

OPEN

Respiratory bacteriome and its predicted functional profiles in blue whales (*Balaenoptera musculus*)

Carlos A. Domínguez-Sánchez^{1,2}, Diane Gendron³, Roberto C. Álvarez-Martínez¹ & Karina Acevedo-Whitehouse^{1,4}✉

The respiratory microbiome plays a critical role in the health of organisms and studying it in natural populations can reveal interactions between hosts and their environment, as well as help predict responses to environmental stressors. We characterized the core respiratory bacteriome and functional profiles of Eastern North Pacific blue whales (*Balaenoptera musculus*) sampled in the Gulf of California using next-generation sequencing. Our compositional analysis identified 15 dominant bacterial phyla in the respiratory tract, with Proteobacteria (34.44%), Firmicutes (26.98%), Bacteroidota (20.26%), Fusobacteriota (7.61%), and Actinobacteria (5.55%) as the most abundant. Nineteen ASVs, representing 12 bacterial genera (primarily *Corynebacterium*, *Oceanivirga*, *Tenacibaculum*, and *Psychrobacter*), were shared by over 60% of whales, with a relative abundance greater than 0.02%. These bacteria, proposed to be the core respiratory bacteriome of blue whales, contributed to functional pathways associated with metabolism, environmental information processing, and cellular processes. Notably, two whales with high relative abundance of *Mycoplasma* spp. and of *Streptococcus* spp., exhibited overrepresented pathways related to nucleotide metabolism and translation, suggesting a suboptimal immune status or dysbiosis. To our knowledge, this is the first functional profiling of the bacteriome in any cetacean. Future studies are needed to explore how the blue whale respiratory bacteriome may vary over time, seasonally or across geographical locations. This study establishes a baseline for future research on the plasticity of the bacteriome, its associations with other microbiome components, the impact of environmental changes on its diversity, and its relevance for health. Our novel approach underscores the ecological and physiological importance of the bacteriome and its potential for long-term monitoring of a sentinel marine species in a rapidly changing ocean.

Keywords 16S rRNA, *Balaenoptera musculus*, Blue whale, Microbiome, Bacteriome, Functional profiling

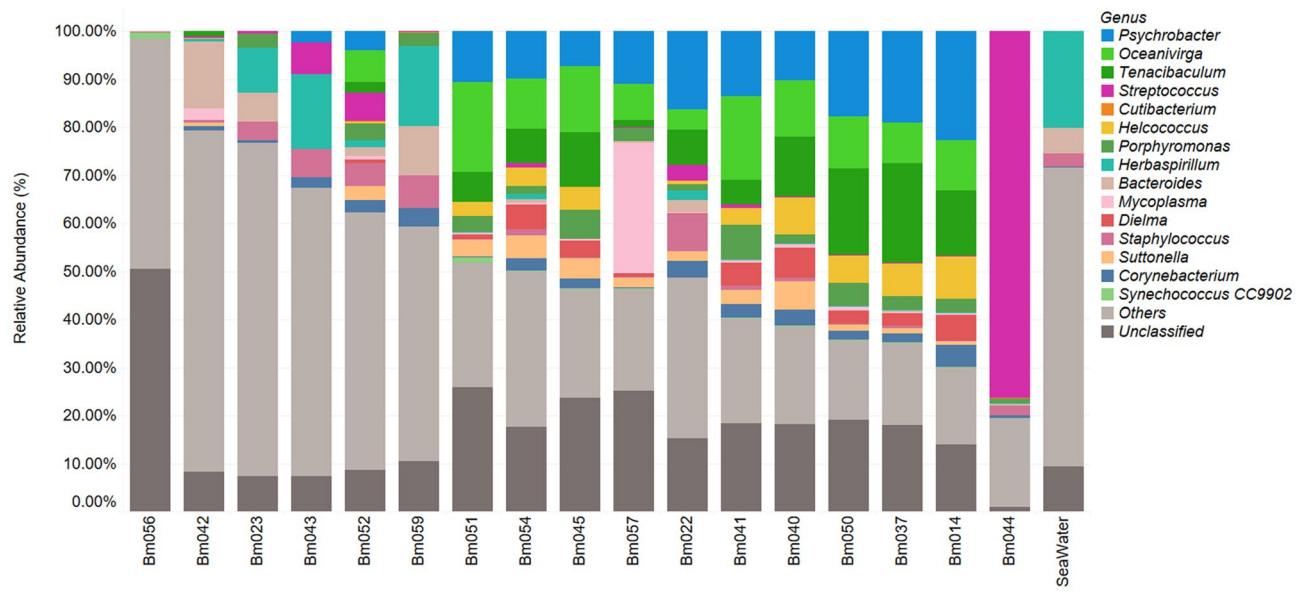
The advent of modern technologies that allow for the identification of bacteria in environmental or clinical samples¹ has led to a surge in studies examining the abundance, diversity, and structure of microbiomes across species². Increasing our understanding of the microbiome is crucial because microbial communities associated with specific organs or tissues can significantly impact host physiology³ and health⁴. For instance, respiratory infections may arise when opportunistic microorganisms—normally part of a healthy respiratory tract—proliferate under certain conditions¹, disrupting the diversity and composition of the microbial community in a phenomenon known as dysbiosis⁵, which can contribute to disease. Additionally, respiratory disease can result from exposure to non-commensal microorganisms with pathogenic potential. This underscores the importance of microbiome composition as a potential predictor of health and disease progression, often more so than the mere presence of specific microorganisms commonly associated with disease. Understanding how microbiomes differ between individuals could, therefore, become a valuable tool for assessing health⁶.

When using the microbiome to assess health status, it is important to distinguish between commensal, opportunistic, and transient bacteria⁷. This distinction is complex, as the symbiotic relationships of bacteria can vary both across species and among individuals⁸. To help differentiate potential commensal and mutualistic bacteria, it is necessary to identify the core microbiome—the microbial taxa that predominate within a community

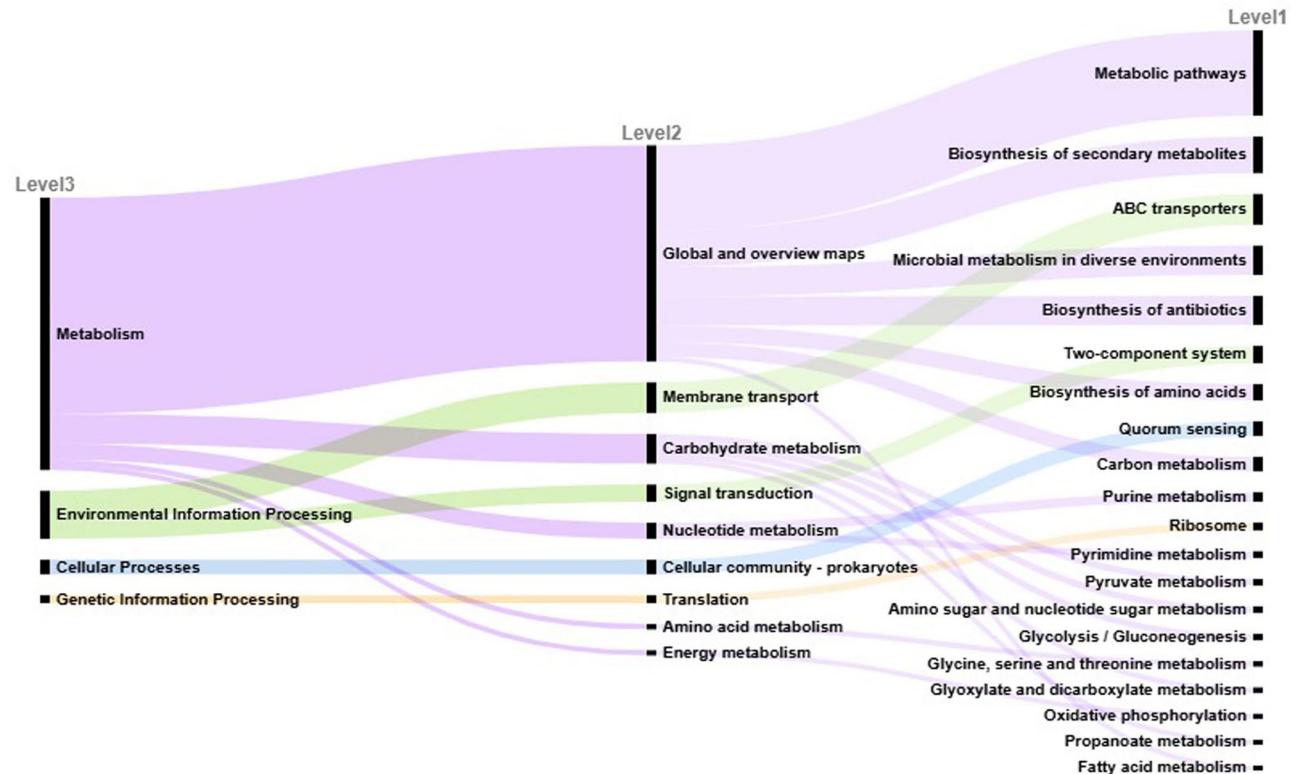
¹Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76010 Queretaro, Mexico. ²Mingan Island Cetacean Study (MICS), 378 Rue du Bord de la Mer, Longue-Pointe-de-Mingan, QC G0G 1V0, Canada. ³Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Baja California Sur, Mexico. ⁴Carr. a Chichimequillas S/N, Ejido Bolaños, 76140 Santiago de Querétaro, Qro, Mexico. ✉email: karina.acevedo.whitehouse@uq.mx

and are common in apparently healthy individuals⁹. Defining the core bacteriome (the bacterial community of the microbiome) involves setting the detection threshold (relative abundance) and determining the minimum occurrence percentage (prevalence) of bacterial taxa to include¹⁰. However, because biological justifications for these prevalence and threshold values are often lacking¹¹, it is important to exercise caution when interpreting results¹⁰. Despite varying definitions, the core bacteriome tends to be relatively stable, particularly when samples from closely related individuals are analyzed^{11,12}.

Microbial taxonomic composition provides a basic understanding of the microbiome, but it does not fully capture the intricate microbial contributions to host health¹³. Bacteria within the mammalian microbiome exist in composite communities¹, whose diversity and abundance result from complex interactions between species¹⁴. The metabolic contributions of these communities are important to the host and depend on their composition¹⁵. This is where functional profiling becomes important, as it reveals the metabolic and ecological roles of microbial communities^{16,17}. Combined taxonomic and functional analyses offer a deeper understanding of the microbiome's dual nature, as both a diverse community and a functional unit that is essential for the holobiont's processes¹⁸. Functional predictions are based on genetic data derived from sequencing the 16 S rRNA gene^{18,19}, which is mapped to reference databases, correlating specific taxa with known functional abilities²⁰. These functions are organized hierarchically, from broad functional categories to specific metabolic pathways²¹. This approach allows researchers to infer the ecological and metabolic roles of the microbiome without the need for whole-genome sequencing, making it a powerful and accessible tool for microbiome research¹⁹. By integrating taxonomic and functional analyses, we can gain deeper insights into a host's microbiome and its role in holobiont resilience, particularly in the context of health²².

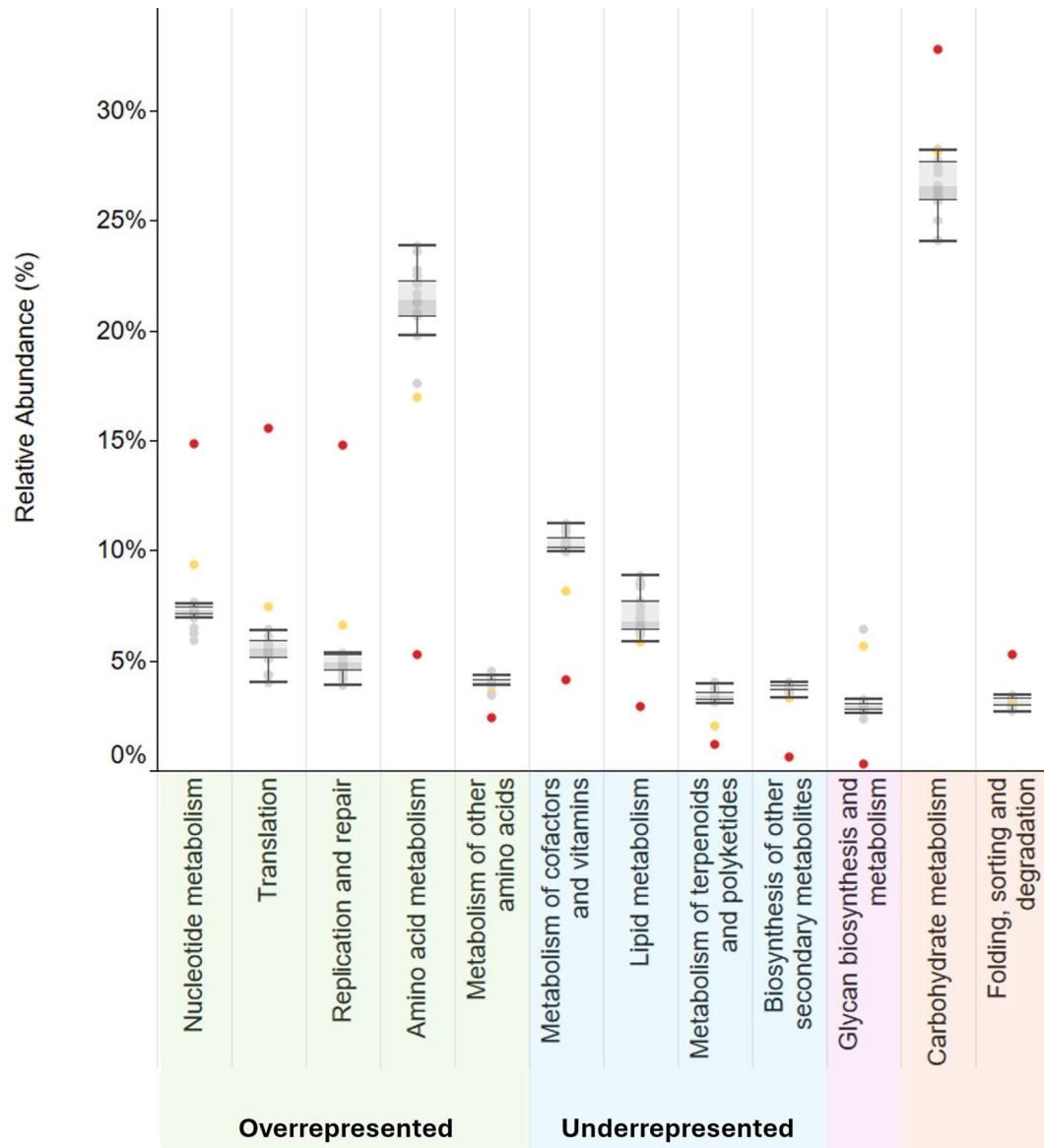

In cetaceans, characterizing the microbiome offers a unique opportunity to link microbial community structure and function with host ecology, physiology, and responses to environmental change, providing valuable insights for conservation and health monitoring^{23,24}. Whales, as long-lived animals that play a critical role in the ocean's carbon movement and storage, are vital to marine ecosystems²⁵, and are often considered sentinels of ocean health²⁶. The study of the cetacean microbiome is still in its early stages. Microbial diversity has been assessed for a few species^{1,27–31}, and some opportunistic pathogens in the respiratory tracts of free-ranging cetaceans have also been described^{32,33}. However, to our knowledge, no study has yet combined taxonomic and functional profiling of the microbiome in any cetacean species. Blue whales, among the world's largest and most iconic animals, play an essential role in marine ecosystems³⁴. Their long migrations and diverse habitats make them valuable indicators of ocean health³⁵. Despite this, only one published study has examined the respiratory microbiome of blue whales in the wild³⁶. Given the growing importance of understanding blue whale health in their natural environment, studying their respiratory microbiome is both timely and relevant. Not only would it provide insights into their exposure with potential pathogens³², but it would also establish a baseline of core bacteria and functional profiles in apparently healthy individuals. This baseline could facilitate the identification of dysbiosis, help predict potential diseases and ultimately inform conservation strategies and management plans for the species³⁷. This is a pressing need, especially in light of the global and local environmental changes currently affecting oceans³⁸. Here, we characterized the common core and functional profiles of the respiratory bacteriome in Eastern North Pacific blue whales from the Gulf of California using next-generation sequencing on blow samples collected from 17 adult blue whales via a non-invasive drone-based technique³⁹.

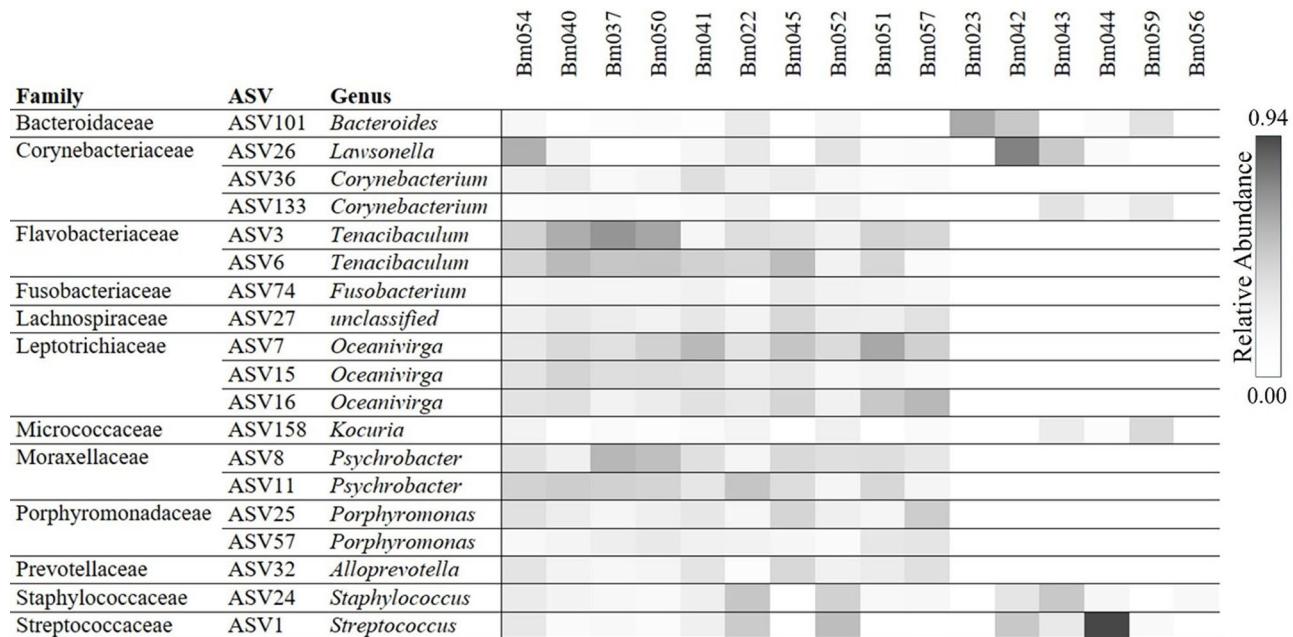
Results


A total of 19 samples were analysed, including 17 photo-identified blue whales, one technical control, and one seawater sample. Exhaled breath was collected from the whales using a drone-based method previously described³⁹, with no adverse behavior observed before, during, or after sampling. After filtering, denoising, merging, and chimera elimination (2.38% of reads), we obtained 68,922 sequences (mean per sample: 3514.8 [SD = 1998.3]), which corresponded to 1304 amplicon sequence variants (ASVs). We removed 51 ASVs classified as Archaea ($n = 2$), chloroplasts ($n = 27$), or mitochondria ($n = 7$), as well as those not classified at the phylum level ($n = 15$), and 22 ASVs identified as contaminants using the *Decontam* algorithm based on the LabControl sample reads. This left 1231 ASVs remained, with 500 ASVs classified as "Others" (representing less than 0.02% relative abundance).

Species richness (S) in the blow samples ranged from 62 to 404 (mean = 189.63.06 [SD = 113.71]), and Simpson's diversity index (D) ranged from 0.49 to 0.98 (mean = 0.94 [SD = 0.11]). The compositional analysis identified 15 bacterial genera (Fig. 1, Table S1) with *Psychrobacter* spp. (mean = 12.07% [SD = 6.09%]), *Oceanovirga* spp. (mean = 10.93% [SD = 4.42%]), *Tenacibaculum* spp. (8.87% [SD = 6.39%]), and *Streptococcus* spp. (6.79% [SD = 20.13%]) being the most abundant. Notably, two blow samples Bm057 and Bm044 exhibited a high relative abundance of the opportunistic pathogens *Mycoplasma* spp. (27.22%), and *Streptococcus* spp. (74.37%). In addition, we identified *Bacteroides* sp. in sample Bm042 at a high relative abundance of 13.96% compared with the other samples (mean = 0.02% [SD = 0.04%]). For this whale, mucus was also retrieved during blow sampling, which had a noticeable bad smell and a yellowish coloration; features that were not observed in any other samples.

Functional profiling, at 97% similarity, was possible for 32.53% of the ASVs. At KEGG Level 1, the most predominant pathways were associated with metabolism (mean = 74.88% [SD = 4.36%]), followed by environmental information processing (mean = 9.98% [SD = 1.82%]), cellular processes (mean = 5.54% [SD = 1.67%]), and genetic information processing (mean = 5.40% [SD = 1.57%]). At KEGG Level 2, the top subcategories included global and overview maps (mean = 38.37% [SD = 2.96%]), carbohydrate metabolism (mean = 9.65% [SD = 1.14%]), amino acid metabolism (mean = 7.23% [SD = 1.45%]), and membrane transport (mean = 6.55% [SD = 1.32%]). At KEGG Level 3, the most abundant pathways were metabolic pathways, biosynthesis of secondary metabolites, ABC transporters, and microbial metabolism in diverse environments (Fig. 2).


Fig. 1. Stacked bar plot depicting relative abundance of the top 15 bacterial genera. Each vertical bar depicts the relative abundance of adjusted sequence variants (ASVs) and associated taxa that were recovered per sample. Plot shows the top fifteen identified bacterial genera, unclassified, and “others” (sum of bacteria that did not reach the detection threshold of 0.02%).


Fig. 2. Alluvial diagram of the top 20 predicted functional pathways (at different KEEG levels) associated with the bacteriome in the respiratory tract of blue whales.

In two blow samples (Bm057 and Bm044) with the highest relative abundance of opportunistic pathogens, functional profiling revealed overrepresentation of pathways such as nucleotide metabolism, membrane transport, translation, folding, sorting and degradation, and carbohydrate metabolism; while pathways related to amino acid metabolism, cofactor and vitamin metabolism, lipid metabolism, and biosynthesis of secondary metabolites were underrepresented (Fig. 3). Among the bacterial genera identified, *Psychrobacter* (26.83%) contributed most to the functional pathways predicted in the blue whale respiratory tract, followed by *Tenacibaculum* (17.48%) and *Porphyromonas* (13.01%). Genera such as *Suttonella* and *Streptococcus* contributed less (4.07% and 3.25%, respectively; Fig. S1). Despite variation in taxonomic composition, functional profiles across individuals were consistent (Fig. S2).

The core bacteriome analysis identified 19 ASVs from 12 bacterial families (Fig. 4, Table S2), with *Tenacibaculum* (ASV3) and *Oceavirga* (ASV7) being the most abundant genera (30.01% [SD = 15.94] and 28.78% [SD = 9.76], respectively). The core functional profile derived from these core ASVs was composed

Fig. 3. Boxplot of the relative abundance of functional pathways (at KEGG Level 2) across all blow samples. Red dots represent blow sample Bm057 (the whale that had a high relative abundance of *Mycoplasma* sp.), while yellow dots correspond to blow sample Bm042 (the whale that had a high relative abundance of *Streptococcus* sp.). Functional pathways that were overrepresented in both Bm057 and Bm044 compared to all other samples (grey) are highlighted as light green columns, while underrepresented pathways are shown as light blue columns. The functional pathway that was underrepresented in the bacteriome of Bm057 but over represented in Bm042 is highlighted as light purple columns, and the functional pathways were over represented only in Bm057 are shown in as light orange columns.

Fig. 4. Relative abundances of bacterial genera that constitute the core respiratory bacteriome of the blue whale. The figure includes the seven ASVs that were present in more than 60% of the samples and that had a relative abundance of over 0.02%. The relative abundance of each ASV shown in this plot is confined to the core microbiome members and not the entire microbiome of each sample.

mainly by metabolic pathways (24.99%), biosynthesis of secondary metabolites (11.09%), biosynthesis of antibiotics (8.73%), and microbial metabolism in diverse environments (8.34%) (KEEG level 1; Fig. S3).

The Bayesian approach used to estimate the contribution of seawater diversity to blow samples indicated that seawater contributed on average of 1.68% (SD = 0.81). *Herbaspirillum* sp., the most common genus in seawater (20.23% relative abundance; Fig. 1), was also detected in blow samples, albeit at a lower average abundance (3.39%; SD = 5.97). Interestingly, three whale blows (from individuals Bm023, Bm043, and Bm059) exhibited notably higher levels of *Herbaspirillum* sp. (9.44%, 15.65%, and 16.82%, respectively).

Discussion

A healthy microbiome is generally characterized by high diversity, which helps both the microbiome and the host cope with external challenges³⁰. In our study, the respiratory bacteriome of the blue whale exhibited considerable diversity, with significant variation in bacterial richness and abundance across samples. These fluctuations may arise from several factors, including bacterial immigration from the environment during inhalation, mucociliary clearance, and community growth rates⁴⁰, all of which can vary among healthy individuals²⁷. However, variations could also stem from sampling techniques, such as differences in the number of blows, volume of sample collected, whale size and behavior (e.g. dive depth and duration)^{39,41}. Notably, the bacterial diversity observed in blue whale blow samples was similar to that reported for humpback whales and bottlenose dolphins^{41,42}, although the blue whale showed greater taxonomic richness. This may be attributed to differences in methods used to resolve taxonomy^{43–45} or the identification of rare bacterial species^{44,45}, which play an important role in microbiome resilience, given their contribution as a seed bank of genetic resources that can lead to the restoration of the core microbiome⁴⁶.

The presence of a complex respiratory bacteriome is beneficial for a host, as higher microbial diversity supports vital ecosystem functions⁴⁷. Functional analysis of the blue whale bacteriome revealed overrepresentation of pathways related to macromolecular metabolism and environmental information processing and signal transduction, indicating a potential role in adapting to environmental changes^{48,49}. This result reinforces the idea that bacteriome diversity serves a protective role for the host¹⁸, as these pathways are critical for maintaining host health and epithelial immune function^{50,51} by enabling microbial communication with host immune cells via molecular signals that activate pattern recognition receptors, triggering cytokine production and immune cell recruitment⁵², including dendritic cells⁵³.

Our findings indicate that the respiratory bacteriome of blue whales is dominated by members of Proteobacteria, Firmicutes, Bacteroidota, Actinobacteria, and Fusobacteriota, which are common bacterial phyla in the respiratory microbiome of other mammals¹. Particularly noteworthy is the consistent presence of *Psychrobacter* sp. and *Tenacibaculum* sp., which are known commensal bacteria^{54,55} that contribute to respiratory and skin health^{4,27,29,30,56}, although they can also be implicated in pathological conditions in other organs^{57,58}. Additionally, the respiratory core bacteriome included *Oceanivirga* sp., a bacterium common to the respiratory tract of various marine mammals from different geographical locations⁵⁹, and identified as part of the core respiratory bacteriome of humpback whales⁴¹. Given that *Oceanivirga* sp., was present in most of the blue

whales sampled, it is reasonable to consider it a key member of their respiratory bacteriome, reflecting a healthy respiratory epithelium.

It is important to recognize that while the bacterial taxa in the blue whale's respiratory bacteriome share similarities with those found in the oropharynx and nasopharynx of terrestrial mammals⁶⁰, cetaceans lack anatomical connections between the mouth and nasopharynx⁴¹. Thus, the bacteria identified in this study are more likely associated with the respiratory tract rather than the oral cavity of the blue whales. In addition, it is important to note that this composition may vary over time and space, and could be influenced by factors such as fasting, reproductive stage⁶¹, or other physiological variables^{1,62,63}.

Interestingly, four bacterial genera (*Psychrobacter*, *Tenacibaculum*, *Staphylococcus*, and *Corynebacterium*) identified in the blow samples are typically found in the skin of humans and other terrestrial mammals^{64,65}. These genera were also identified in the skin microbiota of both captive and free-ranging cetaceans^{1,6,28,55,56}. Given that strict protocols were followed to minimize contamination during sampling, processing or sequencing, their presence in whale blow suggests that they colonize the epithelial lining of the blowhole and are forcefully expelled during exhalation⁴¹. Moreover, *Psychrobacter* and *Tenacibaculum*, contributed significantly to metabolic and environmental processing pathways, suggesting their role in maintaining microbial and host homeostasis. We hypothesize that these bacteria establish a commensal or mutualistic associations with the blue whale, potentially offering a protective role against dysbiosis and environmental stressors. Furthermore, it is possible that these taxa play a crucial role in maintaining respiratory health in this species, and more detailed functional analyses will be necessary in the future to clarify their ecological and physiological roles.

Our study also found that approximately 2% of the microbial diversity in blow samples overlapped that of seawater, indicating some influence of the marine environment on the respiratory bacteriome, possibly as carryover during diving immersions. However, this overlap should be interpreted with caution, as seawater sampling was limited in number and not conducted for every breath sample. The absence of more water samples restricts our ability to fully assess the extent to which environmental microorganisms contribute to the respiratory bacteriome composition. Regardless, the detection of *Psychrobacter*, *Oceanivirga*, *Tenacibaculum*, *Helcococcus*, *Porphyromonas*, *Mycoplasma*, *Dielma*, *Synechococcus*, and *Suttonella*, in blue whale blow, but not in seawater, adds support to the notion that these taxa are intrinsic to the blue whale's respiratory microbiome. Variations in the relative abundance of *Herbaspirillum* sp. in certain samples suggest that whale diving behavior, environmental factors and technical sampling conditions may also influence bacterial detection.

We identified *Bacteroides* spp. in blow Bm042 at a relative abundance of 13.96%. *Bacteroides* spp. can influence airway immune responses by inducing regulatory T cells and associated cytokines and has been shown to promote transient PD-L1 expression and modulate general aeroallergen responses⁶⁶. This genus has also been reported in increased abundance during tracheobronchitis, suggesting potential roles in modulating respiratory immune function^{66,67}. Interestingly, whale Bm042 also presented mucus with a yellowish coloration, which may indicate a high concentration of airway mucin, which is associated with various pulmonary diseases⁶⁸. The excessive synthesis of mucin can result from increased neutrophil recruitment, reflecting an acute inflammatory response to bacterial infection in the airways^{69,70}. Given its immunomodulatory capacity, the elevated abundance of *Bacteroides* spp. in the blow of whale Bm042 may reflect a role in host immune regulation during localized airway infection or inflammation. Its presence alongside signs of mucus suggests a potential microbial shift and underscores the need to consider both protective and pathogenic roles of *Bacteroides* spp. in the respiratory tract.

Two unidentified species from *Mycoplasma* and *Streptococcus* were found in the blow of two whales. As 16 S rRNA gene sequencing does not allow reliable species-level resolution, our assignments were limited to the genus level, and we acknowledge that the detected *Streptococcus* and *Mycoplasma* taxa may include both commensal and opportunistic members. This taxonomic uncertainty underscores the importance of continued monitoring, since shifts at the genus level can still provide meaningful indicators of host health. Various species within these bacterial genera are known respiratory tract opportunists in mammals^{71,72} and have been detected in the lungs of stranded marine mammals^{73,74}, although their presence does not necessarily indicate disease since they can also occur in healthy hosts⁷². This is essential to consider when studying the bacteriome of individuals, as the type of relationship between host and bacteria can depend on different factors, including the status of the immune system^{8,71}. The low prevalence of these pathogens in our study likely suggests that they are not common members of the respiratory bacterial community and highlights the natural diversity of the blue whale respiratory microbiome. As the blue whales migrate through coastal areas, they could become exposed to transient bacteria which do not normally manage to colonize the respiratory epithelium. However, the intense maritime traffic and potential human interactions⁷⁵ could act as stressors that affect immune regulation of bacterial communities in susceptible hosts and favor the growth of transient or opportunistic bacteria^{68–70,76,77}. Therefore, it is plausible that the detection of these bacteria could indicate underlying health conditions, a suboptimal immune status, or chronic stress in these individuals⁷⁸. We have some support for this argument as the respiratory bacteriome of the two whales that harbored *Mycoplasma* spp. and *Streptococcus* spp. exhibited distinct functional pathway patterns than the other whales, whose bacteriome functional profiles remained largely stable across individuals. Namely the bacteriome of these two whales showed overexpression of nucleotide metabolism, translation, and replication and repair pathways, which have been associated with various diseases in humans⁷⁹. In contrast, pathways involved in lipid metabolism and biosynthesis of other secondary metabolites were underrepresented in these whales, suggesting possible vulnerabilities in their immune responses, as has been shown for humans^{50,80}. As these functional profiles were inferred from 16 S rRNA gene data, incorporating functional analyses based on transcriptomics or other omics approaches in future studies would provide a more comprehensive understanding of the microbiome's functional potential. The identification of these bacterial genera and the distinct functional profile of the bacteriome of the whales that harbored them, highlights the need for ongoing monitoring specific microbial taxa, regardless of their perceived roles as commensal, mutualistic or opportunistic in other mammals,

and underscores the importance of considering natural fluctuations in the respiratory bacteriome when assessing the health of blue whales.

Given the current threats facing marine ecosystems, that include habitat degradation, pollution, and other anthropogenic stressors²⁶, the taxonomic and functional study of the blue whale respiratory bacteriome offers valuable insights into their health and resilience. Respiratory microbiome data can serve as an early warning system by detecting shifts associated with environmental change, disease, or human activities⁴¹. Monitoring such changes in bacterial composition and functionality over time can help inform conservation efforts and management strategies²³ to protect these iconic species and the ecosystems they inhabit. While our study is based on a modest number of individuals, it represents a meaningful fraction of the population migrating through the Loreto area. Future studies incorporating multiple blow samples per individual could capture temporal variability more effectively, reduce potential sampling bias, and further strengthen the value of microbiome monitoring for conservation and health assessments.

Methods

Sample collection

Using a small Phantom 3[®] quadrocopter drone (DJI Innovations, China) with floaters and sterile Petri dishes, we collected 17 blow samples from 17 different individual blue whales sampled between February and March 2016 and 2017 in Loreto Bay National Park (25° 51' 51" N, 111° 07' 18" O) within the Gulf of California, Mexico. The number of sampled whales represents 17% of the estimated 100 blue whales that reside during winter/spring in the southwestern Gulf of California (mark-recapture data from 1994 to 2006⁸¹). Each whale was photo-identified prior to sample collection⁸¹. The approach of the drone to the whale was done from the caudal fin towards the head to minimize disturbance, and sampling was conducted at a height between 3 and 4 m above the blowhole³⁹. We observed the whale body condition (see Supplementary Material) for each individual and recorded characteristics of their blow, such as color and odor when we were sufficiently close to the whale during sampling.

For each sample, blow droplets were swabbed directly from the Petri dish using one sterile cotton-tipped swab per individual. These were then transferred to a sterile 1.5 mL cryogenic microtube containing 500 μ L of 96% molecular grade ethanol and kept frozen in a liquid nitrogen container until processing. To address potential contamination, all necessary precautions were taken, always including the use of sterile gloves and face masks during sample processing. In addition, we included a technical control, termed “LabControl” (a template-free DNA negative extraction control), to identify any contaminants during sample processing. Furthermore, we included a seawater sample, termed “seawater” (a DNA sample extracted from 1mL water collected at a depth of 0.10 m in the same area where we sampled the whale blows), to consider potential sources of bacterial diversity for the blow samples.

DNA extraction, PCR amplification and sequencing

Total DNA was isolated from the whale blow, seawater, and LabControl samples in one batch using a QIAamp[®] DNA Mini Kit (QIAGEN, Germany). The primers used for sequencing the 16S rRNA V3 and V4 regions were 341F (5'-CCTACGGNGCWGCAG) and 785R (5'-GACTACHVGGGTATCTAATCC), which amplified a single product of 444 bp⁸². The PCR program used an initial denaturation step at 95 °C for 3 min; 25 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s; and a final extension step at 72 °C for 5 min. Each 25 μ L reaction contained 12.5 ng of extracted DNA, 5 μ M of barcoded primers and 2x KAPA HiFi HotStart Ready Mix (KAPABIOSYSTEM, Cape Town, South Africa). 1 μ L of each sample was run on a 2100 Bioanalyzer (Agilent Technologies, CA, USA) with an Agilent DNA 1000 chip (Agilent Technologies, CA, USA) to verify amplicon size. AMPure XP beads (New England BioLabs, USA) were used to remove unused primers and primer dimers. Amplicons were sequenced over 2- by 250-bp MiSeq at the Unit of Sequencing and Identification of Polymorphisms of the National Institute of Genomic Medicine (Instituto Nacional de Medicina Genómica, Unidad de Secuenciación e Identificación de Polimorfismos, INMEGEN) in Mexico. Dual index barcodes were used to avoid index hopping⁸³. The protocol used by INMEGEN can be seen in: https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.

16 S rRNA sequence data processing

A quality control overview was performed using FASTQC⁸⁴. This allowed us to obtain a quick impression of the data and avoid downstream problems. The raw sequences were then imported into R v.4.2.1⁸⁵, where all subsequent analyses were carried out. We used the Divisive Amplicon Denoising Algorithm 2 (*dada2*) v.1.26.0⁴⁴ to infer exact ASVs. This approach is preferable over the rough and less precise 16 S rRNA OTU clustering approach⁸⁶ that groups the sequences with a 97% identity⁸⁷. First, we filtered by quality (trunQ = 25) and discarded the sequences that presented more than two Ns (maxN = 0) or more than two expected errors (maxEE = 2). Next, the forward and reverse reads for each sample were combined into a single merged contig sequence, and we grouped all identical reads into unique sequences to determine their abundance. After building the ASVs table and removing chimeras (detected using self-referencing), sequences were classified and identified with *Decipher* v.2.26.0⁸⁸, using the SILVA rRNA sequence database v.138.1 as the taxa reference⁸⁹. We used *phyloseq* v.1.42.0⁹⁰ to classify and remove any sequence not classified at the kingdom and Phylum level or belonging to Archaea, Eukarya, chloroplasts, or mitochondria.

Contamination assessment

At present, there is no standard approach for minimizing or controlling potential contaminants in 16 S rRNA gene sequencing experiments⁹¹. In our study, we employed two methods to limit and eliminate contaminant

sequences from downstream analyses. First, we used *metagMisc* v.0.5.0⁹² to eliminate ASVs with less than ten reads (minabund = 10⁹³). Next, we used *Decontam* version 1.18.0⁹⁴ to identify sequences that had a negative relationship with DNA concentration. We classified ASVs found in the LabControl sample as potential contaminants if they were identified as true contaminants by the Decontam algorithm. To ensure result accuracy, we then removed the identified contaminant sequences from the analysis.

Respiratory bacteriome analysis and identification of functional pathways

To get a sense of the bacterial community composition of the samples, we used *phyloseq* to identify the distribution of read counts from all the samples and to plot the relative abundance stacked bar plot at genus level. In addition, we used *SourceTracker*⁹⁵, a Bayesian approach that allowed us to estimate the proportion of the bacterial community in the blue whale blows samples that are also detected in the seawater sample. Using *microbiome* v.1.20⁹⁶, we identified the common core bacteriome (threshold detection set at $\geq 0.02\%$, prevalence set at $\geq 60\%$). We selected these values because we wanted a more conservative approach. Finally, we calculated alpha diversity indices: richness (S) and Simpson's diversity index (D) using *vegan* v.2.6.4⁹⁷. Bacterial functional profiles and pathways were inferred from 16 S rRNA gene sequencing data and annotated at a 97% similarity threshold using the ref99NR database as a reference, employing the Tax4Fun2 package¹⁹, which is based on the Kyoto Encyclopedia of Genes and Genomes (KEGG; ²⁰). All graphs were rendered using Tableau v.2024.3⁹⁸ and RAWGraphs v.2.0⁹⁹.

Use of animals in research

All methods were performed in accordance with the relevant international guidelines and regulations of Mexican authorities. See ethical approval.

We confirm that our manuscript complies with the ARRIVE Essential 10 guidelines. The study design, experimental groups, and units are clearly described, with exact sample sizes reported. All outcome measures, including the primary outcome, are clearly defined. Statistical methods and assumptions are detailed, along with the software used. Comprehensive information on the animals, including species and probable health status, is provided. Experimental procedures are described with sufficient detail to allow replication, including what was done, how, when, where, and why. Results are presented with descriptive statistics and measures of variability, along with confidence intervals where appropriate.

Data availability

Data from the Sequence Read Archive (SRA) submission will be released upon publication. Accession ID: PR-JNA977688.

Received: 3 February 2025; Accepted: 7 November 2025

Published online: 24 December 2025

References

1. Rhodes, L. D., Emmons, C. K., Wisswaesser, G. S., Wells, A. H. & Hanson, M. B. Bacterial microbiomes from mucus and breath of Southern resident killer whales (*Orcinus orca*). *Conserv. Physiol.* **10**, (2022).
2. Watkins, C. A. et al. A comparative study of the fecal microbiota of Gray seal pups and yearlings—a marine mammal Sentinel species. *Microbiol. Open.* **11**, e1281 (2022).
3. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum The evolution of the host microbiome as an ecosystem on a leash. *Nature* **548**, 43–51 (2017).
4. Bierlich, K. C. et al. Temporal and regional variability in the skin Microbiome of humpback whales along the Western Antarctic Peninsula. *Appl. Environ. Microbiol.* **84**, e02574–e02517 (2018).
5. Sehnal, L. et al. Microbiome composition and function in aquatic vertebrates: small organisms making big impacts on aquatic animal health. *Front. Microbiol.* **12**, 567408 (2021).
6. Dominguez-Sanchez, C. A., Ferguson, S. H., Edkins, T., Young, B. G. & Kringorn, J. Pilot study: decoding the skin Microbiome of bowhead (*Balaena mysticetus*) and killer whales (*Orcinus orca*) in Nunavut, Canada. *Arct. Sci.* **10**, 169–188 (2024).
7. Infante-Villamil, S., Huerlimann, R. & Jerry, D. R. Microbiome diversity and dysbiosis in aquaculture. *Rev. Aquac.* **13**, 1077–1096 (2021).
8. Wiesmann, C. L., Wang, N. R., Zhang, Y., Liu, Z. & Haney, C. H. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. *FEMS Microbiol. Rev.* **47**, fuac048 (2022).
9. Willis, A., Bunge, J. & Whitman, T. Improved detection of changes in species richness in high diversity microbial communities. *J. R. Stat. Soc. Ser. C Appl. Stat.* **66**, 963–977 (2017).
10. Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: Challenges and prospects. *Proc. Natl. Acad. Sci. USA* **118**, (2021).
11. Risely, A. Applying the core Microbiome to understand host–microbe systems. *J. Anim. Ecol.* 1–10 (2020).
12. Vendl, C., Nelson, T., Ferrari, B., Thomas, T. & Rogers, T. Highly abundant core taxa in the blow within and across captive bottlenose dolphins provide evidence for a temporally stable airway microbiota. *BMJ Microbiol.* 1–29 (2020).
13. Louca, S. et al. Function and functional redundancy in microbial systems. *Nat. Ecol. Evol.* **2**, 936–943 (2018).
14. Stubbendieck, R. M., Vargas-Bautista, C. & Straight, P. D. Bacterial communities: interactions to scale. *Front. Microbiol.* **7**, 1–19 (2016).
15. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. *Nature* **457**, 480–484 (2008).
16. Tooole, D. R., Zhao, J., Martens-Habbena, W. & Strauss, S. L. Bacterial functional prediction tools detect but underestimate metabolic diversity compared to shotgun metagenomics in Southwest Florida soils. *Appl. Soil. Ecol.* **168**, 104123 (2021).
17. Grisnik, M., Grinath, J. B., Munafó, J. P. & Walker, D. M. Functional redundancy in Bat microbial assemblage in the presence of the white nose pathogen. *Microb. Ecol.* **86**, 713–726 (2023).
18. Zhang, Y., Chen, R., Zhang, D. D., Qi, S. & Liu, Y. Metabolite interactions between host and microbiota during health and disease: which feeds the other? *Biomed. Pharmacother.* **160**, 114295 (2023).
19. Wemheuer, F. et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. *Environ. Microbiomes.* **15**, 1–12 (2020).

20. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and ghostkoala: KEGG tools for functional characterization of genome and metagenome sequences. *J. Mol. Biol.* **428**, 726–731 (2016).
21. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. *Nucleic Acids Res.* **51**, D587–D592 (2023).
22. Li, J. et al. Bacterial community composition and function of tropical river ecosystem along the Nandu river on Hainan Island, China. *Int. J. Environ. Res. Public. Health.* **20**, 382 (2023).
23. West, A. G. et al. The microbiome in threatened species conservation. *Biol. Conserv.* **229**, 85–98 (2019).
24. Bahrndorff, S., Alemu, T., Alemneh, T. & Nielsen, J. L. The microbiome of animals: Implications for conservation biology. *Int. J. Genomics* **2016**, 1–7 (2016).
25. Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D. & Stetson, P. B. The impact of whaling on the ocean carbon cycle: why bigger was better. *PLoS One.* **5**, e12444 (2010).
26. Palmer, E. et al. A piece of the puzzle: analyses of recent strandings and historical records reveal new genetic and ecological insights on new Zealand sperm whales. *Mar. Ecol. Prog. Ser.* **690**, 201–217 (2022).
27. Toro, F. et al. Composition and structure of the skin microbiota of Rorquals off the Eastern South Pacific. *FEMS Microbiol. Ecol.* **97**, 1–10 (2021).
28. Hooper, R. et al. Host-derived population genomics data provides insights into bacterial and diatom composition of the killer Whale skin. *Mol. Ecol.* **28**, 484–502 (2019).
29. Apprill, A. et al. Marine mammal skin microbiotas are influenced by host phylogeny. *R Soc. Open. Sci.* **7**, 192046 (2020).
30. Van Cise, A. M. et al. Skin Microbiome of Beluga whales: spatial, temporal, and health-related dynamics. *Anim. Microbiome.* **2**, 39 (2020).
31. Vendl, C., Nelson, T., Ferrari, B., Thomas, T. & Rogers, T. Highly abundant core taxa in the blow within and across captive bottlenose dolphins provide evidence for a temporally stable airway microbiota. *BMC Microbiol.* **21**, (2021).
32. Raverty, S. et al. Respiratory microbiome of endangered Southern resident killer whales and microbiota of surrounding sea surface microlayer in the Eastern North Pacific. *Sci. Rep.* **7**, 1–12 (2017).
33. Acevedo-Whitehouse, K. A., Rocha-Gosselin, A. & Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. *Anim. Conserv.* **13**, 217–225 (2010).
34. Attard, C., Beheregaray, L. & Möller, L. Towards population-level conservation in the critically endangered Antarctic blue whale: the number and distribution of their populations. *Sci. Rep.* **6**, 22291 (2016).
35. Rice, A. et al. Update on frequency decline of Northeast Pacific blue Whale (*Balaenoptera musculus*) calls. *PLoS One* **17**, (2022).
36. Vendl, C. et al. Does sociality drive diversity and composition of airway microbiota in cetaceans? *Environ. Microbiol. Rep.* **12**, 324–333 (2020).
37. Raverty, S. et al. Pathology findings and correlation with body condition index in stranded killer whales (*Orcinus orca*) in the Northeastern Pacific and Hawaii from 2004 to 2013. *PLoS One* **15**, (2020).
38. Barlow, D. R., Klinck, H., Ponirakis, D., Branch, T. A. & Torres, L. G. Environmental conditions and marine heatwaves influence blue Whale foraging and reproductive effort. *Ecol. Evol.* **13**, (2023).
39. Domínguez-Sánchez, C. A., Acevedo-Whitehouse, K. A. & Gendron, D. Effect of drone-based blow sampling on blue Whale (*Balaenoptera musculus*) behavior. *Mar. Mamm. Sci.* **34**, 841–850 (2018).
40. Huffnagle, G. B., Dickson, R. P. & Lukacs, N. W. The respiratory tract microbiome and lung inflammation: A two-way street. *Mucosal Immunol.* **10**, 299–306 (2017).
41. Apprill, A. et al. Extensive core Microbiome in drone-captured Whale blow supports a framework for health monitoring. *mSystems* **2**, e00119–e00117 (2017).
42. Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. *Nat. Commun.* **7**, 1–13 (2016).
43. Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. *ISME J.* **9**, 968–979 (2015).
44. Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. *Nat. Methods.* **13**, 581–583 (2016).
45. Ahlgren, N. A., Perelman, J. N., Yeh, Y. C. & Fuhrman, J. A. Multi-year dynamics of fine-scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom-up factors. *Environ. Microbiol.* **21**, 2948–2963 (2019).
46. Jousset, A. et al. Where less May be more: how the rare biosphere pulls ecosystems strings. *ISME J.* **11**, 853–862 (2017).
47. Saraiva, J. P. et al. Mining synergistic microbial interactions: A roadmap on how to integrate multi-omics data. *Microorganisms* **9**, 840 (2021).
48. Shaw, C., Hess, M. & Weimer, B. C. Two-component systems regulate bacterial virulence in response to the host Gastrointestinal environment and metabolic cues. *Virulence* **13**, 1666–1680 (2022).
49. Liu, Y. et al. Transcriptomics reveals substance biosynthesis and transport on membranes of *Listeria monocytogenes* affected by antimicrobial lipopeptide brevilaterin B. *Food Sci. Hum. Wellness.* **12**, 1359–1368 (2023).
50. Silva, S. G. et al. Insights into the antimicrobial activities and metabolomes of *Aquimarina* (Flavobacteriaceae, Bacteroidetes) species from the rare marine biosphere. *Mar. Drugs.* **20**, 423 (2022).
51. Du, J. et al. A decision analysis model for KEGG pathway analysis. *BMC Bioinform.* **17**, 407 (2016).
52. Wilden, J. J., Jacob, J. C., Ehrhardt, C., Ludwig, S. & Boergerling, Y. Altered signal transduction in the immune response to influenza virus and *S. pneumoniae* or *S. aureus* co-Infections. *Int. J. Mol. Sci.* **22**, 5486 (2021).
53. Wilson, K. R., Gressier, E., McConville, M. J. & Bedoui, S. Microbial metabolites in the maturation and activation of dendritic cells and their relevance for respiratory immunity. *Front. Immunol.* **13**, 897462 (2022).
54. Centeno-Martinez, R. E., Klopp, R. N., Koziol, J., Boerman, J. P. & Johnson, T. A. Dynamics of the nasopharyngeal Microbiome of apparently healthy calves and those with clinical symptoms of bovine respiratory disease from disease diagnosis to recovery. *Front. Vét. Sci.* **10**, 1297158 (2023).
55. Smith, S. A. et al. The respiratory microbiota of three cohabiting Beluga whales (*Delphinapterus leucas*) under human care. *Front. Mar. Sci.* **10**, 1168623 (2023).
56. Apprill, A. et al. Humpback Whale populations share a core skin bacterial community: towards a health index for marine mammals? *PLoS One.* **9**, e90785 (2014).
57. Li, C. et al. Insights on gut and skin wound microbiome in stranded Indo-Pacific finless Porpoise (*Neophocaena phocaenoides*). *Microorganisms* **10**, (2022).
58. Nowlan, J. P., Lumsden, J. S. & Russell, S. Advancements in characterizing tenacibaculum infections in Canada. *Pathogens* **9**, 1029 (2020).
59. Volokhov, D. V. et al. *Oceanivirga Miroungae* sp. nov., isolated from oral cavity of Northern elephant seal (*Mirounga angustirostris*). *Int. J. Syst. Evol. Microbiol.* **70**, 3037–3048 (2020).
60. Guglielmetti, S. et al. Oral bacteria as potential probiotics for the pharyngeal mucosa. *Appl. Environ. Microbiol.* **76**, 3948–3958 (2010).
61. Gallego, J. C. Cetacean microbiota: ecological alterations and their impact on health of these mammals. *SVOA Microbiol.* **6**, 66–70 (2025).
62. Taneja, V. & Microbiome Impact of gender on function & characteristics of gut Microbiome. In *Principles of Gender-Specific Medicine*, 3rd ed., 569–583 (Academic, 2017).

63. Björk, J. R., O'Hara, R. B., Ribes, M., Coma, R. & Montoya, J. M. The dynamic core microbiome: Structure, dynamics and stability. *BioRxiv* 137885. <https://doi.org/10.1101/137885> (2018).
64. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin Microbiome. *Nat. Rev. Microbiol.* **16**, 143–155 (2018).
65. Worthing, K. A. et al. Clonal diversity and geographic distribution of methicillin-resistant *Staphylococcus Pseudintermedius* from Australian animals: discovery of novel sequence types. *Vet. Microbiol.* **213**, 58–65 (2018).
66. Gollwitzer, E. S. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. *Nat. Med.* **20**, 642–647 (2014).
67. Li, R., Li, J. & Zhou, X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. *Signal. Transduct. Target. Ther.* **9**, 1–27 (2024).
68. Spies, R. et al. Sputum color as a marker for bacteria in acute exacerbations of chronic obstructive pulmonary disease: a systematic review and meta-analysis. *Ann. Am. Thorac. Soc.* **20**, 738–748 (2023).
69. Stockley, R. A., O'Brien, C., Pye, A. & Hill, S. L. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. *Chest* **117**, 1638–1645 (2000).
70. Meldrum, O. W. & Chotirmal, S. H. Mucus, microbiomes and pulmonary disease. *Biomedicines* **9**, 675 (2021).
71. Pereyre, S. & Tardy, F. Integrating the human and animal sides of Mycoplasmas resistance to antimicrobials. *Antibiotics (Basel)* **10**, 1261 (2021).
72. Numberger, D., Siebert, U., Fulde, M. & Valentin-Weigand, P. Streptococcal infections in marine mammals. *Microorganisms* **9**, 350 (2021).
73. Foster, G. et al. Mycoplasma species isolated from harbor porpoises (*Phocoena phocoena*) and a sowerby's beaked Whale (*Mesoplodon bidens*) stranded in Scottish waters. *J. Wildl. Dis.* **47**, 206–211 (2011).
74. Souter, R. et al. Fatal *Streptococcus iniae* infection in a juvenile free-ranging short-beaked common Dolphin (*Delphinus delphis*). *Animals* **11**, 3123 (2021).
75. Blevins, C. et al. Sex- and age-specific migratory strategies of blue whales in the Northeast Pacific ocean. *Front. Mar. Sci.* **9**, 944918 (2022).
76. Malmuthuge, N. et al. Effect of maternal separation and transportation stress on the bovine upper respiratory tract Microbiome and the immune response to resident opportunistic pathogens. *Anim. Microbiome* **3**, 1–18 (2021).
77. Margolis, E., Yates, A. & Levin, B. R. The ecology of nasal colonization of *Streptococcus pneumoniae*, *haemophilus influenzae* and *Staphylococcus aureus*: the role of competition and interactions with host's immune response. *BMC Microbiol.* **10**, 1–11 (2010).
78. Nicola, I. et al. Characterization of the upper and lower respiratory tract microbiota in Piedmontese calves. *Microbiome* **5**, 152 (2017).
79. Mullen, N. J. & Singh, P. K. Nucleotide metabolism: a pan-cancer metabolic dependency. *Nat. Rev. Cancer.* **23**, 275 (2023).
80. Brown, E. M., Clardy, J. & Xavier, R. J. Gut Microbiome lipid metabolism and its impact on host physiology. *Cell. Host Microbe.* **31**, 173–186 (2023).
81. Gendron, D. & de la Ugalde, A. A new classification method to simplify blue Whale photo- identification technique. *J. Cetacean Res. Manag.* **12**, 79–84 (2012).
82. Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. *Front. Microbiol.* **8**, 494 (2017).
83. Hornung, B. V. H., Zwittink, R. D. & Kuijper, E. J. Issues and current standards of controls in Microbiome research. *FEMS Microbiol. Ecol.* **95**, fiz045 (2019).
84. Andrews, S. FastQC: A quality control tool for high throughput sequence data [Online]. (2010). <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>
85. R Core Team. R: A Language and Environment for Statistical Computing. [Online]. (2024). <https://www.r-project.org/>
86. Dahan, D., Jude, B. A., Lamendella, R., Keesing, F. & Perron, G. G. Exposure to arsenic alters the Microbiome of larval zebrafish. *Front. Microbiol.* **9**, 1–12 (2018).
87. Edgar, R. C. Sequence analysis updating the 97% identity threshold for 16S ribosomal RNA OTUs. *Bioinformatics* **34**, 2371–2375 (2018).
88. Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. *R J.* **8**, 352–359 (2016).
89. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res.* **41**, D590–D596 (2013).
90. McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of Microbiome census data. *PLoS One* **8**, e61217 (2013).
91. Karstens, L. et al. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments. *mSystems* **4**, e00290 (2019).
92. Mikryukov, V. & Mahé, F. vmmkk/metagMisc. [Online]. Preprint at (2025). <https://doi.org/10.5281/zenodo.597622>
93. Caruso, V., Song, X., Asquith, M. & Karstens, L. Performance of Microbiome sequence inference methods in environments with varying biomass. *mSystems* **4**, e00163–e00118 (2019).
94. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome* **6**, 226 (2018).
95. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. *Nat. Methods.* **8**, 761–763 (2013).
96. Lahti, L., Shetty, S., Blake, T. & Salajarvi, J. Tools for microbiome analysis in R. (2017). <http://microbiome.github.com/microbiome>
97. Oksanen, J. et al. vegan: Community ecology package. Preprint at (2019). <http://cran.r-project.org/package=vegan>
98. Murray, D. *Tableau your data! Fast and Easy Visual Analysis with Tableau Software* (Wiley, 2013).
99. Mauri, M., Elli, T., Caviglia, G., Ubaldi, G. & Azzi, M. RAWGraphs: A visualisation platform to create open outputs. *ACM Int. Conf. Proc. Series* Part F131371 (2017).

Acknowledgements

We thank Manuel Antonio Zamarrón Nunez for his assistance during navigation and Ana Sofia Merino, Aurora Paniagua, Madeleine Gauthier, Daniel Valdivia and Ricardo Mirsha Mata Cruz for their help during fieldwork.

Author contributions

C.A.D. collected the samples, performed molecular analyses, analyzed the data, and drafted the manuscript. R.C.A. conducted statistical programming for microbiome analysis and helped interpret the results. D.G. conducted fieldwork, collected samples, and co-supervised the research. K.A.W. conceived, designed, and supervised the research. All authors read and commented on the final draft of the manuscript and gave approval for publication.

Funding

CADS was funded by a CONACYT PhD Studentship (558253). Fieldwork (sampling and navigation) was funded by The Instituto Politécnico Nacional (SIP20160496 and 2017014), Rufford Foundation 2nd small grant

for Nature Conservation (2017), and the Program for the Conservation of Species at Risk (Programa de Conservación de Especies en Riesgo, Comisión Nacional de Áreas Naturales Protegidas). Molecular analysis was partly financed by a Small Grant in Aid of Research from the Society for Marine Mammalogy.

Declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study complied with the recommendations and methods for approaching blue whales provided by Mexican legislation (NOM-059-SEMARNAT-2010). All procedures were approved by the Bioethics Committee of the Universidad Autónoma de Queretaro (Mexico), and sampling was conducted under permits SGPA/DGVS/00255/16 and SGPA/DGVS/01832/17 issued by the Dirección General de Vida Silvestre to D. Gendron.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-28025-2>.

Correspondence and requests for materials should be addressed to K.A.-W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025