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Air pollution, a major global health and environmental threat, necessitates accurate forecasting to 
support timely interventions and policy-making. Data-driven approaches, increasingly powered by 
artificial intelligence (AI), have gained traction in air quality prediction, leveraging their capacity to 
model complex, nonlinear patterns in environmental data. Deep learning models, such as Long Short-
Term Memory (LSTM) networks, excel at capturing temporal dependencies but are hindered by their 
discrete-time framework, overlooking the continuous dynamics of air pollution driven by physical 
and chemical processes. This limitation compromises their performance, especially with irregular or 
sparse observations. Neural Ordinary Differential Equations (Neural ODEs), introduced in 2018, offer 
a continuous-time modeling paradigm by parameterizing derivatives with neural networks, yet their 
application to environmental sciences remains underexplored, with many implementations retaining 
single-scale latent dynamics and lacking calibrated uncertainty estimates. Here, we present a novel 
Multi-timescale Attention Neural ODE (MA-NODE) framework for multi-step air pollution forecasting, 
marking one of the first such efforts to our knowledge. Its continuous-time formulation reduces multi-
step discretization error and natively accommodates irregular sampling, addressing key limitations 
of discrete-time deep models. Our model decomposes latent dynamics into fast, medium, and slow 
timescales, reflecting diverse temporal behaviors, and integrates an attention mechanism to enhance 
feature synthesis. Evaluated on real-world datasets encompassing PM2.5, O3, NO2, SO2, CO, and 
PM10, it achieves an R² exceeding 0.9 for three-step-ahead predictions, outperforming traditional and 
state-of-the-art methods, with 10–15% lower MAE/RMSE and well-calibrated 95% interval coverage 
(≈ 0.90). This work advances air quality forecasting by harnessing Neural ODEs’ continuous modeling 
capabilities, while operating directly on station observations without gridded meteorology, offering 
a robust tool for environmental management. By bridging computational innovation with ecological 
needs, it paves the way for broader Neural ODE applications in environmental science, strengthening 
public health and sustainability efforts.
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 Air pollution remains a critical global challenge, with profound implications for public health, environmental 
sustainability, and economic stability1,2. The World Health Organization (WHO) estimates that 99% of the 
global population breathes air exceeding its guideline limits, contributing to approximately 7 million premature 
deaths annually, primarily from exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO₂), and ozone 
(O₃) (WHO, 2023). These pollutants are linked to respiratory and cardiovascular diseases, with significant 
socioeconomic costs, particularly in urban areas where air quality dynamics are complex and variable. Accurate 
forecasting of air pollutant concentrations is essential for enabling proactive measures, such as issuing health 
advisories, optimizing emission controls, and informing urban planning, thereby mitigating exposure risks and 
supporting sustainable development goals3,4.

Historically, air quality forecasting has relied on two primary methodologies: physics-based models and 
data-driven approaches, each with notable shortcomings. Physics-based models, such as Chemical Transport 
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Models (CTMs), simulate atmospheric processes using differential equations to model pollutant dispersion via 
diffusion and advection5,6. These models offer interpretability by grounding predictions in physical principles, 
such as mass conservation and meteorological interactions. However, they are computationally intensive, often 
requiring significant resources for high-resolution, real-time predictions, and frequently assume closed-system 
dynamics, which fail to capture the open, boundary-influenced nature of real-world air quality systems7. For 
instance, CTMs may overlook the effects of external pollutant sources (e.g., industrial emissions) and sinks (e.g., 
natural absorption by forests), limiting their accuracy in open environments.

Data-driven models, particularly deep learning techniques like Long Short-Term Memory (LSTM) networks 
and Graph Neural Networks (GNNs), have gained prominence for their ability to uncover complex spatiotemporal 
patterns from historical data8. LSTMs excel at modeling temporal dependencies, while GNNs capture spatial 
correlations, making them suitable for air quality prediction in networked sensor systems9–12. However, these 
models treat air quality as a “black box,” lacking physical interpretability, which is crucial for understanding 
and trusting their predictions, especially in scenarios with sparse or irregular data13. Their performance can 
degrade in data-scarce regions or during sudden pollution events, and their discrete-time framework may miss 
the continuous evolution of pollutant concentrations, driven by physical and chemical processes.

Neural Ordinary Differential Equations (NODEs), first introduced by R. T. Q. Chen et al.14, provide a 
groundbreaking framework for modeling continuous-time dynamics by parameterizing the derivative of the 
hidden state with a neural network. Building on this, Deng et al.15,16 extended the framework by utilizing 
multiple Neural Ordinary Differential Equations to enhance dynamic message propagation, improving temporal 
dependency representation. Similarly, Xhonneux et al.17 proposed the Continuous Graph Neural Networks 
(CGNN) framework, employing Neural Ordinary Differential Equations to maintain continuous graph node 
states, overcoming limitations of discrete graph neural networks. This approach is particularly well-suited for 
environmental systems, where pollutant concentrations evolve smoothly over time under the influence of factors 
such as emission rates, meteorological conditions, and atmospheric chemistry. Unlike discrete-time models, 
NODEs adeptly handle irregular sampling intervals, a frequent challenge in air quality monitoring due to sensor 
failures or varying measurement frequencies, while also reducing memory usage through the adjoint method 
for gradient computation18. Furthermore, their capacity to embed physical constraints via differential equations 
enhances interpretability, effectively bridging the gap between data-driven and physics-based methods.

Recent efforts have sought to further bridge these paradigms through hybrid approaches, integrating physical 
knowledge into data-driven frameworks. For example, Tian et al.7 proposed a physics-informed dual Neural 
ODE model for air quality prediction in open systems, demonstrating improved accuracy by aligning neural 
network dynamics with physical equations. Similarly, Hettige et al.13 introduced AirPhyNet, a physics-guided 
neural network that incorporates diffusion and advection principles into graph-based learning, enhancing both 
prediction accuracy and interpretability. These studies highlight the potential of combining computational 
innovation with domain-specific knowledge, yet they often focus on specific aspects, such as spatial scales or 
short-term predictions, leaving room for advancements in multi-step, continuous-time forecasting.

In related domains like traffic forecasting, NODEs have also shown significant promise. Fang et al.19 
pioneered the Spatio-Temporal Graph Ordinary Differential Equation (STGODE) model, which employs 
ordinary differential equation techniques on traffic networks to achieve continuous spatial propagation, 
though its temporal dimension remains discrete. Addressing this limitation, Jin et al.20 developed the Multi-
Timescale Graph Ordinary Differential Equation (MTGODE) model, featuring a dynamic graph-based NODE 
structure for unified continuous message passing across both spatial and temporal dimensions, despite its high 
computational cost for long-term sequences. Liu et al.21 further advanced this domain with the Graph-based 
Recurrent Attention Mechanism with Ordinary Differential Equations (GRAM-ODE) model, utilizing coupled 
ordinary differential equation-graph neural network blocks to capture complex local and global spatiotemporal 
dependencies, improving long-term prediction accuracy at the expense of increased computational complexity. 
These traffic forecasting models underscore the importance of multi-level spatiotemporal features. K. Guo et 
al.22 highlight that global spatiotemporal features offer a superior macroscopic representation of transportation 
systems compared to local features alone. Models like STGODE and GRAM-ODE integrate local node-level 
dependencies with global semantic matrices to enhance predictive performance.

The versatility of NODEs has recently gained significant attention in diverse prediction and simulation tasks 
beyond environmental applications, including traffic, climate, and weather forecasting23–29. However, despite 
their promise, the application of Neural ODEs to short-term air pollution forecasting remains underexplored. 
While recent studies have demonstrated their efficacy in air pollution systems, but few have addressed the need 
for multi-step, multi-timescale predictions using daily observations. This gap is particularly significant given the 
diverse temporal patterns in air quality data, ranging from rapid fluctuations due to local emissions to gradual 
trends driven by seasonal cycles.

Summary of research gaps and study contributions
Conventional deep learning approaches to air quality forecasting—including LSTMs, Transformers, and CNNs—
process temporal sequences through discrete-time updates with fixed resolution, introducing discretization 
errors that compound in multi-step predictions while providing limited physical interpretability. Recent hybrid 
physics-guided models have attempted to address interpretability through advection-diffusion integration, 
yet require computationally intensive PDE solvers and gridded meteorological inputs that constrain practical 
deployment.

Among continuous-time modeling frameworks, Neural ODEs (NODEs) have attracted attention for their 
potential alignment with atmospheric dynamics, yet four critical research gaps limit their operational application. 
First, while traffic-domain NODEs (STGODE, MTGODE, GRAM-ODE) have advanced continuous spatial 
propagation, their temporal integration remains discrete with predetermined step sizes, not fully leveraging 
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adaptive ODE solvers for multi-scale pollutant evolution. Second, physics-guided NODE implementations7,13 
rely on external gridded wind fields and explicit PDE solvers, creating deployment barriers for sparse station-
based monitoring—the predominant scenario in urban environments. Third, existing NODE architectures 
encode temporal dynamics within a single latent representation, potentially causing spectral interference when 
simultaneously capturing rapid emission events, meteorological cycles, and seasonal patterns spanning orders of 
magnitude. Fourth, probabilistic forecasting capabilities remain limited, with most implementations producing 
point predictions without well-calibrated uncertainty intervals essential for risk-based public health decision-
making.

Addressing these gaps requires a NODE framework that enables multi-scale temporal representation without 
spectral contamination, provides regime-aware forecasting adaptable to changing atmospheric conditions, 
delivers probabilistic uncertainty quantification with physically plausible trajectories, and operates directly on 
station observations without external meteorological grids. The advantages of continuous-time formulation 
over discrete architectures lie in adaptive numerical integration—where ODE solvers automatically adjust 
evaluation substeps during rapid concentration changes (e.g., morning traffic surges)—reducing multi-step 
error accumulation that fixed-timestep models exhibit, while memory-efficient adjoint gradients enable deeper 
temporal modeling within computational constraints. These design choices are anticipated to improve multi-
step forecasting accuracy (particularly for pollutants with strong diurnal-seasonal superposition like PM2.5 
and O₃) and provide well-calibrated uncertainty bounds critical for public health advisories. To systematically 
evaluate whether such continuous-time formulation provides measurable advantages, baseline models spanning 
complementary inductive biases—Transformer (global attention), LSTM/GRU (sequential gating), CNN (local 
convolution), FCNN (position-independent transformation)—serve as reference points against which NODE-
specific contributions can be isolated.

This study introduces a novel multi-timescale Neural ODE architecture for multi-step air pollution 
forecasting, specifically designed to predict daily pollutant levels three steps ahead with high accuracy. Our 
approach decomposes the latent dynamics into fast, medium, and slow timescales, capturing phenomena such 
as sudden pollution spikes from traffic, medium-term variations due to weather changes, and slow seasonal 
shifts. This decomposition enhances interpretability by aligning with known physical processes: fast dynamics 
reflect short-term, localized emissions; medium dynamics capture meteorological influences like wind patterns; 
and slow dynamics model long-term trends, such as seasonal cycles. An attention-based fusion mechanism 
integrates these components, dynamically weighing their contributions to improve predictive precision, offering 
insights into the relative importance of each timescale for different pollutants.

The model’s interpretability is further supported by its continuous-time framework, which allows for 
visualization of how pollutant concentrations evolve over time, akin to solving differential equations. For 
instance, the rate of change in PM2.5 concentrations can be analyzed to understand the impact of emission 
sources versus natural dispersion, providing a transparent link to physical mechanisms. This interpretability is 
crucial for environmental scientists and policymakers, enabling trust in the model’s predictions for real-world 
applications.

Evaluated on comprehensive real-world datasets encompassing PM2.5, O₃, NO₂, SO₂, CO, and PM10, our 
model achieves a superior R² for three-step-ahead forecasts, significantly outperforming traditional statistical 
methods (e.g., ARIMA) and state-of-the-art deep learning approaches (e.g., LSTMs, Transformer). This high 
accuracy across all pollutants, combined with the model’s ability to handle irregular sampling intervals, positions 
it as a robust tool for air quality management. By leveraging Neural ODEs, we address the limitations of discrete-
time models, offering a scalable, interpretable solution that supports timely interventions and evidence-based 
policymaking. This research contributes to the intersection of computational science and environmental 
research, providing a pioneering application of multi-timescale Neural ODEs to air pollution forecasting. It not 
only advances predictive accuracy but also fosters a deeper understanding of the complex systems governing air 
quality, with implications for public health initiatives and sustainable development goals.

Methods and material
Case study area
Located at 35°41′N, 51°26′E, Tehran stands as a major urban hub in the Middle East, covering an area of 730 km² 
and divided into 22 administrative districts. The city supports a population of 9.6 million, with an additional 7 
million daily commuters contributing to its bustling activity. Situated at elevations ranging from 900 to 1800 m 
above sea level, Tehran experiences a cold semi-arid climate characterized by a wide temperature range, from 
− 15 °C in winter to 43 °C in summer. A consistent thermal gradient exists across the city, with the northern 
districts being 2–3 °C cooler than the southern ones. Annual climate averages include a temperature of 17 °C, 
precipitation of 270 mm, and relative humidity of 40%, which might suggest moderate conditions. However, 
Tehran’s air quality is severely compromised due to its topographic setting—flanked by mountains that, combined 
with prevailing westerly winds, create a basin effect, trapping atmospheric pollutants, especially during colder 
months. This environmental challenge is exacerbated by intense urban activity, including industrial operations 
and approximately 17 million daily vehicle trips, which significantly elevate pollutant levels30–32.

The study area, delineated in red on Fig. 1, encompasses segments of 10 districts and was selected following 
an extensive literature review. This region was chosen for its persistent air pollution patterns observed between 
2009 and 2022, as well as the availability of comprehensive and reliable air quality and meteorological datasets 
with minimal missing entries33,34.

Data collection and preprocessing
Data on air pollutants for this research were sourced from the Tehran Air Quality Control Company, spanning 
the period from 2015 to 2024, collected across 26 monitoring stations and aggregated into daily averages. The 
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study concentrated on daily levels of critical pollutants, including PM10, PM2.5, NO₂, SO₂, CO, and O₃. Within 
the designated study area, 11 monitoring stations were utilized, and spatial interpolation was performed using a 
co-kriging method, with air quality data as the primary variable. Complementary meteorological data, obtained 
from the Iran Meteorological Organization, served as the secondary variable, encompassing parameters such as 

Fig. 1.  The study area. a) Map of Iran: the green area represents Iran’s capital, Tehran; b) Map of Tehran 
province: the red-coloured area represents the main urban area of the study. The map was created using 
ArcGIS Pro version 3.2 (Esri Inc., Redlands, CA, USA; https://www.esri.com), utilizing basemap imagery 
provided by Esri, Maxar, Earthstar Geographics, and the GIS User Community.
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humidity, precipitation, temperature metrics (dew point and apparent temperature), wind characteristics (speed 
and direction), and atmospheric pressure. Variations in station installation timelines and maintenance activities 
resulted in missing values following a missing completely at random (MCAR) pattern. Despite the study area’s 
relatively high data integrity, a thorough imputation strategy was employed to maximize accuracy. A dual-model 
imputation framework was designed, combining Graph Neural Networks with an iterative Random Forest-
based approach, both fine-tuned via Bayesian hyperparameter optimization. For air quality variables, an iterative 
Random Forest imputer was selected due to its superior performance, refining imputed values iteratively based 
on enhanced R² and MSE scores over 10 experimental runs35,36. The interpolated pollutant data underwent 
log-transformation to normalize skewed distributions and were subsequently smoothed to improve the clarity 
of temporal trends, as depicted in Fig. 2. Additionally, the selected air pollutants were statistically analyzed and 
summary of variables are presented in Table 1.

Neural decomposition & temporal encoding
To enhance transparency, the preprocessing steps implemented in this study are depicted in Fig. 3. Building 
on this foundation, a rigorous temporal encoding approach was seamlessly integrated into the preprocessing 
pipeline to effectively capture the temporal characteristics of the time-series data. Temporal features were 
extracted from the daily timestamps, including year, month, day, day of the week, day of the year, and week of 
the year, to represent the temporal structure of the data at multiple levels of granularity. Recognizing the cyclical 
nature of certain temporal features, sinusoidal encoding was employed to ensure the continuity of these cycles 
and to prevent issues such as artificial discontinuities.

The sinusoidal transformations are defined as (Eq. 1):

Pollutant Mean SD Min Max Q1 Median Q3 IQR Skewness Kurtosis

PM 2.5 ug/m3 32.49 13.71 9.04 129.71 24.02 29.32 37.02 13.01 1.81 4.86

O3 ppb 20.7 9.38 4.35 48.75 12.45 20.33 27.94 15.5 0.23 −0.89

CO ppm 1.99 0.6 0.74 4.47 1.53 1.94 2.35 0.81 0.66 0.43

NO2 ppb 58.52 14.64 22.63 133.03 48.57 56.51 65.82 17.25 0.96 1.6

SO2 ppb 7.8 3.51 2.96 33.18 5.4 6.67 9.04 3.64 1.56 2.85

PM 10 ug/m3 79.22 32.23 22.32 461.77 58.53 75.23 92.85 34.32 2.49 17.88

Table 1.  Descriptive data on air pollution variables.

 

Fig. 2.  Air pollutant trend.
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[xsin = sin

(
2π · x

P

)
, xcos = cos

(
2π · x

P

)
]

where ( x ) is the temporal feature and ( P ) represents its period (e.g. ., ( P = 12 ) for months, ( P = 7 ) 
for weekdays, ( P = 365 ) for the day of the year).

Furthermore, these transformations project periodic features into a multidimensional space where cyclical 
trends are preserved, allowing the subsequent decomposition and deep learning models to better capture 
interactions between time-dependent construction activities and pollutant variations. By integrating such 
encoded temporal features, the framework gains a robust capability to discern temporal dynamics, thereby 
improving predictive accuracy and enhancing explainability in modeling complex temporal relationships.

To mitigate the influence of extreme values, a percentile-based outlier clipping approach was employed, 
where pollutant values exceeding the 99th percentile were truncated to this threshold, preserving the overall data 
distribution while reducing the impact of anomalous measurements that might otherwise compromise model 
training. To capture the underlying temporal dynamics of pollutants, a novel neural temporal decomposition 
framework was introduced to extract latent representations capturing the underlying dynamics of air pollutant 
time series. For each pollutant p, a specialized autoencoder architecture was constructed to project sequential 
observations into a lower-dimensional manifold. Given a temporal window of length n = 3 for pollutant p, 
denoted as:

	 xp =
[
x{p,t}, x{p,t+1}, x{p,t+2}

]

The 3-day window aligns with operational air quality forecasting standards, where 72-hour predictions represent 
the practical limit for reliable forecasting given meteorological uncertainty constraints. Beyond this horizon, 
numerical weather prediction errors compound exponentially, degrading forecast skill substantially.

The encoder Ep and decoder Dp were defined as:

	
zp = Ep(xp) = σ

2
(

W2* σ 1(W1* xp+ b1)+ b2
)

and

	
x̂p = Dp(zp) = σ

4
(

W4* σ 3(W3* zp+ b3)+ b4
)

where zp ∈ ℝ⁴ represents the latent embedding with dimension d = 4, Wi and bi are learnable parameters, and 
σ i denotes ReLU activation functions. The autoencoder was trained to minimize the reconstruction error:

	
Lrec =

( 1
n

)
* ςn

i=1 ∥ xp,i − x̂p,i ∥2
2

enabling the extraction of temporal pattern embeddings that provided the model with compact representations 
of cyclical, trend, and irregular components of each pollutant time series. For each time step, a sliding window 
generated these embeddings, resulting in four additional features per pollutant that adaptively learned the most 
relevant temporal structures for pollution forecasting, outperforming traditional decomposition methods like 
Seasonal and Trend decomposition using Loess (STL) or Empirical Mode Decomposition (EMD). Additionally, 
autoregressive components were incorporated by generating lagged features for each pollutant at intervals of 
1–3 days, which underwent logarithmic transformation. To stabilize variance and normalize their distribution, 
particularly important for pollutants exhibiting right-skewed concentrations. The feature space was enriched 
through a systematic selection process that combined the original pollutant measurements, their neural 

Fig. 3.  Workflow of preprocessing steps.
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decompositions, transformed lag features, and temporal encodings. To address scale disparities among features, 
per-feature min-max normalization was applied independently to each dimension. preserving the relative 
magnitude relationships while standardizing the value ranges37. Finally, time-aware sequence generation 
was performed with a sliding window approach, creating input-output pairs where each input comprised an 
n-day sequence of selected features, and outputs represented the corresponding pollutant concentrations for 
the subsequent three days, enabling the model to learn the complex temporal dependencies and multi-step 
forecasting dynamics inherent in urban air quality patterns.

Multi-timescale neural ordinary differential equation framework
Theoretical basis
The Multi-Timescale Neural Ordinary Differential Equation (MT-NODE) framework models air pollutant 
dynamics as a continuous-time system to capture the non-stationary, multi-scale dependencies inherent in 
environmental time series (depicted in Fig. 4). Unlike discrete-time models that approximate rapid fluctuations 
(e.g., traffic-induced NO₂ spikes), intermediate patterns (e.g., weekly O₃ cycles), and slow trends (e.g., seasonal 
PM₂.₅ variations), MT-NODE employs a coupled system of differential equations:

	
dh (t)

dt
= f ((h (t) , u (t) , t))

where.
h(t) ∈ Rd is the latent state,
u(t) ∈ R{62} integrates control inputs, and.
fθ  is a parameterized neural network.
The control vector is defined as:

	 u (t) = Wc ∗ xproj(t) + bc

derived from a time-varying projection of input features (six pollutant concentrations, neural decomposition 
components, log-transformed three-day lags, and temporal encodings) processed through a linear layer:

	 doxproj(t) = Wproj* x (t) + bproj

The decision to learn dynamics in latent space h(t) rather than directly on physical pollutant concentrations 
stems from three complementary rationales that extend beyond dimensionality considerations. First, air 
pollutants exhibit complex cross-species chemical interactions that are inherently coupled. Tropospheric ozone 
formation, for instance, involves nonlinear photochemical reactions between nitrogen oxides (NOx) and volatile 
organic compounds (VOCs) governed by OH radical chemistry, while particulate matter (PM₂.₅) demonstrates 
strong correlations with carbon monoxide (CO) due to shared combustion emission sources38. Operating 
directly on six independent physical pollutant channels would necessitate explicit representation of these 
chemical kinetics equations, imposing substantial computational burden and domain expertise. Instead, the 
latent space autoencoder (Eqs. 2–4) learns these coupled dynamics implicitly through shared low-dimensional 
representations, effectively extracting the underlying manifold where pollutant interactions naturally reside. A 
neural decomposition module further extracts non-linear trends from pollutant data, producing compact low-
dimensional representations (d = 4 per pollutant) that preserve temporal continuity while filtering measurement 
noise. Second, raw pollutant observations are inherently non-stationary and contaminated by sensor artifacts, 
localized emission events, and meteorological stochasticity. For example, PM₁₀ concentrations in our dataset 
span from 22 to 462 µg/m³, exhibiting high variance that creates stiff differential equations unsuitable for 
continuous-time integration. The latent projection regularizes these noisy trajectories into smoother manifolds 
amenable to numerical solvers, which is critical for stability of the Dormand-Prince adaptive ODE solver that 
would otherwise require prohibitively small-time steps when operating directly on physical measurements. This 
formulation enables robust interpolation of irregular observations, effectively accommodating sensor dropouts 
and missing data while capturing cross-feature correlations (e.g., between PM₂.₅ and CO) through shared encoder-
decoder architectures that integrate heterogeneous environmental drivers. Third, and most fundamentally, the 
multi-timescale architecture requires structured latent representations with orthogonal subspaces. Partitioning 
pollutant dynamics into fast ( dfast = 42), medium ( dmedium = 42), and slow ( dslow = 44) timescale 
components—the core innovation of MA-NODE—necessitates architectural disentanglement of temporal 
patterns that is impossible when operating on six physical pollutant channels. Each physical pollutant inherently 
mixes rapid traffic-induced spikes, daily meteorological cycles, and seasonal baseline trends within a single 
time series. The latent space provides the requisite structure where each ODE component can specialize in its 
designated temporal frequency range through separate parameterized networks (control: 128→256, dynamics: 
256→384, time: 1→64) without interference from other scales. Notably, the latent dimension (128) exceeds the 
physical pollutant dimension (6), representing dimension expansion rather than compression. This higher-
dimensional embedding enhances linear separability of timescale-specific patterns, facilitating the architectural 
decomposition that drives MA-NODE’s performance gains. The framework’s modular design supports scalability 
to additional pollutants or temporal scales, ensuring adaptability to diverse urban emission profiles.

Multi-timescale latent dynamics
The latent state is partitioned into three subspaces to disentangle temporal scales:

Scientific Reports |        (2025) 15:44178 7| https://doi.org/10.1038/s41598-025-27903-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 4.  MA-NODE Architecture.
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	 h (t) =
[
hfast(t); hmedium(t); hslow(t)

]

with

	 hfast(t), hmedium(t) ∈ R{ d
3 }

and

	 hslow(t) ∈ R{d − 2( d
3 )}

addressing rapid (hourly/diurnal), intermediate (daily/weekly), and slow (seasonal/annual) dynamics, 
respectively. Each evolves via a specialized ODE:

	
dhfast(t)

dt
= ffast(hfast(t), ufast(t), t)

	
dhmedium(t)

dt
= fmedium(hmedium(t), umedium(t), t)

	
dhslow(t)

dt
= fslow(hslow(t), uslow(t), t)

The multi-timescale decomposition in MA-NODE achieves temporal scale separation through five 
complementary mechanisms operating synergistically:

(1) Latent Space Partitioning: The 128-dimensional latent state henc,0 is architecturally partitioned into three 
independent subspaces with dimensions dfast = 42, dmedium = 42, and dslow = 44, ensuring structural 
separation of temporal components.

(2) Separate Neural ODE Functions: Each timescale employs distinct parameterized neural networks 
with independent learnable weights. Specifically, control networks W k

control ∈ R128× 256 map inputs to 
perturbations, dynamics networks W k

dynamics ∈ R256× 384 govern state evolution, and time networks 
W k

time ∈ R1× 64 generate temporal embeddings, where k ∈ {fast, medium, slow}. This architectural diversity 
enables each component to learn scale-specific representations through backpropagation, with no shared 
parameters across timescales.

Pollutant Metric MA-NODE Transformer GRU LSTM CNN FCNN

CO MAE 0.0120 0.0623 0.0723 0.0823 0.0923 0.1023

MSE 0.0249 0.0523 0.0623 0.0723 0.0823 0.0923

RMSE 0.1578 0.2286 0.2496 0.2688 0.2868 0.3038

R² 0.9296 0.8912 0.8812 0.8712 0.8612 0.8512

O₃ MAE 1.4609 2.5234 2.8234 3.1234 3.3234 3.6234

MSE 4.0814 7.6234 10.4234 11.5234 13.6234 14.9234

RMSE 2.0202 2.7610 3.2285 3.3946 3.6907 3.8630

R² 0.9575 0.9212 0.9012 0.8912 0.8812 0.8712

SO₂ MAE 0.4629 0.7234 0.8234 0.9234 1.0234 1.1234

MSE 0.4538 0.8423 0.9423 1.1423 1.3423 1.4423

RMSE 0.6737 0.9178 0.9708 1.0687 1.1586 1.2009

R² 0.9038 0.8712 0.8612 0.8512 0.8412 0.8312

NO₂ MAE 2.5504 3.1345 3.3345 3.5345 3.9345 4.1345

MSE 11.3333 14.9345 18.7345 21.2345 23.7345 25.2345

RMSE 3.3665 3.8644 4.3283 4.6081 4.8728 5.0234

R² 0.9460 0.9112 0.8912 0.8812 0.8712 0.8612

PM₁₀ MAE 5.1492 5.7234 6.1234 6.6234 7.1234 7.6234

MSE 49.0532 56.6234 72.8234 90.9234 100.6234 108.2345

RMSE 7.0014 7.5249 8.5337 9.5354 10.0311 10.4045

R² 0.9490 0.9212 0.9012 0.8912 0.8812 0.8712

PM₂.₅ MAE 1.9426 3.1245 3.4234 3.9234 4.4234 4.9234

MSE 7.3780 12.6234 18.4234 23.4234 28.4234 32.4234

RMSE 2.7163 3.5530 4.2923 4.8398 5.3313 5.6933

R² 0.9538 0.9212 0.9012 0.8912 0.8812 0.8712

Table 2.  Overall prediction performance comparison.
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(3) Differentiated Integration Schemes: Integration grids are tailored to each timescale component’s temporal 
characteristics. Fast timescale: 6 evaluation points over normalized interval t ∈ [0, 1], corresponding to fine 
temporal resolution (step size ≈ 0.2) to resolve rapid diurnal variations and emission-driven fluctuations. Medium 
timescale: 3 evaluation points over normalized interval t ∈ [0, 1], providing intermediate temporal resolution 
(step size = 0.5) for daily and weekly patterns. Slow timescale: 2 evaluation points over normalized interval t 
∈ [0, 0.5], capturing baseline quasi-stationary states. The reduced integration span for the slow component is 
intentionally designed based on the physical principle that slow-varying processes (seasonal trends, long-term 
meteorological shifts) exhibit minimal change within single prediction windows. This shorter span prevents the 
slow component from learning transient dynamics while maintaining computational efficiency, as extended 
integration would provide redundant information for slowly evolving baseline states.

(4) Attention-Based Adaptive Fusion: The MultiHeadAttentionFusion mechanism (4 heads, dimension 128) 
dynamically weights contributions from each timescale based on input characteristics:

	
α k(t) = softmax

(
QkKT

k√
d

)

where Qk  and Kk  are query and key projections of hk(t). This enables adaptive emphasis on fast dynamics 
during pollution events (e.g., traffic peaks) and slow dynamics during stable periods (e.g., seasonal baselines), 
effectively creating soft temporal specialization.

(5) Implicit Scale Differentiation Through Training: While no explicit frequency constraints are imposed, 
the combination of differentiated integration grids, separate network parameters, and attention-driven feature 
routing induces emergent scale separation during training. The reconstruction loss:

	 Ltotal = LNLL + α .Lsmooth + β .Lenergy + γ .LLipschitz

encourages each component to specialize in patterns best captured by its integration scheme, with fast 
components naturally responding to high-frequency input variations and slow components capturing low-
frequency baseline shifts. The synergy of these mechanisms ensures robust multiscale decomposition without 
requiring explicit frequency-domain regularization, as demonstrated by the model’s superior performance (R² > 
0.9) across pollutants with diverse temporal characteristics.

The fast dynamics encoder prioritizes rapid changes using:

	
dhfast

dt
= MLPdynamics

([
hfast; MLPcontrol(ufast)

])
⊙

(
1 + σ

(
MLPtime(tnorm)

))

where ufast includes high-frequency decomposition components and recent lags, and tnorm ∈ generates 
sinusoidal embeddings. The Dormand-Prince 5(4)/8 adaptive solver (relative tolerance 0.00072, absolute 
tolerance 2.37 × 10( − 5)) adjusts based on batch-wise input variance, tightening error control during 
pollution spikes while automatically determining intermediate evaluation points based on local error estimates 
to ensure numerical stability across all timescales.

Second-order smoothness regularization, defined as:

	
Lsmooth =

( 1
L

)
* ς kς L−1

i=2 ∥ hk(ti) − 2hk(ti−1) + hk(ti−2) ∥2
2

enforces physically plausible trajectories. Sinusoidal temporal encodings ensure robustness to cyclic patterns, 
enhancing sensitivity to diurnal and seasonal effects.

The fast dynamics encoder prioritizes rapid changes using:

	
dhfast

dt
= MLPdynamics

([
hfast; MLPcontrol(ufast)

])
⊙

(
1 + σ

(
MLPtime(tnorm)

))

where.
ufast includes high-frequency decomposition components and recent lags, and.
tnorm ∈ [0, 1] generates sinusoidal embeddings.
Integration grids are tailored:

•	 Fine-grained: t ∈ {0, 0.5, 1, 1.5, 2}.
•	 Standard: t ∈ {0, 1, 2}.
•	 Coarse: t ∈ {0, 0.5, 1}.

A Dormand-Prince 5(4)/8 solver adjusts relative tolerance based on batch-wise input variance, tightening error 
control during pollution spikes.

Second-order smoothness regularization, defined as:

	
Lsmooth =

( 1
L

)
* ςkςL−1

i=2 ∥ k (ti) − 2hk(ti−1) + hk(ti−2) ∥2
2

enforces physically plausible trajectories. Sinusoidal temporal encodings ensure robustness to cyclic patterns, 
enhancing sensitivity to diurnal and seasonal effects.
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Architectural components
The MA-NODE architecture processes input sequences of shape [N, 3, 62], with.

N as the batch size, 3 as the sequence length, and 62 features. A projection layer maps:

	 x ∈ R{3× 62} → xproj ∈ R{3× d}

followed by a multi-head attention layer (four heads) computing weight:

	 a = softmax(Q KT / d)

Where:

	 Q, K = SiLU (Wqxproj) , SiLU (Wkxproj)

aggregating into an initial state:

	 henc, 0 ∈ Rd

This state splits into fast, medium, and slow components, each evolved by an ODE encoder with three 
subnetworks: a control network (five-layer MLP) mapping u(t) to perturbations, a dynamics network (residual 
SiLU layers) coupling states and controls, and a time network generating sigmoid-gated sinusoidal embeddings.

Trajectories are solved with an adaptive solver, prioritizing efficiency for sparse environmental data. Encoded 
states are projected and fused via residual multi-head attention with layer normalization:

	 hfused = LayerNorm (MHA (hfast ∥ hmedium ∥ hslow) + hstack)

where ∥ denotes concatenation.
Forecasting uses ODE predictors over three steps, followed by attention fusion and twin MLPs decoding into 

Gaussian parameters:

	 µ t = Wµ hpred(t) + bµ

	 logσ 2
t = Wσ hpred(t) + bσ

calibrated with MinMax bounds for meaningful uncertainty intervals. The loss includes smoothness, energy 
conservation:

	 Lenergy = ς k

(
∥ hk(tend) ∥2

2 − ∥ hk(t0) ∥2
2
)

and Lipschitz regularization:

	 LLipschitz = γ *ςkς l ∥ Wl,k∥1

stabilizing dynamics. Attention-driven feature prioritization enhances robustness to noise, dynamically 
weighting inputs like decomposition components over raw pollutants when trends dominate.

Evaluation strategy
The evaluation protocol rigorously quantifies predictive performance, uncertainty calibration, and temporal 
generalizability through a multi-faceted framework. To preserve chronological integrity, a rolling-origin cross-
validation scheme partitions the dataset into sequential training-validation folds, where validation windows 
strictly follow their corresponding training periods, eliminating temporal leakage. A fixed holdout test set, 
comprising the most recent 20% of observations, reflects real-world operational forecasting conditions.

Predictive accuracy is evaluated through two complementary metrics:
Point forecasts are assessed via the coefficient of determination,

	
Sharpness =

( 1
N

) ∑
N
i=1 (yupper, i − ylower, i) = 2 × 1.96

N

∑
N
i=1σ i R2 = 1 −

∑
N
i=1(yi − ŷi)2

∑
N
i=1(yi − y)2

and scale-aware errors including root mean squared error:

	
RMSE = sqrt

(( 1
N

) ∑ N

i=1
(yi − µ̂ i)

2
)

and mean absolute error:

	
MAE =

( 1
N

) ∑ N

i=1
|yi − µ̂ i|

reported in original pollutant units (µg/m³, ppb).
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To provide comprehensive performance assessment across different evaluation dimensions, additional 
metrics complement the primary measures. Relative metrics normalize absolute errors by observed magnitudes, 
enabling cross-pollutant and cross-scale comparisons where concentrations span orders of magnitude (e.g., 
CO in ppm versus PM2.5 in µg/m³). Skill-based and agreement indices quantify improvement over naive 
baselines and model-observation concordance, critical for operational forecasting where performance relative 
to persistence or climatology determines practical value. These metrics follow best practices established in 
environmental forecasting39–41.

Relative Root Mean Squared Error (RRMSE):

	
RRMSE =

sqrt
((

1
N

)
ςN

i=1(yi − yi)
2)

1
N

ςN
i=1yi

× 100

expressed as a percentage, quantifying normalized prediction error.
Mean Absolute Percentage Error (MAPE):

	
MAP E =

( 1
N

)
ς N

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100

measuring relative forecast accuracy, with lower values indicating better performance.
Skill Score:
Nash-Sutcliffe Efficiency:

	
NSE = 1 − ς N

i=1(yi − yi)
2

ςN
i=1(yi − y)2 , 0 ⩽ NSE ⩽ 1

assessing predictive skill relative to the mean baseline, where NSE = 1 signifies perfect agreement, NSE = 0 
indicates equivalence to the mean, and NSE < 0 reflects performance worse than simply predicting the mean 
concentration.

Willmott’s Index of Agreement (WI):

	
NSE = 1 −

ςW I = 1 − ς N
i=1(yi− yi)2

ςN
i=1(|yi− ȳ|+ |yi− ȳ|)2 , 0 W I 1N

i=1(yi − yi)
2

ςN
i=1(yi − ȳ)2 , 0 ⩽ NSE ⩽ 1

quantifying the degree of model-observation concordance, with values approaching 1 indicating strong 
agreement.

Absolute Percentage Bias (APB):

	
AP B = ςN

i=1 (yi − ŷi)
ς N

i=1yi
× 100

identifying systematic over-prediction (APB < 0) or under-prediction (APB > 0) tendencies across the forecast 
horizon.

Uncertainty quantification is validated through 95% prediction interval coverage probability:

	
Coverage =

( 1
N

)
* ςN

i=11 (ytrue, i ∈ [ymean, i − 1.96σ i, ymean, i + 1.96σ i])

and calibration error:

	 |Coverage − 0.95|

ensuring probabilistic reliability. Sharpness, defined as:

	
Sharpness =

( 1
N

) ∑ N

i=1
(yupper, i − ylower, i) = 2 × 1.96

N

∑ N

i=1
σ i

penalizes overly conservative intervals.
Training dynamics are governed by a composite loss function:
1. Trajectory smoothness (curvature penalty)

	
Lsmooth = α

∑
k∈ {fast,med,slow}

ˆ
tf

t0 ∥ ∂ 2hk (t)
∂ t2 ∥2

2 dt

2. Energy conservation (velocity penalty)

	
Lenergy = β

∑
k∈ {fast,med,slow}

ˆ tf

t0

∥ ∂ hk (t)
∂ t

∥
2

2
dt
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3. Lipschitz regularization

	
LLipschitz = γ

∑
θ ∈ θ ODE ∥ θ ∥1

4. Composite loss function

	
Ltotal = 1

2N

∑ N

i=1

[
logσ 2

i + (yi − µ i)
2

σ 2
i

]
+ Lsmooth + Lenergy + LLipschitz

Early stopping with patience monitoring on validation loss prevents overfitting, while adaptive learning rate 
scheduling upon plateau, maintains stable optimization.

Performance comparisons and assessments
Air quality forecasting has been explored using a wide range of machine learning and deep learning techniques, 
each adapted to specific environmental contexts and data properties. Predictive accuracy heavily depends on 
dataset quality and characteristics, even when employing similar algorithmic frameworks. Given that this study 
leverages the Tehran dataset, we ensured contextual relevance by reviewing literature that specifically evaluates 
model performance on Tehran data. We benchmarked our approach against prominent state-of-the-art (SOTA) 
deep learning architectures, including Transformer (TR), Gated Recurrent Unit (GRU), Long Short-Term 
Memory (LSTM), Convolutional Neural Network (CNN), and Fully Connected Neural Network (FCNN). These 
models were chosen for their established effectiveness in air pollution forecasting and their ability to model 
complex spatiotemporal patterns in the Tehran dataset. To further enhance the robustness of our evaluation, we 
also compared our model against other cutting-edge deep learning methods developed for forecasting, ensuring 
a comprehensive assessment of performance. Moreover, to assess the robustness of the MA-NODE model, a 
hyperparameter sensitivity analysis was conducted by systematically varying key parameters: latentdim (4, 128, 
256), hiddendim (2, 64, 128), batchsize (16, 32, 64), dropout (0.1, 0.2, 0.3), and learningrate (1e-5, 0.0001, 
0.001). For each configuration, the model was trained on the Tehran dataset using the same rolling-origin cross-
validation scheme outlined in the evaluation strategy, ensuring consistency in data splits. Performance was 
evaluated using validation MAE and R² metrics, computed over 10 independent runs to account for stochasticity 
in training. Bayesian optimization was employed to efficiently explore the hyperparameter space, prioritizing 
configurations that minimized validation loss while maintaining computational feasibility.

Results
Performance summary
The benchmarking analysis reveals (Table 2) the MA-NODE’s marked superiority over five SOTA deep learning 
models (Transformer, GRU, LSTM, CNN, FCNN) in air quality forecasting for CO, O₃, SO₂, NO₂, PM₁₀, and 
PM₂.₅. MA-NODE achieves significantly lower errors across all pollutants, exemplified by its O₃ performance 
(MAE 1.4609, MSE 4.0814, RMSE 2.0202, R² 0.9575), compared to Transformer (MAE 2.5234, MSE 7.6234, 
RMSE 2.7610, R² 0.9212) and FCNN (MAE 3.6234, MSE 14.9234, RMSE 3.8630, R² 0.8712). This consistent 
outperformance, with errors reduced by 10–15% and R² values elevated by 0.03–0.05, highlights MA-NODE’s 
ability to model intricate pollutant dynamics through its neural ODE architecture, which integrates multi-
timescale ODE functions (fast, medium, slow) and attention fusion to capture both immediate fluctuations and 
prolonged trends. The ordered performance decline from Transformer to FCNN reflects their varying capacities 
for temporal modeling, with FCNN’s static architecture yielding the weakest results (e.g., PM₁₀ MSE 108.2345 
vs. MA-NODE’s 49.0532), underscoring MA-NODE’s effectiveness in leveraging ODE-driven dynamics for 
sequential forecasting tasks.

MA-NODE’s detailed multi-step performance (Table 3) across three forecasting horizons provides critical 
insights into its predictive reliability and uncertainty handling. At step 1, MA-NODE delivers precise predictions, 
with SO₂ achieving an R² of 0.90, MSE of 0.45, and RMSE of 0.67, alongside a coverage probability of 0.93 and a 
calibration error of 0.02, indicating high predictive accuracy and well-calibrated uncertainty estimates derived 
from its probabilistic decoder. By step 3, however, performance notably weakens for pollutants like CO (R² 0.49, 
MSE 0.18, RMSE 0.42) and PM₂.₅ (R² 0.50, MSE 80.17, RMSE 8.95), reflecting challenges in maintaining accuracy 
over longer horizons, possibly due to the compounding effects of small initial errors in ODE integration. Despite 
this, MA-NODE sustains robust uncertainty quantification, with coverage probabilities remaining above 0.88 
and calibration errors below 0.09 across all steps, affirming the model’s capacity to provide reliable confidence 
intervals even as predictive errors grow, a crucial attribute for operational air quality forecasting applications.

The ratios of three-step to one-step RMSE, together with concurrent changes in coverage and calibration 
error, quantify pollutant-specific predictability horizons directly from Table  3. For CO, the RMSE ratio is 
2.63 (0.42/0.16) and for NO₂ it is 3.02 (10.18/3.37), indicating the most rapid loss of deterministic fidelity 
over the three-day horizon; in both cases, coverage decreases modestly (CO: 0.93 to 0.89; NO₂: 0.93 to 0.91) 
while calibration error increases (CO: 0.02 to 0.06; NO₂: 0.02 to 0.04), consistent with appropriately widening 
predictive distributions rather than overconfident errors. By contrast, O₃ exhibits a lower RMSE ratio of 1.97 
(3.98/2.02) with a smaller coverage decline (0.91 to 0.88) and a moderate calibration increase (0.04 to 0.07), 
evidencing a longer deterministic window relative to emission-driven species. PM₁₀ falls between these profiles 
with an RMSE ratio of 3.04 (21.36/7.02), coverage from 0.92 to 0.90, and calibration error from 0.03 to 0.05, 
reflecting a mixed variability structure at multi-day leads.

Grouping pollutants by these metric ratios yields two coherent regimes. A high-variability regime (CO, 
NO₂, PM₁₀) is characterized by RMSE ratios ≥ 2.7 together with ≥ 2-fold increases in calibration error, signaling 
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short predictability horizons wherein point estimates degrade quickly and the probabilistic forecasts carry the 
reliable information through near-nominal coverage. A low-variability regime (most pronounced for O₃) shows 
RMSE ratios < 2 and smaller calibration changes, supporting a longer window during which point forecasts 
remain informative while uncertainty stays well calibrated. Specifically, when RMSE ratios remain low and 
coverage stays near nominal with small calibration drift, point predictions can be read deterministically; once 
RMSE ratios rise sharply with clear calibration growth, forecasts should be interpreted primarily through their 
calibrated probabilities.

Extended metric analysis (Table  4) reveals the mechanistic underpinnings of MA-NODE’s multi-step 
performance degradation through relative error characterization and skill quantification. At step 1, the framework 
achieves exceptional normalized accuracy across all pollutants, with NO₂ exhibiting the tightest error bounds 
(RRMSE 6.12%, MAPE 4.98%) attributable to the fast-latent ODE’s fine-grained integration grid (t ∈ {0, 0.5, 1, 
1.5, 2}) resolving sub-daily traffic emission cycles. The uniformly high agreement indices (WI > 0.97, ENS  > 
0.89) confirm that the tri-partitioned latent dynamics successfully decouple rapid anthropogenic signals from 

Pollutant Step RRMSE (%) MAPE (%) WI ENS SS APB (%)

O₃ (ppb) 1 8.64 8.37 0.9916 0.9669 0.8232 1.45

2 9.55 9.64 0.9896 0.9596 0.7843 1.14

3 19.61 19.18 0.9546 0.8296 0.0945 3.01

CO (ppm) 1 7.85 6.13 0.9828 0.9346 0.8616 0.63

2 9.70 7.11 0.9734 0.9000 0.7884 2.41

3 21.00 16.51 0.8380 0.5307 0.0084 3.69

NO₂ (ppb) 1 6.12 4.98 0.9842 0.9393 0.8822 0.13

2 7.06 5.63 0.9781 0.9192 0.8432 0.60

3 16.98 14.15 0.8322 0.5326 0.0927 2.94

SO₂ (ppb) 1 12.22 7.43 0.9712 0.8963 0.8021 1.61

2 15.14 9.15 0.9528 0.8408 0.6962 3.45

3 26.51 16.54 0.8215 0.5125 0.0684 6.84

PM₁₀ (µg/m³) 1 9.84 7.44 0.9813 0.9304 0.8750 0.42

2 11.96 8.33 0.9710 0.8971 0.8154 1.79

3 27.16 21.17 0.7978 0.4695 0.0485 4.07

PM₂.₅ (µg/m³) 1 9.87 7.09 0.9863 0.9482 0.8780 1.00

2 12.72 8.46 0.9764 0.9138 0.7971 0.78

3 28.62 20.33 0.8433 0.5636 −0.0276 4.33

Table 4.  Normalized accuracy (RRMSE, MAPE), agreement indices (WI, ENS), skill score (SS), and 
systematic bias (APB) for MA-NODE performance.

 

Pollutant Step R² MSE RMSE MAE Coverage Calibration Error

O₃ (ppb) 1 0.96 4.08 2.02 1.46 0.91 0.04

2 0.96 3.61 1.90 1.45 0.86 0.09

3 0.83 15.82 3.98 3.09 0.88 0.07

CO (ppm) 1 0.93 0.02 0.16 0.12 0.93 0.02

2 0.91 0.03 0.18 0.13 0.88 0.07

3 0.49 0.18 0.42 0.32 0.89 0.06

NO₂ (ppb) 1 0.95 11.33 3.37 2.55 0.93 0.02

2 0.93 15.48 3.93 2.80 0.89 0.06

3 0.50 103.56 10.18 7.71 0.91 0.04

SO₂ (ppb) 1 0.90 0.45 0.67 0.46 0.93 0.02

2 0.84 0.77 0.88 0.61 0.90 0.05

3 0.44 2.65 1.63 1.17 0.90 0.05

PM₁₀ (µg/m³) 1 0.95 49.30 7.02 5.35 0.92 0.03

2 0.94 59.21 7.70 5.58 0.86 0.09

3 0.53 456.39 21.36 16.08 0.90 0.05

PM₂.₅ (µg/m³) 1 0.95 7.38 2.72 1.94 0.93 0.02

2 0.93 10.68 3.27 2.24 0.88 0.07

3 0.50 80.17 8.95 6.33 0.90 0.05

Table 3.  Model performance metrics.
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slower meteorological patterns, with skill scores exceeding 0.80 demonstrating substantial predictive advantage 
over persistence baselines—a critical threshold for operational deployment where naive forecasts often dominate 
in stable atmospheric conditions. Notably, the near-zero bias in NO₂ and CO (APB < 1%) reflects the attention 
mechanism’s capacity to dynamically balance timescale contributions during morning rush-hour peaks versus 
overnight dispersion phases, validating the model’s regime-aware fusion hypothesis. By step 2, relative errors 
escalate moderately (RRMSE: 7.06–15.14%, MAPE: 5.63–9.64%), yet ENS  values remain above 0.84 for all 
species except CO (0.90), indicating that the medium-latent ODE sustains predictive skill at 48-hour horizons by 
capturing weekly meteorological cycles through its standard integration grid (t ∈ {0, 1, 2}). However, the slight 
uptick in APB (maximum 3.45% for SO₂) suggests systematic under-prediction during accumulation events, 
likely stemming from the slow-latent ODE’s coarse grid (t ∈ {0, 0.5, 1}) inadequately resolving inversion layer 
intensification—a phenomenon requiring sub-grid parameterization in future iterations.

At the critical three-day horizon, performance bifurcates sharply between pollutant classes, exposing 
fundamental limitations in multi-step ODE integration for chemically reactive species. Secondary pollutants (O₃, 
NO₂) retain moderate Nash-Sutcliffe efficiencies (0.83, 0.53) due to their photochemical production pathways 
being partially encoded in the medium-latent dynamics, whereas primary emissions (CO, PM₂.₅, PM₁₀) exhibit 
precipitous skill decay ( ENS : 0.47–0.57, SS approaching zero or negative). This divergence stems from two 
compounding mechanisms: first, accumulation of numerical truncation error in the Dormand-Prince solver as 
integration extends over 72 h (despite adaptive tolerance tightening), and second, the non-Markovian nature 
of particulate matter where concentration at t + 3 depends on unobserved regional transport and nucleation 
events beyond the model’s 3-day input window. The near-zero skill scores (CO SS = 0.0084, PM₂.₅ SS = −0.0276) 
reveal that at this horizon, persistence forecasts achieve comparable or superior RMSE—a sobering indication 
that MA-NODE reaches atmospheric predictability limits without external meteorological drivers (e.g., 
numerical weather prediction winds, satellite-derived aerosol optical depth). However, the sustained coverage 
probabilities (0.88–0.91) and calibration errors (< 0.09) demonstrate that the probabilistic decoder’s uncertainty 
intervals remain well-calibrated even as point forecast accuracy degrades, a distinction absent in deterministic 
baselines. The elevated MAPE values for particulates (20.33–21.17%) and systematic positive bias (APB: 4.07–
6.84%) at step 3 indicate consistent under-prediction during episodic events—a characteristic signature of the 
smoothness regularization term (α = 0.01) overly constraining trajectory curvature during rapid concentration 
rises, prioritizing physically plausible dynamics at the expense of capturing extreme pollution spikes. This trade-
off underscores a design choice in MA-NODE: privileging reliable uncertainty quantification and stable long-
term behavior over aggressive point-forecast optimization, aligning with operational needs where false-alarm 
minimization often outweighs perfect peak capture in public health warning systems.

The MA-NODE demonstrates robust performance and efficient convergence in air quality forecasting, as 
evidenced by the analysis of performance metrics (R², MSE, RMSE, MAE) across training, validation, and test 
sets (Fig. 5). The plots reveal a rapid initial improvement within the first 25 epochs, MSE decreases from 140 to 
approximately 40, MAE from 6.5 to 3.5, and RMSE from 8 to 5, while R² rises from 0.45 to 0.80, leveraging its 

Fig. 5.  Convergence Analysis of MA-NODE Across 200 Epochs, Depicting MSE, MAE, R², and RMSE Metrics 
for Training, Validation, and Test Sets, Averaged Over All Pollutants.
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neural ODE architecture with multi-head attention and adaptive Runge-Kutta (dopri8/5 solver) integration to 
capture complex temporal patterns in pollutant concentrations. All metrics stabilize between epochs 100–200, 
suggesting the model reaches a local minimum with no further gains from additional training. This aligns with 
the use of adaptive learning rate scheduling, which dynamically reduced the learning rate (initially 0.00045) to 
refine parameter updates, enhancing convergence. The tight alignment of training, validation, and test metrics 
(final MSE ≈ 40, MAE ≈ 3.5, RMSE ≈ 5, R² ≈ 0.80) underscores MA-NODE’s strong generalization capability, 
critical for reliable multi-step forecasting of pollutants (PM₂.₅, O₃, CO, NO₂, SO₂, PM₁₀). This alignment reflects 
the success of adaptive ODE regularization (gradient clipping at 0.91, Lipschitz constraints on ODE weights) in 
balancing model complexity and stability, ensuring consistent performance across datasets.

As depicted in Fig.  6, 7, and 8 the predicted versus actual value plots for CO, O₃, SO₂, NO₂, PM₁₀, and 
PM₂.₅ across three forecasting steps offer deep insights into the Multi-Timescale ODE Model (MA-NODE)’s 
performance in capturing the dynamic behavior of air pollutants. At step 1, MA-NODE’s predictions for CO 
(orange line) closely follow the actual values (blue line), accurately reflecting both the low baseline concentrations 
(0–1 ppm) and short-term fluctuations, with the 95% confidence intervals (gray shading) tightly enclosing most 
data points, a testament to the model’s effective uncertainty quantification through its variance decoder (log-
variance scaled by 1.96 standard deviations). However, by step 3, CO forecasts show a tendency to overestimate 
during stable periods while missing some sharp peaks, indicating that the fast-timescale ODE component 
(latent dimension 128/3) might overly smooth rapid dynamics over longer horizons. For O₃ and NO₂, step 1 
predictions capture diurnal cycles well (e.g., O₃ peaks at 20–60 ppb), but step 3 reveals a growing discrepancy 
during high-concentration events, with confidence intervals expanding (e.g., NO₂ intervals reaching ± 20 ppb 
around peaks), likely due to accumulating errors in the ODE solver (dopri8 method, RTOL 0.00072, ATOL 
2.37e-05) over extended integration steps. PM₁₀ and PM₂.₅ forecasts at step 1 effectively mirror seasonal patterns 
and episodic spikes (e.g., PM₂.₅ peaks near 60  µg/m³), yet by step 3, the model exhibits a delayed response 
to sudden increases, with confidence intervals missing extreme values (e.g., PM₁₀ spikes above 150  µg/m³), 
suggesting that the medium- and slow-timescale ODE components may struggle with the non-linear, stochastic 
nature of particulate matter. SO₂ predictions, meanwhile, display a persistent overestimation bias across all steps, 
particularly in low-concentration regimes (around 5 ppb), possibly because the attention fusion mechanism (4 
heads, input dimension 128) overemphasizes certain temporal features like lagged pollutant inputs, skewing the 
forecasts.

Sensitivity analytics of hyperparameter setting
The sensitivity plots for key hyperparameters (latent dim, hidden dim, batch size, dropout, and learning rate) 
provide critical insights into their influence on forecasting performance, evaluated through validation MAE and 
R² metrics (Figs. 9 and 10). Increasing latent dim from 64 to 128 reduces MAE from 3.68 to 3.64 and boosts 

Fig. 6.  Predicted vs. Actual Values for PM₁₀, and PM₂.₅ Across Three Forecasting Steps, with 95% Confidence 
Intervals.

 

Scientific Reports |        (2025) 15:44178 16| https://doi.org/10.1038/s41598-025-27903-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 8.  Predicted vs. Actual Values for O₃ and SO₂ Across Three Forecasting Steps, with 95% Confidence 
Intervals.

 

Fig. 7.  Predicted vs. Actual Values for CO and NO₂ Across Three Forecasting Steps, with 95% Confidence 
Intervals.
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R² from 0.760 to 0.775, reflecting an enhanced capacity to encode complex temporal patterns in pollutant data 
via the ODE components across fast, medium, and slow timescales. However, at 256, MAE rises slightly to 
3.66 and R² drops to 0.765, indicating that an overly large latent space introduces overfitting by amplifying 
noise in the latent trajectories, despite smoothness constraints (alpha = 0.01). Similarly, hidden dim shows an 
optimal value at 64 (MAE 3.66, R² 0.770), with performance degrading at 128 (MAE 3.69, R² 0.760), as excessive 
hidden units in the dynamics net ( HIDDENMULT IP LIER=3) lead to redundancy, reducing generalization. 
The tight alignment of training and validation metrics across these settings highlights the effectiveness of ODE 
regularization in maintaining stability during training.

Examining batch size, dropout, and learning rate further reveals their impact on training dynamics and 
model robustness. A batch size of 32 yields the lowest MAE (3.60) and highest R² (0.790), outperforming 16 
(MAE 3.64, R² 0.775) and 64 (MAE 3.62, R² 0.780), suggesting that a moderate batch size optimizes gradient 
updates for the Adam optimizer (weight decay = 7.65e-06) by balancing noise and stability. Dropout at 0.2 proves 
optimal (MAE 3.60, R² 0.790), while 0.3 (MAE 3.65, R² 0.765) overly regularizes the attention fusion mechanism 
(4 heads, input dimension 128), and 0.1 (MAE 3.62, R² 0.780) risks overfitting by preserving too many features. 
The learning rate of 0.0001 achieves the best performance (MAE 3.60, R² 0.790), whereas 1e-5 slows convergence 
(MAE 3.80, R² 0.740), and 0.001 introduces instability (MAE 4.20, R² 0.680) with wider training-validation 
gaps, likely due to the ODE solver’s sensitivity to large updates despite gradient clipping ( max_norm=0.91). 
As a result, our sensitivity analytics confirm NODE literature and prior efforts, which reported a considerable 
level of hyperparameter sensitivity to model performance; however, we also confirm that incorporating a multi-
head attention mechanism into the model significantly mitigates this sensitivity. Our sensitivity analysis aligns 
with findings from existing research on Neural Ordinary Differential Equations and related studies, which have 
identified a pronounced sensitivity of model performance to hyperparameter configurations. However, our work 
further establishes that integrating a multi-head attention mechanism markedly reduces this sensitivity.

Discussion
Advancing neural ODE applications in environmental forecasting
While recent studies have explored NODEs for continuous-time modeling, their application to multi-scale 
environmental forecasting remains underexplored. For instance, Z. Han et al.42 applied NODEs to temporal 
knowledge graphs for link prediction, demonstrating superior performance in handling irregular temporal 
intervals. However, their focus on graph-structured data neglects the explicit decomposition of latent dynamics 
into distinct timescales, a critical gap addressed by MA-NODE. Similarly, Arroyo-Esquivel et al.43 evaluated 
NODEs in ecological forecasting but limited their scope to population dynamics, overlooking the interplay of 
fast anthropogenic emissions and slow seasonal trends inherent in air quality systems.

A novelty of MA-NODE lies in its multi-timescale architecture, which partitions latent dynamics into fast, 
medium, and slow components, a concept only partially explored in fluid dynamics studies. For example, Nair et 
al.44 analyzed latent timescales in advection-dominated systems but focused on dimensionality reduction rather 

Fig. 9.  MA-NODE Hyperparameter Sensitivity: MAE and R² Across Latent Dim, Hidden Dim, Batch Size, 
Dropout, and Learning Rate.
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than interpretable feature fusion. Discrete-time recurrent architectures, such as LSTMs, achieve comparable 
single-step accuracy through gating mechanisms but require manual specification of lookback periods, limiting 
adaptability across pollutants with distinct temporal signatures45. This limitation reflects a broader challenge 
in environmental forecasting: the “predictable desert” at sub-seasonal horizons where chaotic weather-climate 
coupling degrades skill. Hybrid models (e.g., CNN-LSTM) have attempted addressing this through spatial-
temporal convolution, yet their fixed Δt discretization and stationary kernel assumptions constrain temporal 
adaptability, yielding only marginal improvements46. To overcome these architectural constraints, an alternative 
preprocessing strategy employs explicit signal decomposition via wavelet transforms, achieving exceptional 
single-step accuracy (R = 0.9952, RMSE = 1.49 µg/m³ for PM2.5) by partitioning data into pre-specified 
frequency bands (e.g., Bior1.1 wavelet at level-2 decomposition yields low-frequency CA2 and high-frequency 
CD1/CD2 components), training separate sub-models per band, then aggregating predictions47. However, this 
multi-stage pipeline introduces rigidity: decomposition parameters—mother wavelet type, level, boundary 
treatment—must be specified a priori and remain fixed, limiting adaptability when pollutant dynamics shift 
seasonally or across spatial contexts. In contrast, MA-NODE integrates attention mechanisms to dynamically 
weight these timescales, a strategy absents in prior environmental NODE frameworks like TN-ODE48, which 
relies on LSTM encoders for incomplete data. This enables MA-NODE to resolve sudden pollution spikes (e.g., 
traffic-induced NO₂) while preserving seasonal trends, achieving R² > 0.8 for three-step predictions, a marked 
improvement over ANCDE49, which reported 10% lower accuracy in irregular time-series tasks.

A key limitation of existing NODE variants is their opacity in linking learned dynamics to physical processes. 
For example, Physics-Informed Residual NODEs (PIR-NODE)50embedded cyclone physics via loss functions 
but lacked explicit trajectory visualization. MA-NODE addresses this by coupling continuous-time latent states 
with attention-based explanations, enabling users to inspect how fast dynamics (e.g., PM₂.₅ surges) correlate 

Fig. 10.  MA-NODE Hyperparameter Sensitivity: MAE and R² Across Dropout, and Learning Rate.
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with emission events. This aligns with emerging “grey-box” models like NODE-GM51, which blend NODEs with 
grey systems for small-sample robustness.

MA-NODE’s continuous-time framework allows for interpreting the rate of change in pollutant 
concentrations, offering insights into underlying physical processes, such as rapid NO₂ spikes linked to traffic 
emissions or seasonal PM₂.₅ trends driven by meteorological shifts. The attention mechanism dynamically weights 
contributions from fast, medium, and slow timescales, revealing, for example, the dominance of medium-term 
dynamics in O₃ cycles during photochemical activity, providing actionable insights for policymakers to target 
specific emission sources. This interpretability fosters trust among environmental scientists, enabling them to 
trace predictions to temporal drivers, crucial for real-world applications.

From a practical standpoint, MA-NODE’s high accuracy (e.g., R² 0.95 for PM₂.₅ at step 1) and reliable 
uncertainty estimates (coverage probability 0.93, calibration error 0.02) support precise air quality warnings, 
facilitating timely interventions like traffic restrictions or public health advisories. Its ability to handle irregular 
sampling intervals, a common challenge in regions with sparse monitoring, enhances its adaptability for global 
applications, particularly in developing countries. By offering both predictive accuracy and interpretable 
insights, MA-NODE bridges computational modeling with environmental management, supporting sustainable 
development initiatives and public health protection, a dimension often neglected in prior studies focused solely 
on accuracy.

Limitations and future direction
The MA-NODE model, while innovative in its application of Neural ODEs for air quality forecasting, exhibits 
several limitations that merit discussion. One prominent challenge is its computational complexity, stemming 
from the reliance on adaptive ODE solvers such as Dopri8. These solvers, configured with high precision (e.g., 
relative tolerance of 0.00072 and absolute tolerance of 2.37e-05), impose a significant computational burden. 
This overhead becomes particularly problematic for real-time forecasting or when scaling the model to large 
datasets, restricting its practical deployment in scenarios where rapid predictions are essential. The time-
intensive nature of solving ODEs with such precision raises questions about the model’s feasibility in operational 
contexts, suggesting a need for balancing accuracy with efficiency.

Another critical limitation is the error accumulation in long-term forecasts. Performance metrics from step 
3 of the evaluation (e.g., R² of 0.50 for PM₂.₅ and RMSE of 8.95) reveal a noticeable decline in accuracy over 
extended horizons. This degradation likely arises from the cumulative effect of small errors in the ODE solver 
as integration steps increase. While regularization techniques like gradient clipping (set at 0.91) and Lipschitz 
constraints are employed, they appear insufficient to fully curb error propagation, especially for pollutants 
with high variability such as PM₁₀. This observation underscores a potential weakness in the model’s ability 
to maintain reliability over time, a key consideration for air quality applications where long-term trends are 
often as critical as short-term predictions. The model’s uncertainty quantification, while superior to benchmarks, 
exhibits degraded calibration at longer horizons. This limitation stems from the Gaussian likelihood assumption 
and ODE solver error propagation, which future work could address via heteroscedastic Bayesian layers or 
quantile regression.

The model’s dependence on high-quality, complete datasets further complicates its utility. Although 
imputation techniques were used to address missing values, prolonged data gaps or sparse monitoring networks) 
common in certain regions) could introduce biases that undermine the model’s generalizability and robustness. 
This reliance on data integrity highlights a vulnerability that may limit its effectiveness in less-monitored areas, 
where air quality forecasting is often most urgently needed. Additionally, the lack of spatial dynamics in MA-
NODE’s framework is a notable omission. By not explicitly accounting for factors like pollutant dispersion 
driven by wind patterns or topography, the model may struggle to capture regional variations, particularly 
in geographically complex areas. This spatial independence could diminish its predictive accuracy in diverse 
environmental settings.

Lastly, hyperparameter sensitivity poses a practical challenge. Despite the attention mechanism reducing 
some of this sensitivity, the model still demands careful tuning of parameters such as latent dim, hidden dim, 
and learning rate. This process is resource-intensive and may hinder the model’s adaptability to new datasets 
without significant recalibration efforts. Collectively, these limitations suggest that while MA-NODE offers a 
sophisticated approach to air quality forecasting, its current form faces hurdles in scalability, robustness, and 
flexibility that warrant further refinement. Moreover, while the current formulation employs two-stage encoder-
decoder pre-training, recent work52 demonstrates that end-to-end joint optimization with latent dynamics can 
improve the physical representability and dynamic utility of learned latent spaces. Future work will focus on 
integrating these advances for robust and interpretable air quality forecasting.

Future research can enhance MA-NODE by integrating spatial dynamics using Graph Neural Networks 
or spatial attention to capture pollutant dispersion and regional interactions, addressing the current spatial 
independence limitation. Employing advanced ODE solvers, such as symplectic integrators, may reduce 
computational complexity of the Dopri8 solver while preserving accuracy, enabling real-time applications. 
Incorporating external covariates like traffic data or satellite emission estimates could improve predictions of 
sudden pollution events, enhancing responsiveness to dynamic conditions. Extending the model to hourly 
forecasts requires optimizing the ODE solver for faster computation to handle increased data volume, making 
it suitable for near-term decision-making. Finally, generalizability testing across diverse climatic and urban 
datasets will validate adaptability, ensuring applicability to global air quality challenges and supporting broader 
environmental strategies.
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Conclusion
The Multi-timescale Attention Neural Ordinary Differential Equations (MA-NODE) framework emerges as 
a transformative approach in air quality forecasting, leveraging a sophisticated continuous-time paradigm to 
model the intricate dynamics of pollutant concentrations. By integrating a neural ODE architecture with a multi-
timescale decomposition, partitioning latent states into fast, medium, and slow components, MA-NODE adeptly 
captures the diverse temporal behaviors inherent in environmental data, ranging from abrupt emission-driven 
fluctuations to gradual seasonal oscillations. This decomposition, underpinned by a theoretically robust system 
of coupled differential equations, is further enhanced by an attention-based fusion mechanism that dynamically 
prioritizes temporal features, optimizing predictive precision across multiple forecasting horizons. Evaluated 
on a comprehensive Tehran dataset (2015 to 2024), encompassing daily measurements of PM₂.₅, O₃, NO₂, SO₂, 
CO, and PM₁₀, the model achieves exceptional one-step-ahead performance, with R² values surpassing 0.9 and 
error metrics (MAE, RMSE) reduced by 10 to 15% compared to state-of-the-art deep learning benchmarks such 
as Transformers and LSTMs. This superior accuracy, coupled with robust uncertainty quantification (coverage 
probabilities averaging 0.93), underscores MA-NODE’s potential as a reliable tool for operational air quality 
management.

A distinguishing feature of MA-NODE is its interpretability, derived from the continuous-time trajectories 
of pollutant dynamics and the attention-weighted contributions of each timescale. This transparency allows 
environmental scientists to dissect the interplay between rapid anthropogenic influences (e.g., traffic-induced 
NO₂ spikes) and prolonged meteorological effects (e.g., seasonal PM₂.₅ trends), fostering actionable insights 
for targeted policy interventions. The framework’s ability to interpolate irregular observations, facilitated by 
adaptive ODE solvers like Dormand-Prince 5(4), further enhances its applicability in real-world scenarios where 
sensor data may be sparse or inconsistent. Benchmarking against discrete-time models reveals MA-NODE’s 
structural advantage, as its ODE-driven approach mitigates the limitations of fixed-step architectures, achieving 
R² improvements of 0.03 to 0.05 across all pollutants.

Despite these strengths, MA-NODE confronts notable challenges that temper its immediate scalability. 
The computational intensity of adaptive ODE solvers, while ensuring precision, imposes a significant burden, 
particularly for real-time applications or large-scale deployments. Long-term forecasting performance also 
degrades, with step 3 R² values dropping to approximately 0.50 for pollutants like PM₂.₅ and CO, reflecting error 
accumulation within the ODE integration process. This limitation highlights the need for advanced numerical 
techniques, such as simplistic integrators, to stabilize long-horizon predictions. Additionally, the model’s spatial 
agnosticism, omitting pollutant dispersion and topographic influences, constrains its ability to capture regional 
variability, a critical factor in urban air quality systems like Tehran’s basin-trapped pollution. Hyperparameter 
sensitivity, though mitigated by attention mechanisms, remains a practical hurdle, necessitating resource-
intensive tuning to adapt the model to new contexts.

Looking forward, MA-NODE sets a foundation for next-generation environmental forecasting by bridging 
data-driven innovation with physically informed modeling. Future enhancements could integrate spatial 
dynamics via Graph Neural Networks, incorporate external covariates (e.g., traffic flows, satellite data), and 
optimize computational efficiency to enable hourly predictions. Such refinements would broaden the model’s 
generalizability across diverse climatic and urban settings, amplifying its impact on global air quality strategies. 
In its current form, MA-NODE not only advances the technical frontier of Neural ODE applications but also 
delivers a practical, interpretable solution for mitigating air pollution’s public health and environmental toll, 
aligning computational sophistication with the urgent demands of sustainable urban development.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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