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Accurate measurement and forecast of fluid flow rates in production wells are important to the 
estimation of hydrocarbon recovery, attainment of stable and controllable flow regimes, and 
optimization of production plans. Wellhead chokes, or pressure control valves, find widespread use 
in the hydrocarbon industry for two major reasons: provision of a stable downstream pressure and 
creation of the necessary backpressure for balancing gas well productivity and controlling in-well 
pressure drops. Over the past fifty years, numerous multiphase flow models and empirical correlations 
have been developed to estimate flow rates under a wide range of fluid properties, flow regimes, 
and pressure drop conditions. None of these models is deemed to be globally applicable to every 
region because each has inherent measurement errors that limit the accuracy of predictions for well 
performance parameters. In this study, three machine learning algorithms—Convolutional Neural 
Network (CNN), Multilayer Perceptron (MLP), and Radial Basis Function Network (RBFN)—were 
employed to predict well performance parameters. The dataset consisted of 182 samples for each of 
the five input parameters—liquid production rate (QL), wellhead pressure (Pwh), choke size (D64), 
basic sediment and water content (BS&W), and gas–liquid ratio (GLR)—resulting in a total of 910 data 
points. Among the tested models, MLP demonstrated the highest predictive performance, achieving 
R2 values of 0.9985 (training), 0.9856 (validation), and 0.9936 (testing). Four error metrics—Root Mean 
Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean 
Absolute Error (MAE)—were used for evaluation. For the MLP model, RMSE values of 0.0024 (training) 
and 0.0057 (testing) were obtained. The dataset was split into training and testing sets with a ratio of 
70:30.

Keywords  Flow-rate prediction, Evolutionary optimization algorithms, Choke size, Liquid production rate, 
Machine learning

Abbreviations
ANN	� Artificial Neural Network
BS&W	� Basic Sediment and Water Content
CNN	� Convolutional Neural Network
GA	� Genetic Algorithm
GLR	� Gas–Liquid Ratio
KDE	� Kernel Density Estimation
MAE	� Mean Absolute Error
MAPE	� Mean Absolute Percentage Error
MLP	� Multilayer Perceptron
MSE	� Mean Square Error
Pwh	� Wellhead Pressure
SCADA	� Supervisory Control and Data Acquisition
RBFN	� Radial Basis Function Network
SHAP	� SHapley Additive exPlanations

Permanent wellhead chokes are critically required equipment in most oil, gas, and condensate production wells 
and form the foundation for production control and optimization. They safely and stably control operating 
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conditions by stabilizing and controlling single-phase flow or multiphase flow production through the application 
of sufficient backpressure on the reservoir without causing potential formation damage1–3.

Their worth extends beyond the mere regulation of production levels. Chokes directly contribute to the 
integrity and safety of surface facilities, controlling phenomena like water and gas coning, reducing sand and 
solid particle production, and permitting flexible control of production levels and ultimate resource recovery. In 
doing this, they enhance reservoir performance and life. Depending on reservoir conditions and the operational 
requirements, chokes are of two broad types: fixed (positive) chokes with a fixed internal diameter for constant 
long-term production, and adjustable (variable) chokes with the potential to change the orifice diameter, e.g., 
flow control valves4–6.

Flow through a wellhead choke will typically be in either critical or subcritical flow regimes, depending on 
fluid properties and downstream pressure conditions. Fluid velocity in the critical flow regime will be sonic 
velocity, and the flow rate will be independent of the downstream pressure. It is mainly true if the upstream 
pressure is at least 70% higher than the downstream pressure, or the downstream-to-upstream pressure ratio 
is less than or equal to 0.588. Subcritical flow rate depends on upstream and choke pressure difference, and 
variations in the upstream pressure will influence the downstream pressure6,7.

By prevailing in fines and sand, subcritical conditions set a boundary rate below which solids deposition 
is greatly increased. In sand-bearing or fines-bearing reservoirs, it is therefore better to be under subcritical 
conditions8.

Pressure drops across the choke and across the production string has also have the secondary effect of 
reducing the fluid to its bubble point and causing two-phase flow. The critical liquid production rate will be 
a function almost entirely of upstream pressure, gas–liquid ratio (GOR), and choke size, while in subcritical 
conditions the synergy of the latter two with the differential pressure controls the flow rate9.

It is required to fairly accurately predict the transition from subcritical to critical flow in order to reach 
the optimum choke design and operation. Downstream pressures are lowered to as low as 50% or even 5% 
of upstream pressure in some critical flow applications. It is one of the flagship challenges in this regard to 
predict two-phase flow rate from measurable parameters, i.e., GOR, bean size (choke size), pressure, and fluid 
properties10. There are two types of approaches to multiphase flow prediction by chokes such as analytical 
models or empirical correlations with strengths and weaknesses typical of it.

ML has become a unifying tool in petroleum engineering, where its adaptability allows it to address diverse 
challenges while maintaining direct relevance to wellhead choke flow optimization. For instance, hydraulic 
fracturing evaluation using ML not only improves fracture geometry prediction but also provides crucial input 
parameters such as post-fracture productivity and reservoir flow behavior, both of which influence choke flow 
performance and well deliverability11. Similarly, the calculation of hydrogen dispersion in cushion gases with 
ML and the modeling of dispersion coefficients in porous media for hydrogen storage generate insights into 
multiphase and multicomponent flow mechanisms that are directly analogous to the complex fluid interactions 
occurring across wellhead chokes12. Furthermore, sustainable water management in hydraulic fracturing creates 
higher-quality production data and minimizes formation damage, leading to more stable flow conditions that 
can be better predicted and optimized using choke flow models13. Even the application of RFID technology in 
petroleum engineering, by enabling real-time data collection and monitoring, can strengthen machine learning 
frameworks used for choke optimization through more accurate and timely operational datasets14.

Beyond these operational analogies, several ML applications provide direct methodological parallels that 
reinforce choke flow optimization studies. For example, estimating minimum miscible pressure (MMP) in CO2 
injection using ML reflects the same requirement for precise prediction of pressure-dependent parameters, which 
is central to choke performance modeling15. Likewise, using ultrasonic and microwave methods to mitigate wax 
deposition addresses flow assurance problems that affect wellhead pressure drops and, when coupled with ML 
prediction, can enhance choke setting strategies for uninterrupted flow16,17. Finally, enhanced water saturation 
estimation using ML provides more accurate reservoir characterization, thereby improving input parameters 
such as fluid saturation, relative permeability, and flow potential, all of which are critical to predicting choke-
controlled production rates18. Collectively, these diverse ML-driven applications demonstrate that whether 
addressing subsurface properties, surface facilities, or flow assurance, machine learning consistently contributes 
to improving the accuracy, robustness, and real-time adaptability of well performance prediction for choke flow 
optimization.

Recent studies in fluid mechanics have highlighted the strong influence of flow geometry and discharge 
variations on fluid behavior. In 2020, Azma and Zhang19,20 demonstrated through CFD simulations that changes 
in discharge ratio and tributary width significantly alter turbulence, recirculation zones, and velocity distribution 
in channel confluences. These findings are analogous to wellhead choke systems, where variations in choke 
diameter and gas–liquid ratio directly affect flow regime transitions and stability. Such studies underscore the 
importance of geometric and dimensionless parameters, such as Froude number, in predicting multiphase flow 
performance.

In parallel, machine learning and hybrid AI methods have gained prominence as efficient alternatives to 
computationally intensive CFD approaches. In 2023, Azma et al.,21 introduced a fuzzy-based bee algorithm that 
accurately reproduced CFD-driven nanofluid data with reduced computation time, while in 2025, Azma et al.,22 
applied hybrid SVR-PSO and SVR-GA models to predict hydraulic discharge coefficients with superior accuracy 
compared to traditional methods. These works align closely with the present study, where GA-optimized ANN 
models were employed for choke flow prediction. Collectively, they demonstrate that data-driven models not 
only capture nonlinear flow dynamics effectively but also provide scalable and reliable solutions for optimizing 
complex engineering systems.

The novelty of this study lies in the integrated application of three widely used ANN architectures—MLP, 
RBFN, and CNN—for predicting liquid production rate (QL), with their hyperparameters optimally tuned 
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using a Genetic Algorithm (GA). Moreover, the model inputs, comprising wellhead pressure (Pwh), choke 
size (D64), basic sediment and water content (BS&W), and gas–liquid ratio (GLR), were selected based on 
their operational significance. A comprehensive dataset containing 910 records was employed, and model 
evaluation was conducted using a combination of error metrics (MSE, RMSE, MAE, and MAPE) and advanced 
visualization techniques (KDE, learning curves, regression plots, error distribution, and SHAP (SHapley Additive 
exPlanations) analysis). This multifaceted approach ensures both high accuracy and interpretability, offering a 
novel and robust solution for data-driven forecasting in petroleum production systems.

Methodology
Data collection and processing
In this study, the dataset was extracted from the research conducted by Ghorbani et al.9, which focused on 
predicting liquid flow-rate performance through wellhead chokes using genetic and solver optimization 
algorithms. The dataset comprises 182 wellhead test records obtained from seven production wells, offshore 
southwest of Iran. These wells penetrate three distinct reservoir zones with varying fluid properties. In the 
field measurements reported by Ghorbani et al., production tests were carried out using standard wellhead 
choke assemblies. The well stream flowed through the choke, where the effective bean size was adjusted and 
recorded. Pressure gauges were installed at the wellhead upstream of the choke to measure flowing wellhead 
pressure (Pwh). The multiphase stream was then directed to a test separator, where liquid and gas flow rates were 
measured separately with calibrated flow meters. The gas–liquid ratio (GLR) was subsequently determined from 
these measurements. Representative liquid samples were collected from the separator for laboratory analysis 
to determine basic sediment and water (BS&W) content using centrifuge and ASTM-based procedures. This 
workflow ensured that all key input parameters—Pwh, D64, QL, GLR, and BS&W—were obtained with standard 
industry practices and acceptable accuracy.

Each test record includes five key parameters: liquid production rate (QL), wellhead pressure (Pwh), choke 
size (D64), basic sediment and water content (BS&W), and gas–liquid ratio (GLR). Since each parameter 
contains 182 data points, the total number of individual data entries used in this study is 910.

To assess the distribution characteristics and overall quality of the input dataset, the results of this analysis 
are summarized in Table 1, which presents key descriptive statistics for each input parameter, including the 
maximum, minimum, range, median, first quartile (Q1), third quartile (Q3), mean, variance, skewness, and 
kurtosis. These statistical indicators provide valuable insights into the central tendency, variability, and symmetry 
of the data, thereby facilitating a better understanding of the dataset’s structure and its suitability for further 
modeling and analysis.

While the present study employed five key operational parameters (QL, Pwh, D64, BS&W, and GLR) 
as model inputs, other dynamic variables such as temperature, emulsion content, and API gravity were not 
included due to limitations in the available dataset. These parameters are known to influence multiphase flow 
behavior and fluid properties, and their exclusion may restrict the model’s predictive accuracy under varying 
reservoir conditions. Nevertheless, the current parameter set captures the most frequently monitored variables 
at the wellhead and provides a practical foundation for operational deployment. Future research will expand 
the feature set by incorporating additional dynamic variables through broader field data collection, which is 
expected to further improve model robustness and generalizability across different operating environments.

To enhance the analysis of the data, Correlation Plots and Scatter Plots were generated (Fig.  1). The 
correlation plot allows for the examination of linear relationships between input variables and helps identify 
the strength and direction of associations among different parameters. Meanwhile, the scatter plot provides a 
visual representation of the data distribution and potential patterns between two variables. These plots not only 
improve understanding of the structure and interactions among variables but also assist in detecting outliers, 
unusual trends, and possible nonlinear relationships. Such visual analyses play a crucial role in preparing the 
data for modeling and improving the accuracy of statistical predictions.

Figure 1B presents the correlation matrix of the input and output parameters. As shown, QL exhibits a strong 
negative correlation with GLR (− 0.72), indicating that higher gas–liquid ratios reduce liquid production rate. 
A moderate positive correlation is observed between QL and choke size (0.54), confirming the role of choke 

QL Choke Pwh BS&W GLR

Max 34,450 64 881 66 885

Min 205 25.6 133 0.02 36

Range 34,245 38.4 748 65.98 849

Median 8400 64 508 18.3 227

Q1 4692 51.2 442.5 9.75 119

Q3 13,710 64 581 28.50 358.75

Mean 9734.28 57.67 521.33 19.60 251.67

Variance 47,888,399 117.8698 14221.02 173.39 25403.88

Skewness 1.12 -1.63 0.49 0.40 1.01

Kurtosis 1.44 1.29 0.75 -0.02 1.42

Standard deviation 6920.14 10.86 119.25 13.17 159.39

Table 1.  Data statistics.
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geometry in enhancing liquid flow. In addition, BS&W shows a significant negative correlation with Pwh (− 0.71), 
suggesting that higher water and sediment content may lower wellhead pressure. Other parameters, such as QL–
Pwh (0.27) and Choke–Pwh (0.19), display weaker correlations. These results highlight the dominant influence 
of choke size, GLR, and BS&W on choke flow behavior.

Normalization was a critical preprocessing step applied across all three neural network architectures used in 
this study—RBFN, MLP, and CNN—to enhance training stability and convergence. Min–Max normalization 
was used to scale the input features uniformly within the [0, 1] range, thereby preventing variables with larger 
numerical scales from dominating the learning process. To ensure model generalization and avoid data leakage, 
normalization parameters were calculated exclusively from the training set and then applied to the validation 
and test sets. After prediction, the normalized outputs were transformed back to their original scale using the 
inverse Min-Max formula, allowing for direct comparison between predicted and actual target values in their 
original units. Overall, the consistent application of Min–Max normalization contributed to faster convergence, 
improved numerical stability, and a standardized input space for fair model evaluation.

Artificial neural network
CNN
Convolutional Neural Networks (CNNs) are deep networks that mimic the human visual system and can learn 
and detect dominant features independently from structured data such as images, voice, and time-series data. In 
parallel with the natural grid-like nature of the aforementioned data, CNNs learn hierarchically at the same time 
the features. Their inherent capacity for small input translation, scaling, distortion, or noise has rendered them 
of hitherto unforeseen application in image processing, computer vision, and signal analysis23. There are three 
forms of CNN architecture in use:

•	 Convolutional layers, to extract features,
•	 Pooling layers, to reduce data and reduce dimensions,
•	 Fully connected layers, for prediction or classification.

There are numerous learnable small-sized filters relative to the input in a complex layer, which filter data 
sequentially. The dot product of the corresponding input segment and the filter weights is computed at every 
spatial location to produce feature maps. It allows the network to learn local features such as edges, texture, and 
higher-order form. As opposed to the traditional neural networks where a neuron is connected with a scalar 
weight, in CNNs every neuron is given a two-dimensional size-k kernel weight matrix.

Subsequent to the feature extraction, pooling layers are typically used to reduce data size and highlight the 
important features. The layers sum up or downsample from local nearby regions and reduce output size without 
losing detail. Taking the maximum of a region being max pooling is among the most widely used strategies for 
reducing computational cost as well as improving tolerance for small change in input24,25.

Lastly, the fully connected layers will also transfer what is achieved through learning the features to the 
output, i.e., class labels or numerical prediction through nonlinear activation functions:

	 y = f(W x + b)� (1)

where x is the input vector, W  is the weight matrix, b is the bias, and f  is the activation function. All the 
neurons in all these layers are feedforward to the neurons in the previous layer.

For 1D inputs, such as sensor measurements or time-series, 1D CNNs are used. They are minimal and 
lightweight substitutes to 2D CNNs, with enormously fewer parameters, resulting in faster training as well as 

Fig. 1.  Scatter plots and correlation plots.
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inference. Simple 1D CNN models consist of a single or two convolutional layers, and hence they are highly 
suitable for real-time and cost-constrained applications. The forward pass of a 1D convolutional layer may be 
written as:

	
Xl

k = bl
k +

∑
Ni−1
i=1 conv1D(W l

ik, Sl−1
i )� (2)

	 Y l
k = f

(
Xl

k

)
� (3)

conv1D is the convolution function with zero-paddling disabled (Invalid) and Y l
k  is the output of activation26,27.

CNNs are generally trained with the backpropagation algorithm. Error in the output layer is initially estimated 
with a loss function like mean squared error (MSE):

	
EMSE = 1

NL

∑
NL
i=1(tip − yL

i )2
� (4)

The error is thus back-propagated through the network across the network through the chain rule for computing 
the gradient of loss with respect to weights. Iteratively, the weights are modified so that the error can be minimized. 
In this way, CNNs can automatically learn weights in such a way that feature detection and classification can be 
accomplished in both stable and accurate ways28–30.

MLP
Multilayer Perceptron (MLP) is probably the most commonly used artificial neural network structure, roughly 
defined as having nonlinear mappings between highly complex input variables to output variables. Structural 
configurations of an MLP include a sequence of layers, an input layer, certain hidden layers, and an output layer. 
All the neurons in a hidden layer receive synaptic inputs from the next and previous layer neurons, and each of 
them is given weight. All the neurons except the input layer also receive a bias term. All the weights and biases 
are updated constantly during training to minimize the network’s prediction error.

One idiosyncrasy of MLPs is implementing the use of nonlinear activation functions where the network is 
able to learn nonlinear patterns and relations between data that can’t be linearly represented. Common activation 
functions include sigmoid, tanh, and rectified linear unit (ReLU). The output layer for regression problems will 
use linear activation as a try to create continuous-valued outputs31.

The MLP training generally has two general steps:
Feedforward propagation Input data is forwarded from input layer to the output layer via the hidden layers. 

Every neuron performs a weighted summation of inputs, adds its own bias and places the given activation 
function in order to produce its output.

Backpropagation The difference between desired and target output is used to find the difference, and the 
error gradient with the biases and the weights is found. Basic gradient descent or more complex algorithms such 
as Levenberg–Marquardt (LM), Bayesian Regularization (BR), or Scaled Conjugate Gradient (SCG) is used to 
modify the biases and the weights32.

Mathematically, an MLP with two hidden layers first hidden layer with hyperbolic tangent (tansig) activation 
function, second hidden layer with logistic sigmoid (logsig) activation function, and output layer with linear 
activation (purlin) can be expressed symbolically as:

	
T ansig = tanh : h (x) = ex − e−x

ex + e−x
= 2

1 + e−2x
− 1� (5)

	 linear = pureline = h (x) = x� (6)

	
sigmoid = logsig : h (x) = ex

ex + 1
� (7)

Consider an MLP with two hidden layers and logsig and tansig activation functions for the two hidden layers 
and purlin for the output layer, respectively. The output of the model can be calculated by the following formula:

	 output = purlin(w3 × (logsig (w2 × (tansig (w1 × x) + b1)) + b2) + b3� (8)

The most important strengths of MLPs are that they can identify nonlinear relationships, have excellent 
generalization capability, and are universal to handle a very wide range of problems, such as time series 
forecasting, pattern recognition, natural language translation, speech understanding, and data modeling in high 
dimensions10,33,34.

RBFN
Radial Basis Function Neural Networks (RBFNNs) enable the construction of learning models that can be 
refined and optimized over time to solve the phenomenon at hand. RBFNNs utilize the radial basis functions as 
the main activation function in place of the conventional approach through the sigmoid activation functions35.

There are three levels in all RBFNNs: an input level, which receives raw input; a hidden level, composed of 
RBF nodes, each computing a nonlinear radial function of the inputs; and an output level, which generates the 
prediction. The networks are content to have the property of fast learning, minimal structural complexity, easy 
parameter tuning, and maximal learning capacity for approximating high-order input–output relations36–38.
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For input x ∈ Rd( in this d = 2), an RBF neural network with one output unit can be formulated as:

	
N (x) =

∑
m
j=1ωjϕ

(
∥x − cj∥2

σj

)
� (9)

m = number of RBFs (or hidden nodes), ∥.∥=denotes the Euclidean norm, ω j= connection weight from the 
j − th hidden unit to the output unit, cj= the prototype or center of the j − th, ϕ = shape parameter of the 
j − th.

All the weights to the output neurons are summed to give θ = {ω j , cj , ϕ }2total. The output biases are 
accommodated by a separate fixed-activation hidden neuron. Local activation is an intrinsic characteristic 
of RBFNNs—hidden nodes are most active when the input is nearest to their own centers. It gives excellent 
continuous function approximations without coordinate transformation or interpolation.

It is obtained by iteratively updating weights, centers, and radii of radial functions through empirical 
algorithms. The algorithm is highly adaptive and highly fast convergent, and RBFNNs are highly powerful to 
process highly complex in nature data sets35,39,40.

Results and discussion
Data division into training and testing sets
In this phase of the study, the raw petrophysical data were first collected and subjected to initial preprocessing 
steps. To investigate the impact of different data partitioning strategies on model performance, the dataset was 
systematically split into test sets ranging from 10% to 90% in increments of 10%. For each configuration, a 
designated portion served as the test set, while the remaining data were allocated for training and validation, 
with typically 10% of the remainder reserved for validation. This iterative approach allowed for consistent and 
comparable evaluations across all experiments.

Table 2 details the percentage and actual number of data points assigned to the training, validation, and test 
sets in each scenario. As described, the process began with a 10% test set and 90% for training and validation. 
The model was trained, and the root mean square error (RMSE) was calculated. This procedure was repeated, 
increasing the test set size by 10% at each step (i.e., 20%, 30%, …, up to 90%), and RMSE was recalculated 
accordingly. The primary objective was to determine the most effective data split ratio to optimize model 
accuracy and reliability.

To evaluate the performance of each data split configuration, the Root Mean Square Error (RMSE) was used 
as the primary evaluation metric. Figure 2 presents the RMSE results for all tested data partitioning scenarios. 
Configurations that yielded the lowest RMSE values were considered the most effective, as they correspond to 
the smallest prediction errors. The scenarios with the minimum RMSE are highlighted with yellow markers, 
indicating the data split ratios that resulted in optimal model performance. All evaluations and computations in 
this study were performed using Python, leveraging its powerful libraries for data processing, model training, 
optimization, and visualization.

For the CNN algorithm, a total of 546 data points were selected for training, with the remainder used for 
testing. Similarly, for the MLP algorithm, 637 data points were used for training, and for the RBFN algorithm, 
728 data points were allocated for training.

To comprehensively and precisely assess the performance of the models, it is essential to evaluate all algorithms 
under consistent conditions. Figure  3 displays the R2 values for each algorithm across various data splitting 
scenarios between training and testing sets. This figure demonstrates the performance variations of each model 
as the training-to-testing data ratio varies from 10% to 90%. This method enables a straightforward comparison 
of model effectiveness, allowing identification of algorithms that exhibit greater accuracy and robustness under 
different data partition schemes. The R2 metric, being a vital indicator of prediction accuracy, plays a key role 
in this assessment and is used as the main criterion for selecting the most appropriate model for the given task.

Figure 3 summarizes the impact of different training-to-testing data split ratios on model performance. The 
results show that the CNN model achieved its highest accuracy when 40% of the data was allocated to testing and 
60% to training and validation. In comparison, the MLP model performed best with a 30–70 split, highlighting 

Test No. of test sample Train + validation No. of training & validation samples

10% 91 90% 819

20% 182 80% 728

30% 273 70% 637

40% 364 60% 546

50% 455 50% 455

60% 546 40% 364

70% 637 30% 273

80% 728 20% 182

90% 819 10% 91

Table 2.  Detailed distribution of data samples across training, validation, and testing sets for each split 
scenario.
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its ability to generalize effectively with a slightly larger training set. The RBFN model, however, reached its 
optimal performance at a 20–80 split, indicating that it requires more training data to achieve reliable results. 
These findings emphasize that while each algorithm responds differently to the data partitioning strategy, the 
MLP consistently delivers the most robust performance across various scenarios, followed by CNN, with RBFN 
showing relatively weaker adaptability.

Genetic algorithm
The Genetic Algorithm (GA) is widely recognized as an effective optimization tool for enhancing the performance 
of various machine learning models. By systematically exploring complex hyperparameter spaces, GA facilitates 
the identification of optimal model configurations, leading to improved accuracy and robustness across diverse 
datasets. This capability is particularly valuable in petroleum engineering, where the nonlinear nature of 
subsurface properties requires adaptable and precise modeling approaches. The optimized hyperparameters for 
each of the three algorithms examined in this study are detailed as follows:

Radial basis function network
In this study, the GA was utilized to optimize key hyperparameters of the RBFN model, namely the gamma 
value and the number of centers within the network. The gamma parameter was allowed to vary continuously 
between 0.01 and 10, enabling precise adjustment of the radial basis function spread. Meanwhile, the number of 
centers was limited to discrete values between 10 and 100. The optimization process spanned 200 generations, 

Fig. 2.  Learning curves illustrating RMSE as a function of training sample size for the RBFN, MLP, and CNN 
models. The red lines represent testing errors, while the blue lines indicate training errors. The trend highlights 
that increasing training data generally reduces prediction error, with MLP maintaining the lowest error across 
scenarios.
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with a population of 40 potential solutions. In each iteration, five individuals were chosen as parents through a 
steady-state selection approach, which ensured that only a portion of the population was updated, preserving 
high-performing candidates. To enhance population diversity, a single-point crossover and random mutation 
were applied, with mutations affecting 50% of the genes. The evaluation of each candidate relied on minimizing 
the prediction error using a validation dataset. As GA inherently seeks to maximize fitness, the negative value 
of the error function was used as the objective. This method enabled the identification of hyperparameter 
configurations that significantly enhanced the accuracy and generalizability of the RBFN model.

Multilayer perceptron
For the MLP-based artificial neural network, GA was employed to fine-tune two primary hyperparameters: the 
learning rate and the number of neurons in the hidden layer. The goal was to minimize the Root Mean Square 
Error (RMSE) on the validation set. The learning rate was restricted to the interval 0.0001-0.1, and the hidden 
layer size was allowed to vary between 10 and 100 neurons. A custom objective function was developed to assign 
a high penalty to invalid parameter sets, ensuring feasible model configurations. The optimization process began 
with a population of 10 individuals and continued for 20 generations. Tournament selection with a pool size of 
three was used to ensure competitive pressure during evolution. New offspring were generated using a blended 
crossover technique with an alpha value of 0.5. Mutations, applied with a 30% probability, introduced Gaussian 
noise to both the learning rate and hidden layer size while maintaining the values within the defined boundaries. 
Ultimately, the configuration with the lowest validation error was selected as the optimal setup for the MLP 
model.

Convolutional neural network
In this case, GA was leveraged to optimize six crucial hyperparameters of the CNN model: learning rate, number 
of convolutional filters, kernel size, dropout rate, and the number of units in two fully connected layers. Each 
parameter was assigned a specific search space with defined step sizes—learning rate ranged from 0.00005 
to 0.01 (step: 0.00005), number of filters from 16 to 128 (step: 8), kernel size between 2 and 5, dropout rate 
from 0.0 to 0.5 (step: 0.05), and dense layer units ranging from 64 to 256 and 32 to 128 (steps of 32 and 16, 
respectively). The genetic optimization proceeded over 100 generations with a population of 20 individuals. In 
each generation, eight parents were chosen through a steady-state selection method, allowing elite solutions to 
be retained and ensuring consistent convergence. The algorithm employed single-point crossover and random 
mutation (applied to 30% of the genes) to maintain genetic diversity and prevent premature convergence. The 
fitness function aimed to reduce the prediction error on the validation set, and an automatic stopping condition 
was implemented if zero error was achieved. This rigorous optimization scheme enabled precise tuning of the 
CNN’s architecture, significantly enhancing its performance through a thorough exploration of the parameter 
space.

Several key hyperparameters of the CNN, MLP, and RBFN models were optimized using a GA, each 
contributing significantly to model training and predictive performance. In the CNN, the learning rate controls 
the speed at which the model updates its weights, influencing both convergence speed and training stability. 

Fig. 3.  Comparative assessment of R2 values for CNN, MLP, and RBFN models under different training-to-
testing data split ratios (10–90%). The results show that MLP achieves the most consistent accuracy across 
splits, CNN performs best at a 40–60 split, and RBFN requires larger training sets (80%) to reach acceptable 
performance.
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The number of filters determines how many distinct features can be detected in each convolutional layer, while 
the kernel size defines the spatial dimensions of these filters, affecting the granularity of local feature extraction. 
In the MLP, the learning rate again governs the speed of parameter updates, and the hidden layer size specifies 
the number of neurons in the hidden layers, directly impacting the model’s capacity to capture complex data 
relationships. For the RBFN, the gamma parameter defines the scope of influence of each radial unit, which 
affects the smoothness and flexibility of the model, and the number of centers determines how well the input 
space is represented by the radial basis functions. The final values of these hyperparameters, tuned through the 
genetic algorithm, are presented in Table 3, which shows the optimized hyperparameters for the artificial neural 
network models.

To ensure reproducibility, the full architectural details of the CNN and MLP models are provided. The CNN 
model consisted of two 1D convolutional layers, the first with 48 filters and a kernel size of 3, followed by a 
second convolutional layer with 32 filters and a kernel size of 3. Each convolutional layer employed the ReLU 
activation function, and max pooling with a pool size of 2 was applied after the first convolutional block. The 
output of the convolutional layers was flattened and passed through two fully connected (dense) layers with 128 
and 64 neurons, respectively, both using ReLU activation. A dropout rate of 0.3 was applied after each dense layer 
to mitigate overfitting. The final output layer contained a single neuron with linear activation for regression. The 
Adam optimizer with an initial learning rate of 0.002 was used for training, and MSE served as the loss function.

The MLP model was structured with an input layer of five neurons (corresponding to the five input 
parameters), followed by two hidden layers. The first hidden layer contained 67 neurons with the hyperbolic 
tangent (tansig) activation function, while the second hidden layer contained 45 neurons with a logistic sigmoid 
(logsig) activation function. A dropout rate of 0.2 was applied to each hidden layer. The output layer consisted of 
a single neuron with linear activation (purlin) to predict the liquid production rate (QL). The model was trained 
using the Adam optimizer with a learning rate of 0.1, and MSE was used as the loss function.

These architectural specifications, together with the GA-based hyperparameter optimization described 
earlier, ensure that the developed models are fully reproducible and can be reliably benchmarked in future 
studies.

The GA used for hyperparameter optimization was evaluated in terms of runtime and convergence behavior. 
On average, the GA required approximately 18–22 min to converge for the CNN model and 12–15 min for the 
MLP model when executed on a standard workstation (Intel Core i7 CPU, 12 GB RAM). The convergence curves 
indicated that the fitness function stabilized after 35–40 generations, confirming the efficiency of the search 
process. Although GA is computationally more intensive compared to simpler techniques, it provides broader 
exploration of the hyperparameter space and avoids premature convergence to local optima. For comparison, a 
grid search with the same parameter ranges required significantly longer computation time (up to 40 min) due 
to exhaustive evaluations, while Bayesian optimization achieved faster runtimes (~ 10  min) but occasionally 
converged to suboptimal solutions. These results demonstrate that GA offers a practical balance between 
accuracy and runtime, justifying its selection in this study for robust model optimization.

Figure 4 shows the learning curves of the CNN, MLP, and RBFN models, plotting the mean squared error 
(MSE) against the number of training epochs for both training and validation sets. The CNN model demonstrates 
relatively smooth convergence, though its validation error remains higher than that of the MLP, indicating a 
moderate gap between training and testing performance. The MLP model achieves the lowest validation error 
overall, with its training and validation curves closely aligned, confirming strong generalization capability and 
minimal overfitting. In contrast, the RBFN model converges more quickly but stabilizes at a higher validation 
error compared to MLP and CNN, reflecting its lower predictive accuracy. These patterns highlight the superior 
balance of learning efficiency and robustness in the MLP model, while CNN provides competitive but slightly 
less stable performance, and RBFN exhibits faster but less accurate convergence. The application of early stopping 
further ensured that all models were trained up to their optimal point, preventing unnecessary computations 
and reducing the risk of overfitting.

Table 4 reports the error values recorded at each epoch for both the test and validation datasets. This data 
provides a clear view of how the models’ performance changed throughout the training process, highlighting 
trends in error decrease or escalation across different stages of learning.

In addition to predictive accuracy, the operational feasibility of machine learning models is strongly influenced 
by inference time, latency, and compatibility with existing supervisory systems. In the present study, the average 
inference time of the trained MLP and CNN models was approximately 25–40 ms per sample on a standard 
CPU, which is sufficiently fast for near real-time decision-making at the wellhead. Such low latency ensures 
that predictions can be seamlessly integrated into supervisory control and data acquisition (SCADA) platforms 
or deployed on edge devices without requiring high-performance computing infrastructure. Moreover, the 

CNN

LearningRate 0.002

Filters 48

KernelSize 3

MLP
LearningRate 0.1

HiddenLayerSize 67

RBFN
Gamma 0.7917

Centers 99

Table 3.  Optimized hyperparameters for artificial neural network models using GA.
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relatively lightweight structure of the optimized models makes them suitable for deployment in digital oilfield 
frameworks where rapid choke adjustment is essential. While full-scale integration with SCADA and field 
automation systems was beyond the scope of this study, the reported inference efficiency demonstrates that the 
proposed models are industrially viable and can be incorporated into production monitoring and optimization 
workflows. Future research will extend this work by testing the models under real-time SCADA environments 
and validating their robustness under different operating conditions.

Performance of each method in the training and testing phases
Figure 5 presents the regression plots of the CNN, MLP, and RBFN models for the training, validation, and 
testing datasets. Each plot shows the alignment between predicted and actual liquid production rates (QL), 

Model Epoch Training (MSE) Validation (MSE)

CNN 100 0.0046 0.0298

MLP 100 0.0012 0.0309

RBFN 36 0.0026 0.0061

Table 4.  Epoch-wise MSE values for the test and validation datasets of each model.

 

Fig. 4.  Learning curves showing training and validation MSE across epochs for CNN, MLP, and RBFN 
models. The MLP achieves the closest alignment between training and validation errors, indicating strong 
generalization, while RBFN converges quickly but at higher error levels.
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with the R2 value quantifying model accuracy. The MLP model exhibits the highest consistency, with R2 values 
close to 1.0 across all three phases, indicating excellent predictive accuracy and strong generalization to unseen 
data. The CNN model also performs well, particularly during the training and validation phases, but its testing 
R² values are slightly lower than those of MLP, suggesting minor reductions in generalization capability. By 
contrast, the RBFN model shows noticeably lower R2 values and greater scatter in the regression plots, especially 
for the testing dataset, reflecting its weaker ability to capture nonlinear relationships in the data. Overall, these 
results confirm that the GA-optimized MLP delivers the most robust and accurate predictions, followed by 
CNN, while RBFN lags behind in both accuracy and reliability.

The coefficient of determination, denoted as R2, is a widely used metric for measuring the effectiveness of 
predictive models. It indicates the proportion of variation in the dependent variable that can be explained by the 
independent variables. A value close to 1 suggests that the model has strong predictive capability, capturing most 
of the variability in the data. In contrast, an R2 value near 0 implies poor model performance, indicating that the 
model fails to capture the underlying trends, resulting in less accurate predictions.

	
R2 = 1 −

∑
N
i=1(yP red

i − yexp
i )2

∑
N
i=1(yP red

i − average(yexp
i ))2 � (10)

Residual plots are valuable tools for assessing the reliability and precision of predictive models. They illustrate the 
differences between the observed (actual) values and the values predicted by the model, enabling the detection 

Fig. 5.  Regression plots comparing predicted and actual QL values for CNN, MLP, and RBFN models in 
training, validation, and testing phases. The MLP demonstrates the strongest alignment with experimental 
values (R2 ≈ 1), CNN follows closely, while RBFN shows greater scatter, particularly in the testing phase.
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of anomalies, biases, or systematic patterns in prediction errors. A well-performing model typically produces 
residuals that are randomly dispersed around zero, suggesting that it has effectively captured the underlying 
relationships in the data without introducing systematic error.

Figure 6 illustrates the residual plots for the CNN, MLP, and RBFN models, comparing predicted liquid 
production rates (QL) with experimental values across both training and testing datasets. Ideally, residuals should 
be randomly distributed around zero, indicating unbiased predictions. Among the three models, the MLP shows 
the narrowest spread, with most residuals concentrated near zero and rarely exceeding ± 1000, highlighting its 
superior accuracy and stability. The CNN model also demonstrates reasonably well-distributed residuals, though 
with slightly larger deviations compared to MLP, particularly in the testing phase. By contrast, the RBFN model 
exhibits a wider scatter, with several points extending close to ± 3000, reflecting weaker predictive capability and 
higher error variance. Overall, the residual analysis confirms that the GA-optimized MLP provides the most 
reliable predictions, followed by CNN, while RBFN shows the least consistent performance.

The practical implications of the present findings are directly relevant to petroleum production operations. 
Accurate prediction of flow rates through choke valves enables engineers to optimize choke settings, thereby 
reducing the risk of excessive pressure drops that could compromise pipeline integrity and safety. In offshore 
environments, where choke valves are critical for controlling wellhead conditions under variable flow regimes, 
reliable forecasting tools help to prevent hydrate formation, mitigate erosion and sand production, and avoid 
unstable flow cycling. Moreover, machine learning models, such as the GA-optimized MLP developed in this 
study, can be embedded into digital oilfield systems or real-time monitoring platforms to support proactive 
decision-making. This integration allows operators to adjust choke configurations dynamically, improving 
production efficiency while ensuring safer operation of subsea facilities and surface pipelines.

Statistical criteria in measuring the accuracy of artificial neural network methods
Kernel density estimation plots
Figure 7 presents the Kernel Density Estimation (KDE) plots comparing the probability distributions of 
predicted and actual QL values for both training and testing datasets. Ideally, a strong overlap between the 
predicted and actual curves indicates that the model has accurately captured the statistical distribution of the 
target variable. Among the three models, the MLP demonstrates the closest alignment, with the predicted and 
actual distributions nearly overlapping in both training and testing phases, confirming its superior accuracy and 
generalization. The CNN model also shows a reasonable match between predicted and actual values, though 
small deviations are visible in the testing dataset, reflecting slightly reduced performance compared to MLP. 
In contrast, the RBFN model exhibits noticeable differences between the predicted and actual distributions, 
particularly in the testing phase, indicating weaker predictive reliability. Overall, the KDE analysis reinforces 

Fig. 6.  Residual plots of predicted versus experimental QL values for CNN, MLP, and RBFN models in 
training and testing phases. Residuals of the MLP are narrowly distributed around zero, indicating minimal 
bias, while CNN shows moderate scatter and RBFN exhibits the widest error spread.
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that the MLP model provides the most faithful reproduction of real data patterns, followed by CNN, while RBFN 
shows the least consistency.

Evaluation of statistical error indicators
RMSE (Root Mean Square Error), MAE (Mean Absolute Error), MSE (Mean Squared Error), and MAPE (Mean 
Absolute Percentage Error) are commonly employed metrics for evaluating the performance of predictive 
models, especially in regression tasks. These measures are used to assess the extent of deviation between predicted 
values and actual observations, with each metric offering unique insights into model error. RMSE, in particular, 
calculates the square root of the average squared differences between predicted and observed values. Due to the 
squaring of errors before averaging, RMSE places more emphasis on larger errors, making it especially sensitive 
to outliers and significant discrepancies. The formula for calculating RMSE is as follows:

	
RMSE =

√
1
n

∑
n
i=1(yi − ŷi)2� (11)

Where yi represents the actual value, ŷi is the predicted value, and n is the number of observations.
The Mean Absolute Error (MAE) measures the average magnitude of errors in a set of predictions without 

considering their direction. It is computed by taking the mean of the absolute differences between predicted 
and actual values. In contrast to RMSE, MAE treats all errors equally and is less sensitive to large deviations or 
outliers. The expression used to calculate MAE is as follows:

	
MAE = 1

n

∑
n
i=1 |yi − ŷi|� (12)

This metric is straightforward to understand and provides a linear assessment, where each error has an equal 
impact on the overall mean.

The Mean Squared Error (MSE) is a commonly used performance metric that calculates the average of the 
squared differences between predicted and actual values. Like RMSE, it emphasizes larger errors by squaring the 
deviations, which increases the penalty for significant inaccuracies. However, because the errors are squared, the 
final result is expressed in squared units, differing from the original data’s unit. The MSE is determined using 
the following formula:

	
MSE = 1

n

∑
n
i=1(yi − ŷi)2� (13)

MSE is often utilized in optimization processes because it is differentiable, a key characteristic required by many 
machine learning algorithms for effective training.

The Mean Absolute Percentage Error (MAPE) expresses prediction accuracy as a percentage by averaging the 
absolute percentage differences between actual and predicted values. Its independence from data scale makes 
it especially useful for evaluating and comparing model performance across different datasets. The formula for 
MAPE is as follows:

Fig. 7.  KDE plots comparing predicted and actual QL distributions for CNN, MLP, and RBFN models in 
training and testing datasets. The MLP curves overlap almost perfectly with actual data, confirming superior 
accuracy, whereas CNN shows minor deviations and RBFN exhibits noticeable mismatches.
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Nevertheless, MAPE has certain drawbacks, particularly when actual values are near zero, as this can lead to 
extremely large or even undefined percentage error values.

Figure 8 compares the performance of the CNN, MLP, and RBFN models using four standard error metrics—
RMSE, MAE, MSE, and MAPE—for both training and testing datasets. A lower value of these metrics indicates 
higher predictive accuracy and better reliability. Among the three models, the MLP consistently records the 
lowest error values across almost all metrics, particularly in the testing phase, which highlights its superior 
ability to generalize to unseen data. The CNN model also shows competitive results, with moderate error values 
that are lower than those of RBFN but slightly higher than MLP, suggesting good but not optimal performance. 
By contrast, the RBFN model exhibits noticeably higher error values in both training and testing phases, 
reflecting reduced predictive capability and less robustness. Overall, the error metric comparison confirms that 
MLP provides the most accurate and reliable predictions, followed by CNN, while RBFN delivers comparatively 
weaker performance.

To address measurement quality, the uncertainty and repeatability of the key experimental parameters 
were evaluated. Table  5 summarizes the typical accuracy ranges of the instruments and test methods used 
to obtain the dataset, including wellhead pressure, choke size, liquid production rate, gas–liquid ratio, and 
BS&W content. Pressure measurements were obtained from calibrated wellhead gauges with an uncertainty of 

Fig. 8.  Error metrics (RMSE, MAE, MSE, and MAPE) for CNN, MLP, and RBFN models in both training 
and testing datasets. The MLP consistently records the lowest error values, CNN maintains intermediate 
performance, and RBFN produces the largest errors, confirming weaker predictive reliability.
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approximately ± 0.5% of full scale. Liquid and gas flow rates were determined from test separators with typical 
uncertainties of ± 2–3%, while GLR was derived accordingly. BS&W content was analyzed in the laboratory 
using standard procedures, with a repeatability within ± 1 vol%. This error assessment ensures that the dataset 
used for machine learning remained within acceptable engineering tolerances, supporting the reliability of the 
developed models.

SHAP-based feature importance analysis
SHAP (SHapley Additive exPlanations) is a powerful and model-agnostic interpretability tool rooted in 
cooperative game theory. It assigns an importance value to each input feature by calculating Shapley values, 
which represent the average marginal contribution of a feature across all possible feature combinations. This 
ensures a fair and balanced assessment of each feature’s influence on the model’s output. SHAP is particularly 
advantageous for interpreting complex and nonlinear machine learning models, where traditional explain ability 
methods often fall short. It enables both global insights into model behavior and localized explanations for 
individual predictions. The SHAP summary plot is a valuable visualization that captures the influence, direction, 
and magnitude of feature effects across the entire dataset.

As illustrated in Fig. 9, SHAP analysis was employed to interpret and contrast the decision-making patterns 
of three artificial neural network (ANN) models: RBFN, MLP, and CNN. Through SHAP value visualizations, 
the study assessed how each model weighs the input features when predicting QL. This method offers deeper 
insights into the dependence of each model on specific inputs and reveals their sensitivity to changes in feature 
values.

Figure 9A presents the SHAP summary plot for the CNN model, showing the relative importance of input 
features in predicting liquid production rate (QL). The x-axis represents SHAP values, where positive values 
increase and negative values decrease the predicted QL, while point colors (red = high, blue = low) indicate 
feature magnitudes. The results demonstrate that GLR has the strongest negative influence, as higher gas fractions 
consistently reduce predicted QL, whereas choke size exerts a strong positive impact, with larger openings 
increasing production. Wellhead pressure (Pwh) shows a moderate and mixed effect, reflecting its indirect 
role in flow regulation, while BS&W contributes weakly and predominantly negatively, indicating reduced QL 
at higher water and sediment content. Overall, the SHAP analysis confirms that GLR and choke size are the 
dominant factors shaping CNN predictions, aligning with the physical mechanisms of choke flow behavior.

Fig. 9.  SHAP summary plots for all five models (RBFN, MLP, and CNN), illustrating the contribution of 
each input feature to the predicted QL. The SHAP values reflect the impact of features on model outputs, with 
feature values color-coded from low (blue) to high (red).

 

Parameter Measurement method/source Accuracy (±) Repeatability

Wellhead pressure (Pwh) Pressure gauge/sensor at wellhead ± 0.5% of full scale ( ≈ ± 5 bar) Within ± 2%

Choke size (D64) Calibrated choke bean size ± 0.1 mm High (fixed orifice)

Liquid flow rate (QL) Separator test/calibrated flow meter ± 2% of reading ± 3% across repeated runs

Gas–liquid ratio (GLR) Calculated from gas and liquid test separators ± 3% ± 3–5%

BS&W content Standard lab analysis (centrifuge/ASTM method) ± 0.5 vol% ± 1 vol%

Table 5.  Measurement uncertainty and repeatability of key parameters.
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Figure 9B shows the SHAP summary plot for the MLP model, illustrating the relative impact of each input 
feature on the prediction of liquid production rate (QL). The x-axis represents SHAP values, where positive values 
increase and negative values decrease the predicted QL, while the point colors indicate feature magnitudes. The 
results indicate that choke size is the most influential factor, with larger choke openings (red points) strongly 
associated with higher QL predictions. GLR also plays a significant role but with a negative effect, as higher gas 
fractions lead to reduced QL, consistent with multiphase flow dynamics. Wellhead pressure (Pwh) demonstrates 
a moderate but positive contribution, particularly at higher values, suggesting its role in stabilizing and 
enhancing flow. BS&W exhibits a relatively minor influence, generally associated with negative SHAP values, 
meaning increased water and sediment content lowers QL. Overall, the SHAP interpretation confirms that the 
MLP model relies primarily on choke size and GLR, with Pwh providing additional support, which aligns with 
field observations of choke-controlled production behavior.

Figure 9C illustrates the SHAP summary plot for the RBFN model, highlighting the contribution of each 
input feature to predicting the liquid production rate (QL). The x-axis shows SHAP values, where positive 
values increase the predicted QL and negative values decrease it, while the colors represent feature magnitudes. 
The results reveal that GLR exerts a strong negative influence, with higher gas fractions consistently reducing 
predicted QL. Choke size appears as the next most important feature, with larger openings generally contributing 
to higher QL, although the effect is less pronounced compared to the MLP and CNN models. Wellhead pressure 
(Pwh) shows only a modest and scattered influence around zero, indicating limited predictive importance within 
the RBFN framework. Similarly, BS&W demonstrates a relatively minor negative effect, with higher water and 
sediment content lowering QL. Overall, the SHAP analysis confirms that while RBFN identifies GLR and choke 
size as key factors, its weaker differentiation among the secondary variables (Pwh and BS&W) explains the 
comparatively lower accuracy of this model relative to CNN and MLP.

A sensitivity discussion based on the SHAP analysis was also conducted to identify the most influential 
input parameters on choke flow behavior. The results indicate that choke size (geometry) and wellhead pressure 
are the dominant factors controlling liquid production rate, as they directly determine the available flow area 
and driving pressure differential. The gas fraction (GLR) also exerts a strong influence by modifying flow 
regime transitions and affecting slip between phases, particularly at higher values where earlier choking onset is 
observed. In comparison, BS&W content showed only a secondary impact within the studied range. Overall, the 
sensitivity results confirm that geometric and pressure-related parameters govern the primary choking behavior, 
while fluid composition (gas fraction) plays a key role in determining the stability of multiphase flow through 
the choke.

To enhance the generalizability of the predictive models across different operational scales, the dimensional 
input parameters were converted into a dimensionless framework. The effective choke diameter D was selected 
as the characteristic length, and the average superficial velocity was calculated as:

	
A = π D2

4
� (15)

	
v = QL + QG

A
� (16)

Based on these definitions, the Reynolds, Froude, and Weber numbers were computed as follows:

	
Re = ρ mvD

µ m

� (17)

	
F r = v√

gD
� (18)

	
W e = ρ mv2D

σ
� (19)

Here, ρ m and µ m denote the mixture density and viscosity, estimated using volume-fraction-weighted 
averages, and QG was derived from the gas–liquid ratio (GLR) after appropriate unit conversion. In addition 
to predicting the dimensional liquid production rate ( QL), the dimensionless discharge coefficient was also 
evaluated as a normalized target variable:

	
Cd = Q

A
√

2∆ P/ρ m

� (20)

Incorporating these dimensionless parameters into the model inputs enhanced the scalability of the results and 
facilitated meaningful comparisons between laboratory-scale and field-scale choke flow conditions.

The ratios of gas-to-liquid density and viscosity play a critical role in determining choke flow behavior. A 
higher gas–liquid density contrast generally promotes slip between phases, intensifying phase segregation and 
altering the pressure drop characteristics across the choke. Conversely, when gas and liquid densities are closer, 
the flow tends to be more homogeneous, and the empirical correlations derived for one fluid system may not 
directly transfer to another. Similarly, viscosity ratio influences the momentum transfer between phases: low-
viscosity gases flowing with high-viscosity liquids often lead to enhanced turbulence and interfacial shear, while 
systems with closer viscosity values exhibit more stable flow patterns. Although the present dataset is specific 
to the studied reservoir fluids, the dimensionless framework (e.g., Reynolds, Froude, Weber numbers) provides 
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a pathway for extending these results to other fluid pairs. By expressing the governing parameters in terms 
of density and viscosity ratios, the predictive models can be scaled to different hydrocarbon–gas or oil–water 
systems with appropriate adjustment.

To benchmark the proposed machine learning models, a comparison was made with representative empirical 
correlations commonly applied in choke flow prediction, such as those reported by Gilbert and Mirzaei-Paiaman 
et al. These classical correlations provide a quick estimate of flow rate based on choke size, pressure, and fluid 
properties, but they typically assume simplified flow regimes and may not fully capture nonlinear interactions 
among parameters. In contrast, the machine learning models developed in this study, particularly the MLP 
architecture, demonstrated significantly higher predictive accuracy with lower RMSE and higher R2 values. This 
comparison highlights that while empirical models remain useful for preliminary design and quick screening, 
data-driven approaches offer improved robustness and reliability when dealing with complex multiphase flow 
conditions.

Conclusions
And with the epoch of increasing energy needs on the grounds of smart recovery of hydrocarbon reservoirs, the 
ability to foresee accurately the wellhead production rate via chokes is the basis of reservoir management and 
recoverability optimization. It’s not an improvement it’s the secret to optimization of operating costs, recovery 
maximization of the resource, and surface facility safety. Through facilitating management of higher-order 
multiphase flow regimes, chokes avert water and gas coning loss of sand production and hence guarantee long-
term asset integrity. The new approach used in this study using the combination of newer neural networks 
and genetic algorithm optimization, apart from providing additional diagnosis and enhanced predictions, also 
outperformed traditional empirical models. It is revolutionary smart reservoir management model, or sustainable 
fact-based decision-making and production. Most especially and rightly, the system prolongs reservoir lives and 
adds new value to an oil industry digital revolution in which each drop of precision sets the course of the energy 
future.

This study proposes an innovative framework for predicting the liquid production rate (QL) using three 
popular ANN models: MLP, RBFN, and CNN. A distinguishing feature of this research is the use of GA for 
hyperparameter tuning across all three models, enabling optimal configuration and improved predictive 
performance. The input variables used in the modeling include wellhead pressure (Pwh), choke size (D64), basic 
sediment and water content (BS&W), and gas–liquid ratio (GLR). Each parameter comprises 182 data points, 
yielding a total of 910 samples. The dataset was divided into training, validation, and testing subsets to ensure 
reliable and generalizable model assessment.

Model performance was evaluated using four standard error metrics: MSE, RMSE, MAE, and MAPE. To 
support the reliability and interpretability of the predictive models, various visualization techniques were 
employed, including KDE plots, learning curves, regression plots, error distribution diagrams, and SHAP value 
analysis. These tools not only helped to validate model performance but also provided valuable insights into the 
influence and contribution of each input variable at both global and individual levels.

Among the tested models, the MLP architecture demonstrated superior performance. It achieved R2 
values of 0.9985 for the training set, 0.9856 for the validation set, and 0.9936 for the testing set. The associated 
error metrics further confirmed the accuracy of the MLP model, with RMSE values of 0.0024 (training) and 
0.0057 (testing), MAE values of 0.0014 (training) and 0.0027 (testing), MSE values of 0.2265 (training) and 
3.2869 (testing), and MAPE values of 1.2935% (training) and 2.5899% (testing). These outcomes highlight the 
robustness and high predictive capability of the GA-optimized MLP model in forecasting liquid production rate 
based on operational well parameters.

Even though the results are encouraging, the work is incomplete and limited. The Reshadat oil reservoir 
database and 182 test records from seven wells cannot be representative of all the diversity of world reservoir 
conditions and therefore cannot be extended to other fields with other fluid properties or other choke types. GA 
hyperparameter tuning, while as useful as it is, is computationally expensive and needs to be carefully tuned so 
that the solution does not degenerate or converge prematurely. The models also rely on main or subcritical flow 
conditions without live-parameter variation for parameters such as temperature or emulsion concentration and 
can yield prediction bias in dynamic operating conditions. Interpretability does not pose an issue here since 
SHAP analysis is insightful albeit sparsely exhaustive exposing the “black-box” status of ANNs, and dependence 
on normalization in preprocessing can be used to make errors more if data quality problems such as missing 
values or outliers are not solved.

This process can be extended with broader and more representative samples from other regions of the world 
to reduce even more detailed and broad models further. Additional input parameters such as temperature, API 
gravity, or live sensors will show increasingly broader predictability under differing conditions. Hybrid model 
procedures combining both ANNs and physics simulation will prevent loss of interpretability at the expense of 
high accuracy. In addition, integration of these next-gen models with real-time monitoring using edge computing 
or API integrations will also help in the optimization of production. Finally, comparison of next-gen methods 
like transformer networks or ensemble methods can even identify even better approaches for multiphase flow 
prediction under poor-quality reservoir conditions.

In future work, the present findings could be validated and extended using advanced computational and data-
driven approaches. High-fidelity CFD simulations can provide detailed insights into flow structures, pressure 
distribution, and regime transitions inside choke valves, serving as a complementary tool to verify the predictive 
accuracy of machine learning models. At the same time, more advanced ML architectures such as ensemble 
learning or transformer-based networks may further enhance generalization across different reservoirs and 
operating conditions. Integrating these methods with the proposed framework will strengthen confidence in the 
results and facilitate broader application of predictive models for choke flow optimization.
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