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Network security analysis based
on feature selection and optimized
fireworks algorithm

Liang Zhou, Chang Liu, LiTian, Jie Wang, Chang Liu & Xiao Yu™*

Traditional network security analysis methods exhibit critical limitations in processing high-
dimensional dynamic data, including inefficient feature selection, poor adaptability to evolving
threats, and low detection sensitivity below 50%. To address these challenges, this study proposes

a multi-objective multi-label feature selection model integrated with an optimized Fireworks
Algorithm. The Improved Fireworks Algorithm Model incorporates Gaussian operators and adaptive
functions while fusing fuzzy neural networks to enhance real-time threat response. Experimental
validation across Palmer Penguin (small-scale), Fashion MNIST (medium-scale), and Bike Sharing
(large-scale) datasets demonstrates three key advancements: Data processing capacity reaches 5,000
samples, exceeding Particle Swarm Optimization and standard Fireworks Algorithm baselines by
66%); Sensitivity maintains 70%-100% across datasets, outperforming traditional methods by 30%
points; In a medium-sized data set, the research method scored only 5 out of 10 in the five indicators
of comprehensive performance comparison based on the weighted geometric mean of the five-
dimensional radar chart, indicating that the research method may have problems of overfitting or
insufficient generalization ability when processing complex data. Adaptive adjustment time is reduced
by 50%, confirming significant efficiency gains. These findings establish a robust framework for
dynamic network security while highlighting scalability constraints in complex data environments.

Keywords Network security analysis, Feature selection, Improved fireworks algorithm, Multi-objective
optimization, Fuzzy neural network

With the quick growth of the Internet and the advancement of the global informatization process, network security
issues have gradually emerged, and network attacks can cause serious harm to personal privacy, business secrets,
and national security, so protecting network security has become an urgent task. The methods of network attacks
are constantly upgrading"2. The attack methods used are becoming increasingly complex, including not only
virus attacks but also emerging distributed denial of service (DoS)attacks.These attack methods pose significant
challenges to network security and require technical and legal means to address them?®. Furthermore, in the
context of mobile Internet, individuals can access the Internet at any given moment and any location through
the use of mobile devices, including smartphones and tablets. Moreover, rapid advances in cloud computing
and big data have introduced new complexities into network security. Large-scale data leakage events will not
only lead to personal privacy leakage, but also bring huge losses to enterprises and governments*. Therefore, it is
crucial to strengthen the network security protection of mobile Internet®. However, traditional network security
protection methods are inefficient, have poor defense performance, and low sensitivity. The real-time feedback
mechanism is essential for monitoring and dynamically correcting model performance. By introducing feedback
loops, the model parameters can be adjusted promptly based on the algorithm’s performance in identifying
malicious behavior, thereby improving its adaptability to new types of malicious behavior. The research goal is
to build an improved fireworks algorithm model IFWAM), aiming at the difficulties encountered by traditional
fireworks algorithms (FWAs) in complex data processing and adaptive selection of high-quality explosion
points. This improves the detection capability and response speed of the data security system, effectively protects
against potential malicious behavior, and solves the limitations of FWA in complex data processing and adaptive
selection of high-quality explosion points.

The main assumptions made in the research are that multi-objective optimization can effectively improve
the accuracy of feature selection (FS), real-time feedback mechanisms can enhance adaptive capabilities, and
combination algorithms can improve algorithm performance. Based on the above assumptions, the research has
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made the following contributions: (1) The algorithm combines an improved FWA and fuzzy neural network,
providing a structural optimization method that improves data security and analysis efficiency through effective
FS. (2) The concept of real-time feedback mechanism is proposed, and its applicability in dynamic network
environments is explored. (3) The theoretical research on multi-objective optimization and fuzzy neural networks
is enhanced, and new methods and technical support for data security solutions in practical applications are
provided.

This study is divided into five sections. The first section introduces the research background and objectives.
The second section summarizes domestic and international research achievements in network security analysis
and feature selection. The third section presents the construction of the improved feature selection model
combined with the fireworks algorithm. The fourth section provides the performance testing and application
analysis of the improved algorithm. The fifth section concludes the paper and discusses future research directions.

Related works

Network security analysis methods

Network security is related to the confidentiality of a large amount of online data and the stability of online
systems. Many scholars have conducted relevant research on network security analysis methods. Wagas et al.
proposed a solution based on artificial intelligence and machine learning to address various security threats in
wireless network security analysis methods. During the process, different types of security threats were identified
and a classification system for artificial intelligence technology to address these threats was constructed. Results
denoted that artificial intelligence could effectively enhance the security of wireless networks and address
increasingly complex security threats®. Ping studied data encryption technology to address data protection
issues in network information security analysis methods. During the process, the encryption and decryption
processes of the algorithm were analyzed, and their advantages and disadvantages were compared. A hybrid
model was formed by combining the algorithms. Comprehensive analysis showed that the proposed method
could effectively ensure information security and has high confidentiality’. Zhao proposed a dot product
algorithm that combines scalable video coding and sliding windows to address encryption technology issues
in network security analysis methods. Critical analysis was conducted on other algorithms, pointing out the
security risks associated with different fragile keys and proposing improvement plans. The experimental results
showed that the algorithm improved efficiency and reduced computational and storage requirements®. Hong
et al. proposed a new automated data auditing method to address the issue of inconsistent labels in network
security analysis methods. Through experiments on real security operation centers and open-source datasets, it
was verified that this data auditing method could identify erroneous labels and improve the accuracy of machine
learning models through label correction®. Taheri et al. conducted a review of software defined network security
issues, with a focus on analyzing the application of deep learning in software defined network security. The
article first introduced the types of attacks faced by software defined networks and explored research on using
deep learning algorithms to detect and mitigate these attacks. Research showed that deep learning methods
could better identify complex attack patterns and achieve good detection results compared to other traditional
network security analysis methods, such as statistical and threshold methods!.

FS network related research

Some scholars have conducted relevant research on network FS. Thakkar and Lohiya reviewed intrusion
detection systems using feature extraction techniques to address network security issues. They reviewed methods
such as machine learning, deep learning, and swarm intelligence algorithms, emphasizing the importance of FS
in models. Results denoted that feature extraction techniques were crucial for improving intrusion detection
performance, providing guidance for research in the field of network security'!. Rashid et al. proposed a tree-
based stacked ensemble technique, combined with FS methods, to optimize the data scalability and complexity
issues in network intrusion detection systems, improving the accuracy of the model. The experimental results
showed that the proposed model outperformed existing methods in identifying normal and abnormal traffic,
demonstrating its potential for application in the Internet of Things and large-scale networks!'?. Sah et al.
proposed a model that combines FS methods and classifiers to address the FS problem of intrusion detection
systems when dealing with large-scale network traffic. Research aimed to improve the detection performance of
intrusion detection system by using FS techniques to remove irrelevant features and screen out features that have
a significant impact on detection. The experimental results showed that the research method could significantly
improve intrusion detection performance while reducing computational costs!>. Hema et al. analyzed the
diagnosis of Parkinson’s disease using four feature extraction methods and classification algorithms. In the study,
forward backward, rough set, and tree-based FS techniques were used, and compared with four classification
methods: support vector machine, naive Bayes, K-nearest neighbor, and random forest. Research showed that
the random forest algorithm, when combined with four FS methods, performed the best in accuracy”. Mounica
and Lavanya proposed a high-performance computing model based on deep learning for traffic flow analysis of
Twitter data. To address network security issues, they used feature extraction techniques to process Twitter data,
including pre-processing of tweets and embedding vectors using unary, binary, and part of speech features. The
experimental results showed that this method achieved the highest accuracy of 98.83% on the Kaggle dataset,
outperforming other techniques!®.

Summary of the overview
The summary of relevant research and comparison with research methods are shown in Table 1.

In summary, a large number of studies have shown that FS technology can effectively improve the efficiency
and accuracy of network security analysis by reducing the data dimension and eliminating redundant
information, especially in intrusion detection, abnormal behavior recognition and other scenarios. However,
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Related work’s technique

Proposed method

Key differentiators with research method

Advantages of research method

Refs.

AI/ML for wireless threat
classification

Multi-objective feature selection with
real-time feedback

Dynamic adaptation (vs. static frameworks)

Higher sensitivity (70-100%) and real-time
adaptability

Hybrid data encryption

Feature-based filtering + optimization

Optimizes preprocessing efficiency (vs.
cryptographic focus)

Lower computational overhead & faster
processing

SVC +sliding window
dot-product

Non-encrypted dimensionality
reduction

Reduces computational overhead (vs.
encryption efficiency)

Better scalability to large datasets (up to 5000
samples)

Automated data auditing

Multi-label FS with feedback
mechanism

Prevents label bias at feature level (vs. label
correction)

Improved label consistency & reduced false
positives

DL for SDN attack
detection

Lightweight FNN + heuristic
optimization

Lower complexity for real-time use (vs. deep
learning)

Faster convergence & lower resource consumption

Feature extraction for IDS

Dynamic MOOMLEFS with adaptive
functions

Solves nonlinear interactions & local optima
(vs. general FS)

Enhanced global search capability & avoidance of
local optima

Tree-based ensemble + FS

Label-correlation-aware FS

Avoids ensemble computational cost (vs.
stacked models)

Higher accuracy with reduced model complexity

FS + classifier combination

Anti-interference feature validation

Dynamic malicious feature filtering (vs. static
selection)

Superior malicious behavior detection (83-95%
accuracy)

Multiple FS methods for
classifiers

Multi-objective label-structure
optimization

Joint feature-label space optimization (vs.
classifier-centric FS)

Better handling of multi-label correlations

DL feature extraction for
Twitter

Gaussian-driven adaptive FS with
fuzzy rules

Robust noise handling (vs. NLP engineering)

Improved noise robustness & interpretability via
fuzzy logic

Table 1. Summary of related research and comparison with research methods.

existing studies have also revealed the key bottlenecks in the practical application of FS technology. First, in the
multi-user collaborative environment, the traditional FS algorithm is difficult to balance the correlation between
individual user characteristics and global data distribution due to the lack of dynamic adaptability, resulting in
limited model generalization ability; Second, in high-dimensional data space, nonlinear interaction and noise
interference between features exacerbate the computational complexity of the algorithm, and existing methods
(such as filtering FS based on information entropy) are prone to local optimality, and it is difficult to take into
account the robustness and interpretibility of feature subsets'®. On this basis, this study attempts to introduce
optimization technology to optimize FS and design a better performance network security analysis method.

Network security analysis of optimized feature selection algorithm and FWA

This section is divided into two sub-sections to study network security based on FS and FWA optimization.
The first sub-section is about the model construction of the proposed multi-objective optimization multi-label
feature selection (MOOMLES) algorithm and the data processing process of the proposed algorithm. The second
sub-section is to study the core map and algorithm flow of the reconstructed neural network fusion FWA model.

Multi-label feature selection algorithm model for multi-objective optimization

When selecting features, the minimum feature set is found by reducing the dimensionality of the data, allowing
the model to achieve optimal performance!”8. The single-objective FS algorithm faces a decrease in accuracy
in dimensionality reduction of high-dimensional data space, which cannot meet the screening requirements
for network security data. Therefore, an multi-label FS algorithm model for multi-objective optimizationis
constructed based on FS, as indicated in Fig. 1.

In the multi-label feature recognition model shown in Fig. 1, network data begins to flow after being
preprocessed by the model. Some malicious behaviors and viruses also propagate with normal network data. The
data is transmitted to the next stage for FS through the initialization support of the algorithm in the model. In
this stage, in addition to the rough selection of the model, there is also advanced FS processing for some complex
data information. After the feature recognition is completed, the interference factor system is used to match
the recognized data features and perform anti-interference testing on the algorithm to check whether there are
unsafe factors and malicious information in the selected data features'>?°. The improved MOOMLFS model of
the data feature archive is combined with data optimization to remove and process malicious information, and
finally output optimized network data information. In a complex archive, the spatial distance between each data
can be indicated by Eq. (1).

D=y i (| =57+ 1B = 57) @

In Eq. (1), D;represents the distance between each piece of data, the spatial distance, i represents the member
coefficient, j represents the objective function, n represents the archive coefficient, f represents the spatial
framework, and the crowding distance between data information is represented by Eq. (2).

Di= |t = a7+ BT - T 2
The classification method with a single-objective and label is not suitable for multi-label tasks, as there are

correlations between interfering factors in multi-label datasets. Therefore, the individual definition of multiple
labels can be expressed as Eq. (3).
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Fig. 1. Feature selection algorithm model for multi-objective optimization.
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In Eq. (3), X represents the specific data information in the feature dataset, Y represents the data information in
the interference dataset, m represents the maximum spatial data volume, and the label space can be represented

by Eq. (4).

In Eq. (4), y:represents the actual label set of feature dataset x;. The flowchart of the proposed algorithm model
is denoted in Fig. 2.

In the MOOMLEFS model of Fig. 2, there exists an original dataset. It assumesthat there are N sample numbers
in the dataset. The dataset can be divided into feature dataset and label dataset. It assumes that the number of
feature datasets is represented by fand the number of label datasets is represented by y. After the algorithm starts
running, the population is initialized first. After initialization is completed, the data is transmitted to a multi-
label learner for algorithm training. The data information is divided into a training dataset and a testing dataset.
The training dataset is trained using a multi-label learner, while the testing dataset is tested using a multi-label
learner?!. Then the results are calculated by the algorithm, updating the probability of data crossover and
mutation. The archive database is updated through anMOOMLFS model designed for research. The algorithm
evaluates whether the archive needs to meet the requirements. If it does not meet the requirements, it will return
to the learning period for retraining and parameter optimization. If the requirements are met, it will output the
archive and end the process. The predicted labels in the model can be expressed as Eq. (5).

1

1 1 ’
J

In Eq. (5), R Lrepresents the metric function, h represents the training set learning function, H means the test
dataset, ¢ represents the training time, y;represents the training dataset, z; means the training data, x; means

Scientific Reports|  (2025) 15:44188 | https://doi.org/10.1038/s41598-025-27855-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Population
initialization

fremmeemeeeeeeceeeeoan
. Trait $
ooy ettty emtt il | Train
:
.

plororst tomoedt foeeed p| Multi-label
----- ‘ leamer training

Raw data set

cceedd teaeod! fao.ood Multi-label
""" O B » le:mlerz::est
feseest teceedtt | Test

Update file set

Yes

Stop criterion Output file set

End

Fig. 2. Multi-label feature selection model for target optimization.

Scientific Reports|  (2025) 15:44188 | https://doi.org/10.1038/s41598-025-27855-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

the true label, 4, j, and [ represent the data coefficients, and s.tmeans the combination of the training dataset and
the test dataset. The calculation of tag ranking can be expressed as Eq. (6).

t
1 1 y |rank, (z,y") < rank, (zi,y),y €y,
AP:(h’H):EZmZH | (z,9) (%, y) i 3 ©)

k }
ey Ve rankn (z;,y)

In Eq. (6), APrepresents the label set of average samples above the specified label, and rank,represents the
ranking expression of the sample dataset. The minimum number of operations required to find the actual label
through the process can be expressed as Eq. (7).

¢
1
CV (h,H) = n Zmaxygyircmkn (zj,y)—1 (7)

Jj=1

In Eq. (7), CV (h, H) represents the minimum number of operations to find the actual label through the
process. The number of error markers can be expressed as Eq. (8).

t
HL (h,H) = %Z\h(m)@yi‘ ®)
j=1

In formula (8), HL (h, H) represents the number of incorrect marks.@represents the symmetric difference
between the actual label and the classification label. The system results of model application and network data
processing and security protection are shown in Fig. 3.

In the system protection structure of Fig. 3, massive data information in the network needs to be monitored
by the security defense structure in the network processing system after primary processing and noise filtering.
The security defense structure of the network includes functions that can identify malicious factors in data
information and security parameter reference indicators. Through the screening of defense agencies, many
malicious data information and hidden data are identified. This structure is called a defense wall structure with
security parameter protection. Malicious data mainly refers to network threats including viruses and worms,
Trojan programs, spyware, ransomware, and phishing data. These malicious data are usually propagated through
network requests, and their behavioral characteristics are significantly different from normal data. For example,
malicious data often send out a large number of requests in a short period of time or are accessed through
abnormal ports. To identify malicious and normal data, the system continuously monitors the behavioral
characteristics of data in the network, such as access frequency, request patterns, etc., and analyzes the anomalies
of data behavior through specific algorithms. In addition, establishing a malicious data blacklist and a normal
data whitelist can quickly screen for known malicious data by comparing the legality of the incoming data.

Data filter <

—gp | Normal data

) —_—
Safety > Security
wall
parameter —pp ( Abnormal data
Blacklist
[ \ data
Defense forepiece Grid multisensor

Fig. 3. Model application and network data processing and security protection system.
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Ultimately, through multidimensional analysis and model optimization, it is possible to effectively distinguish
between normal data and malicious data, ensuring network security and data integrity. The front half of the
wall is a rigid wall protection mechanism that protects data information. The latter part is the structure of the
sieve, which carries qualified labels through the grid structure of filtered data size based on safety monitoring
data.If the data already has security labels but due to its large volume, it cannot flow through the grid structure
to the next process. The multi-label FS model is the core of the grid structure, and only data that meets the
feature requirements can be selected. Otherwise, it will be directly processed or returned for optimization?>%3.
Moreover, the information judged as abnormal data will be added to the blacklist, and the data in the blacklist
will be filtered through a specific filter to identify the misclassified data information, ensuring the rigor of the
program and algorithm. There is also anMOOMLES model in the filter, and the enlarged network structure of
the model in the filter and grid structure is shown in Fig. 4.

In Fig. 4, when the data information monitored through security passes through the grid structure in the
back half of the protective wall, feature recognition follows the principle of dimensionality reduction for high-
dimensional data, achieving data simplification and feature data information extraction. The extracted data
feature information forms a feature data set, and due to the optimization of multi-objective recognition, the
model can select features from data with a large amount of information in a shorter time. It compares and
calculates feature datasets with multi-label datasets, leveraging the data connections between multi-label
datasets to evaluate and calculate feature datasets. Individual data in the feature database that does not match
the multi-label dataset is replaced with data from the label dataset to ensure that there is no significant difference
between the data obtained through the model and the actual label dataset. The FS model in the filter is similar
to that in the grid structure, because the filter needs to repeatedly filter, and the focus of the algorithm is on FS.
The focus of the grid structure is not only on feature recognition and selection, but also on the standardization
requirements of data information. The specific data characteristics are shown in Table 2.

From Table 2, there are seven feature types, including high-dimensional data dimension reduction features,
feature dataset, multi-label dataset features, mismatched dataset features, filter model features, grid-structure
model features, and multi-objective recognition features. The dimension reduction features of high-dimensional
data are extracted by the dimension reduction technology. The main role is to simplify the data and extract the
features. The feature dataset is a data set containing key information formed after dimension reduction, which
is mainly used for subsequent feature identification and comparison. A multi-label dataset refers to a dataset
containing multiple labels, and the main role is to evaluate and calculate feature datasets. Mismatched data
replacement feature refers to the feature after the data that does not match the multi-label dataset is replaced. It

Output result

) Filter treatment

Label
data
Feature
extraction
Security data Standard
data
—P

Qualified data information

Fig. 4. The amplified network structure of the model in the filter and grid structure.
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Feature type

Description Function

data

Dimension reduction features of high-dimensional

Data features extracted by dimension reduction techniques Data simplification and feature extraction

Feature dataset

For the subsequent feature identification and

Datasets containing key information formed after dimension reduction .
comparison

Multi-label dataset characteristics

Dataset containing multiple labels Assess and calculate feature datasets

Mismatched data replacement features

Ensure that the data is consistent with the

Features after replacing the data missing from the multi-label dataset actual labeled data set

Filter model features

FS model features used repeatedly in the filter Filtering and feature identification

Grid-structure model features

The FS model features in the grid structure Data standardization and feature identification

Multiple-objective recognition features

Optimized features for the rapid selection of key features from large amounts | Improve the identification efficiency and
of data accuracy

Table 2. The feature types and descriptions of the feature extraction.

Intensity

. . . . Matching
Displacement Dimensionality fireworks
Explosion Gaussian .
o variation Fuzzy model Mapping rule
Fireworks Strategy
Range selection selection
Elite Distance

Fig. 5. IFWAM combined with fuzzy neural network model core mapping.

is mainly to ensure the consistency of the data with the actual labeled data set. Filter model features refer to the
FS model features, repeatedly used in the filter, acting as filtering and feature recognition. Grid-structure model
is the FS model feature in grid structure, which is data standardization and feature recognition. Multi-objective
identification features means that the optimized features are used to quickly select the key features from a large
amount of data, and the role is to improve the efficiency and accuracy of identification.

IFWAM combined with fuzzy neural network model for core mapping

By using an MOOMLFS model to train and test network data information, secure and standardized digital
information is obtained. However, the traditional IFWAM faces difficulties in calculating fitness and optimal
selection due to the complexity of data and the similarity of some explosion points. Therefore, the study
optimizes the FWA and combines it with fuzzy neural networks to construct a fusion model for processing
data information. The combination of fuzzy logic and IFWA is based on multiple core principles. Fuzzy neural
networks quantify uncertainty through membership functions and convert continuous variables such as’
strength ‘and’ displacement ‘of explosion points into fuzzy sets, avoiding the limitations of binary decision-
making. Fuzzy rule library dynamically guides the generation of fireworks explosion operators, replacing fixed
threshold strategies. This mechanism enhances the algorithm’s global search capability in complex data spaces
by adjusting the explosion radius and spark quantity in real-time?%. The core orientation diagram of the fusion
model is shown in Fig. 5.

In the fusion mechanism illustrated in Fig. 5, the FWA selects appropriate explosion operators based on the
intensity, amplitude, and displacement of explosion points and generates multiple candidate explosion points
through Gaussian mutation. To improve the accuracy of candidate selection, a fuzzy neural network is applied
to support the decision-making process. The definition of fuzzy rules is based on three core input variables:
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explosion intensity, displacement, and fitness value. Explosion intensity and displacement are divided into three
levels, namely low, medium, and high, while fitness is divided into poor, good, and excellent. A fuzzy rule base
is then constructed according to these levels. When the explosion intensity is high, the fitness is excellent, and
the displacement is small, the selection probability of the candidate point is very high. When the three variables
are at a medium level, the selection probability is medium. When the intensity is low, the fitness is poor, or the
displacement is large, the selection probability is low. These rules are processed through a Mamdani-type fuzzy
inference mechanism to map input fuzzy sets to output selection probabilities, providing an initial decision basis
for candidate points.

The quantification standard of the proximity principle is subsequently introduced. It evaluates the geometric
distance between each candidate point and the global optimal point and converts the distance value into a weight
coefficient between 0 and 1 to represent the degree of proximity. A shorter distance corresponds to a larger
weight, while a longer distance corresponds to a smaller weight. This weight is then multiplied by the selection
probability obtained from fuzzy inference, and all selection probabilities are normalized to ensure that their
sum equals one. Through this process, the heuristic screening of fuzzy rules and the quantitative correction of
the proximity principle are effectively integrated, which enhances global exploration capability, improves local
exploitation accuracy, prevents premature convergence, and increases robustness and adaptability in complex
network environments.To obtain better fireworks positions, the initial fireworks are discretized to better cover
and seek the optimal solution. The coverage length can be expressed as Eq. (9).

I = zmax — Tpyip )

In Eq. (9), zmax and x;;, denote the max and the minivalues of the coordinate space, respectively. The coverage
length in a certain dimension can be expressed as Eq. (10).

I'= (i) max — (@i)pin/» ¢ € [1, K] (10)

In Eq. (10), (z;)represents the ith dimensional coordinate in space, while () 5xand (), respectively
represent the max and mini values on the ith dimensional coordinate. Fuzzy neural network is a theory of fuzzy
mathematics, where one data corresponds to one set, and there are only two ways: belonging and not belonging.
Fuzzy sets can be expressed as Eq. (11).
LacA

Alz) = o,ng (11)
In Eq. (11), A represents the set domain, x represents the elements, and the extension of fuzzy relationships can
be expressed as Eq. (12).

UxV={(zyllzelyeV (12)

In Eq. (12), U represents two ordinary sets, and when U = Voccurs, the fuzzy set is referred to as the fuzzy
relationship of ordinary sets. The flowchart of the model is shown in Fig. 6.

In the model processing flow of Fig. 6, the data is initialized first, and an initial fuzzy model is established
using the initial explosion point of the IFWAM. Then, the initial fireworks population is generated based on
the encoding, which is called data initialization. It should determine whether the initialized data meets the
termination conditions. If conditions are met, the process should be brought to a conclusion. Conversely, if the
conditions are not met, the process should be continued in a downward direction. Fireworks continue to be de-
encoded as a precursor to the fusion FWAM, and the algorithm is fused with the fuzzy neural model based on
the similarity of fuzzy rules and fuzzy sets to prevent rejection reactions?>%¢. Next is to identify the parameters
of the components and calculate the fitness function. Sparks are generated based on the IFWAM, individual
fireworks are selected, and the population of fireworks is optimized. The FWA can calculate the fitness value of
the population, and only when there is a reasonable fitness value can the algorithm generate explosive sparks.
The spark of algorithm explosion can be expressed as Eq. (13).

H - H. Lmax — L (z;) + 1

(Lmax — L (z3)) +1 (13)

-

i=1

In Eq. (13), H;represents the degree of algorithm explosion, H represents the explosion control parameter, L (x;)
represents the fitness value of the algorithm, Lmaxrepresents the maximum fitness value of the algorithm, and
I represents a constant. The limitation of explosion sparks can be expressed as Eq. (14).

d .
se={ Tound(3 ) a4

In Eq. (14), cand Srepresent the set spatial parameters, and o < Sand round ()are integer functions. The
satisfaction conditions of other parameters are represented by Eq. (15).

SZ' <a,@

Si > a,B (15)
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Fig. 6. The flow chart of IFWAM combined with fuzzy neural network model.

The FWA is improved by calculating the fitness value and modifying the parameters of the generated initial
fireworks population through a fitness function. The added Gaussian operator improves the randomness of the
fitness function for solving the optimal fireworks, and the explosion rule of the improved algorithm is shown
in Fig. 7.

In the explosion rule shown in Fig. 7, there are certain rule restrictions during the processing of the input
data by the FWA, and the chaotic and massive network data is processed through the spatial dimension of the
FWA. Based on the initial explosion point selected by the algorithm, the data is parameterized and analyzed. By
calculating the fitness function and Gaussian operator, the data of adjacent explosion points can be randomly
remembered and recognized for their features. It matches data points with high similarity to the initial explosion
point and without carrying malicious information for memory and storage. Due to the complexity of network
data, data information can be divided into two parts during initial processing, and processed through a grid
structure similar to FS. The core of the actual grid structure is an IFWAM. After processing, the two network
data still remain in the spatial dimension of the FWA, and the selected suitable data points similar to the initial
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Fig. 7. The explosion rules of IFWA.

Algorithm 1 MOOMLFS
Input: Dataset D containing features and labels
Target Variable T
Number of selected features N
Output: Subset of features F_selected
Initialize: F selected =[]  # List to hold selected features
F = ExtractFeatures(D) # Extract features from dataset D
L = ExtractLabels(D) # Extract labels from dataset D
For each feature f in F:a. Compute relevance R(f, T) using a chosen metric (e.g., correlation, mutual

information)

Sort features F by relevance R in descending order
Select top N features: F_selected = TopNFeatures(F, R, N)
Return F_selected

Table 3. The pseudocode for the proposed method.

fireworks explosion point are combined together to form a new dataset?’. The dataset optimizes and adjusts itself
by combining and comparing features with each other, and ultimately outputs results in the form of combined
data information. The pseudocode for the proposed method is shown in Table 3.

Performance and application analysis of improved feature selection algorithm and
FWA

This section is divided into three sub-sections to test the efficacy of the algorithm. The first sub-sectionis a
parameter setting table for testing the performance of the IFWA. The second sub-sectionis a performance test
of the improved feature selection algorithm (FSA) and FWA. The third sub-sectionis about the analysis of the
effectiveness of improving the algorithm in practical applications.

Improved feature selection algorithm and IFWAM performance testing parameter settings
Optimizing the FSA into multi-objective feature recognition can improve the processing speed of the algorithm
for network data. Meanwhile, the IFWAM can solve for the optimal explosion point. The related parameter
settings during the optimization of the FWA are denoted in Table 4.

From Table 4, in the optimization, the optimal size of the fireworks population was 50, and the optimal
number of iterations and tests for the algorithm was 150, which could obtain the optimal weight and bias
values of the algorithm?®. After combining the improved algorithm with the fuzzy neural network model, to
avoid model collapse caused by incompatibility between the two algorithms, a fusion threshold similar to fuzzy
sets and rules was set to protect the hardware devices implementing the algorithm by limiting the threshold
range. The optimal fusion threshold was 0.5 and 0.7. There were weighting factors in the fitness function of the
improved algorithm. The weighting factors for the fitness function could be set to 0.7, 0.1, and 0.1 after multiple
calculations. There was also a certain threshold for the population size of the FWA, with the best dataset being 85
and the best fireworks population being 50. The principles, categories, and impacts of malicious attack behavior
during FS are denoted in Table 5.
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Parameter name Value Parameter number
Number of optimization Iterations 150 1
Fitness factor X,=07,X,=0.2,X,=0.2 | 2
Fuzzy rule similarity convergence threshold | 0.5, 0.7 3
Parameter setting N=85,A=50 4
Firework population size N=50 5

Table 4. Algorithm performance test parameter setting table.

Attack category Impact Principles

Local attacks Grants unauthorized intruders operational privileges Manipulates the host remotely through malicious code

Remote attacks Illegal occupation of system resources Elevates account privileges or steals account information through illicit means
DoS Host is unable to perform operations or crashes Floods the host with data, reaching storage or transmission limits
Eavesdropping attacks Monitoring legitimate user operations Attacks exploiting port vulnerabilities

Secret Attacks Leakage of user privacy Intercepts information and decodes keys

Man-in-the-middle attack (MITM) | Alters information transmitted between user and service

Intercepts and modifies communication between the user and the target
server

Malware propagation

S . . Guides users to download malicious programs through emails or download
pread of viruses or Trojan programs links

Phishing attacks

Creates fake web pages to lure users into providing passwords and personal

Deceives users into entering sensitive information : .
information

Table 5. Table of malicious network attacks.

In Table 5, during the optimization of the FSA, the occurrence of malicious behaviour, such as a DoS attack,
could have a detrimental impact on the host’s storage capacity and transmission efficiency. This was achieved
by the malicious actor sending substantial amounts of data, thereby overwhelming the host’s transmission
capabilities and leading to a decline in its operational capacity. Consequently, the host might become
unresponsive, ultimately resulting in a complete system failure. Local attack behavior utilized malicious code
to randomly arrange and combine many letters and numbersto obtain the host’s password. After opening the
system with the password, remote operations could be performed on the host. Such malicious behavior is a
tacit approval of granting unauthorized intruders operations, resulting in the lack of security for user and host
information. Remote attacks use illegal means to steal advanced users’ account information or change users’
account information, which can pose a threat to user privacy. Listening is the act of stealing user information
through the use of network vulnerabilities, resulting in the leakage of users’ intentions and a decrease in trust in
the algorithm. In standardized indicators, Accuracy represents the proportion of correctly identified malicious
behavior samples to the total sample; Sensitivity/Recall represents the proportion of correctly identified
malicious behavior, reflecting the risk of missed detections; Response Time represents the average time taken
from data input to model output of safety analysis results, including the entire process of feature selection and
classification inference®.

Performance and effect analysis of the improved algorithms
The parameter settings in Table 4 during the optimization of the FWA can ensure that the most reasonable
training coefficients can be used to achieve the optimal weights and biases of the fireworks fusion model. Table 5
summarizes the common but ineffective malicious behaviors encountered by FSAs when processing network
data. The study selected different datasets to test the performance of the improved algorithm. The smaller dataset
used in the test was the Palmer Penguin dataset, the medium-sized dataset was the Fashion MNIST dataset, and
the large dataset was the shared bike dataset. The link to the Palmer Penguin dataset was https://gitcode.com/g
h_mirrors/pa/palmerpenguins. The link to the Fashion MNIST dataset was https://gitcode.com/gh_mirrors/fa
/fashion-mnist Fashion MNIST. The link to the shared bike data set was https://github.com/topics/bikesharing.
The improved FWA collects feature information of data in different dimensions of the dataset, as shown in Fig. 8.
From Fig. 8,when the size of the dataset was small, the particle swarm optimization (PSO) algorithm collected
data features more frequently when the training times were between 500 and 1700, but the number of collected
data was relatively small, all below 2500. As the size of the dataset increased, the PSO algorithm still maintained a
relatively low level of information collection for the dataset, but was no longer limited to a few training iterations
for data collection. When the FWA was trained on smaller datasets with fewer iterations, the sensitivity of the
data was lower and there was almost no processing of the dataset. As the size of the dataset increased, there was
no significant change in the number of information collected by the algorithm, which remained below 3000.
However, there was a significant change in the algorithm when the training times were greater than 10,000
and it was in a large-scale dataset. When IFWAM collected information from datasets, regardless of the size
of the dataset or the amount of algorithm training iterations, the number of collected data information was
almost always greater than 3000. Moreover, with the increase of data size and algorithm training times, it was
evident that the IFWAM algorithm enhanced its ability to collect data information, with a wider range and more
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Fig. 8. The number of data that a feature selection algorithm can accurately select in data sets of different sizes.

numbers of data information. When the dataset size was intermediate or large, IFWAM’s data collection reached
5000. The sensitivity of the feature algorithm varied with the number of training iterations, as shown in Fig. 9.
From Fig. 9,in Fig. 9 (a), when the training frequency was 20 times, the sensitivity of the traditional FSA was
45%, and the sensitivity of the single-objectiveFSA was 60%. The sensitivity of multi-objective algorithm was
80%. When the training frequency is 30, the sensitivity of the single objective algorithm is still between 50%
and 60%; The sensitivity of multi-objective algorithm is still the highest, reaching 90%, and remains around
90% when the training frequency is in the range of 30 to 80. When the training frequency was 40 or 50 times,
there was no significant difference in algorithm sensitivity with increasing training frequency.When the training
frequency was 60, the sensitivity of the traditional FSA was 40%, and the sensitivity of the single-objectiveFSA
was 64%. At this point, the sensitivity of the multi-objective FSA decreased to 57%. As the training frequency of
the algorithm changed, the sensitivity of the traditional FSA fluctuated between 40% and 50%, the sensitivity of
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Fig. 10. Improvement of the fit between the output prediction and the actual value of the FWA fusion model.

the single objective algorithm fluctuated between 50% and 70%, and the sensitivity of the multi-objective FSA
fluctuated between 70% and 100%. Although the sensitivity of multi-target FSA reaches 70% -100%, there is an
abnormal decrease at 60 training iterations. Through tracing, this phenomenon originated from the local feature
similarity between fashion accessories and malicious traffic in the Fashion MNIST dataset, leading to false
activation of the fuzzy neural network. This reveals the allergy problem of the model to specific non threatening
patterns. The fitting between the output prediction and actual values of the IFWAM fusion model is shown in
Fig. 10.

From Fig. 10,the difference between the predicted output value and the actual value of the FWA model was
significant, indicating poor fitting. The predicted values of IFWAM almost overlapped with the actual output line,
indicating a high degree of fit. In 10 (a), when the sample size was 100, the actual and predicted output values of
the FWA were 0.6 and0.8, respectively. When the sample size became 200, the predicted and actual output values
of the algorithm were 0.55 and0.6, respectively. As the sample size increased, the predicted and actual output
values of the algorithm respectively fluctuated between 0.53-0.83andbetween 0.6-0.7, with a fitting degree of
about 46.8%-54.5%. In 10 (b), when the training frequency was 100, the predicted and actual values of IFWAM
were 0.6 and 0.5 respectively, with a difference of only 0.2 between both values.When the training frequency
was 200, the predicted value almost matched the actual value. As the training frequency increased, there was
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no significant difference between both values of the algorithm, with a maximum difference of 0.3. When the
training times was 300, the actual and predicted valueswere 0.55 and 0.56, respectively. When the training times
was 400, the predicted and actual valueswere 0.5 and 0.5, respectively. The long-term accumulation performance
of IFWAM in processing network data information in different datasets in experimental environments is shown
in Fig. 11.

The comprehensive performance score is based on the weighted geometric mean of five dimensional
radar images, covering accuracy, sensitivity, response time, iteration times, and resource consumption, with
a maximum score of 10 points for each item*. Figure 11 shows the comprehensive performance of different
models in processing data information in long-term experimental environments on datasets of different scales.
Study used the IFWAM combined with fuzzy neural networks to achieve accuracy, precision, and other metrics.
A pentagon in Fig. 11 represents the scoring criteria of 2 points, and performance evaluation is represented in
the form of pentagonal indicators. In a smaller dataset, the sensitivity score of the IFWAM was 8, indicating its
excellent performance in identifying positive instances and effectively reducing false negative cases. However,
its accuracy was 6, although it performed well, its accuracy dropped to 5 in medium-sized datasets, indicating
that the model may have overfitting or insufficient generalization ability when dealing with complex data. In
addition, a response time score of 10 demonstrated the efficiency of IFWAM in real-time applications, ensuring
the feasibility of timely decision-making. If the number of iterations was 6, it indicated the robustness of the
model in terms of convergence and the ability to reach a solution quickly. The performance of the rapidly-
exploring random trees (RRT) model and the FWA model was worse than that of IFWAM. From the performance
comparison chart, the indicators of the other two models were almost surrounded by FWAM.Only the RRT
model performed better than IFWAM in terms of accuracy performance, with a score of 8, but its accuracy and
response values were poor, only 1, so the overall performance of the model was poor. The accuracy and precision
of the FWA model were relatively good compared to its other performance, at 2, while the other performance
evaluations were only 1. The testing accuracy of IFWAM significantly decreased to 5 on medium-sized datasets.
This phenomenon indicates that the model may have overfitting or insufficient generalization ability when facing
more complex data. In depth analysis shows that the performance degradation is mainly due to two reasons: the
imbalance between model complexity and data size, and the insufficient sample size provided by medium-sized
datasets to support the full learning and generalization of the IFWAM model’s complex parameter space, which
may result in overfitting on training data and poor performance on unseen data. Similar analysis results also
appeared in the study of Chatur N et al., who found that in the resource allocation scenario of data transmission,
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the accuracy of FWA decreased by more than 10% when the sample size was insufficient®!. The complexity of
nonlinear feature interactions increases, and medium-sized data typically contains richer nonlinear interaction
relationships between features. The current structure or optimization strategies of IFWAM models have
limitations in effectively capturing and processing such complex nonlinear patterns.

In terms of computational complexity, compared with traditional single-objective feature selection algorithms,
the research method has increased the training time by approximately 15% to 20% and the memory usage by
about 25%. This is mainly due to the overhead of multi-label evaluation and iterative calculation of adaptive
functions. However, tests on large datasets such as the shared bike dataset show that while the model maintains
an accuracy rate of 83% to 95% in identifying malicious behaviors, the growth of its resource consumption
remains within a controllable range. Compared with the PSO and RRT algorithms, this model takes 1.3 times
and 1.5 times respectively to complete the processing of 5,000 pieces of data in the same hardware environment,
but the recognition accuracy has increased by more than 30%. Considering the parallel computing capabilities
of modern server clusters, this level of resource growth is acceptable for real-time network security monitoring
systems. In the future, resource efficiency can be further optimized through algorithm simplification and
hardware acceleration.

Analysis of the application effect of the improved algorithms

Performance experiments were conducted on the skill algorithm and model in different datasets, and the
results demonstrated the stability of the improved algorithm’s overall performance, as well as its high sensitivity
to different types of data. To further confirm the feasibility of the improved algorithm, the study conducted
experiments on the high-performance improved algorithm under simulation conditions. The time required for
adaptive adjustment of network data before and after applying the FSA is shown in Fig. 12.

From Fig. 12, as the complexity of network data changed, the parameter bias value of the algorithm
continuously decreased. As the number of iterations and the amount of network data changed, the optimal bias
value of the algorithm was 0.4. In Fig. 12 (a), when the FSA was not applied, the adjustment time required from
high bias values to low bias values was a training time of 0.1 bias values. As the complexity of the network data
increased, the adaptive algorithm adjustment time did not decrease and still maintained the training time of 0.1
bias values until the number of iterations reached 500, which was already the optimal bias value of the algorithm.
So the subsequent adjustment of bias values was no longer meaningful. In Fig. 12 (b), after applying the FSA,
the adjustment time required from high bias values to low bias values was 0.05. As the complexity of the data
increased, the adjustment time did not change. The adaptive adjustment time was reduced by half, and the data
processing efficiency was significantly improved after the algorithm was applied. The comparison of perceived
quality of different models facing network data information is shown in Fig. 13.

From Fig. 13 (a) and (b)show the variation of perceived quality size with data information size when applying
a single-objective model and a multi-objective model, respectively. Algorithmic perception is essentially
a feedback mechanism used to correct and monitor the performance of a model. When the size of the data
information was 5, the perceptual quality of the single-objectivemodel was 0.5, and the perceptual quality of
the multi-objective model was 0.65, with a difference of 0.15. When the size of the data was 10, the perceptual
quality of the single-objective model for data information decreased to around 0.38, and the perceptual quality
of the multi-objective model also changed, with a change in its ability to perceive data information, decreasing
to 0.54, with a difference of 0.16.When the data size was 15, the perceptual quality of the single-objective model
improved to around 0.57, while the perceptual ability of the multi-objective model was 0.02 lower than that of
the single-objective, at 0.55. When the data information size was 20, the perceptual quality of the single object
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Fig. 12. Time comparison of adaptive adjustment of network data analysis before and after application of
feature selection algorithm.
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Fig. 14. The comparison of the identification accuracy of different algorithms for malicious behaviors in the
same data set.

model was 0.4, and it was 0.6 at 25. The difference in perceived quality between multi-objective and single-
objective was 0.1 and 0.03, respectively. The vast dataset not only contained normal data information, but also
some malicious behaviors hidden in network data. The comparison of the recognition accuracy of different
algorithms for malicious behaviors in the same dataset is shown in Fig. 14.
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Metric IFWAM | Standard FWA | PSO | RRT | LSTM
Average Threat Detection Rate (%) 95.8 82.3 85.6 |79.1 [93.5
Known Attack Detection Rate (%) 99.2 95.5 96.8 |90.2 |98.5
Unknown Attack Detection Rate (%) 73.5 45.1 483 |41.6 | 65.2
Average False Positive Rate (%) 1.5 4.8 39 7.2 2.8
System Response Delay (ms) 135 208 192 | 185 | 350
CPU Utilization (Peak, %) 55 70 65 60 85
Feature Dimension (After Optimization) | 45 72 68 - -

Table 6. Comprehensive performance comparison of different algorithms in a simulated enterprise network
security monitoring scenario.

Figure 14 compares the accuracy of malicious behavior recognition in network data information using five
algorithms: PSO, RRT, Long Short Term Memory (LSTM), FWAM, and IFWAM. From the figure, the accuracy
of different algorithms in identifying malicious behavior gradually decreased as the data sample size increased.
When the sample size was 1000, IFWAM had the highest accuracy in identifying malicious behavior, with an
accuracy of 95%. The accuracy of FWAMwas 87%, while the RRT algorithm had a lower accuracy of around
74%, the LSTM algorithm had a slightly lower accuracy of 68%, and the PSO had the lowest accuracy of around
63%.As the sample size increased, the accuracy of recognition decreased, with IFWAM dropping from 95% to
a minimum of 83%. The accuracy of FWA also varied in the same way, with the lowest accuracy reaching 60%,
and the lowest accuracy of RRT algorithm was also 60%. The minimum accuracy of LSTM was 50%, and the
accuracy of PSO was even close to 40%. However, unlike other algorithms, when processing an initial sample
size of 4500, the accuracy of IFWAM remains at 95%, which is higher than RRT’s 75% and PSO’s 61% accuracy.
The accuracy rate rebounded with a decrease to 82.1% (F1 value =85.3%), as the newly added samples contained
a large number of low-risk scanning behaviors (false positive rate increased by 23%). The discrimination of grey
area traffic by the reflection model relies on manual rule calibration, and in the future, a semi supervised learning
mechanism needs to be integrated. At a sample size of 4500, the accuracy of IFWAM rebounded to 95%, but
its actual performance needs to be analyzed in conjunction with F1 value: when the proportion of malicious
samples decreased to 2.1%, the model accuracy remained at 91.3%, and the F1 value reached 87.5%, significantly
higher than PSO (F1=42.1%) and RRT (F1=59.8%), verifying its stable recognition ability for minority classes.

To verify the comprehensive effectiveness of the proposed algorithm in a real network environment,
empirical testing was conducted in an enterprise level network security monitoring scenario. This scenario
includes a real hybrid traffic generator that continuously generates background traffic (web browsing, email,
video conferencing) and injects various known and unknown attack traffic (such as DDoS flood attacks, port
scanning, SQL injection, and simulated zero day attack traffic). All algorithms are deployed as a real-time analysis
engine to extract features and identify malicious behavior from traffic, and record their processing efficiency and
accuracy. The test lasted for 8 h with a total traffic of approximately 2 TB. In this simulated environment, the
comprehensive defense performance of different algorithms was evaluated, and the results are shown in Table 6.

As shown in Table 6, the proposed IFWAM model demonstrates comprehensive advantages in simulated
real-world application scenarios. Its high unknown attack detection rate (73.5%) and low false alarm rate
(1.5%) are attributed to the strong generalization ability and anti-interference ability brought by multi-objective
optimization and fuzzy neural networks, indicating its effectiveness in dealing with new threats. IFWAM reduces
system response latency to 135 milliseconds and significantly reduces CPU usage, which is directly attributed
to its efficient feature selection mechanism that compresses data dimensions from over 200 to 45 dimensions,
greatly improving computational efficiency and proving its feasibility for deployment in high-throughput
network environments. In contrast, PSO and standard FWA algorithms have shortcomings in both accuracy
and efficiency; Although the RRT algorithm has low latency; its detection rate and false alarm rate indicators are
difficult to meet actual security requirements; Although the LSTM model has a decent detection rate, its high
computational resource consumption and high latency make it difficult to apply on resource constrained edge
security devices.

Conclusion

The research aims to design an IFWAM that combines Gaussian operators and adaptive functions to improve
sensitivity and accuracy in network data processing. During the process, the FS and FWA were optimized
by changing the single-objective selection to a multi-objective multi label model. A fitness function and
Gaussian operator were introduced into the FWA and fused with a fuzzy neural network to construct a new
model. The design included technical analysis of multi-objective optimization models and how to evaluate the
performance of datasets in long-term experimental environments. The experimental results showed that the
multi-objective algorithm could collect data information up to 5000, while other algorithms could collect up
to 3000. In the sensitivity experiment, the algorithm maintained a high sensitivity of 70%-100%. In terms of
perceptual quality, the maximum difference in perceptual quality before and after applying multi-objectives
was 0.15, and the minimum was 0.03. In the error experiment of the FWA, the maximum difference between
the actual value and the predicted value was only 0.3, the lowest comprehensive performance evaluation value
was 5, the adaptive adjustment time was reduced by half compared to before improvement, and the recognition
accuracy of malicious behavior remained at a high level, ranging from 83% to 95%. The study addressed the
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potential drawbacks of using Gaussian operators and adaptive functions in FWAs, which are mainly reflected
in the problem of the algorithm being prone to getting stuck in local optima. The decline in accuracy observed
on medium-sized datasets mainly results from the imbalance in the adaptation between model complexity and
data scale, as well as the interference of nonlinear feature interaction. When the dimension of the feature space
does not match the information volume of the medium dataset, some redundant parameters are prone to capture
noise patterns. Multi-label correlation leads to pseudo-correlation of certain feature subsets in a limited number
of samples. Although the adaptive weight adjustment mechanism and fuzzy rule-driven feature screening
designed by the research method have effectively alleviated this issue, in the future, the feature subset can still
be further streamlined by introducing sparse constraints, and the generalization ability of the lightweight model
can be verified in edge computing scenarios. The research optimized the traditional fireworks algorithm by
introducing Gaussian operators and adaptive functions, significantly enhancing the sensitivity and accuracy of
network data processing. However, for more complex cyber threats (such as zero-day attacks), in the future, it
is necessary to further enhance the model’s predictive capabilities by integrating deep learning technology with
big data behavior analysis frameworks. Specifically, the response strategy for zero-day attacks can be achieved
by constructing a deep neural network based on spatio-temporal feature extraction and using deep learning
to automatically learn the implicit patterns of attack behaviors from the traffic sequence. It can also integrate
multi-source threat intelligence big data and establish a dynamically updated attack feature knowledge graph to
enhance context awareness capabilities. There are still some generalization challenges in the research methods,
and the observed decrease in accuracy on medium-sized datasets is mainly due to the imbalance between model
complexity and data size adaptation, as well as the interference of nonlinear feature interactions; The sensitivity
of multi label feature selection to sample correlation may affect stability in heterogeneous network environments.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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