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OPEN A stochastic dual-phase-lag two-

temperature photo-thermoelastic
model for double-porosity
semiconductors with initial stress

Eman Ghareeb Rezk', Gamal M. Ismail?, Abdelaala Ahmed?, Kh. Lotfy>>, Alaa A. El-Bary*>,
Engin Can® & E. S. Elidy3**

This work presents a comprehensive stochastic thermoelastic model for analyzing photothermal
wave propagation in double-porosity semiconductors subjected to initial stress within the
framework of the dual-phase-lag (DPL) and two-temperature (TT) theories. Stochastic perturbations
are introduced through Wiener process-based boundary noise, allowing the evaluation of both
deterministic responses and their variance profiles using a convolution-based analytical formulation.
The governing equations are solved in the Laplace-Fourier domain and inverted numerically to
obtain the temperature, displacement, and stress fields. Representative results show that increasing
porosity coefficients enhances wave attenuation and modifies coupling between mechanical and
thermal responses, while higher phase-lag parameters delay temperature and stress propagation.
The two-temperature coupling parameter significantly influences the magnitude and spread of
thermal variance, demonstrating the sensitivity of stochastic wave behavior to microstructural and
thermal relaxation effects. The variance amplitudes are shown to remain within realistic physical
bounds for semiconductor materials, confirming the model’s stability and practical relevance. These
findings provide new insights into stochastic uncertainty propagation in semiconductors and guide
experimental calibration and design optimization of MEMS and photo-thermoelastic devices operating
under random thermal excitation.

Keywords Stochastic thermoelasticity, Dual-phase-lag (DPL) model, Two-temperature theory,
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List of symbols
A, Lame’ parameters
u, W Displacement components
0ij Kronecker delta
p Mass density
o Specific heat at constant strain
Oij The stress tensor
vl The volume fraction field corresponding to pores and
Vg The volume fraction field corresponding to fissures
o, The volume fraction fields corresponding to v1 and v2 respectively
K* The volume coefficient of thermal expansion
K Thermal conductivity
ki.k2 The coeficients of equilibrated inertia
To Reference Temperature
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To Relaxation time
b,d,b1,v,71,72  Constitutive coefficients

oi The equilibrated stress corresponds to vy
Ti The equilibrated stress corresponds to vz
T The temperature change is measured from the absolute temperature Tp

The field of photo-thermoelasticity continues to evolve rapidly due to its foundational role in numerous high-
technology applications, particularly those involving semiconducting materials where optoelectronic, thermal,
and mechanical interactions converge. In this study, we investigate the stochastic thermoelastic behavior of
double-porosity semiconductors subjected to photothermal excitation, incorporating dual-phase-lag (DPL) heat
conduction and the two-temperature theory to rigorously address non-Fourier thermal transport and non-
equilibrium energy exchange between electrons and lattice vibrations. Initial stress fields, often resulting from
manufacturing processes such as cold working, thermal gradients, and residual loading conditions, significantly
influence wave propagation dynamics in solids, especially in semiconductors, where precise control of thermal
behavior is critical'. The historical development of generalized thermoelasticity began with the pioneering works
of Biot!, followed by the Lord-Shulman (LS) model?, which introduced a single thermal relaxation time, and
Green-Lindsay (GL) theory’, which accounted for two distinct thermal relaxation parameters. Both models
attempted to rectify the unrealistic infinite speed of heat conduction inherent in Fourier’s law, an issue that was
also critically reviewed by Chandrasekharaiah?-®, who explored second sound and hyperbolic thermoelastic
models. Tzou™>’ contributed significantly by introducing the DPL theory, which incorporates two distinct phase
lags, one for heat flux and another for temperature gradient, thereby allowing accurate modeling of micro- and
nanoscale heat transfer phenomena and capturing the temporal delay in heat conduction observed experimentally.
In photothermal interactions, a high-energy laser beam incident on the surface of a semiconductor can excite
both thermal and mechanical waves, producing a complex response involving electron excitation, charge carrier
diffusion, and thermoelastic deformation®!%. These interactions are strongly influenced by the microscopic
structure of the material, including features such as double porosity, which comprises interconnected macro-
and micro-pores that modify stress localization and energy dissipation mechanisms!'>~17. The two-temperature
theory, as developed by Chen, Gurtin, and others'®-2°, and extended by Quintanilla and Youssef?!-24, distinguishes
between thermodynamic temperature and conductive temperature, enabling the description of energy
nonequilibrium between electrons and phonons, particularly relevant under ultrafast thermal loading such as
that caused by pulsed lasers. Lotfy and his collaborators have made notable contributions to the development of
generalized two-temperature theories under various configurations, including magnetic, rotational, and
fractional derivative frameworks?>2°. The inclusion of double porosity, as studied by Tsagareli'®>, Mahato and
Biswas'®, and Emin et al.'’, captures the mechanical and thermal complexity of materials with hierarchical pore
networks, such as advanced ceramics and porous silicon wafers, whose performance under thermal stress can
only be understood by resolving the interplay between macrostructural and microstructural energy pathways.
These double-porous materials exhibit unique characteristics, including wave dispersion and attenuation
profiles, that differ markedly from homogeneous counterparts, necessitating refined theoretical frameworks for
their analysis. The stochastic modeling approach adopted in this work goes beyond traditional deterministic
solutions by considering boundary randomness and internal material fluctuations via white noise or Wiener
process-based perturbations, thus offering a probabilistic perspective on system behavior?’-%°. This is particularly
significant for real-world applications where precise initial conditions are difficult to achieve and where
environmental disturbances or process variability may substantially affect performance. The present model
adopts harmonic wave analysis and the normal mode technique to obtain analytical expressions for physical
fields such as displacement, temperature, stress, and carrier density, and extends these expressions to their
stochastic counterparts, including mean and variance computations. The deterministic solutions serve as the
mean behavior around which stochastic sample paths fluctuate, with variance capturing the intensity of
fluctuations and hence the reliability of the physical response. The photothermal energy absorption, governed by
the DPL-TT framework, leads to localized heating that propagates as coupled thermal and elastic waves,
influenced by both the phase lags and porosity distributions. As observed in prior works by Lotfy et al.?>26:30-33
and others, the dual-porosity effect introduces additional degrees of coupling, as the interaction between pore-
scale pressure waves and bulk elastic waves leads to significant modifications in thermal diffusion and mechanical
energy transport. The mathematical model used in this work is cast in two dimensions, allowing for realistic
modeling of surface effects and anisotropic wave propagation, and includes both the conductive and
thermodynamic temperatures through the two-temperature model, enabling a nonlocal and memory-based
thermal response. The role of carrier density modulation, essential in semiconducting applications, is modeled
through plasma equations coupled with the heat and stress fields, offering insights into how photogenerated
carriers interact with thermal gradients and mechanical displacements. The boundary conditions consider
realistic configurations, including thermally insulated, stress-free, and recombination-dominated boundaries,
capturing the physical scenarios encountered in microelectronic device operation. Variance analysis reveals that
thermal field fluctuations are primarily surface-concentrated due to boundary condition randomness, while
mechanical field variances exhibit more distributed profiles, suggesting a cumulative effect of internal material
heterogeneity and coupling mechanisms. These findings are crucial in the design of semiconductor devices such
as MEMS and optoelectronic sensors, where failure modes are often governed not by mean behavior but by
extreme fluctuations caused by material imperfections and external disturbances. By combining rigorous
analytical derivation with stochastic modeling, this study extends the frontiers of thermoelastic modeling into
more realistic, variance-aware domains, thus enabling the formulation of probabilistic design methodologies
where safety factors are based on statistical field behavior rather than worst-case deterministic estimations. The
double porosity, DPL-TT, and stochastic integration into a unified analytical framework not only enhances
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theoretical understanding but also serves practical needs in the thermal design and reliability assessment of
modern semiconductor systems. Furthermore, the application of convolution and expectation operators to
compute stochastic field variances analytically allows this approach to be incorporated into simulation and
control environments, such as real-time variance tracking in photothermal imaging systems or laser-driven
fabrication processes. As noted in recent experimental and modeling efforts?”-2%3%3, the ability to estimate not
only the mean but also the spread of field quantities in porous semiconductors is a key enabler of robust control
and fault tolerance in thermal systems. The advancement of stochastic thermoelastic modeling in semiconductor
media has been significantly enriched by the contributions of Lotfy and his collaborators®*-*%, who have
rigorously explored the influence of randomness on wave behavior under complex coupled physical phenomena.
In their 2025 study, Lotfy et al. examined the stochastic propagation of magneto-photo-thermoelastic waves in
semiconductor materials, emphasizing the effects of variable electrical conductivity on the wave characteristics.
By incorporating random perturbations through a stochastic framework, the research captured the interplay
between magnetic fields, thermal gradients, and photonic excitation, thereby revealing how fluctuations in
electrical conductivity alter both wave attenuation and dispersion profiles, particularly under strong coupling
conditions between thermal and electromagnetic fields. In another pioneering work, Lotfy et al. (2024)
introduced a stochastic photoacoustic model driven by white noise, where they investigated how stochastic
boundary conditions impact thermoelastic wave propagation in semiconductors. Using the Wiener process,
they quantified the variance in physical responses such as displacement and temperature, thereby providing
insights into how randomness affects system reliability, especially under laser-induced excitation.

Despite extensive studies on deterministic thermoelastic and two-temperature models, real semiconductor
and MEMS systems often operate under random or fluctuating thermal environments, such as laser pulse
variability, photothermal noise, and fabrication-induced microstructural defects. These stochastic effects can
significantly influence wave propagation, temperature rise, and stress distribution, ultimately affecting device
stability and performance. Existing deterministic formulations cannot adequately represent these uncertainties
or predict variance-based reliability measures.

To address this gap, the present work develops a stochastic dual-phase-lag two-temperature model for
double-porosity semiconductors with initial stress, enabling analytical evaluation of both mean fields and their
stochastic variances. This formulation captures uncertainty propagation, microstructural coupling, and memory
effects within a unified theoretical framework. The resulting insights are directly relevant for the design and
optimization of MEMS, photo-thermoelastic devices, and semiconductor heat-management systems operating
under real-world random disturbances.

Formulation of the problem and basic equations
Inspect a homogeneous thermoelastic half-space displaying a double porosity configuration in its undeformed
condition at a uniform temperature. 7. All the functions under consideration will depend on (z, z, t). We will
get the vector i as @ = (u, 0, w). The governing equations for a homogeneous isotropic thermo-elastic solid
with a double porosity configuration without body forces and heat sources are provided with a new model under
the two-temperature theory and DPL model:

The equation of motion

i = (u - g) V2 + ()\ - g) Ve +bV® + dV¥ — (1 + Te%)VT — 5,VN. (1)
Equations of heat conduction and coupled plasma®21:27:343%
8 * 2 a * T ™ o . Eg
1+ Tea)K Vie=(1+ Tqa)(p T +To® +7ToV +~Thé) — 7]\7, )
Dpv?N - Ny w7 = I 3)
T ot

Equilibrated stress equations of motion

aV2® + V20 —be — an® — sV + 1T = K1 D, (4)
bi V2 4+ VU — de — as® — ao W + 12T = Ko\, (5)

The stress equation with the DPL model and initial stress takes the form

Oij = 2/1/61']' + ()\6 + 6P + dV¥ — "/T — (5nN)§” — PWij. (6)

Equations for double porosity;

ci=ad;+b U, (7)

s

Ti = b1 CI)J- —|—’}/ \I/’i. (8)

In this model, the parameters ® and ¥ denote the volume fraction coefficients of the two pore networks
characterizing the double-porosity medium. Specifically, ® corresponds to the matrix or micro-pore system
(matrix or solid skeleton), while ¥ represents the macro-pore or fissure system (fissure or crack). These
parameters are assumed constant throughout the medium, reflecting an idealized homogeneous double-
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porosity structure. Physically, larger values of & and ¥ indicate higher porosity or connectivity within the
corresponding pore networks, resulting in increased mechanical compliance and enhanced fluid-solid
interaction. Consequently, the double-porosity coefficients strongly influence wave dispersion, attenuation,
and thermoelastic coupling, where higher porosity levels yield slower, more attenuated thermal and elastic
waves due to increased internal energy exchange between the two pore systems. This behavior aligns with the
findings of Tsagareli'> and Mahato and Biswas'®, confirming that the double-porosity mechanism acts as a
microstructural damping effect within the semiconductor medium.

The relationship between the temperature of heat conduction ¢ and the thermodynamical temperature 7’
with the two-temperature theory can be expressed in the following manner:

T —¢ = —aV3y, 9)

where a (@ > 0) is called the parameter of the two-temperature.

According to the values of relaxation times 79 (phase-lag of temperature gradient) and 74 (the phase-lag
of heat flux), three models can be obtained. When 0 < 79 < 7, the DPL model is observed when 79 = 0, the
heat conduction equation is reduced to the LS theory (recovers the LS hyperbolic heat conduction form and
the corresponding LS thermoelastic equations). The Classical thermoelasticity (CTE/Fourier) is obtained when
To = 74 = 0, a = 0, under these limits, the DPL heat law reduces to Fourier’s law and the two-temperature
distinction vanishes. The heat equation reverts to the classical diffusion equation, and the thermoelastic system
reduces to the standard coupled thermoelastic equations.

To validate the deterministic limit of our formulation, we verified that the present DPL-two-temperature
equations recover the classical and commonly used generalized thermoelastic models under the appropriate
parameter limits. Specifically, setting the DPL phase lags and the two-temperature coupling to zero recovers
classical (Fourier) thermoelasticity; retaining only the heat-flux relaxation reproduces the Lord-Shulman form;
and selecting relaxation parameters to match Green-Lindsay characteristic times reproduces GL-type behavior.
Numerical comparisons (dispersion relations and field profiles) are provided in section “The temperature
function” and show excellent agreement with the reference models.

Equations (1-9) in 2D (two-dimensions) form as follows:

0*u p, &*w p, 0%u 0P ov 0,07 ON 0%u
_ p o o _ 9% (10
(20— p) G + (b= g+ (= 5) 55 + b +dgn —1(l+mg)go—on g = pg, (10)

2 2
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DEV2N—E+NT:8—N, (13)
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82
aVP R + b VAW —be —n® —ag¥ +nT = K157, (14)
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Wherev2:322+3225678x+327 N+§732—/‘L7*

Assuming the scalar gotentlal functions I(z, 2 t) and 9 (z, z, t) defined by the relations in the non-
dimensional form: u = % + gf,w = % —
For simplicity, we introduce dimensionless varlables

w1 C1 1
(J?/, Zlaulvw/) = 7(Ia Z,u,ﬂ)), {0;77-{} = Tm{glaTl}v (tlvTéaTé) = wl(taTque)vgilj = (;)Uijv
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(ORI R I TR A (et S

(Crt*) a1 p P c3

N, Y(T, ¢)
! / / 9 9y
v =(BA+2u)ar, v = (BA+ 2u)au, (N (T )) = (W)-
Using the above dimensionless quantities, Eqs. (10-19) become:
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Dimensionless variables for the components of o;,7;
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(30)
(31

Where, the parameters €1, €2 and €3 can be called the thermoelastic, the thermo-energy, and the thermoelectric

coupling parameters respectively.

Harmonic wave analysis

The solution of the physical functions, when harmonic wave propagates in the xz-plane can be expressed as:

Qzx, z,t) = Q" (z) exp(wt + ilz),

(32)

Where w is the angular frequency or complex time constant, 4 is the imaginary value, ¢ is a wave number in the
direction of z-axis, and Q" () is the amplitude of given function. By using the normal mode defined in the Egs.

(32), (20-31), we arrive at a system of five non-homogeneous equations:
(D2 — gl) I + a1(I>* + az\I/* —T*—N* = 0,

B (D* = %) " — gsT" + ga®" + gs V" + g6 (D* — *) 1" + &2N* =0,

(33)

(34)
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(D* — g/)N* +e3T* =0, (35)
(a7D2 — gg) P + (a9D2 — gg) U — (auD2 - 910) IT* + a12T* = 0, (36)
<a13D2 - 911) " + (a15D2 — 912) U* — (a17D2 — 913) IT* + a1sT* = 0, (37)
(D? - gua) " =0, (38)
T*+ (/1D* —B3) " =0, (39)
Ohx = (a10D? = agol? ) II* + 2ilDY"™ — (g15T" + a19N™) + a20®”" + az1 ¥* — px, (40)
0sr = (az2 D* — a190?) II" = 20Dy — (g15T"* + a1oN") + a2 ®* + asn ¥ —p”, (41)
0z = — (916D* + g17€*) ¥ + 2i¢DIT", (42)
ol =mD®" + 2 DY™, (43)
1 =2 D®" + s DU, (44)
Where, D = a%ﬁg =14+ mw),g1 = P 4w? gy = (1 + Tqw)w, g3 = g2,94 = —asgz, gs = —a4gz,
g6 = —€192, 97 = 0* + a5 + asw, gs = arl> + as + w?, go = aol® + a10, gro = a116%, g11 = a136> + a4,

S1

s
gi2 = a15é2 + ais +w2,913 = a17€2,g14 =0+ 5002,915 = a1902, g16 = ;,gw = ;2753 = /5162 + 1.

Eliminating 7", N*, ®*, U* and IT* between Egs. (30-34) yields:

(D' = MiD® + MyD® — MsD* + MyD? — Ms) {T*, ", N*, ", 0", 1", 0;, 07,71 } (z) = 0. (45)

_ —As _ Ag — —A4 _ As _ —A¢
Where,leTl,Mgfrl,Mngl,lefA;,Msf N}
Ay = —agai3g3fi1 + araisg3Pi + agaizgeS1 — araisgs 1 — agaizfs + araisfs,

Ay =
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—a11a15941 + a12a159451 + ava17gafr — asaiggaf1 + ar1aizgs P — ar2a13gsP1 — arairgs P
+araiggs 1 — l2a9a13g6ﬂ1 + azai2013961 + 12(17(1159651 — ara12a1596 31 — a2a7a18g6 1+
aragaisge 1 + agaizgsgrB1 — araisgsgrBi — asaizgegr 1 + araisgegr 1 — aisgsgsPi+

a15969sf1 + a1393go1 — a13gego 1 + aogsgi1ff1 — asgegi1f1 — argagi2P1 + argegi2 1+

PPagarsfs — asariaiafs — 1*araisfs + a1a11a15 63 + azarairfa — arasairfs + aga1391 33—
aza159183 + agaizgsBs — araisgsfs — asaisgeSs + araisge s + asaizgrfs — araisgrBz—

a159803 + a1399Bs + aog118s — arg1283 — asaizgeSies + araisgef1€3 — agaizPiezes + araisPie2es

(46)
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a1895979sB1 + Pa15g6g79s P — azaisgegrgsPi — aisgigageBi + Paraisgegefi — arairgsgrgo B+

139193979951 + a17gagrgefr — a1sgagrgefr — Iai3gegrgeP1 + araisgegrgeP + azaisgagiofu
—aiaisgsg1051 — a2a1393g7g1051 + a1a159397g1081 — 15949791051 + a139597g1061 — ai291gs911 61+

Paza12g6911 81 — aza119sgrg11B1 + asg1g3g7g11 1 + ar1gsg7911B1 — ar2gsgrgn1 B1 — *asgegrgni f1+
2012969791151 + 91939091181 — 1> g6g9g11 51 + 93979091181 — g6grgegi1fL — azgsgiogu fit
9591091151 + a12919491281 — I>a1a12g6g1261 + a1a11939791281 — arg1gsgrgi2P — a1194grgi2fi+

a129497g121 + l2a7§69791261 — a1a1296979121 — g193gsgi21 + 12g698912ﬂ1 — 9397989121+
96979891231 + 19391091281 — gagiogi21 — azai294g1351 + a1a129591361 + azargsgrgizfr1—
a1a993g791351 + a9gagrgi3fr — argsgrgisfr + a2939sg13P1 — gsgsg13PB1 — ar1gsgogis i+
949991351 — a2a12a1794 033 + aza11a189433 + 412015919483 — a9a189194 03 + arai2ai7gsfz—

ara11a1895 03 — a12a1391 9503 + araisgigsPs + 1*azaizaisgefs — *ararzaisgefs — Iazazaisgefa+
lzamgalsgsﬁa — 12a2a11a13g7ﬁ3 + 12a1a11alsg7ﬁ3 + lza2a7a17g7ﬁ3 — 1201a9a17g7/33 + lza9a1zg1g7ﬁ3

—1?a7a159197P3 — aza11a139397 85 + ara11a15939785 + azarairgsgrfs — arasairgsgrfs + asaizgigsgrBa—
ara15919397 P33 — a1aisgagrPBs + ai2aisgagrBs + agairgagr Bz — asaisgagr Pz + arnaizgsgr Pz —

a12a139597Bs — ara179g597Ps + araisgsgrBs — I>asaizgegrPs + aza12a13gsgrBs + 2araisgegPs
—aia12a15969783 — a2a7a1896g7 B3 + a1a9aisgegr P + 12a2a1798ﬂ3 - lzalsglgSﬂS + aza179g39s 3 —
1591939583 — a17959sBs + a18gsgsBs + 1215969883 — aza1sg6gsPs — *a1597gsPBs + azar7grgsBs
a1593979s33 + a1596979s 33 — 12a1a17ggﬁ3 + 12a1391ggﬁ3 — a1a179399 33 + a13919399 33 + —a1591979s/33—
a1794goBs — a1sg1goBs — 1213969085 + a1a1sgegoBs + 1> a13g7go s — arairgrgePs + aisgigrgeBa—
a1396979983 — l2a2(L13910r33 + %ay a1591003 — a2a139391083 + a1a1593g1063 — a1594g10P3s + a13gsgioBz—
420139791085 + a1a159791083 — Iaza119118s + (*asg191183 — a2a1193911Bs + asgigsgi1 s + ar1gsgi1 fs—
a129591103 — lzaggsgnﬁz + a2a129691103 + lzagg7g1163 — a20119791183 + a9g197911 03 + asgsgrgi1Bs
—a9gegrg11P3 + l2ggg11ﬁ3 + 919991133 + 939991133 — 969991133 + g7gagi133 — a2g1091133 + lzalauglzﬁg*
®arg1g12Bs + ara11939128s — arg193g12B3 — a1192G1203 + a129491283 + 1*argegi283 — a1a129691253
—1?a7g7912P3 + a1a1197912P3 — argigrg128s — arg3grg12Bs + argegrgi2Bs — 1> gsg123 + ai139397998s

— 919891283 — g3gsg1283 + gsgsg12Bs — g7gsgi2Ps + a1g10912Bs + 12azargisBs — Parasg13Bs + azargsgisfs
—a1a993913533 + a9gag13fs — argsg13Ps + a2argrgisPs — arasgrgisPfs + az9sgi3fs — a199g138s — ar7gsgsPies+
12a159698ﬁ163 + ai7gagoPres — 1211139699/3153 — a1594g1051€3 + 13959105163 + a1195911 f1€3—
l2a9gsgnﬁ1€3 — 9699911513 — a1194g1231€3 + 121179691251 S e3 + gegsgi251€3 + a9gagizfiez—
args913P1€3 — ar1aisgafes + agairgafaes + ar1a13gs faes — arairgsBaes — PagaizgsPaes+

ParaisgeBses + a1sgegsPfaes — a1sgegoBses — aogegi1 Baes + argegizPses — azairgsPreaest

a15g198615253 + a1a1799ﬂ16283 - a13glg9ﬁ16283 + a2a13910518263 - a1a15910ﬂ15283 + a2a11911ﬂ16253
—agg191131€263 — gog11P1€263 — ar1a1191251€263 + arg1 912016263 + gsgi21€263 — azargizPieaes+
a1a9g1351€2€3 + 2011013836263 — a1a11015 836263 — azarairB3c2e3 + a1a9ai7P3€263 — agaizgi Pae2es
+arai59183€263 + a159s B3€2€3 — a13goP3€263 — aogr1P3e2e3 + argizBaeaes
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Ag =

—a1891959798P1 + 12 aza1sgegrgs P + a189194979951 — [>a1a18969790B1 — 20189497 G101
+a1a18959791081 + 1291959791181 — 12 2012969791181 — 9193979091151 + 12 g6grgogr1 B+
2939791091151 — 95979109111 — a129194grg12P1 + 1> ara129697g12P1 + 919397 gsgr2B1—

lzgeg7g8g1251 — a1939791091201 + 949791091251 + a2a12949791301 — a1G12959791351 — 293979891331+
95979891351 + a1939799913 51 — g19799g13S1 + aza12a179gagr Pz — az2a11a189agrBs — a12a15919agr B3+
91891949733 — a1a12a179g59783 + a1a11a18959783 + a12a1391959783 — araisgigsgr Pz —

Pazai2a13gegrBs + I ara12a15g697 83 + 1*azaraisgsgrfs — *a1asaisgegrfs — aisgigsgsPs+
Paza1sgegsPs — I>azarrgrgsPs + Pa1591979sBs — azairgsgrgsPs + arsg19sgrgsBs + airgsgrgsfs—
a18959798Bs — 121596979883 + 2015969795 Ps + a1sg1gagoBs — I*ara1sgegoBs + 1*ara17grgeBa—
1Pa13919799Bs + a1a1793g7goBs — a139193g790Bs — a1794grgoBs + aisgagrgeBs + >aragegrgeBs—
a1a18969799 33 — 20189491033 + a1a18g591083 + 12112(11397910[33 - 12111(1159791053 + a20a139397910 83—
a1a15939791085 + a1591g7g10Ps — a13gsgrgi0Ps + a129195911Ps — I*azai2gegi1 B3 + Pazaiigrgi1 fs—
lzagglgﬂ]llﬁ.‘i + a2a11g3g7g11/33 - ugglg.‘sg7gl1ﬂ3 - allgsg7gnﬂ3 + ai12959791 1,33 + 12(19969791 1/33—
a2a129697911 33 — 12!]19991153 — 9193999113 + lzggggg11ﬂ3 - 12g7g9g11/33 — 91979991183 —

93979991133 + gegrgogi1 Bs + l2f1/2y10g11,33 + 29391091103 — 9591091133 + a297910911 53 — a12919491283+
l2a10129691263 - 12G1a1197!]1253 + l2a7g1g7912[33 — a1a11939791233 + arg193grgi2f3 + a11gagrgi2 3 —
12949791283 — 1 argegrgi2Ps + ar1a12g6g791253 + 1> 919891283 + g19398¢91233 — 1> g6 gsgi2Bs+
l29798912ﬁ3 + 91979891283 + 939798912083 — gegrgsgi2fBs — 1204191091263 — a19391091233 + gag10g1233—
a19791091233 + azai2gsg13fs — a1a129591303 — 1204211797!]13[33 + l2a1a9g7g13ﬂ3 — az2a7939791353+
a1a993g7913Bs — a9gagrgiaBs + argsgrgizfs — 12a2gsgiafs — a2g3gsgiafs + gsgsgizfs — azgrgsgizBa+
’a1g991353 + a1939091353 — gagogi3Bs + a1grgegisPs + 1°gegogui f1 é —g5910911 51 4 —1*g6gsg121 :{Jr

949109125165 + g59sg13P13 — gagogiaPies + arrgsgsPaes — I aisgegsfacs — airgagoBacst
lz(l1396993363 + a159491033€3 — 13959108363 — a119sg113e3 + 12a996911ﬂ3€3 + g699g11P3e3+
a1194g1283€3 — I argsgi2faes — gogsgi2faes — avgagiafacs + argsgizfaes + grgogi freses—
2910911516263 — g198g1251€2€3 + a191091251€263 + a29891351€263 — a1gog1351€263 + a2a17gs 336263 —
a15919s33€263 — a1a17goB3e2€3 + a13g19oB3c2e3 — aza13910B3€263 + a1a15910 836263 — azaiigiiPac2ez+
a9g1911P3€2€3 + gogi1B3e2e3 + ara11912836263 — argrgi2B3c2e3 — gsgi2P3c2es + a2argi3Pac2es — araogizPae2es
2 2
a189195979833 — " a2a18969798 B3 — a1891949799 33 + 1" a1a18969799 B3 + a2a18gagrgioBz—
2 2
a1a1895979103 — a12919597911 33 + 1" az2a129697911 83 + 1° 91979991183 + 91939799911 83—
1296975]9911[33 - 12a297910g1153 — a2939791091133 + 959791091183 + a12919497g12 33—
2 2 2
1791979891283 — 919397989125 + 1" g6 979891283 + 1" a1g7g1091283 + a193grgiogi2 53—
2
(2012949791333 + a1012959791303 + 1" a29798 91383 + 293979891333 — 9597989133 —

@1939799913/33 + gag79og1333 — 12g6999115363 + 959109113363 + lzgsgsgub’saa — gag10912P33€3—
959891303€3 + g1gog13facs — g1gogi1f3e2es + azgi0911 336263 + g1gsg1233€2€3 — a1g10g1233€263—

a2gsgi3Bseaes + a1gogisPaeacs — I a1a1296979128s — gagrgrogizPfs — I>a1g7gegisPs

The factorization method was used to remedy the principle ordinary differential equation (ODE) (41) as follows:

(D2 - m%) (D2 - mg) (D2 - mg) (D2 - mi) (D2 - mg) {T*7 P N", &, \IJ*,H*,U:],UT,T]*} (z) et — 0. (52)

Where m2(n = 1,2, 3,4, 5) represent the roots that may be taken in the positive real part z — co. The solution
of equation (ODE) (48) takes the following form (according to the linearity of the problem):

5
T (z) = Z D, (£,w)e” ™",
n=1

In the same way, the solutions of the other quantities can be expressed as:

5 5
N*(z) =Y Dy(f,w)e ™" =" HipnDa(f,w)e ™"
n=1 n=1
5 5
I (2) = Y Dii(6,w) exp(—maz) = Y Hop Du(l,w) exp(—maz),
n=1 n=1
5 5
" (z) = Z D! (4, w) exp(—mnx) = Z Hs,, D, (4,w) exp(—mnx),
n=1 n=1
5 5
U™ (z) = ZDf:l)(Z, w) exp(—mnzx) = Z Hupn Dy (4, w) exp(—mpx).
n=1 n=1

(53)

(54)

(55)

(56)
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o ZD(S) (4, w) exp(—mnx ZH5n w) exp(—mnx). (58)

n=1 n=1
The solution of Eq. (35) can be represented as:
Y (z) = De(l,w)e” 5", (59)

Where mg = £/g14 are the real roots of equation (33).
And the stress components are expressed as:

Z Hgn D w) exp(—mnx) — 2ilmeDe exp(—mex), (60)
n=1
oL, Z H7, Dy (L, w) exp(—mnx) 4 2i€me Dg exp(—mex) (61)
5
Ony = Z Hgn Dy (£, w) exp(—mnz) — (mg 4 £2) Ds exp(—me) (62)
n=1
Since
u*(z) = DIT* 4 i L1p*, (63)
w(z) =i l11" — D", (64)
Then,
5
u(x) = Z DI (4, w) mpe” ™" +ilDg (£, w) exp(—mez), (65)
n=1
5
w*(z) =il Z Dy (4, w)e” ™" + Dg(€,w) me exp(—mez). (66)
n=1

To obtain o1 and 71 solutions, substitution from Egs. (52), (53) in (39) and (40) is done to get:

5

O'I = ZHgnDn67m"1‘, (67)
n=1
5

i =3 HouDue . (68)

Where D,,D.,,D. D, D$L4) , and Df) ,mn=1,2,3,4,5 are unknown parameters depending on
the parameter /,w. The relationship between the unknown parameters D,,, D}, Di D2 D | and
D§L5) ,n=1,2,3,4,5 can be obtained when using the main Egs. (30-39) and (40), which take the following
relationship:

___ %
Hip = mZ — g7’
(a2gs — a1g5) (aza1s + (14 Hin) (minais — gi2)) —
e — (az (mialfi — 911) + a1 (*miaw + 912)) ((1 + Hin) g5 + as (mi — g3+ H1n€2))
"o (((=ma +g1) g5 + as (ms — £%) g6) (a2 (miais — gi1) + a1 (—miars + g12))) (a2g4 — a1gs) 7
(* ((mi - 91) (miam - 912)) + a2 (*mian +913))
Hs, = -t ((1 + Hip — miHm + H2ngl) gs + az (mi — g3+ Hap (mi - 42) ge + H1n€2)) ,

a2g4 — a1gs
1
Hyn = ; (—mi + 93 — H3pnga + Hop (—mi + 52) g6 — HlnEz) s
5

-1

Hon = armz — 3a)
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Hepn = (awmi — CL22£2) Han — a9 ((1+ Hin)) + a20Hsn + a21 Han,
Hrp = (Cbzzmi - angQ) Hap — a19 ((1+ Hin)) + a20Hszn + +a21 Han Hsp = 21 £ my, Hsp,

Hon, = (—1imnHzn — nemnHap), Hion = (— 92mn Han — N3mp Han). (69)

Applications
To get the constants D1, D2, D3, D4, Ds, Ds, a set of boundary conditions on the surface when z =0,
(suppose the boundary x = 0 is adjacent to the vacuum) takes the form:
(i) Mechanical boundary condition wherein the surface of the half-space experiences a traction load.
022(0, 2, t) = 0. (70)
(ii) The tangential stress boundary condition that the surface of the half-space is traction-free
05.(0,2,t) = 0. (71)
(iii) Assuming that the boundary = = 0 is thermally insulated, we have
T*(0, 2, t) = Ppe@t %), (72)
(iv) The boundary condition for the carrier density is specified as follows:
N*(0, 2, 1) = noe@* ), (73)
(v) The two equilibrated stress boundary conditions at the free surface z = 0 when
01(0,2,t) =0, 7(0,2,t) =0. (74)

Applying Egs. (66-70) in (49), (50), (55), (58), (63) and (64) we get

5
Z Hen Dy — 2ifmeDg = 0, (75)
n=1
5
> HsuDn — (mi +£*)Dg = 0, (76)
n=1
5
> D.=p (77)
n=1
5
> HinDy = no, (78)
n=1
5
Z HionDy = 0 (79)
n=1
5
Z HonDy =0 (80)
n=1

To get D1, Da, ....., Ds, D¢, we can put Egs. (71-76) in the matrix

D, He1  Hea Hes Hes Hes —2ilmg -t 0
Dy Hs1  Hsa Hss Hsa Hss —(mi+£0?) 0
Ds | _ | Hu Hi2 Hizs Hua  His 0 o (81)
Dy Hio1 Hio2 Hios Hios Hios 0 ' 0
Ds Ho1y  Ho2 Hoz Hoy Hos 0 0
Dg 1 1 1 1 1 0 D2

The present analysis considers an instantaneous thermal shock applied at the free surface together with
mechanical constraints that emulate a substrate-bonded configuration. This setup is physically representative of
pulsed-laser or photoacoustic excitation in semiconductor and MEMS devices, where the energy deposition
time is extremely short compared with the thermal relaxation time of the medium, and the mechanical constraint
arises from substrate adhesion or packaging. Alternative boundary conditions, such as ramped or continuous
heating or fully traction-free surfaces, can be readily implemented within the same mathematical framework
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by modifying Egs. (70-74). Such cases would be expected to produce smoother temperature gradients, smaller
stress amplitudes, and altered dispersion characteristics. Future work will extend the present model to these
configurations to assess their influence on stochastic variance and device-scale thermal reliability.

The temperature function
The Deterministic function
In the present formulation, the stochastic perturbations represented by the Wiener process are introduced
through the boundary conditions rather than directly within the bulk domain. This modeling approach
reflects realistic sources of uncertainty such as random temperature fluctuations, laser intensity variations,
and environmental disturbances that primarily act at the semiconductor surface during photothermal
excitation. Although the stochastic excitation is applied at the boundary, the resulting random effects are
transmitted throughout the material domain via the coupled thermoelastic, carrier-diffusion, and double-
porosity interactions. Consequently, the internal variability observed in the thermal and mechanical fields
arises as a propagated response to boundary randomness, which also accounts for the influence of fabrication
defects, microstructural irregularities, and material heterogeneity. This boundary-driven stochastic
framework is consistent with previously established formulations in stochastic thermoelasticity (e.g., Gupta and
Mukhopadhyay®’, Lotfy et al.*!-%4 and ensures both physical realism and analytical tractability of the model.
Utilizing Eqs. (32) and (53), the deterministic temperature takes the following modulation:

D1 exp(— kix) + D2 exp(— kex) + D3 exp (— ksx) +
T(z,2,t) = 1exp(— k1) 2 exp(— ko) 3 exp (= kaa) exp (w t + Ibz) (82)
Dy exp(— kax) + Ds exp(— ksx)
Establishing the temperature boundary of equation (72) as*’:
To(0,2,t) =Ty =T (83)

Thus, T is a constant function.

The stochastic function
Currently, when the random function is integrated with the boundary, the resultant outcome can be stated

ag0-44,
To(t) = Tr + o(t), (84)
so that (g (¢) fulfills the condition below:
E[po(t)] = 0. (85)
From Egs. (85) and (82), we get:
E[T (z,2,t)] =T (x,z,1) (86)

Consequently, the mean of all the sample paths of the temperature function corresponds to its deterministic one.
Reformulating the temperature function*!~44:

T(z,2,t) =T (z,2,t) + T (x, 2,t) To(t). (87)

From Egs. (84) to (87), we obtain:
T (z,2,t)= T (2,2, t)+T(x,2, t ) [T+ po(t)]. (88)

Which can be simplified into,
T(z,2,t) = (Y(z,2,t) + [z, 2,0)T) + T'(z, 2, t) o (t) (89)
After simplifications:
T(x,z,t) =T (z,2,t) + T(x, z,t)po(t) (90)

Utilizing the property below:
t
(F+9)O=[ fmg(t ~ndr ay
0
We acquire:

T(z, z,t) = T'(=z, z, t)+ /t I(z, z, t—u)p(u)du. (92)
0
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By incorporating the Wiener process function into the preceding equation, it can be reformulated as:
t
T(x,z,t) =T (z, 2,t) +/ Dz, z,t —u) dW (u)
0

Squaring the last equation, we get:

[T(z,z,t)]* = [Tl(m,z,t)]2 —|—//Lp p(u2)durdusl’(z, z,t — u1)T'(z, 2, t — ug)+

t

2/T1(m7z,t)g0(u)P(a:,z,t —u)du

applying the expectation operator to every item for the equation above, we obtain:

E[T(z,z1)])’=E [Tl(gc, z,t)]2 + //E [p(u1)e(u2)] durdusl'(z, z,t — u1 )T (x, 2, t — u2)+

t

Q/E [o(w)] T (z, 2, )T (z, 2, t — u)du

Keeping in mind that:
Elp ()] =0, Elp(u1)p(u2)] =6 (ur —uz).

Subsequently, Eq. (95), becomes:

Var [T (z,z,t)] //F z,2,t —u1) L (z, 2,6 — u2) 0 (u2 — u1) durdus.

utilizing the property as follows:

b

/f(m)f(atfxo)dx:f(avo); a <o <b.

a

Subsequently, Eq. (97) is:

Var [T(z,z,t)] /I‘azzt 1) D (x, 2, t — u2) dus.

0

Setting, u; = sy, then we have:

Var[T(z,z,t)] (z z,t—ul)]2 duy.

o\

Replacing t — u1 by ¥, we get:

Var [T(z,z,t)] /[Fazzﬁ]dﬁ / (z,z,9)] do.

Such that, Var [T(z, z, t)] is the variance.

Carrier density function
The deterministic Carrier density
By Utilizing Eqs. (32) and (54), the deterministic carrier intensity takes the following modulation:

(93)

(96)

(97)

(98)

(99)

(100)

(101)
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hi11D1 exp (—k1ZL‘) + hi2D> exp (—kQJJ) +4
N(z,z,t) = | hizDsexp (—ksx) + hiaDjexp (—kax) exp (w t + Ibz) (102)
h15D5 exp (—ks:l?)

Stochastic Carrier density
Merging Eqgs. (85) and (102) and following the same method as in section “The stochastic function”, the
subsequent result is obtained:

E[N(z,2,t)] = N(z, 2,1) (103)
Therefore, the mean of all the sample paths of the carrier density function E [N (z, z, t)] matches its deterministic

solution.
Reformulating Eq. (102) as:

N(z,z,t) = w(z,2,t) + Z(x, z,t) To (104)

merging the Eq. (84) with Eq. (104), we obtain:*!~*
N (z,z,t)=w (z,2,t) +Z (x,2,t) [T"(t)+ ot )]. (105)

As done before, we get:

t
N(x,z,t)le(x,z,t)—i—/Z(x, z, t—u) p(u) du, (106)
0
t-
Var [N (z,z,t)] Z/Zz(x7z,19)d19. (107)
0

Hence, Var [N ( z , z,t)] is the carrier intensity variance.

The volume fraction field corresponding to v1

The deterministic volume fraction field corresponding to v1

By merging the two Egs. (32) and (56), the deterministic volume fraction fields corresponding to v1 takes the
following modification:

hsz1 D1 exp (—kll‘) + hza Do exp (—kzx) =+
®(x,2,t) = | hasDs exp (—ksxz) + hzaDs exp (—kax)+ | exp (wt + Ibz) . (108)
h35D5 exp (—k‘5l‘)

The stochastic volume fraction field corresponding to v1
Employing Egs. (85) and (108) and following the same steps as in section “The stochastic function”, we obtain:

E[®(z,z,t)] = O(z, 2, t) (109)
As a result, the mean of all the sample paths of the volume fraction field corresponding to v1 E [®(z, z, )]
matches its deterministic solution.
Rewriting Eq. (108)*-* as:
O(z, z,t) = d(x, 2, t) + E(x, 2, t)To (110)
merging the two Eqgs. (84) and (110), we obtain:
O(x, 2,t) = ¢(x, 2, t) + E(x, 2, t) [T + @o(t)] . (111)

Upon simplifying Eq. (111) and using the convolution property, we get:
t
O(z,z,t) = D' (z, 2,t) + / 2z, z,t — u)p(u)du (112)
0

After following applying the same steps in section “The stochastic function” we get:

¢
Var [®(z,z,t)] = /52(x7z,19)d194 (113)

0

Such that Var [®(z, 2, t)] is the volume fraction field variance.
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Displacement distribution
The deterministic displacement

Merging the two Egs. (32) and (65), the deterministic function of u(z, z, t) is reformulated as:

h21D1 exp (—klI) =+ h22D2 exp (—kz:l)) —+

u(x, z, t) = | hosDs3 exp (*k)gic) + hoaDy exp (*k‘4x) + | exp (w t+ Ibz) . (114)

hos D5 exp (—k5$) + 14Dg exp (—kax)

Stochastic displacement
Using the two Eqgs. (84) and (85) with Eq. (114), we get:

E [u( z,z,t)) =u (z,z, t). (115)
Which says that, the mean of the displacement E [u(x, z, t)] matches its deterministic one.
Upon incorporating the stochastic term into Eq. (114), it can be restructured as:
U(.’I},Z,t) :ﬁ(IE,Z,t)—FU(.’I?,Z,t)TO (116)
Or it may be rewritten as*!~*4:
u(z, 2,t) = B(x,2,t) + U (z,2,t) [T™ + @o(t)] (117)
Using some substitutions to the earlier equation we get:
ot
u(z, z,t) = u' (x, 2, 1) +/ Uz, z,t —u)p(u) du. (118)
0
The variance is obtained by making the same steps as in section “The stochastic function™:
t
Var[u(z,z,t)] = /U2 (z,2,9) dv. (119)
0
Normal stress function
Deterministic normal stress
The normal stress function is formulated using Egs. (32) and (60) as:
he1 D1 exp (—k:m:) + he2 D2 exp (—kzl’) +
Oz (T,2,t) = | hesDsexp (—ksz) + heaDsexp (—kax)+ | exp (w t + Ibz2) (120)
h65D5 exp (—k’532) — Q’MICGDG exp (—k‘el‘)
Stochastic normal stress
Merging the three Eqgs. (84), (85) and (120) and implementing the property of the white noise we get:
E0zz(x,2,t)] = 0za(z, 2, t) (121)

Where it shows that, the mean of the sample paths F [0,4(x, z,t)] matches the normal stress function in

deterministic form.
Reformulating Eq. (120), we get:

Oz (T, 2,t) = Q(z, 2,t) + S(z, 2, t) To-

substituting from Eq. (84) to the previous equation we get*!:

Owa(Ty2,t) = Qz, 2,8) + Sz, 2, ) [T + @0o(t)] -

Utilizing some algebraic steps to the last equation, we then have:
t
Owa(,z,t) = o' (2, 2, 1) +/ S(z, z,t — u)p(u)du
0

Making the same steps used in section “The stochastic function’, we find:

¢
Var [0zz(z, 2,t)] = /SQ($72,19)d’l9.
0

(122)

(123)

(124)

(125)
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The equilibrated stress corresponds to vl
The deterministic equilibrated stress corresponds to vl
From Eq. (32) and (67), the deterministic of the equilibrated stress corresponds to v is:
hglMl exp (—klcc) —+ h92M2 exp (—k‘QIE) —+
oi (x,2,t) = | hosaMsexp (—ksx) + hoaMsexp (—ksx) + | exp (wt + Ibz) (126)
h95M5 exp (—ksl‘)

The stochastic equilibrated stress corresponds to vl
Merging the Eqs. (84) and (85), the result below is get:

Eloi(z, z,t)] = oi(z, 2, t) (127)

Which mean that, the mean of the sample paths E [0;(z, 2, t)], matches its deterministic solution.
Reformulating Eq. (126), as:

oi(x, z,t) = O(z, 2z, t) + O(z, 2, t) To. (128)
Using Egs. (84) and (128), the equation before is expressed as*!=44:
oi(z,2,t) = O(x, 2,t) + U(x, 2,t) [0 + ¢o(t)] (129)

Or it may be rewritten as by using some substitutions as in section “The stochastic function”

-t
oi(z,z,t) = o} (z,2,t) + / U(z, z,t — u)p(u)du (130)
0

Finally, the variance for the equilibrated stress field is:

Var[alxzt)Z/Uszﬂ )dd. (131)
0

From a computational standpoint, the convolution-based variance expressions provide a highly efficient
alternative to stochastic sampling. Because the governing equations are linear in the stochastic perturbations,
the variance can be obtained analytically by convolving the deterministic Green’s function with the noise
autocorrelation kernel, avoiding repeated random realizations. In our implementation, the variance post-
processing consumed less than 10 % of the deterministic computation time. The analytical structure of the
variance formulation also lends itself naturally to Polynomial Chaos or surrogate-based representations, where
the convolution kernel can be projected onto low-order orthogonal polynomials to enable rapid uncertainty
quantification in multi-parameter studies.

Numerical results and discussion

The numerical evaluations were carried out using the material constants of n-type silicon, which is widely
employed in semiconductor and MEMS applications. Table 1 summarizes the relevant physical parameters
adopted in this study, including thermal, mechanical, and electronic properties®®?°. These constants were

Figure type ‘What you describe Physical explanation to add

Heat diffuses and dissipates through the porous
matrix; higher porosity increases resistance to
Temperature vs. distance/time “Temperature decreases with distance/time.” | heat flow and reduces thermal wave speed.
Dual-phase-lag introduces delay, smoothing
temperature gradients

Pores reduce load-carrying capacity, leading to
softer response and greater damping. Phase-lag
delays energy transfer, moderating

peak stresses

Stress/displacement profiles “Stress peaks decrease with porosity.”

Enhanced coupling allows faster equilibration
Two-temperature coupling (y\gammay) “Larger y reduces overheating” between electron and lattice subsystems—less
thermal mismatch, lower stress concentration

Boundary is directly exposed to stochastic
Variance profiles “Variance highest near surface” excitation; as waves travel inward, mechanical
and thermal relaxation dissipate random energy

Memory effects (phase-lags) account for
finite-speed thermal propagation, avoiding
unphysical infinite wave speeds of
classical Fourier models

Comparison between models (CTE, LS, DPL) | “DPL smoother and lower amplitude.”

Table 1. The link between observed graphical behavior and its underlying physical interpretation.
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selected from standard semiconductor data sources and previous thermoelastic literature to ensure realistic
modeling of coupled photothermal effects. In the International System of Units (SI), and the MATHEMATICA
software is employed for plotting.

A=64x10"°N.M 2% 1=65x10"°N.-m 2 K =3.86 x 10°N.s" "K' a=2.5,
w=—-14005i az =4.14 x 107K, p=2330 Kgm ™ >,C* =695 JKg 'K *,
To = 800K,z = 0.5,6 = —1,7, = 0.0025,79 = 0.001s,P =4,p; =1 x 1072, po =2 x 1077,

T=5x10"°d, = -9 x 107°", D =25x10"% E, =1.11,t =0.2.

Following Khalili*, the double porous parameters are taken as,

a=13x10"°N,b; =0.12x 107°N,v = 1.1 x 107°N.m™ 2,4, = 0.16 x 10° N.m ™2, v2 = 0.219 x 10°N.m ™2,

d=0.1x%x10"Nm 2 b=09x 10"°N.m™2 K, = 0.1546 x 107 N.m ™2, K; = 0.1456 x 10”2 N.m 2.

In this section, we provide an in-depth numerical analysis of the thermoelastic and photothermal responses in
a semiconductor medium with double porosity under the influence of hydrostatic initial stress, dual-phase-lag
heat conduction, and two-temperature effects. The computations are carried out using dimensionless variables
derived from the governing equations and boundary conditions introduced earlier. We use the MATHEMATICA
to numerically solve the field equations and plot deterministic, stochastic, and variance profiles for key physical
quantities such as temperature, displacement, carrier density, and stress components. The semiconductor
material chosen is silicon, due to its industrial relevance and well-characterized physical parameters. The double
porosity parameters are taken from Khalili*, while thermoelastic and electronic parameters are adopted from
the literature cited in*"-%°.

Figure 1 displays the spatial distributions of deterministic temperature, normal stress, and displacement at
selected time values ¢ = 0.1,0.4,0.7 These deterministic profiles illustrate how the field responses evolve with
time. Initially, at small ttt, all responses are sharply peaked, reflecting strong localization of photothermal energy
near the excitation surface. As time increases, waveforms exhibit clear dispersion and decay, revealing the effects
of dual-phase-lag (DPL) and double porosity. The thermal field diffuses more gradually compared to the elastic
field due to the delayed response from both the heat flux and temperature gradient (74 and 77), as specified in the
DPL model. Importantly, the two-temperature formulation results in smoother thermal gradients than classical
single-temperature models. The distinction between lattice and electron temperatures allows for accurate
modeling of nonequilibrium transport mechanisms, especially under ultrafast laser excitation conditions. The
initial hydrostatic stress introduces a baseline stiffness that alters the phase velocity and amplitude attenuation of
all fields, particularly evident in the early-time snapshots.

In Fig. 2, we observe the stochastic sample path profiles of temperature, stress, and carrier density at a fixed
time ¢ — ().4. The randomness introduced into the boundary conditions and material parameters leads to diverse
realizations of the physical quantities. These sample paths, while centered around the deterministic profiles,
exhibit varying degrees of spread depending on the underlying field and its sensitivity to stochastic inputs. For
example, temperature fluctuations are more pronounced near the thermal boundary due to direct dependence
on thermal excitation, whereas stress fluctuations are more diffused, influenced by the integrated response of
both temperature and displacement through the constitutive relations. The behavior of carrier density also
demonstrates stochastic sensitivity, particularly in regions near the free surface, where boundary recombination
probabilities play a dominant role. The stochastic modeling approach provides a more realistic depiction of
physical behavior under practical conditions where exact initial or boundary data are rarely deterministic.

Figure 3 presents the variance of the physical fields with distance for the same time steps as in Fig. 1. The
variance plots quantify the degree of uncertainty or deviation from the mean behavior, i.e., the deterministic
solution. For temperature, the variance starts high at the surface and decays into the bulk, indicating that
boundary randomness has a localized effect. However, in the case of displacement and stress, the variance is
more uniformly distributed, signifying that mechanical fields are more globally influenced by random thermal
perturbations. The inclusion of variance analysis is critical in design scenarios requiring robust performance
under uncertainty, such as microelectronic or photothermal sensor systems, where peak temperature or stress
must be kept within safe operational limits despite environmental randomness.

An important observation across all figures is the behavior of the stochastic sample paths in comparison
with deterministic fields. The sample paths fluctuate around the deterministic solutions, validating that the
deterministic profile represents the expected value (mean) of the stochastic ensemble. The variance curves,
on the other hand, provide information on the reliability or stability of the system. High variance indicates
potential instability or sensitivity to input uncertainty. In practice, this means that even if the mean field is
within acceptable limits, the actual realization might exceed those limits due to variability. Thus, the inclusion of
stochastic modeling is not only a theoretical enhancement but also a practical necessity in real-world applications.

Another key insight is the spatial trend of the variance. For temperature, the variance is surface-dominated,
confirming that uncertainty is injected primarily through boundary excitation. For stress and displacement, the
variance becomes more significant in the interior, implying a cumulative effect of randomness through coupling
and wave propagation. This trend emphasizes the need to control both input variability and internal material
heterogeneity to ensure safe and predictable performance. In optoelectronic applications, this could translate
into tighter control over laser input stability and better material processing to minimize porosity fluctuations.
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Fig. 1. Deterministic distributions of temperature, displacement, and normal stress versus distance at time
instances t=0.1, 0.4, 0.7 under the dual-phase-lag and two-temperature model with double porosity. The solid
blue curves represent deterministic field responses showing dispersion and attenuation behavior.

The variance distributions in Fig. 3 quantify the mean-square fluctuations of temperature and stress
around their deterministic means, representing the uncertainty arising from random boundary excitation. The
magnitude of these variances lies within realistic physical limits for semiconductor materials, as the boundary
noise intensity corresponds to < 3 % of the applied photothermal load, consistent with experimental reports of
laser intensity fluctuations. Consequently, the stochastic responses remain within the linear regime, ensuring
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Fig. 2. Stochastic sample paths of temperature, carrier density, and stress at t=0.4, illustrating random

fluctuations due to boundary noise. Gray thin lines denote individual stochastic realizations, while the red
solid curve indicates the deterministic mean profile. The results demonstrate how stochastic perturbations
cluster around the deterministic solution.

bounded and physically meaningful results. Excessively large variance levels would imply a breakdown of linear
thermoelastic assumptions and could lead to nonphysical outcomes; however, the present results are far from
this threshold. The observed moderate variance (typically below 5 % of the mean amplitude) therefore reflects
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Fig. 3. Variance profiles of temperature, displacement, and stress versus distance for t=0.1, 0.4, 0.7 under the
same conditions as Figs. 1, 2. The solid green lines with shaded bands indicate the mean-square fluctuation
amplitude (variance), quantifying the uncertainty propagation in the stochastic thermoelastic fields.

credible stochastic sensitivity, highlighting regions of higher uncertainty without compromising physical realism
or model stability.

A preliminary sensitivity analysis was performed to identify the parameters that most strongly influence the
stochastic variance of the thermoelastic fields. The results indicate that the boundary noise amplitude is the
dominant factor controlling the overall variance magnitude, as the stochastic excitation enters directly through
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the surface boundary. The double-porosity coefficients also exert a significant influence by modifying the
internal coupling between pore pressures and elastic stresses, thereby amplifying or damping the propagation of
boundary fluctuations. In addition, the dual phase-lag parameters and the two-temperature coupling factor
affect the temporal spread of the variance, with larger lag values producing slower but more stable responses.
These findings demonstrate that the model is robust to moderate parameter variations and provide practical
guidance for experimental calibration, where controlling porosity and boundary-excitation stability is crucial
for minimizing uncertainty in MEMS and semiconductor applications.

Guidelines for explaining physical trends across all figures

To strengthen the physical interpretation of the numerical results, Table 1 summarizes the main physical
mechanisms responsible for the observed trends in the graphical results. For each figure type, the qualitative
behavior is linked to its underlying thermoelastic or stochastic process, providing a clear connection between
model parameters and their physical effects.

Conclusion

The motivation of this study stems from the growing need to understand and control stochastic thermoelastic
behavior in semiconductor and MEMS devices subjected to random laser or thermal excitations. Traditional
deterministic models cannot capture how such randomness affects field coupling, reliability, and thermal
stability. The present stochastic DPL-two-temperature double-porosity framework directly addresses this
limitation by integrating physical noise sources with memory and microstructural effects. This approach bridges
theoretical modeling with practical design needs, providing a foundation for predicting performance variability
in advanced micro- and nano-scale systems.

The present study develops a comprehensive analytical and stochastic framework for investigating the
thermoelastic behavior of double-porosity semiconductor media under photothermal excitation and initial
stress, governed by the dual-phase-lag (DPL) and two-temperature (TT) theories. The model captures the non-
equilibrium energy exchange between lattice and electron temperatures and the influence of micro-macro
porosity coupling on wave propagation and attenuation. Closed-form solutions obtained via harmonic wave
analysis and normal-mode techniques reveal that the DPL-TT formulation produces smoother and more stable
field distributions than classical Fourier-based models.

The stochastic extension, introduced through Wiener process-based boundary noise, quantifies the variance
and reliability of thermal and mechanical responses, demonstrating that thermal uncertainties dominate near
the excitation surface, while mechanical variances propagate more uniformly. The variance magnitudes were
verified to remain within experimentally realistic limits, confirming that the stochastic responses represent
physically meaningful fluctuations rather than numerical instabilities. These results confirm that deterministic
predictions remain accurate on average but must be supplemented by stochastic analysis for reliable MEMS and
optoelectronic device design.

The proposed DPL-TT double-porosity stochastic model offers a unified, computationally efficient,
and physically consistent approach for predicting temperature, stress, and carrier-density fluctuations in
semiconductors. It provides a robust foundation for extending future research to fractional-order effects,
anisotropic porosity, and correlated stochastic environments, paving the way toward predictive and uncertainty-
aware modeling of advanced microelectronic systems.

Limitations and future directions

The present stochastic thermoelastic model provides an analytically tractable framework for studying
photothermal wave propagation in double-porosity semiconductors under the dual-phase-lag and two-
temperature theories. However, several simplifying assumptions were made to maintain closed-form solvability.
The model presently neglects magnetic, piezoelectric, and rotational effects, and assumes isotropic and spatially
uniform porosity coeflicients. In practical materials, porosity may vary directionally or radially, introducing
anisotropic stiffness and transport characteristics. Extending the formulation to include anisotropic or graded
porosity would enable a more realistic description of advanced porous semiconductors and composite wafers.

Another promising extension involves replacing classical time derivatives with fractional-order derivatives,
which would incorporate nonlocal memory effects and capture the anomalous heat and stress diffusion observed
in micro- and nano-scale systems. Similarly, introducing magneto-thermoelastic coupling would broaden the
applicability of the model to optoelectronic and magneto-sensitive semiconductor devices.

Beyond these physical generalizations, future work will also focus on numerical implementations and
surrogate modeling—including polynomial chaos and reduced-order approaches—to facilitate large-scale
uncertainty quantification and design optimization for MEMS and photothermal systems. These developments
will enhance the predictive power of the stochastic DPL-two-temperature framework and extend its utility to
practical engineering and materials design applications.

Data availability
The Current submission does not contain the pool data of the manuscript, but the data used in the manuscript
will be provided on request from corresponding author ( **E.S.Elidy** ).
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