithm is the best in terms of memory requirement
compared to CGP and CGB. However, for a specific implementation on the edge, using techniques like pruning
and quantization may further reduce the size and complexity of the model while retaining performance. This will
further reduce the memory requirements on the edge.

FBNN implementation and performance evaluation

Figure 4 shows FBNN implementation block diagram for Doppler scaling estimation. A healthy dataset (for CP-
OFDM) is generated of 1900 complex random vectors with each vector consisting of 12992 values. The dataset
contains 19 different SNR values between —10 dB to 26 dB with an index range per SNR of 100. With this
formulation, three different datasets are created with number of paths as: 1, 5, and 10. For channel settings, the
time interval between two paths having a mean value of 1ms is exponentially distributed, while paths amplitudes
are Rayleigh distributed. The average power of each path is exponentially decayed by 20dB in a delay spread
of 30ms, and the true Doppler scale factor (a¢rue) is uniformly distributed. Table 2 summarizes the various
parameter values that generate these datasets.

For each dataset, about 70% of complex vectors y[n] (with combined real and imaginary parts) act as input
during the training phase. Similarly, each input vector corresponds to a precomputed Doppler scale factor a¢rue
as the target. Furthermore, we use linear regression to train the FBNN network. A FBNN simulation requires
a) data distribution between training, testing, and validation phases, b) a training algorithm, and c) specifying
the activation functions for hidden and output layers. Since the FBNN neural network architecture is not very
deep, a two-layer neural network: a single hidden layer with a size of 3 neurons and an output layer is sufficient
in our case. Table 3 lists the parameters and settings used to train, test, and validate the FBNN for the estimation
of the Doppler scale.

A detailed stepwise implementation of FBNN is listed below:
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Parameters Values

Carrier frequency 10 kHz

Sampling frequency 48 kHz
Bandwidth 6 kHz

Number of subcarriers | 1024
Modulation scheme QPSK
Symbol duration 170.66 ms

Cyclic prefix duration | 50 ms
SNR (dB) —10:2:26

Table 2. Simulation parameter settings for CP-OFDM dataset generation.

Parameters Values/Settings
Input layer size 12992

Hidden layer size 03

Data division train: 70%, test: 15%, val.: 15%
Max Epoch 1000

Minimum gradient 1x 1071
Maximum validation failures 6

Line search function srchcha

Alpha 0.001

Beta 0.1

Delta 0.01

Gama 0.1
Performance function MSE

Hidden layer activation function | tansig

Output layer activation function | purelin
Number of multipaths 1,5,and 10

Table 3. Simulation parameter settings for training, testing, and validation of the FBNN Network.

« During the training phase, 70% samples are randomly selected for both input and target. The remaining 30%
samples (of both input and output) are reserved for the validation and testing phase.

« Three training algorithms (CGE CGP, and CGB) are chosen to train our FBNN network.

o The activation functions used in the hidden and output layers are tansig and purelin.

o The FBNN is then tested and validated using statistical measures such as mean squared error (MSE) and error
histograms.

o Finally, Doppler scale factors are estimated using the designed FBNN network.

Performance evaluation

We evaluate the performance of the three FBNN-based training algorithms: CGF, CGP, and CGB, by examining
both the performance plot and error histogram. Moreover, root mean square error vs. signal-to-noise ratio plots
are also used as a performance metric for Doppler scale factor estimation evaluation for each case of multipath.
The RMSE of a Doppler speed in m/s can be expressed as

RMSE = \/E“(aest — atru,e) X C|2]7 (26)

where ¢ = 1500 m/s is the underwater sound speed.

Training, testing and validation results
This subsection presents the performance analysis of the FBNN-CGE, FBNN-CGP, and FBNN-CGB in terms of
performance plots of mean square error (MSE) and error histograms as depicted in Figs. 5, 6, and 7.

Figure 5 shows MSE and error histogram plots for the FBNN-CGF algorithm with channel paths as 1, 5, and
10. From Fig. 5a, b, and ¢, the performance of the FBNN-CGF algorithm against training, testing, and validation
data can be seen in terms of MSE vs epochs. It may be noted that MSE is lower for a single channel path and
becomes larger when channel paths are increased to 10. The error histogram plots shown in Fig. 5d, e, and f
are also consistent with the MSE plots results, where the error is lower in the case of a single channel path and
becomes significant when 10 multipath are used.
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Fig. 6. Performance analysis of FBNN-CGP algorithm where (a), (b), and (c) shows performance plots when
channel path = 1, 5, and 10 respectively, while (d), (e), and (f) shows error histograms when channel path = 1,
5, and 10 respectively.
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Fig. 7. Performance analysis of FBNN-CGB algorithm where (a), (b), and (c) shows performance plots when
channel path = 1, 5, and 10 respectively, while (d), (e), and (f) shows error histograms when channel path =1,
5, and 10 respectively.

Figure 6 shows MSE and error histogram plots for the FBNN-CGP algorithm with channel paths of 1, 5,
and 10. The result trends shown in Fig. 6 are similar to those shown in Fig. 5 in terms of both MSE and error
histograms. However, it can be observed that FBNN-CGP performs relatively poorly compared to FBNN-CGE.

Figure 7 shows MSE and error histogram plots for the FBNN-CGB algorithm under channel paths as 1, 5, and
10. A similar conclusion of results with consistent trends in MSE and error histogram plots with Figs. 5 and 6
may be seen. The performance of FBNN-CGB outperforms when the channel path is set to 1 as compared to
channel paths set to 5 and 10. In addition, it may also be observed that FBNN-CGB performance is relatively
better than FBNN-based CGF and CGP training algorithms.

RMSE vs. SNR comparisons
The performance of various FBNN-based training algorithms for estimating the Doppler scale factor is carried
out by calculating RMSE vs. SNR plots as depicted in Figs. 8, 9, and 10.

Figure 8 shows RMSE of Doppler speed in m/s vs. SNR in dB’s for a single channel path. In this Figure,
the proposed FBNN-based Doppler scale estimation algorithms are further compared with conventional auto-
correlation and cross-correlation-based Doppler scale estimation methods. The parameters used to calculate the
RMSE of the conventional methods are kept the same as given in Table 2 to ensure a fair comparison. It can be
observed from the Fig. 8 that our proposed Doppler scale estimation algorithms not only estimate the Doppler
scale factor but also show significant performance, especially in the lower SNR regions, where the conventional
methods: autocorrelation-based methods and pilot-based cross-correlation method performance is very poor.
The autocorrelation-based method (denoted by AC-M1) performs better in higher SNR regions as compared to
other conventional and non-conventional FBNN-based algorithms.

Considering the FBNN-based Doppler scale factor estimation, FBNN-CGB outperforms FBNN-CGF and
FBNN-CGP. This behavior is consistent with the fact described in Sect. "Conjugate Gradient with Powell/Beale
Restarts (CGB)".

Figure 9 shows RMSE of Doppler speed in m/s vs. SNR in dB’s for 5 channel paths. Similar to Fig. 8 results
analysis, the trend of RMSE vs. SNR of each algorithm for both conventional and non-conventional methods
is the same. However, it can be observed that RMSE is significantly larger in this case, which is mainly due
to the multipaths. Furthermore, in this case, FBNN-based CGB, CGF, and CGP algorithms perform almost
similarly. Similarly, the non-conventional FBNN-based algorithms outperform in lower SNR as compared to
conventional-based AC and CC methods.

Figure 10 shows RMSE of Doppler speed in m/s vs. SNR in dB’s for 10 channel paths. The results trend is quite
similar to Fig. 9. Non-conventional FBNN-based algorithms perform better in lower SNR, with FBNN-CGB
performing a bit better than FBNN-CGF and FBNN-CGP. While, the autocorrelation-based method 1 performs
better in high SNR regions.
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Fig. 9. RMSE vs. SNR comparison of all three FBNN-based training algorithms when the number of channel
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To conclude, the results presented in Figs. 8, 9, and 10, show that non-conventional FBNN-based algorithms
perform better in the lower SNR region as compared to conventional auto-correlation and cross-correlation
based methods. Among FBNN-based algorithms, CGB-based training algorithm performs relatively better
as compared to FBNN-based CGF and CGP algorithms. Among the conventional methods, Auto-correlation
based method 1 (AC-M1) performs better in high SNR regions.

BER vs. SNR analysis

Since, FBNN-CGB algorithm performs relatively better than FBNN-based CGF and CGP algorithms, therefore,
we further carried out bit error rate vs SNR simulations for the CGB training algorithm only for different
multipath channel settings. In Fig.11, the bit error rate vs. signal-to-noise ratio is shown for the FBNN-CGB
algorithm for different numbers of paths. It can be seen from Fig. 11 that when a single channel path is used, the
BER performance is better as compared to channel multipath scenarios. At SNR of 4 dB, the bits are successfully
decoded and BER becomes 0. However, the BER performance is lower when channel paths are 5 and 10.

Experimental evaluation through watermark channel

In this section, we perform further evaluation of the FBNN-based Doppler scale estimation through the
Watermark channel dataset®. To be specific, we used Norway-Oslofjord (NOF1) data, which is a single-input-
single-output (SISO) shallow water setup, where transmitter and receiver are both bottom-mounted. The NoF1
data is actually the time varying impulse response (TVIR) measurements, containing a total of 60 channels;
because of repeating the experiments 60 times at an interval of 400 seconds, where one TVIR measurement lasts
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over 32.9 seconds, therefore, a total of 33 minutes of play time>2. Table 4 summarizes the NOF1 channel and
measurement condition parameters. The OFDM parameters used are listed in Table 5.

The dataset is generated using a single NOF1 channel (channel 59 of the NOF1) and introducing a uniformly-
distributed Doppler scale factors to the transmitted OFDM signal; therefore, it can be termed as a semi-realistic
dataset. With the use of the SNR loop as mentioned in Table 5, which is further iterated 10 times for each
SNR, a healthy dataset is generated. In our case, the packets per soundings of the transmitted OFDM signal
are 155; therefore, the dimension of the transmitted OFDM signal becomes 1550 x 9216 per SNR. To evaluate
the FBNN-based CGP, CGF, and CGB algorithms, we divide the dataset into 70%, 15%, and 15% for training,
validation, and testing. The hidden layer size used in FBNN-based CGP, CGE, and CGB models is 20. First, we
evaluate the performance of the proposed FBNN-based training algorithms through performance plots and
error histograms, and then calculate the RMSE of each method.

Figure 12 shows the performance of the FBNN-based CGP, CGE and CGB algorithms for Doppler scale
estimation in UWA OFDM communication using the NOF1 channel. It can be observed from the Fig. 12 that
the performance of the FBNN-based CGP algorithm is lower, while FBNN-based CGB algorithm outperforms
using the watermark NOf1 channel. These results show a similar trend and conclusion drawn using the synthetic
UWA channel dataset. Additionally, Fig. 13 shows the RMSE versus SNR results for all three FBNN-based CGP,
CGF, and CGB algorithms. It can be seen that FBNN-CGB performance is better compared to CGF and CGP
algorithms, which is again a similar conclusion to the results achieved from using the synthetic UWA channel
dataset.
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Environment Fjord

Time of year June

Range 750m

Water depth 10m

-3dB frequency band | 10 — 18 kHz
Delay coverage 128 ms
Doppler coverage 7.8 Hz

Table 4. Watermark NOF1 channel parameters and sounding conditions®2.

Parameters Values
Carrier frequency 14 kHz
Sampling frequency 48 kHz
Bandwidth 8 kHz
Number of subcarriers | 1024
Modulation scheme BPSK
SNR (dB) 0:2:26

Table 5. CP-OFDM parameters used for experimental evaluation of the proposed FBNN-based Doppler scale
estimation using Watermark NOF1 channel.
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algorithm.

Conclusion

Doppler estimation has always been a challenging task in underwater acoustic communication. This paper
applies a feedforward backpropagated neural network (deep learning-based) approach to estimate Doppler scale
factors for underwater acoustic CP-OFDM communication. Furthermore, different conjugate gradient training

Scientific Reports |

(2025) 15:43734

| https://doi.org/10.1038/s41598-025-27808-x

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

107" T T T T T
Q)
el 'S

Q ——ci N, = *. St .
g B e E___--B—:—l:__a___g__ Ao _-4—--*--—":
; B ~B-Segailg Y
a
Q
o)
a
-
o
w
%)
=
4

--8-- CGB

CGF
—-#-— CGP
102 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25

SNR (dB)

Fig. 13. RMSE vs. SNR comparison of all three FBNN-based training algorithms using watermark NOF1
channel.

algorithms: CGFE, CGP, and CGB, are applied and compared to evaluate the performance and accuracy. From the
results, it can be concluded that overall, FBNN-based training algorithms perform better in lower SNR regions
for single and multipath channel settings. Furthermore, FBNN-CGB outperforms CGP and CGF training
algorithms. The performance of the FBNN-based algorithms is further verified using the UWA watermark
channel, which draws a similar conclusion.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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