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The trajectory planning method based on the Frenet coordinate transformation effectively reduces
computational complexity and enhances planning accuracy. However, in complex road scenarios
involving multiple intelligent agents, the singular Frenet coordinate transformation is incapable

of handling the variations in road curvature and vehicle posture among multiple target vehicles.

This limitation leads to a reduced planning solution space, making it difficult to approximate the
optimal path. To address this challenge, this study proposes a curvature-adaptive trajectory planning
framework combined with spatiotemporal integration. This method involves three key innovations:
(1) A road segmentation algorithm that discretizes complex curved roads into a set of quasi-

straight segments through adaptive spatial discretization; (2) A multi-coordinate system adaptive
transformation based on the predicted vehicle center in the temporal domain, which integrates
temporal constraints with spatial Bézier curve optimization in a hierarchical planning architecture;
(3) A multi-objective cost function is designed to comprehensively evaluate heuristic features such

as path smoothness, efficiency, and safety, and candidate paths are optimized and ranked through
weight configuration. Experimental results demonstrate that, compared with the benchmark method,
the proposed framework achieves a 100% planning success rate in 135 complex road scenarios, with
a 6.15% improvement in planning robustness and a 9.41% increase in trajectory smoothness. These
findings confirm that the proposed framework has certain advantages in terms of smoothness and
safety in complex road scenarios.

Keywords Autonomous driving, Trajectory planning, Spatiotemporal integration, Frenet coordinate system,
Bézier curves

With the rapid development of autonomous driving technology, trajectory planning has become an essential
core function in intelligent driving systems, playing a crucial role in improving traffic efficiency and reducing
traffic accidents!~>. This is especially true in complex road scenarios involving multiple intelligent agents, where
intelligent vehicles must not only accurately plan their trajectories but also ensure safety and efficiency during
operation. However, trajectory planning in multi-agent and curved-road scenarios is challenging, as vehicles
need to consider geometric constraints of the road, predict the intentions of surrounding vehicles, and make
optimal decisions within limited time frames*-®.

Traditional trajectory planning methods, often based on rule-based systems or model predictive control,
perform well in simple scenarios but may fail to provide sufficient comfort and robustness in complex situations’.
Advanced methods based on deep reinforcement learning (DRL), although capable of learning complex
decision-making strategies, still face challenges in generalization and robustness®.

Conventional decoupled spatiotemporal decision-making and planning algorithms, which separate the
temporal and spatial dimensions, can ensure real-time performance but often result in conservative or aggressive
trajectory planning due to the neglect of spatiotemporal correlations®. Moreover, single-dimensional safety
mechanisms are insufficient to address sudden risks in complex interactive scenarios!®. Therefore, achieving
joint spatiotemporal optimization and multi-layered safety protection while maintaining real-time performance
has become a key issue in enhancing the reliability of intelligent driving systems.
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Joint spatiotemporal trajectory planning algorithms are among the critical technologies in intelligent driving
trajectory planning. These algorithms consider both temporal and spatial dimensions to achieve globally
optimal trajectory planning!'!~!>. However, existing joint spatiotemporal trajectory planning algorithms fail to
fully account for the effects of road curvature and vehicle posture, resulting in a limited solution space and an
inability to approximate the optimal solution.

To address these challenges, this paper proposes a joint spatiotemporal planning algorithm that incorporates
heuristic human-like decision-making thinking. First, the proposed curvature-adaptive joint spatiotemporal
trajectory planning algorithm achieves adaptive road representation, effectively decoupling the constraints of
complex road curves and vehicle posture. Subsequently, the hierarchical Bézier optimization algorithm balances
robustness and spatial smoothness. Finally, by integrating planning costs with real-time control, the algorithm
achieves human-like decision-making capabilities.

Related works

As a core technology in intelligent driving systems, vehicle trajectory planning is perpetually confronted with
the challenge of optimal solution search under multiple constraints. Its fundamental objective is to generate
an optimal motion trajectory from the initial state to the target state while satisfying the triple constraints of
dynamics, kinematics, and safety conditions. Building on this foundation, numerous scholars have conducted
in-depth research and proposed a variety of algorithms and strategies.

Search-based planning methods rely on the discretization of environmental space to construct a solution
framework. Traditional search algorithms, represented by Dijkstra and A*!4-16, achieve path search through
state grid discretization, with the advantage of strict completeness guarantees. Among them, the A* algorithm,
by incorporating a heuristic function, prioritizes the expansion of nodes closer to the goal'”. However, it still
faces efliciency bottlenecks when dealing with high-dimensional state spaces. Notably, the MHA* algorithm
significantly improves search efficiency through a multi-heuristic fusion mechanism, yet the trajectories it
generates often neglect the kinodynamic constraints of vehicles, resulting in insufficient trajectory continuity.
The spatiotemporal grid expansion method innovatively introduces obstacle motion prediction, achieving a
breakthrough in trajectory planning under dynamic environments. However, this method still faces the dual
challenges of exponentially increasing computational complexity and insufficient trajectory smoothness.

Sampling-based planning methods, represented by Rapidly-exploring Random Tree (RRT)!® and Probabilistic
Roadmap (PRM)'°, demonstrate unique advantages in planning within high-dimensional spaces. Their core
value lies in achieving probabilistic completeness, thereby overcoming the curse of dimensionality. However,
the inherent sampling uncertainty leads to significant fluctuations in path quality. In terms of technological
evolution, Time-extended Batched Rapidly-exploring Random Tree (TB-RRT)* enhances adaptability
to dynamic environments through temporal dimension expansion. Nevertheless, the stochastic sampling
mechanism still suffers from inherent drawbacks, such as excessive computational resource consumption and
insufficient trajectory stability. Improved RRT algorithms have made breakthroughs in sampling efficiency, but
the fundamental issue of trajectory feasibility verification remains unresolved.

Parametric curve methods realize trajectory geometric constraints through preset parametric curves, with
typical representatives including Bézier curves and quintic polynomials?'~?3. Among them, the innovative
practice of optimizing the end-point curvature of the trajectory using a fifth-order Bézier curve has engineering
value, but it exposes the shortcoming of lacking a rapid determination mechanism for control points in
emergency obstacle avoidance scenarios?’. In comparison, the piecewise polynomial decoupled planning
method significantly improves trajectory continuity, but there is still room for improvement in the computational
efficiency of its parameter optimization process®.

With the advancement of intelligent algorithms, hybrid intelligent methods have demonstrated advantages in
obstacle avoidance success rates. The artificial potential field method achieves efficient planning by constructing a
virtual gradient field, and the design of the virtual force field has successfully eliminated trajectory oscillation6-25.
The integration of potential field methods with optimal control theory has significantly enhanced trajectory
feasibility. However, potential field modeling in complex scenarios remains an unresolved challenge. Emerging
methods based on deep reinforcement learning have shown strong adaptability to environments®. Although
deep predictive networks can capture behavioral uncertainty, their inference latency still exceeds the real-time
control threshold, and the safety verification framework is not yet fully developed.

The spatiotemporal decoupled framework in the Frenet coordinate system, proposed by Werling et al.,
significantly improves computational efficiency by optimizing path and velocity in a hierarchical manner®.
However, it neglects the coupling between space and time, leading to discontinuous trajectory curvature in
curved scenarios. In recent years, to overcome this limitation, joint spatiotemporal optimization has gradually
become a research hotspot. For example, planning methods based on spatiotemporal corridors generate safe
trajectories by constructing spatiotemporal cuboid constraints®. However, these methods still suffer from
insufficient real-time performance in dynamic environments.

In the field of autonomous driving trajectory planning, although significant progress has been made in
previous research, two core challenges in curved road scenarios within structured roads remain to be solved:

Dynamic coupling of spatiotemporal constraints. The traditional Frenet coordinate system can effectively
decouple longitudinal and lateral motion planning, but a single reference frame struggles to accurately describe
the motion states of traffic participants with different curvature characteristics®=33,

Co-optimization of planning robustness and efficiency. Existing safety mechanisms often adopt conservative
strategies that ensure collision avoidance but frequently result in non-natural driving behaviors such as sudden
deceleration®*. The primary passive safety strategies tend to prioritize collision avoidance at the expense of
traffic efficiency, leading to conservative maneuvers that disrupt traffic flow. This safety-first approach may
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trigger consecutive braking by following vehicles, thereby increasing overall traffic risk and compromising
robustness®>~7.

In summary, while previous research has made significant progress in intelligent driving trajectory
planning, several limitations still exist, such as limited adaptability and robustness in complex environments,
challenges in safety capabilities, and the optimality of joint spatiotemporal methods. The joint spatiotemporal
planning algorithm proposed in this paper, which integrates heuristic human-like decision-making thinking,
comprehensively considers factors such as road curvature, vehicle posture, and planning cost, effectively
addressing the aforementioned issues.

Methods
Spatiotemporal joint planning algorithms
Path planning in the Cartesian coordinate system requires simultaneous optimization of the planar x-y coordinate
parameters, which is prone to dimension coupling issues when dealing with complex road geometries. In
contrast, the Frenet coordinate system, by decomposing vehicle motion into longitudinal displacement along
the road centerline (S-axis) and lateral offset (L-axis), significantly reduces the dimensionality complexity of
the planning problem®. This decomposition mechanism closely aligns with the cognitive pattern of human
drivers regarding lane-relative positions, enabling the system to generate trajectories that are more intuitive
for driving®. However, the Frenet framework has inherent limitations in multi-agent curved motion scenarios.
When the road curvature radius falls below a critical value, a single reference frame can lead to misjudgments
of curved steering behavior, mistaking curvature tracking for lane-changing actions®. This issue arises from the
intrinsic conflict between vehicle steering dynamics and the geometric constraints of the fixed reference frame.

In light of these challenges, this paper proposes a multi-Frenet coordinate system method based on road
segmentation, as illustrated in Fig. 1 This method involves concatenating curved roads to “straighten” them.
It ensures smooth trajectory planning, widens the spatiotemporal corridor, and reduces the vehicle’s envelope
radius. Based on this approach, we employ Bezier curves to complete the spatiotemporal trajectory planning.
After obtaining the initial trajectory from the decision-making algorithm, each segment of the trajectory is
translated using an inverse transformation. The spatiotemporal joint planning algorithm is responsible for
transforming a series of inputs from the planning algorithm (including the ego-vehicle’s position and state,
the ego-vehicle’s decision-based coarse trajectory, and the predicted future trajectories of surrounding vehicles)
into the Frenet coordinate system and connecting the segments end-to-end. Simultaneously, dynamic and static
obstacles are mapped into the grid map, and a three-dimensional feasible convex space in S-L-T is constructed
within the grid map. Finally, based on quadratic programming, an optimal trajectory is solved using piecewise
Bezier curves within the convex space.

The planning procedure of the spatiotemporal joint planning algorithm is illustrated in Fig. 2, and its
technical implementation is divided into four stages:

Road linearization

Drawing on the commonly used road segmentation methods in previous studies on the coupling of road
curvature and vehicle body posture, this paper integrates the adaptive discretization concept from dynamic path
planning®2. An adaptive curvature-based discretization method is employed to transform the vehicle’s state,
the coarse-grained trajectory output from the decision-making layer, and the planned trajectories of perceived
obstacles into a piecewise Frenet frame. The continuously curved road is divided into IV quasi-linear segments,
where the number of road segments N is determined by the following formula:
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Fig. 1. Schematic diagram of trajectory planning for intelligent vehicles integrating curvature adaptation with
spatiotemporal joint optimization.
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Fig. 2. The flowchart of the joint spatiotemporal planning algorithm.

N =[5 [0 () + rtds]

(1)
A Smaz = min(A so, m)

Here, Aso denotes the baseline maximum segment length, to balance planning accuracy and computational

efficiency, its upper bound is set to the vehicle length. c is a scaling constant (default = 1), and € is a small positive

constant to avoid division by zero (default € = 10-6). Consequently, in high-curvature regions, Asma. decreases

approximately in inverse proportion to the curvature, enabling finer segmentation when necessary.

max 1
s€[sisiy] |k(s)| < 0.02m o

A local Frenet coordinate system based on the vehicle’s center is established for each sub-segment. Through
differential geometric transformations, a bidirectional mapping between the global and local coordinates is
achieved, thereby forming a piecewise-straightened spatiotemporal planning corridor.

The method of joint spatiotemporal planning

A dynamic feasible region is constructed within the three-dimensional S-L-T (Station-Lateral-Time) space. The
spatial occupancy of dynamic and static obstacles is modeled using a convex hull algorithm. For any obstacle, its
spatiotemporal occupancy can be modeled as a convex polyhedral constraint in the S-L-T space.

Trajectory construction

The transformed road space is inverse-transformed based on the trajectory generated by the spatiotemporal joint
algorithm. The generated trajectory is projected onto the global coordinate system, and then the trajectories of
each segment are connected end-to-end (Path connection point). Finally, by applying C? continuity constraints
at the connections using piecewise Bezier curves, a globally smooth trajectory is synthesized. Let the adjacent

Scientific Reports |

(2025) 15:44505 | https://doi.org/10.1038/s41598-025-28018-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

trajectory segment I'y 'y 1 be a quartic Bezier curve, with control points P?,..., P} and P? IS TR P} 11-
The R. continuity must satisfy: the critical curvature radius R meets the vehicle dynamics constraints.

02
Re=—r0n—— (3)

¢ am? * + 650, fe
Herein, v denotes the vehicle speed, a"¢® = 2.5m/s represents the maximum allowable lateral acceleration,

and 0sa e is the safety margin. When the road curvature radius R is smaller than R., a multi-coordinate system
strategy must be employed.

Quadratic programming solution

Using the control points of the Bezier curve as decision variables, an optimization objective function is established
that includes constraints on curvature continuity, jerk, acceleration, velocity, as well as penalty terms for lateral
deviation and collision.

Compared with other joint spatiotemporal planning algorithms, the curvature-adaptive joint spatiotemporal
planning algorithm operates within a local solution space of the given decision results, thereby avoiding the
computational complexity explosion caused by decision diversity. Experiments demonstrate that this method
reduces the trajectory envelopment radius compared to traditional single-Frenet-frame approaches. Furthermore,
by leveraging parallel computation of subproblems, the planning time is controlled within 0.21s. This divide-
and-conquer strategy effectively balances the trade-off between planning accuracy and computational efficiency,
offering a novel approach for real-time trajectory planning in complex road scenarios.

The transformation between the Frenet and Cartesian coordinate systems

The Frenet coordinate system

The limitations of the Cartesian coordinate system lie in its inability to directly determine the distance traveled
by a vehicle, whether surrounding vehicles have deviated from the lane centerline, or the exact location of the
road. In contrast, the Frenet coordinate system is lane-based, where the S-axis represents the distance traveled
along the lane, and the L-axis indicates the lateral offset from the lane centerline. Trajectory planning, as a high-
dimensional optimization problem with multiple nonlinear constraints, demands significant computational
resources. Given the complexity of real-world scenarios and the requirement for real-time processing, it is not
always possible to quickly and simply obtain an optimal trajectory. This imposes high demands on the robustness
and practicality of planning algorithms. When describing the position of objects using the Cartesian coordinate
system, even if the vehicle’s location is known, it is challenging to rapidly determine the road’s position and
whether the vehicle has deviated from the lane center.

In the Frenet coordinate system, however, the road centerline is typically used as the reference line, and
the vehicle’s trajectory is decoupled into longitudinal and lateral components along and perpendicular to the
reference line, respectively. Therefore, compared to the traditional Cartesian coordinate system with x and
y axes, the Frenet coordinate system not only provides a more intuitive representation of the road position,
especially for curved roads, but also simplifies the two-dimensional planning problem into the superposition
of two one-dimensional problems. Additionally, the construction of the Frenet coordinate system avoids the
complex transformation of the vehicle’s heading direction, which is often required in Cartesian coordinates.

Transformation between Frenet and Cartesian coordinates
The information obtained from the perception module, including road boundaries and obstacles, is represented
in the global Cartesian coordinate system. The joint spatiotemporal planning algorithm solves for the optimal
trajectory in the Frenet coordinate system. However, the final motion trajectory must be executable and trackable
by the control module. Therefore, it is necessary to project the perception information from the global Cartesian
coordinate system onto the Frenet coordinate system. Simultaneously, the planned trajectory obtained in the
Frenet coordinate system must be transformed back to the global Cartesian coordinate system for execution.
Fig. 3 illustrates the correspondence between the motion trajectory of an intelligent driving vehicle in
the Frenet coordinate system and the global coordinate system. Adopting the core idea of the Frenet-Serret
framework and based on the geometric transformation between the Frenet coordinate system and the Cartesian
coordinates, the following derivation can be obtained®. Assuming the position of the intelligent driving vehicle
in the global coordinate system is represented as (, 7), the vehicle’s position coordinates at the current moment
can be expressed as:

T = (2, y) = x(s, ) “)

In the equation, = denotes the position vector of the intelligent driving vehicle in the global coordinate system.
s represents the arc length distance from the starting point to the corresponding point on the reference line
when the vehicle’s position is projected onto it, indicating the longitudinal travel distance of the vehicle along
the reference line. is the lateral offset distance between the vehicle’s position and the point corresponding to
the longitudinal distance. N

The state variables of interest for the vehicle in the Cartesian coordinate system are [, v, a, 0, kz] where

v represents the vehicle’s velocity in the Cartesian coordinate system, a denotes the vehicle’s acceleration in the
global coordinate system, 6. is the vehicle’s yaw angle in the Cartesian coordinate system, and k represents the
curvature. When these state variables are transformed into the Frenet coordinate system, they correspond to
[s, 4,8 1,0,1"].

Scientific Reports |

(2025) 15:44505 | https://doi.org/10.1038/s41598-025-28018-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Trajectory

Fig. 3. The illustration of the transformation between the Frenet coordinate system and the global coordinate
system.

As shown in Fig. 3, the current position of the vehicle is projected onto the reference line. The reference
point at the vehicle center is denoted as 7 = (xr, y,). The s value of this reference point corresponds to the

longitudinal distance of the vehicle in the Frenet coordinate system. I represents the position vector of the
reference point in the Cartesian coordinate system. The geometric relationship yields:

T=7+HN
l=(z—-7)"

, cos <0w,r — (HT + g)) (5)

, (sin(Oz—r) cos(0r) — cos(0z—r) sin(6;))

=

:’:E—T

NN
=|lz—r

In the equation, 6, is the direction angle of vector x — r 0, + 53 is the direction angle of the normal unit

vector N of the reference trajectory.
Assuming = (zz; —yz) and 7 = (xz —Yy») in the Frenet coordinate system, the vector

xr—T

= \/ (xe — )2 4+ (Yo — yr)? from each coordinate point to its corresponding point on the

==+

reference line is either in the same direction or in the opposite direction to the normal vector |V of that reference

”
point. Therefore:

sin (0z—r) cos (0r) — cos (Og—r) sin (0r) = 160, — 05— = 5 6

{ sin (0z—.) cos (0) — cos (0z—r) sin (0) = =10, — 0, = % (6)
i 97;77' x — Yr

sin(0s-r) _ ye—y o

cos (Oz—r) Ty —Tr

Based on the positive or negative relationship of equations (6) and (7), the positive or negative value of the
lateral distance in equation (8) can be determined, which in turn allows us to determine on which side of the
reference line the intelligent driving vehicle is at the current moment. Therefore, the formula for calculating the
lateral distance is:

L= sign (5o — 9) 05 (6:) — (2 — )0 (0:)) ) ez — 22)° + (52— 90)° ®

After determining the longitudinal and lateral distances s and in the Frenet coordinate system, the longitudinal
velocity s and longitudinal acceleration § in the Frenet coordinate system can be calculated from the vehicle’s
speed, yaw angle, and curvature in the global coordinate system. Additionally, the first and second derivatives of
the lateral distance with respect to the longitudinal distance, I’ and "’ can be computed.

By differentiating the coordinates (-, — y.)” N with respect to time, we can obtain:
s
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S & P

;:di: T =v,.T
dt dt = % (10)
=T

In the Frenet coordinate system, the Frenet formulas are required. These formulas are used to describe the
motion of a particle along a continuously differentiable curve in the Euclidean space R. They represent the
interrelationships among the tangent, normal, and binormal vectors of the curve'*~'¢. The specific formulas are
as follows:

ar -

— =KN

ds
T _ _kT-+B (11)
ds

dB —

b _ N

ds T

In the formulas, T represents the unit tangent vector of the curve at a given point, N is the corresponding unit
normal vector, and B is the binormal vector. k denotes the curvature, and 7 represents the torsion. In the context
of local trajectory planning for autonomous driving, the road surface can be assumed to be a plane, and thus the
torsion T is generally zero.

Substituting Equations (10) and (11) into Equation (9) yields:

1 N

N .\ T -
i= P;pr—sT] Nr—IN,ksN, (12)

Under normal circumstances, the actual trajectory of an autonomous vehicle will always move along the
reference line and will not move in the opposite direction of the reference line. Therefore, the vehicle’s movement
satisfies the following two constraints during its travel:

—2 <0, -0, <%
2 =Yz T =7
1<t (13)

The rate of change of the lateral and longitudinal distances of an autonomous vehicle in the Frenet coordinate
system can be derived from the lateral and longitudinal velocities. Combining the constraints in Equation (13),
we obtain:

= \/ 52(1 — kl) +l251H(07¢ - er) _ (1 _ kl)tan(@, _ 07‘) (14)

S

By integrating the formulas for the longitudinal and lateral velocities as well as the rate of change of the lateral
distance, we can derive the complete transformation relationship between the Frenet coordinate system and the
Cartesian coordinate system:

$=Sp

. vgcos(0p—0;)
° . el
agcos(0p—0r)—3 [l’(kmm—kﬂ—(kr’l—krl/)]
1—k,l 5 > (15)
L= sign((y, — yr)cos(0,) — (@s — @, )sin(0:))/(w: — 27 + (4, — v7)
I = (1 — kl)tan(, — 0,)
" = —(kotl + kel)tan(0y, — 6,) + —ate) _(_G=kell g oy

cos2(05;—0;) \cos(0y—0,) T

8§ =

The transformation formula from the Frenet coordinate system to the Cartesian coordinate system is:
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ZTo = xr — lsin(0y)
Yo = yr + lcos(0;)
0, = arctan(l_li;ﬂrl) + 0, [—m, 7]
ve = \/3(1 — k1) + (31')? (16)
22

Az = gcosl(;xkilé,.) + cos(&swfﬂ,') [dl(kz cosl(;f:f‘),,.) - kr) - (k;"l + k"ll)]

ke = ((I" + (kML + k0" )tan(0, — 90)% + k) e —0r)

T—kyl 1kl

The curvature k. is calculated in the Frenet coordinate system by taking three consecutive coordinate points on
the path and using differential approximation and Taylor expansion to calculate /7, 1", and 5. These values are
then substituted into the following formula to solve for k,:
l/
hom—— (17)
(L+02)5

Similarly, the velocity v, and acceleration a, can be calculated by directly using the position and velocity change
rates of adjacent path points to approximate them.

Construction of a spatiotemporal joint free feasible convex space
Construction of a three-dimensional Spatiotemporal (S-L-T) joint map
The coreidea of constructing a spatiotemporal joint map is to extend the staticand dynamic information of vehicles,
obstacles, and other elements along the time axis, thereby recording the dynamic changes of environmental
information over a period of time, as shown in Fig. 4. The three coordinate axes of the spatiotemporal joint map
are the S-axis, L-axis, and T-axis. The S-axis and L-axis are coordinate axes in the Frenet coordinate system,
while the T-axis represents the time axis. To construct the spatiotemporal joint map, it is necessary to project the
environmental information in the Cartesian coordinate system onto the Frenet coordinate system.

As shown in Equation (18), the map M within the time interval 1" (starting from ¢) consists of three parts.
At each time laXTer t, it includes the predicted positions of the surrounding vehicles relative to the ego vehicle,
denoted as >_"°. P, , the positions of static obstacles, denoted as ZNS P¢,, , and the road geometry

n=1 n=1
. . N
information, denoted as g - Ry n.

Np Ns Ng,
M ={¥, X PRS2 P UG, 3 Pl)

Pt,Dn - [Stmm lt,n] (18)
Pts,n - St,n, lt,n
Ptl,ln = [Lwt,'lz? Lidt,n s Mst my nlt,n}

In the equation, Np, N, and Nz represent the number of surrounding vehicles, static obstacles, and lanes,
respectively. [S,n,lt,n] denotes the coordinates in the Frenet coordinate system for s and . [Luw, ,,, Lid, ,, |
represent the width and the number of the lane, respectively. [n,, ,n, ,] denotes the Frenet coordinates of the
lane centerline. '

Fig. 4. Schematic diagram of spatiotemporal joint.
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Construction of Three-Dimensional Convex Space Based on S-L-T Using a Grid Map

The decision-making algorithm module generated and screened out a feasible coarse-grained trajectory with the
minimum cost. Based on the coarse trajectory generated by the decision-making process and the information
of static and dynamic obstacles obtained by the perception module, the planning algorithm module performed
obstacle filling in the grid map and constructed convex spaces based on the state points on the coarse trajectory
obtained from the decision-making process. The planning algorithm module constructed a three-dimensional
convex space in the S-L-T domain. The static and dynamic obstacles in the spatiotemporal integrated map are
shown in Fig. 5(a-c).

Projection of trajectory into the global coordinate

The decision-making algorithm module generated and screened out a feasible coarse-grained trajectory with the
minimum cost. Based on the coarse trajectory generated by the decision-making process and the information of
static and dynamic obstacles obtained.

Generation of the coarse trajectory projection of trajectory onto the Cartesian coordinate system

The construction of the three-dimensional convex space in the S-L-T domain mainly involves the following
processes: First, the planning algorithm transforms the acquired obstacle information into the Frenet coordinate
system using a coordinate transformation method. Subsequently, the transformed obstacle information and the
coarse trajectory information obtained from the decision-making process are filled into a grid map of a specified
size constructed by the planning algorithm. After completing these tasks, the planning algorithm performs a
convex space search based on the coarse-grained trajectory from the decision-making process.

During the search, the algorithm traverses all state points on the coarse trajectory and searches for convex
spaces in three directions along the axes. The search continues until a free collision-free space is identified as a
convex space, stopping when the boundary of an obstacle is encountered. Fig. 5 illustrates a typical overtaking
scenario with lane change, where Fig. 5(a) shows the ego vehicle as a green square, the target lane vehicle as a
yellow vehicle, and the preceding vehicle in the current lane as a blue vehicle. The S-T and L-T diagrams for
constructing the convex space are shown in Fig. 5(b) and (c), respectively. The red points represent the vehicle
state points on the decision-making coarse trajectory, and the constructed convex spaces are depicted as a series
of rectangles in Fig. 5(b) and (c). The dashed lines indicate the optimized trajectory.

Projection of trajectory onto the Cartesian coordinate system

To project the generated trajectory back into the real-world traffic coordinate system, the trajectories generated
in each Frenet coordinate frame are first subjected to inverse operations based on the original coordinate
transformations. Specifically, the trajectories in each Frenet frame are initially translated by an offset of -d.
Subsequently, the translated trajectories are transformed from the Frenet coordinate system to the Cartesian
coordinate system based on their respective rotation points. Finally, the segments of the transformed coordinates
are concatenated end-to-end to form the reference trajectory.

Subsection

Currently, most trajectory generation schemes employ quintic polynomials to fit the lateral and longitudinal
trajectories. However, quintic polynomials are not suitable for optimization in spatiotemporal integrated planning
algorithms. The primary reason is that the expressive capability of a polynomial segment is limited, making it less
appropriate for problems with complex configuration spaces and dynamic constraints. Additionally, in previous
studies on polynomial trajectories, constraints were enforced and checked only on a finite set of sampling points.
This approach may fail to detect collisions between sampling points, thereby not guaranteeing smoothness

(a)

(b) (<)

Fig. 5. The planning algorithm module constructed a spatiotemporal integrated convex space.
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and optimal solutions. In contrast, Bézier curves, with their convex hull property and convexity-preserving
characteristics, can generate fine-grained trajectories and effectively address the aforementioned issues.

Bézier curve
For an m-th order Bézier curve f(¢)%, its mathematical expression is:

F(t) = Pobyn(£) + Paby (£) + -+ + Publn(t) = > Prbin(t) (19)
i=0

In the equation, P; represents the control points of the curve, and b%, () = (T) ti(1 — )™ " is the Bézier

polynomial.
The set of control points is denoted as P:

P =[Py, P,...,Pn] (20)

The convex hull property of the Bézier curve is applicable to trajectory optimization problems defined in a
convex space. By constraining the curve within the convex space, it can be guaranteed that the generated Bézier

curve is collision-free. The convex hull property of the Bézier curve implies that the derivative dd—(tt) of the Bézier

. - . : 4 df(t)
curve f(t) remains a Bézier curve. By applying the convex hull property to the derived Bézier curve ==, the

higher-order quantities (velocity, acceleration) of the Bézier curve f(t) can be constrained within the specified
limits.

Trajectory optimization based on piecewise bézier curves

To connect the constructed convex spaces, piecewise Bézier curves are employed. To ensure the smoothness and
feasibility of the trajectory, an optimization objective function, cost (total cost of the path), is formulated for the
piecewise Bézier curve optimization problem. This cost function includes jerk cost, velocity difference cost, time
cost, lateral offset cost, and collision cost. Since Bézier curves are defined within a fixed interval, and considering
that the acceleration variation of the vehicle during travel should not be excessive to ensure passenger comfort,
the cost value of the trajectory is used as the optimization cost function. Specifically, the cost function for the j
-th segment of the Bézier curve, cost;, can be expressed as:

N
cost; = pmmz <UJ1 /k_jerkdt+w2k_t+w3/k_vdt+w4/k_offsetdt+o.)5k_collision> (21)

=1

Here, p represents the control point matrix. £ jerk denotes the cost of path smoothness, k¢ represents the
cost of computation time, kv denotes the cost of velocity discrepancy, &k of f set represents the cost of lateral
deviation, and k__collision denotes the cost of collision.

Jerk cost Denoted by formula w1 [ k_ jerkdt, is the integral of the squared jerk (rate of change of accelera-
tion) over the trajectory segment. Jerk reflects the rate of change of acceleration with respect to time. Excessive
jerk can cause a jarring sensation during vehicle travel, compromising ride comfort. Therefore, minimizing the
jerk cost can further improve the smoothness of the trajectory.

Time cost Denoted by formula w2k ¢, It aims to quantify the temporal cost required for trajectory execution.
Minimizing this cost can effectively reduce the travel time along the path and enhance the efficiency of the
planning process.

Speed deviation cost Denoted by formula ws [ k_vdt . The speed deviation cost is utilized to constrain the
deviation of vehicle speed from the desired speed, thereby suppressing abrupt acceleration or deceleration. By
minimizing the speed deviation cost, the smoothness of the driving process can be ensured, reducing passen-
ger discomfort and avoiding increased energy consumption or handling stability issues caused by severe speed
fluctuations.

Lateral offset cost  The lateral offset cost, represented by formula ws [ k_of f setdt, measures the deviation of
the vehicle from the target path in the lateral direction. It calculates the squared lateral offset to reflect the lateral
distance between the vehicle and the target path. This cost helps ensure that the vehicle stays as close as possible
to the ideal trajectory, thereby enhancing the accuracy of the planned path.

Collision cost The collision cost, denoted by formula wsk _collision, embodies the safety constraints in tra-
jectory planning. It is a function based on the probability of collision risk, evaluating the potential collision haz-
ards between the trajectory segment and surrounding obstacles. By assigning higher weights to segments with
higher collision risks, it effectively avoids collisions and ensures the safety of the vehicle during travel.

The weight coefficients (w1, w,, ws,w4,ws) for each cost term are adaptively adjusted through a covariance
matrix. This adaptive adjustment mechanism enables the algorithm to dynamically balance the weights of different
cost terms according to various driving scenarios and conditions, thereby achieving optimal comprehensive
performance in terms of smoothness, efficiency, and safety.
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Experiment and analysis
Dataset
The data in this study are based on a parametric sampling strategy for intelligent driving trajectory planning. A
multi-dimensional constraint model and a multi-objective optimization function are established to generate safe
and efficient data. This method employs a hierarchical planning architecture: in the longitudinal dimension, the
speed profile is constructed based on the S-T (space-time) model, with sampling at a resolution of 0.2 s within
the time domain [4.5 s, 5.5 s] to generate S-T curves that satisfy the terminal velocity constraints (5.0 - 8.33 m/s).
In the lateral dimension, the lateral offset trajectory is generated based on the L-T (lateral-time) model, with
discrete sampling at a step length of 1.0 m within the road width of +8 m, ensuring that the final acceleration is
zero. A verification mechanism is established, including dynamic constraints (velocity < 13.89 m/s, acceleration
< 8.0 m/s?, curvature < [curvature limit]), collision detection, and S-L to X-Y coordinate transformation, to
filter out physically feasible candidate trajectories. On this basis, a multi-objective cost function is designed to
comprehensively evaluate the smoothness of the trajectory (jerk), efficiency (time cost), safety (lateral offset),
and velocity tracking accuracy. The candidate trajectories are optimized and ranked through weight allocation.
The experimental environment was established on CentOS, with hardware configurations including a 12th
Generation Intel Core i7-12650H processor (base frequency 2.30 GHz), 32 GB DDR5 RAM, and an NVIDIA
GeForce RTX 4060 GPU. The algorithm was implemented in Python 3.8, relying on NumPy for matrix operations
and Matplotlib for visualization. The experimental design includes the following key elements:

Road model

A circular bidirectional dual-lane environment composed of four curves was constructed. Each lane has a width
of 8 m, with a longitudinal length of 100 m and a lateral width of 80 m. The lane boundaries are solid lines, while
the center lane line is a dashed line, with lateral boundary constraints of +8 m.

Obstacle configuration
One obstacle was placed in each curve to increase the difficulty of the bend and simulate scenarios where vehicles
intrude into the opposite lane.

Planner parameters
The time sampling interval was set to 0.2 s, with a prediction time domain of [4.5 s, 5.5 s]. The lateral sampling
step size was 0.1 m, and the velocity sampling step size was 5 km/h.

Vehicle parameters
A simplified bicycle model was used, with a wheelbase of 2.5 m, vehicle width of 1.8 m, and maximum steering
angle of 0.6 rad. Detailed parameters are shown in Table 1.

Trajectory planning experiment in static scenarios

Validation and comparison of models

The integrated space-time model effectively combines the longitudinal and lateral motions of the vehicle. It not
only integrates the current state of the vehicle and the surrounding environment but also considers the potential
intentions and possible behaviors of other vehicles. Additionally, the model employs curvature-adaptive
discretization to straighten the road, effectively addressing planning deviations caused by road curvature and
vehicle posture. To validate the effectiveness of the proposed model, a circular simulation scenario with four
curved roads was designed, as shown in Fig. 6 and 7. The green lines represent the vehicle’s driving trajectory,
the yellow lines indicate the planned trajectory set at the current moment, and the red lines denote the real-time
optimal trajectory. Fig. 6 illustrates the path planned using the traditional Bézier curve method, while Fig. 7
shows the trajectory planned using the space-time integrated algorithm.

Comparing the experimental results in Fig. 6(a-f) and 7(a-f), it is evident that under the same constraints,
the optimal trajectory planned by the traditional Bézier curve successfully bypasses obstacles but maintains a
larger clearance from them. In contrast, the trajectory planned by the spatiotemporal coupling algorithm, which
employs the temporal-spatial transformation in the Frenet coordinate system, avoids errors caused by vehicle
posture and trajectory smoothness. As a result, it provides more precise obstacle avoidance and a smoother
operational path. Comparing Fig. 6(a) and 7(a), it can be observed that during the bypass of the first obstacle,
the steering angle of the spatiotemporal coupling planning is smaller than that of the traditional Bézier curve
planning algorithm, resulting in a smoother driving experience. When comparing the data of other bends and

Parameter name Symbol Value | Unit
Scaling factor K_SIZE 1

Front overhang RF 35 m
Rear overhang RB 1 m
Vehicle width w 1.8 m
Wheelbase WB 2.5 m
Maximum steering angle | MAX_STEER | 0.6 rad

Table 1. Basic parameters of the vehicle.
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Fig. 6. Trajectory planning based on Bézier curves.
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Fig. 7. Trajectory planning based on spatiotemporal integration algorithm.

obstacles, it is apparent that the spatiotemporal coupling algorithm offers a smoother trajectory that is more in
line with human driving habits.

Cruise cost analysis
To comprehensively evaluate the superiority of the algorithm, an objective function, cost, is established for
single-path optimization. The total cost of the path comprises jerk cost, speed deviation cost, time cost, lateral
offset cost, and collision cost. Additionally, cruising cost weights and vehicle operation observation parameters
are designed, as shown in Tables 2 and 3.

An intelligent driving trajectory planning method based on a designed detour route and employing
a parametric sampling strategy was developed. It achieved secure and efficient data generation through the
establishment of a multi-dimensional constraint model and a multi-objective optimization function. The
method enabled vehicle simulation and generated a detour cost curve, as shown in Fig. 8.

Experimental results indicate that the algorithm based on spatiotemporal integration has an average cost
of 2.229, whereas the trajectory planning method based on traditional Bézier curves has an average cost of
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Constraint parameter name | Symbol Weight | Calculation metric Affected objective | Priority description
Jerk cost K_JERK 0.1 Integral of acceleration over time | Comfort Low

Time cost K_TIME 0.1 Travel time (seconds) Efficiency Medium

Speed deviation cost K_V_DIFF 0.1 (Target Speed—Actual Speed)? Control precision Medium

Lateral offset cost K_OFFSET 1.5 Square of lateral offset (m?) Trajectory precision | High

Collision cost K_COLLISION | 500 Collision risk probability (0-1) Safety Highest

Table 2. Basic parameters of the cost function.

Parameter name Symbol | Unit
Lateral velocity L_v m/s

Lateral acceleration La m/s?
Lateral jerk Lj m/s’
Longitudinal velocity S_v m/s

Longitudinal acceleration | S_a m/s?
Longitudinal jerk S_j m/s?

Table 3. Kinematic parameters of vehicles.
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Fig. 8. Comparison of constraint costs.

33.671. It is evident that, despite both methods utilizing Bézier curves, the spatiotemporal integration algorithm
successfully planned optimal detour paths without collisions in both single detour and actual driving scenarios.
In contrast, although the traditional Bézier curve-based trajectory planning method also successfully navigated
around obstacles, it generated collision-prone routes during four specific time intervals in single detour planning.
The algorithm considering spatiotemporal integration demonstrated superior performance in terms of jerk
cost, velocity deviation cost, time cost, lateral offset cost, and collision cost. It exhibited enhanced robustness in
planning, smoothness of the trajectory, and better alignment with human driving habits.

Performance analysis of obstacle-avoidance trajectory planning model

To verify the trajectory planning performance of the spatiotemporal joint model, the Bezier curve planning
model proposed in reference!® was adopted as the comparison model in this study. Under the condition that
the basic driving parameters of the intelligent vehicle were identical during the testing process, comparisons
were made between the proposed model and the comparison model in terms of longitudinal jerk, longitudinal
acceleration, longitudinal velocity, lateral jerk, lateral acceleration, and lateral velocity.

In the longitudinal dimension, compared with Fig. 9(a) and (b), the spatiotemporal joint algorithm exhibits
superior performance in terms of both longitudinal jerk and acceleration compared with the reference model,
resulting in smoother vehicle motion. As shown in Fig. 9(c) and (f), the speed transition of the spatiotemporal
joint algorithm is also more continuous. In the lateral dimension, as depicted in Fig. 9(d) and (e), the lateral
acceleration and jerk of the spatiotemporal joint algorithm are slightly higher than those of the reference model,
but the differences are minimal. Overall, the spatiotemporal joint algorithm demonstrates higher average speed,
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Fig. 9. Comparison of longitudinal and lateral performance.

Cubic B-spline | Cubic Bezier Fifth-order Bézier | Compare with cubic

Algorithm name Quintic polynomial | curve curve Ours curve bezier curve Improved
Optimal planning frequency 133 134 130 135 134 +3.85% Yes
Execution collision frequency 0 0 0 0 0 0%

Planning collision frequency 11 13 8 0 22 -6.15% Yes
Average longitudinal velocity 6.1548 6.0699 6.2864 6.0350 | 6.0667 -4.00% Yes
Average longitudinal acceleration | 0.0488 0.04868 0.0499 0.0484 | 0.0065 -3.01% Yes
Average longitudinal jerk 0.00077 0.00087 0.00085 0.00077 | 0.00012 -9.41% Yes
Average lateral velocity -0.0537 -0.05691 -0.0588 -0.0595 | -0.0496 +1.19% No
Average lateral acceleration 0.0004 0.0075 0.0020 0.0053 | -0.0003 +165.00% No
Average lateral jerk -0.0048 -0.0062 0.0032 0.0048 | -0.0015 +50.00% No
Average cost 44.2044 51.7982 33.6714 2.2288 | 85.4314 -93.38% Yes
Computation speed (s) 0.0950 0.0940 0.1953 0.2096 | 0.3249 +7.32% No

Table 4. Algorithm comparison analysis.

acceleration, and jerk in the longitudinal direction compared with the reference model, indicating enhanced
ride comfort during operation. In the lateral motion, the average speed, acceleration, and jerk are all higher than
those of the reference model, suggesting more efficient lane-changing maneuvers.

Comparative analysis of spatiotemporal joint model algorithms

The spatiotemporal joint algorithm was compared with quintic polynomial and cubic B-spline algorithms. Based
on the comparative experimental data, the spatiotemporal joint algorithm demonstrated significant advantages
in several key performance indicators, as detailed in Table 4.

From the comparative data, it can be observed that in terms of trajectory planning density, the spatiotemporal
joint algorithm achieved an optimal planning frequency of 135 times, surpassing the quintic polynomial (133
times), B-spline curve (134 times), and Bezier curve (130 times). This indicates its superior global optimization
capability. In terms of safety performance, the spatiotemporal joint algorithm successfully achieved zero planning
collisions (0 times), compared to the quintic polynomial (11 times), B-spline curve (13 times), and Bezier
curve (8 times), demonstrating its robustness in dynamic obstacle avoidance. In longitudinal motion control,
the spatiotemporal joint algorithm maintained the lowest average longitudinal acceleration (0.0484 m/s?) and
jerk (0.000766 m/s®), indicating its ability to generate smoother longitudinal motion trajectories. Although its
average longitudinal velocity (6.03502 m/s) is slightly lower than that of the comparative algorithms, it achieves
enhanced motion comfort through optimized acceleration control. In lateral dynamics, the spatiotemporal
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joint algorithm exhibited an average lateral velocity of -0.05945 m/s, which is comparable to the values of the
comparative algorithms (-0.0537 to -0.0588 m/s), verifying its comparable lateral motion stability.

Overall, the experimental results demonstrate that the spatiotemporal joint algorithm achieves a better
balance in planning efficiency, safety, and motion smoothness. It is particularly suitable for scenarios with high
requirements for safety and multi-objective optimization, such as intelligent driving and complex dynamic
environments. Despite its relatively lower computational efficiency, the zero planning collisions and minimal
comprehensive cost in the planning phase make it a more optimal choice.

Ablation experiments of spatiotemporal joint algorithm

The spatiotemporal joint algorithm employs a curvature-adaptive discretization method to linearize the road.
The ego-vehicle state, the coarse-grained trajectory output from the decision-making layer, and the predicted
trajectories of perceived obstacles are all uniformly transformed into a piecewise Frenet frame. By dividing the
continuously curved road into N quasi-linear segments, the influence of vehicle posture and road curvature on
planning is reduced. Details are provided in Table 5.

Based on the data from the comparative experiments, the joint spatiotemporal algorithm demonstrates
superior comprehensive performance under the collaborative optimization of road curvature and vehicle
attitude. In terms of motion control, the longitudinal velocity of the joint spatiotemporal planning algorithm
(6.0350 m/s) is reduced by 4.00% compared with the non-integrated algorithm (6.2864 m/s), while the
longitudinal acceleration (0.0484 m/s?) and jerk (0.00077 m/s’) are decreased by 3.01% and 9.41%, respectively,
thereby effectively enhancing the smoothness of motion. The lateral dynamic indicators remain stable, with the
lateral acceleration (0.0053 m/s?) and jerk (0.0048 m/s®) being reduced by 7.3%-25.9% compared with the non-
joint spatiotemporal algorithm, indicating a significant improvement in the precision of lateral motion control.
Regarding planning efficiency, the joint spatiotemporal algorithm achieves a 100% planning success rate across
all scenarios with a planning time of 0.2096s, representing a 6.15% increase in success rate compared with the
conventional algorithm. Meanwhile, the path cost is significantly reduced from 33.67 to 2.23. The experiments
demonstrate that the collaborative optimization strategy integrating road geometric features and vehicle
dynamic constraints can significantly enhance the safety and comfort of trajectory planning while ensuring
real-time performance.

Trajectory planning experiments in dynamic scenarios

Trajectory planning in dynamic scenarios

To further enhance the validation of the reliability and applicability of our method and to more realistically
simulate real-world driving scenarios, experiments involving dynamic obstacle scenarios (lane changing,
overtaking, and multi-vehicle environments) are conducted in the following sections.

Dynamic scenario - Lane changing We simulate the lane-changing behavior of vehicles, including both over-
taking by lane changing and lane changing to avoid obstacles. In the overtaking scenario, the vehicle needs to
change lanes at an appropriate time and accelerate to pass the preceding vehicle, thereby verifying the path
planning capability and safety of our proposed method during lane changes. In the obstacle-avoidance scenario,
the vehicle needs to change lanes promptly upon detecting an obstacle ahead to avoid a collision. While ensur-
ing successful obstacle avoidance, the smoothness and comfort of the vehicle’s trajectory are also maintained.
The specific simulation results are shown in Fig. 10(a) and (b), which respectively illustrate the lane-changing
scenarios in the inner lane, middle lane, and outer lane.

Dynamic scenario - Overtaking We simulate the overtaking behavior of vehicles, including both single over-
taking and consecutive overtaking scenarios. Fig. 11 illustrates the entire overtaking process, where Fig. 11(a)
and (b) respectively show the planning processes of two consecutive overtaking maneuvers, and Fig. 11(c) shows
the completion of the overtaking maneuver. In the single overtaking scenario, the vehicle needs to change lanes
at an appropriate time and accelerate to pass the preceding vehicle. In the consecutive overtaking scenario, the
vehicle needs to successively overtake multiple slow-moving vehicles ahead. These scenarios are designed to
verify the path planning capability of our proposed method during overtaking maneuvers.

Dynamic scenario - Multi-vehicle environment We simulate the scenario where the vehicle encounters mul-
tiple dynamic obstacles during its journey. The specific simulation results are shown in Fig. 12, where Fig. 12(a)
represents entering a multi-vehicle environment, Fig. 12(b) represents being in the multi-vehicle environment,
and Fig. 12(c) represents exiting the multi-vehicle environment. In these scenarios, the motion trajectories and
velocities of the dynamic obstacles are randomly generated to simulate the uncertainties in real traffic condi-

Road Vehicle Planning success | Obstacle avoidance
Algorithm curvature | posture | S_v S a S J Lv La L] Time | Cost | times success rate

/ / 6.2864 | 0.0499 | 0.00085 | -0.0588 | 0.0020 | 0.0032 | 0.1953 | 33.67 | 8/130 100%
Quartic Bezier curve |/ N 6.2487 | 0.0498 | 0.00087 | -0.0650 | 0.0050 | 0.0065 | 0.1962 | 14.01 | 3/131 100%

v / 6.2461 | 0.0498 | 0.00084 | -0.0589 | 0.0045 | 0.0065 | 0.2145 | 18.05 | 4/131 100%
Ours Y N 6.0350 | 0.0484 | 0.00077 | -0.0595 | 0.0053 | 0.0048 | 0.2096 | 2.23 0/135 100%

Table 5. Ablation studies on the spatiotemporal joint algorithm.
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Fig. 10. Dynamic scenario - lane changing
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Fig. 11. Dynamic Scenario — Overtaking.
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Fig. 12. Dynamic Scenario - Multi-Vehicle Environment.

tions. These experiments are designed to verify the rapid response capability and path re-planning ability of our
proposed method in the presence of dynamic obstacles.

This study designed three typical dynamic scenarios: lane-changing scenarios, overtaking scenarios on a
straight road, and overtaking scenarios on a curved road. By simulating complex traffic events such as intrusions
from the oncoming lane and sudden braking of the preceding vehicle, the results of the experiments, as shown
in Figures 10-12, demonstrate that the spatiotemporal joint algorithm performs well in dynamic obstacle
avoidance, path smoothness, and planning success rate. In the lane-changing scenario, the target lane is intruded
upon by an oncoming vehicle, and the ego vehicle needs to complete the lane change while ensuring safety. The
spatiotemporal joint algorithm dynamically constructs a three-dimensional convex space in the S-L-T coordinate
system, allowing for rapid trajectory adjustment in response to intrusions and achieving smooth lane changes
(Fig. 10(b)). In the overtaking scenario on a straight road, the preceding vehicle is traveling at a low speed, and
there is oncoming traffic in the adjacent lane. The spatiotemporal joint algorithm extends the prediction time
domain to anticipate the trajectory of the oncoming vehicle and generates a collision-avoidance overtaking path
(Fig. 11(b)). In the overtaking scenario on a curved road, which poses dual challenges of road curvature and
dynamic obstacles, the spatiotemporal joint algorithm employs road segmentation and adaptive transformation
of multiple coordinate systems to generate an optimized trajectory that conforms to the geometric characteristics
of the curve (Fig. 12(b)).
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Fig. 13. Comparison of model planning performance in dynamic environments.

Algorithm name MPTC | Adaptive bezier | Ours Improved
Optimal planning frequency 113 112 118 Yes
Average longitudinal velocity 7.2697 | 7.3024 6.9733 | Yes
Average longitudinal acceleration | -0.2376 | -0.2399 -0.2045 | Yes
Average longitudinal jerk -0.0032 | -0.0032 -0.0021 | Yes
Average lateral velocity -0.0586 | -0.0603 -0.0582 | Yes
Average lateral acceleration -0.0010 | 0.0019 0.0020 | No
Average lateral jerk -0.0005 | 0.0060 0.0050 | No
Average cost 70.1279 | 74.9516 41.3630 | Yes
Computation speed (s) 0.0810 | 0.2084 0.1881 | No

Table 6. Comparison of model planning performance in dynamic environments.

Comparison of model planning performance in dynamic environments

To further validate the trajectory planning performance of the spatiotemporal joint model, this study compared
it with several mainstream and representative trajectory planning algorithms, such as the Adaptive Bezier
Algorithm*® and the Model Predictive Trajectory Control (MPTC) Algorithm*!. The comparison was conducted
from multiple aspects, including obstacle avoidance performance and passenger comfort (jerk and lateral
acceleration fluctuations). By expanding the dimensions of result analysis and conducting a comprehensive
evaluation through quantitative metric comparisons and visual presentations, the results are shown in Fig. 13.

To more clearly illustrate the performance of the algorithms, the basic driving parameters of the intelligent
vehicle for both the proposed model and the comparison models were kept identical during the testing process.
The longitudinal jerk, longitudinal acceleration, longitudinal velocity, lateral jerk, lateral acceleration, and lateral
velocity were separately recorded. The detailed comparisons are shown in Table 6.

Opverall, the statistical results clearly demonstrate that in the dynamic scenarios, the proposed spatiotemporal
integrated trajectory planning algorithm shows significant improvements in six out of the nine actual indicators
evaluated for path planning safety, while the remaining three indicators experience a certain degree of decline.
Compared with the MPTC method, the comprehensive cost is reduced by 41.02%, and the planning space is
increased by 4.42%. Indicators such as longitudinal smoothness have also been enhanced. Although the lateral
acceleration, lateral jerk, and computation time have increased to some extent, the absolute values of these
increases are relatively small and have a minimal impact on the actual experience of drivers and passengers.
Considering the overall cost comprehensively, the spatiotemporal integrated trajectory planning algorithm
exhibits a distinct advantage.
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Conclusions

Aiming at the limitations of traditional trajectory planning methods in complex road scenarios, this paper
proposes a curvature-adaptive and spatiotemporal integrated trajectory planning algorithm for intelligent
vehicles. The algorithm discretizes curved roads into quasi-straight segments using a road segmentation
algorithm, constructs a hierarchical planning framework based on the joint optimization of multiple Frenet
coordinate systems, and integrates Bezier curve optimization with a multi-objective cost function evaluation.
This effectively addresses the key challenge of co-optimizing the dynamic coupling of spatiotemporal constraints
and planning robustness.

Experiments show that, in terms of motion control, the spatiotemporal integrated planning algorithm reduces
the longitudinal velocity by 4.00% compared to the non-integrated algorithm, with the longitudinal acceleration
and jerk decreasing by 3.01% and 9.41%, respectively, thereby significantly improving motion smoothness.
Lateral dynamic indicators remain stable, and the precision of lateral motion control is notably enhanced. In
terms of planning efficiency, the spatiotemporal integrated algorithm achieves a 100% planning success rate
across all scenarios with a planning time of 0.2096 ms. Compared to traditional algorithms, the success rate
is increased by 6.15%, and the path cost is significantly reduced from 33.6714 to 2.2288, which is more in line
with human driving habits. This algorithm provides a new technological approach for trajectory planning in
structured roads for intelligent driving systems. Its divide-and-conquer strategy balances the trade-off between
planning accuracy and real-time performance, offering high engineering application value.

Discussion

This framework provides a novel technological approach for trajectory planning in complex road scenarios for
intelligent driving systems. Its divide-and-conquer strategy effectively balances the trade-off between planning
accuracy and real-time performance, offering significant engineering application value. Future research will focus
on further optimizing the computational efficiency of the algorithm to accommodate more complex dynamic
environments and scenarios with higher real-time requirements. Additionally, efforts will simultaneously be
devoted to enhancing the algorithm’s capability to handle dynamic obstacles and its adaptability to complex
road conditions such as icy and snowy surfaces, thereby improving its applicability and reliability under intricate
traffic scenarios and providing stronger support for the advancement of intelligent driving technologies.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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