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This work presents a comprehensive stochastic thermoelastic model for analyzing photothermal 
wave propagation in double-porosity semiconductors subjected to initial stress within the 
framework of the dual-phase-lag (DPL) and two-temperature (TT) theories. Stochastic perturbations 
are introduced through Wiener process-based boundary noise, allowing the evaluation of both 
deterministic responses and their variance profiles using a convolution-based analytical formulation. 
The governing equations are solved in the Laplace–Fourier domain and inverted numerically to 
obtain the temperature, displacement, and stress fields. Representative results show that increasing 
porosity coefficients enhances wave attenuation and modifies coupling between mechanical and 
thermal responses, while higher phase-lag parameters delay temperature and stress propagation. 
The two-temperature coupling parameter significantly influences the magnitude and spread of 
thermal variance, demonstrating the sensitivity of stochastic wave behavior to microstructural and 
thermal relaxation effects. The variance amplitudes are shown to remain within realistic physical 
bounds for semiconductor materials, confirming the model’s stability and practical relevance. These 
findings provide new insights into stochastic uncertainty propagation in semiconductors and guide 
experimental calibration and design optimization of MEMS and photo-thermoelastic devices operating 
under random thermal excitation.
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List of symbols
λ, µ	� Lame’ parameters
u, w	� Displacement components
δij 	� Kronecker delta
ρ	� Mass density
Ce	� Specific heat at constant strain
σij 	� The stress tensor
υ1	� The volume fraction field corresponding to pores and
υ2	� The volume fraction field corresponding to fissures
Φ, Ψ	� The volume fraction fields corresponding to v1 and v2 respectively
K∗	� The volume coefficient of thermal expansion
K 	� Thermal conductivity
k1,k2	� The coefficients of equilibrated inertia
T0	� Reference Temperature
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τ0	� Relaxation time
b, d, b1, γ, γ1,γ2	� Constitutive coefficients
σi	� The equilibrated stress corresponds to υ1
τi	� The equilibrated stress corresponds to υ2
T 	� The temperature change is measured from the absolute temperature T0

The field of photo-thermoelasticity continues to evolve rapidly due to its foundational role in numerous high-
technology applications, particularly those involving semiconducting materials where optoelectronic, thermal, 
and mechanical interactions converge. In this study, we investigate the stochastic thermoelastic behavior of 
double-porosity semiconductors subjected to photothermal excitation, incorporating dual-phase-lag (DPL) heat 
conduction and the two-temperature theory to rigorously address non-Fourier thermal transport and non-
equilibrium energy exchange between electrons and lattice vibrations. Initial stress fields, often resulting from 
manufacturing processes such as cold working, thermal gradients, and residual loading conditions, significantly 
influence wave propagation dynamics in solids, especially in semiconductors, where precise control of thermal 
behavior is critical1. The historical development of generalized thermoelasticity began with the pioneering works 
of Biot1, followed by the Lord–Shulman (LS) model2, which introduced a single thermal relaxation time, and 
Green–Lindsay (GL) theory3, which accounted for two distinct thermal relaxation parameters. Both models 
attempted to rectify the unrealistic infinite speed of heat conduction inherent in Fourier’s law, an issue that was 
also critically reviewed by Chandrasekharaiah4–6, who explored second sound and hyperbolic thermoelastic 
models. Tzou5,7 contributed significantly by introducing the DPL theory, which incorporates two distinct phase 
lags, one for heat flux and another for temperature gradient, thereby allowing accurate modeling of micro- and 
nanoscale heat transfer phenomena and capturing the temporal delay in heat conduction observed experimentally. 
In photothermal interactions, a high-energy laser beam incident on the surface of a semiconductor can excite 
both thermal and mechanical waves, producing a complex response involving electron excitation, charge carrier 
diffusion, and thermoelastic deformation8–14. These interactions are strongly influenced by the microscopic 
structure of the material, including features such as double porosity, which comprises interconnected macro- 
and micro-pores that modify stress localization and energy dissipation mechanisms15–17. The two-temperature 
theory, as developed by Chen, Gurtin, and others18–20, and extended by Quintanilla and Youssef21–24, distinguishes 
between thermodynamic temperature and conductive temperature, enabling the description of energy 
nonequilibrium between electrons and phonons, particularly relevant under ultrafast thermal loading such as 
that caused by pulsed lasers. Lotfy and his collaborators have made notable contributions to the development of 
generalized two-temperature theories under various configurations, including magnetic, rotational, and 
fractional derivative frameworks25,26. The inclusion of double porosity, as studied by Tsagareli15, Mahato and 
Biswas16, and Emin et al.17, captures the mechanical and thermal complexity of materials with hierarchical pore 
networks, such as advanced ceramics and porous silicon wafers, whose performance under thermal stress can 
only be understood by resolving the interplay between macrostructural and microstructural energy pathways. 
These double-porous materials exhibit unique characteristics, including wave dispersion and attenuation 
profiles, that differ markedly from homogeneous counterparts, necessitating refined theoretical frameworks for 
their analysis. The stochastic modeling approach adopted in this work goes beyond traditional deterministic 
solutions by considering boundary randomness and internal material fluctuations via white noise or Wiener 
process-based perturbations, thus offering a probabilistic perspective on system behavior27–29. This is particularly 
significant for real-world applications where precise initial conditions are difficult to achieve and where 
environmental disturbances or process variability may substantially affect performance. The present model 
adopts harmonic wave analysis and the normal mode technique to obtain analytical expressions for physical 
fields such as displacement, temperature, stress, and carrier density, and extends these expressions to their 
stochastic counterparts, including mean and variance computations. The deterministic solutions serve as the 
mean behavior around which stochastic sample paths fluctuate, with variance capturing the intensity of 
fluctuations and hence the reliability of the physical response. The photothermal energy absorption, governed by 
the DPL-TT framework, leads to localized heating that propagates as coupled thermal and elastic waves, 
influenced by both the phase lags and porosity distributions. As observed in prior works by Lotfy et al.25,26,30–33 
and others, the dual-porosity effect introduces additional degrees of coupling, as the interaction between pore-
scale pressure waves and bulk elastic waves leads to significant modifications in thermal diffusion and mechanical 
energy transport. The mathematical model used in this work is cast in two dimensions, allowing for realistic 
modeling of surface effects and anisotropic wave propagation, and includes both the conductive and 
thermodynamic temperatures through the two-temperature model, enabling a nonlocal and memory-based 
thermal response. The role of carrier density modulation, essential in semiconducting applications, is modeled 
through plasma equations coupled with the heat and stress fields, offering insights into how photogenerated 
carriers interact with thermal gradients and mechanical displacements. The boundary conditions consider 
realistic configurations, including thermally insulated, stress-free, and recombination-dominated boundaries, 
capturing the physical scenarios encountered in microelectronic device operation. Variance analysis reveals that 
thermal field fluctuations are primarily surface-concentrated due to boundary condition randomness, while 
mechanical field variances exhibit more distributed profiles, suggesting a cumulative effect of internal material 
heterogeneity and coupling mechanisms. These findings are crucial in the design of semiconductor devices such 
as MEMS and optoelectronic sensors, where failure modes are often governed not by mean behavior but by 
extreme fluctuations caused by material imperfections and external disturbances. By combining rigorous 
analytical derivation with stochastic modeling, this study extends the frontiers of thermoelastic modeling into 
more realistic, variance-aware domains, thus enabling the formulation of probabilistic design methodologies 
where safety factors are based on statistical field behavior rather than worst-case deterministic estimations. The 
double porosity, DPL-TT, and stochastic integration into a unified analytical framework not only enhances 
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theoretical understanding but also serves practical needs in the thermal design and reliability assessment of 
modern semiconductor systems. Furthermore, the application of convolution and expectation operators to 
compute stochastic field variances analytically allows this approach to be incorporated into simulation and 
control environments, such as real-time variance tracking in photothermal imaging systems or laser-driven 
fabrication processes. As noted in recent experimental and modeling efforts27–29,34,35, the ability to estimate not 
only the mean but also the spread of field quantities in porous semiconductors is a key enabler of robust control 
and fault tolerance in thermal systems. The advancement of stochastic thermoelastic modeling in semiconductor 
media has been significantly enriched by the contributions of Lotfy and his collaborators36–38, who have 
rigorously explored the influence of randomness on wave behavior under complex coupled physical phenomena. 
In their 2025 study, Lotfy et al. examined the stochastic propagation of magneto-photo-thermoelastic waves in 
semiconductor materials, emphasizing the effects of variable electrical conductivity on the wave characteristics. 
By incorporating random perturbations through a stochastic framework, the research captured the interplay 
between magnetic fields, thermal gradients, and photonic excitation, thereby revealing how fluctuations in 
electrical conductivity alter both wave attenuation and dispersion profiles, particularly under strong coupling 
conditions between thermal and electromagnetic fields. In another pioneering work, Lotfy et al. (2024) 
introduced a stochastic photoacoustic model driven by white noise, where they investigated how stochastic 
boundary conditions impact thermoelastic wave propagation in semiconductors. Using the Wiener process, 
they quantified the variance in physical responses such as displacement and temperature, thereby providing 
insights into how randomness affects system reliability, especially under laser-induced excitation.

Despite extensive studies on deterministic thermoelastic and two-temperature models, real semiconductor 
and MEMS systems often operate under random or fluctuating thermal environments, such as laser pulse 
variability, photothermal noise, and fabrication-induced microstructural defects. These stochastic effects can 
significantly influence wave propagation, temperature rise, and stress distribution, ultimately affecting device 
stability and performance. Existing deterministic formulations cannot adequately represent these uncertainties 
or predict variance-based reliability measures.

To address this gap, the present work develops a stochastic dual-phase-lag two-temperature model for 
double-porosity semiconductors with initial stress, enabling analytical evaluation of both mean fields and their 
stochastic variances. This formulation captures uncertainty propagation, microstructural coupling, and memory 
effects within a unified theoretical framework. The resulting insights are directly relevant for the design and 
optimization of MEMS, photo-thermoelastic devices, and semiconductor heat-management systems operating 
under real-world random disturbances.

Formulation of the problem and basic equations
Inspect a homogeneous thermoelastic half-space displaying a double porosity configuration in its undeformed 
condition at a uniform temperature. T0. All the functions under consideration will depend on (x, z, t). We will 
get the vector u⃗ as u⃗ = (u, 0, w). The governing equations for a homogeneous isotropic thermo-elastic solid 
with a double porosity configuration without body forces and heat sources are provided with a new model under 
the two-temperature theory and DPL model:

The equation of motion

	
ρ¨⃗u =

(
µ − p

2

)
∇2u⃗ +

(
λ + µ − p

2

)
∇e + b∇Φ + d∇Ψ − γ(1 + τθ

∂

∂t
)∇T − δn∇N.� (1)

Equations of heat conduction and coupled plasma5,21,27,34,39;

	
(1 + τθ

∂

∂t
)K∗∇2φ = (1 + τq

∂

∂t
)(ρ c∗Ṫ + γ1T0 Φ̇ + γ2T0 Ψ̇ + γ T0 ė) − Eg

τ
N,� (2)

	
DE∇2N − N

τ
+ κ T = ∂N

∂t
.� (3)

Equilibrated stress equations of motion

	 α∇2Φ + b1∇2Ψ − be − α1Φ − α3Ψ + γ1T = K1Φ̈,� (4)

	 b1∇2Φ + γ∇2Ψ − de − α3Φ − α2Ψ + γ2T = K2Ψ̈.� (5)

The stress equation with the DPL model and initial stress takes the form

	 σij = 2µeij + (λe + bΦ + dΨ − γT − δnN)δij − pωij .� (6)

Equations for double porosity;

	 σi = α Φ,i + b1 Ψ,i,� (7)

	 τi = b1 Φ,i + γ Ψ,i.� (8)

In this model, the parameters Φ and Ψ​ denote the volume fraction coefficients of the two pore networks 
characterizing the double-porosity medium. Specifically, Φ​ corresponds to the matrix or micro-pore system 
(matrix or solid skeleton), while Ψ represents the macro-pore or fissure system (fissure or crack). These 
parameters are assumed constant throughout the medium, reflecting an idealized homogeneous double-
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porosity structure. Physically, larger values of Φ​ and Ψ​ indicate higher porosity or connectivity within the 
corresponding pore networks, resulting in increased mechanical compliance and enhanced fluid-solid 
interaction. Consequently, the double-porosity coefficients strongly influence wave dispersion, attenuation, 
and thermoelastic coupling, where higher porosity levels yield slower, more attenuated thermal and elastic 
waves due to increased internal energy exchange between the two pore systems. This behavior aligns with the 
findings of Tsagareli15 and Mahato and Biswas16, confirming that the double-porosity mechanism acts as a 
microstructural damping effect within the semiconductor medium.

The relationship between the temperature of heat conduction  φ  and the thermodynamical temperature T  
with the two-temperature theory can be expressed in the following manner:

	 T − φ = −a∇2φ,� (9)

where a (a > 0 ) is called the parameter of the two-temperature.
According to the values of relaxation times τθ  (phase-lag of temperature gradient) and  τq  (the phase-lag 

of heat flux), three models can be obtained. When 0 ≤ τθ < τq  the DPL model is observed when τθ = 0, the 
heat conduction equation is reduced to the LS theory (recovers the LS hyperbolic heat conduction form and 
the corresponding LS thermoelastic equations). The Classical thermoelasticity (CTE/Fourier) is obtained when 
τθ = τq = 0, a = 0, under these limits, the DPL heat law reduces to Fourier’s law and the two-temperature 
distinction vanishes. The heat equation reverts to the classical diffusion equation, and the thermoelastic system 
reduces to the standard coupled thermoelastic equations.

To validate the deterministic limit of our formulation, we verified that the present DPL–two-temperature 
equations recover the classical and commonly used generalized thermoelastic models under the appropriate 
parameter limits. Specifically, setting the DPL phase lags and the two-temperature coupling to zero recovers 
classical (Fourier) thermoelasticity; retaining only the heat-flux relaxation reproduces the Lord–Shulman form; 
and selecting relaxation parameters to match Green–Lindsay characteristic times reproduces GL-type behavior. 
Numerical comparisons (dispersion relations and field profiles) are provided in section “The temperature 
function”  and show excellent agreement with the reference models.

Equations (1–9) in 2D (two-dimensions) form as follows:

	 (λ + 2µ − p)∂2u

∂x2 + (λ + µ − p

2) ∂2w

∂x∂z
+ (µ − p

2)∂2u

∂z2 + b
∂Φ
∂x

+ d
∂Ψ
∂x

− γ(1 + τθ
∂

∂t
)∂T

∂x
− δn

∂N

∂x
= ρ

∂2u

∂t2 ,� (10)

	 (λ + 2µ − p)∂2w

∂z2 + (λ + µ − p

2) ∂2u

∂x∂z
+ (µ − p

2)∂2w

∂x2 + b
∂Φ
∂z

+ d
∂Ψ
∂z

− γ(1 + τθ
∂

∂t
)∂T

∂z
− δn

∂N

∂z
= ρ

∂2w

∂t2 ,� (11)

	
K∗(1 + τθ

∂

∂t
)∇2φ = (1 + τθ

∂

∂t
)(ρc∗ ∂T

∂t
+ γ1T0

∂Φ
∂t

+ γ2T0
∂Ψ
∂t

+ γ T0
∂e

∂t
) − Eg

τ
N,� (12)

	
DE∇2N − N

τ
+ κ T = ∂N

∂t
,� (13)

	
α∇2Φ + b1∇2Ψ − b e − α1Φ − α3Ψ + γ1T = K1

∂2Φ
∂t2 ,� (14)

	
b1∇2Φ + γ∇2Ψ − de − α3Φ − α2Ψ + γ2T = K2

∂2Ψ
∂t2 ,� (15)

	 T − φ = −a∇2φ,� (16)

	
σxx = (2µ + λ)∂u

∂x
+ λ

∂w

∂z
+ bΦ + dΨ − γ(1 + τθ

∂

∂t
)T − δnN) − p,� (17)

	
σzz = (2µ + λ)∂w

∂z
+ λ

∂u

∂x
+ bΦ + dΨ − γ(1 + τθ

∂

∂t
)T − δnN) − p,� (18)

	
σxz = (s1

∂u

∂z
+ s2

∂w

∂x
),� (19)

where ∇2 = ∂2

∂x2 + ∂2

∂z2 , e = ∂u
∂x

+ ∂w
∂z

, s1 = µ + p
2 , s2 = µ − p

2 .
Assuming the scalar potential functions Π(x, z, t) and ψ(x, z, t) defined by the relations in the non-

dimensional form: u = ∂Π
∂x

+ ∂ ψ
∂ z

, w = ∂Π
∂z − ∂ ψ

∂ x .
For simplicity, we introduce dimensionless variables.

	

(x′, z′, u′, w′) = ω1

c1
(x, z, u, w), {σ′

1, τ ′
1} = c1

αω1
{σ1, τ1}, (t′, τ ′

q,τ ′
θ) = ω1(t, τq,τθ),σ′

ij = ( 1
µ

)σij,

[Π′, Ψ′] = ΠΨ
(CT t∗)2 , [Φ′, Ψ′] = K1ω2

1

α1
[Φ, Ψ],c2

1 =
λ+2µ − p

2
ρ

, c2
2 =

µ − p
2

ρ
, β = c2

1

c2
2

γ = (3λ + 2µ)αt, γ = (3λ + 2µ)αt,
(
N ′, (T ′, φ′)

)
= (δnN, γ(T, φ)

λ + 2µ
).

Using the above dimensionless quantities, Eqs. (10–19) become:
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(
∇2 − ∂2

∂t2

)
Π + a1Φ + a2Ψ − T −N = 0,� (20)

	
(1 + τθ

∂

∂t
)∇2φ − (1 + τq

∂

∂t
)
(

∂T

∂t
+ a3

∂Φ
∂t

+ a4
∂Ψ
∂t

+ ε1
∂

∂t
∇2Π

)
+ ε2N = 0,� (21)

	
(∇2 − a5 − a6

∂

∂t
)N + ε3 T = 0,� (22)

	

(
a7∇2 − a8 − ∂2

∂t2

)
Φ +

(
a9∇2 − a10

)
Ψ − a11∇2Π + a12T = 0,� (23)

	

(
a13∇2 − a14

)
Φ +

(
a15∇2 − a16 − ∂2

∂t2

)
Ψ − a17 ∇2Π + a18T = 0,� (24)

	

(
∇2 − β

∂2

∂t2

)
ψ = 0,� (25)

	 T − φ = −β1∇2φ,� (26)

	
σxx = a19

∂2Π
∂x2 + a22

∂2Π
∂z2 + 2 ∂2ψ

∂x∂z
− a19((1 + τθ

∂

∂t
)T + N) + a20Φ + a21 Ψ − p,� (27)

	
σzz = a19

∂2Π
∂z2 + a22

∂2Π
∂x2 − 2 ∂2ψ

∂x∂z
− a19((1 + τθ

∂

∂t
)T + N) + a20Φ + a21 Ψ − p,� (28)

	
σxz = s1

µ

∂2ψ

∂z2 + 2 ∂2Π
∂x∂z

− s2

µ

∂2ψ

∂x2 .� (29)

Dimensionless variables for the components of σi,τi

	 σ1 = η1Φ,x + η2Ψ,x,� (30)

	 τ1 = η2Φ,x + η3Ψ,x.� (31)

Where

	
a1 = bα1

ρc2
1K1ω2

1
, a2 = dα1

ρc2
1K1ω2

1
, a3 = γ γ1T0α1

ρK1K∗ω3
1

, a4 = γ γ2T0α1

ρK1K∗ω3
1

, a5 = K∗t∗

DEρτc∗ ,

	
a6 = K∗

DEρc∗ , a7 = α

c2
1K1

, a8 = α1

K1w2
1

, a9 = b1

c2
1K1

, a10 = α3

K1ω2
1

,

	
a11 = b

α1
, a12 = γ1T0

α1
, a13 = b1

c2
1K2

, a14 = α3

ω2
1K2

, a15 = γ

c2
1K2

,

	
a16 = α2

ω2
1K2

, a17 = dK1

α1K2
, a18 = γ2T0K1

α1K2
, a19 = λ + 2µ

µ
, a20 = bα1

K1ω2
1µ0

,

	
a21 = dα1

K1ω2
1µ

, a22 = λ

µ
, β1 = aω2

1

c2
1

, η1 = α1

k1ω2
1

, η2 = b1α1

αk1ω2
1

,

	
η3 = γα1

αk1ω2
1

, ε1 = γ2T0

K∗ρω1
, ε2 = αT Eg

dnρτc∗ω1
, ε3 = dnK∗κ

αT ρc∗DEω1
.

Where, the parameters ε1, ε2 and ε3 can be called the thermoelastic, the thermo-energy, and the thermoelectric 
coupling parameters respectively.

Harmonic wave analysis
The solution of the physical functions, when harmonic wave propagates in the xz-plane can be expressed as:

	 Ω(x, z, t) = Ω∗(x) exp(ωt + iℓz),� (32)

Where ω is the angular frequency or complex time constant, i is the imaginary value, ℓ  is a wave number in the 
direction of z-axis, and Ω∗(x)  is the amplitude of given function. By using the normal mode defined in the Eqs. 
(32),  (20–31), we arrive at a system of five non-homogeneous equations:

	
(
D2 − g1

)
Π∗ + a1Φ∗ + a2Ψ∗ − T ∗−N∗ = 0,� (33)

	 β2
(
D2 − ℓ2)

φ∗ − g3T ∗ + g4Φ∗ + g5Ψ∗ + g6
(
D2 − ℓ2)

Π∗ + ε2N∗ = 0,� (34)
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	 (D2 − g7)N∗ + ε3 T ∗ = 0,� (35)

	
(
a7D2 − g8

)
Φ∗ +

(
a9D2 − g9

)
Ψ∗ −

(
a11D2 − g10

)
Π∗ + a12T ∗ = 0,� (36)

	
(
a13D2 − g11

)
Φ∗ +

(
a15D2 − g12

)
Ψ∗ −

(
a17D2 − g13

)
Π∗ + a18T ∗ = 0,� (37)

	
(
D2 − g14

)
ψ∗ = 0,� (38)

	 T ∗ +
(
β1D2 − β3

)
φ∗ = 0 ,� (39)

	 σ∗
xx =

(
a19D2 − a22ℓ2 )

Π∗ + 2iℓDψ∗ − (g15T ∗ + a19N∗) + a20Φ∗ + a21 Ψ∗ − p∗,� (40)

	 σzz =
(
a22 D2 − a19ℓ2)

Π∗ − 2iℓDψ∗ − ( g15T ∗ + a19N∗) + a20Φ∗ + a21 Ψ∗ − p∗,� (41)

	 σ∗
xz = −

(
g16D2 + g17ℓ2)

ψ∗ + 2iℓDΠ∗,� (42)

	 σ∗
1 = η1DΦ∗ + η2DΨ∗,� (43)

	 τ∗
1 = η2DΦ∗ + η3DΨ∗.� (44)

Where, D = ∂
∂x

, β2 = (1 + τθω), g1 = ℓ2 + ω2, g2 = (1 + τqω)ω, g3 = g2, g4 = −a3g2, g5 = −a4g2, 

	

g6 = −ε1g2, g7 = ℓ2 + a5 + a6ω, g8 = a7ℓ2 + a8 + ω2, g9 = a9ℓ2 + a10, g10 = a11ℓ2, g11 = a13ℓ2 + a14,

g12 = a15ℓ2 + a16 + ω2, g13 = a17ℓ2, g14 = ℓ2 + βω2, g15 = a19β2, g16 = s1

µ
, g17 = s2

µ
, β3 = β1ℓ2 + 1.

Eliminating T ∗, N∗, Φ∗, Ψ∗ and Π∗ between Eqs. (30–34) yields:

	 (D10 − M1D8 + M2D6 − M3D4 + M4D2 − M5)
{

T ∗, φ∗, N∗, Φ∗, Ψ∗, Π∗, σ∗
ij , σ∗

1 , τ∗
1
}

(x) = 0.� (45)

Where, M1 = −∆2
∆1

, M2 = ∆3
∆1

, M3 = −∆4
∆1

, M4 = ∆5
∆1

, M5 = −∆6
∆1

.

	 ∆1 = −a9a13g3β1 + a7a15g3β1 + a9a13g6β1 − a7a15g6β1 − a9a13β3 + a7a15β3,� (46)

	

∆2 =





−a2a11a13g3β1 + a1a11a15g3β1 + a2a7a17g3β1 − a1a9a17g3β1 + a9a13g1g3β1 − a7a15g1g3β1

−a11a15g4β1 + a12a15g4β1 + a9a17g4β1 − a9a18g4β1 + a11a13g5β1 − a12a13g5β1 − a7a17g5β1

+a7a18g5β1 − l2a9a13g6β1 + a2a12a13g6β1 + l2a7a15g6β1 − a1a12a15g6β1 − a2a7a18g6β1+
a1a9a18g6β1 + a9a13g3g7β1 − a7a15g3g7β1 − a9a13g6g7β1 + a7a15g6g7β1 − a15g3g8β1+
a15g6g8β1 + a13g3g9β1 − a13g6g9β1 + a9g3g11β1 − a9g6g11β1 − a7g3g12β1 + a7g6g12β1+
l2a9a13β3 − a2a11a13β3 − l2a7a15β3 + a1a11a15β3 + a2a7a17β3 − a1a9a17β3 + a9a13g1β3−
a7a15g1β3 + a9a13g3β3 − a7a15g3β3 − a9a13g6β3 + a7a15g6β3 + a9a13g7β3 − a7a15g7β3−
a15g8β3 + a13g9β3 + a9g11β3 − a7g12β3 − a9a13g6β1ε3 + a7a15g6β1ε3 − a9a13β1ε2ε3 + a7a15β1ε2ε3



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∆3 =




a2a12a17g4β1 − a2a11a18g4β1 − a12a15g1g4β1 + a9a18g1g4β1 − a1a12a17g5β1 + a1a11a18g5β1+
a12a13g1g5β1 − a7a18g1g5β1 − l2a2a12a13g6β1 + l2a1a12a15g6β1 + l2a2a7a18g6β1 − l2a1a9a18g6β1+
a2a11a13g3g7β1 − a1a11a15g3g7β1 − a2a7a17g3g7β1 + a1a9a17g3g7β1 − a9a13g1g3g7β1 + a7a15g1g3g7β1+
a11a15g4g7β1 − a12a15g4g7β1 − a9a17g4g7β1 + a9a18g4g7β1 − a11a13g5g7β1 + a12a13g5g7β1 + a7a17g5g7β1−
a7a18g5g7β1 + l2a9a13g6g7β1 − a2a12a13g6g7β1 − l2a7a15g6g7β1 + a1a12a15g6g7β1 + a2a7a18g6g7β1−
a1a9a18g6g7β1 − a2a17g3g8β1 + a15g1g3g8β1 + a17g5g8β1 − a18g5g8β1 − l2a15g6g8β1 + a2a18g6g8β1+
a15g3g7g8β1 − a15g6g7g8β1 + a1a17g3g9β1 − a13g1g3g9β1 − a17g4g9β1 + a18g4g9β1 + l2a13g6g9β1−
a1a18g6g9β1 − a13g3g7g9β1 + a13g6g7g9β1 + a2a13g3g10β1 − a1a15g3g10β1 + a15g4g10β1 − a13g5g10β1+
a2a11g3g11β1 − a9g1g3g11β1 − a11g5g11β1 + a12g5g11β1 + l2a9g6g11β1 − a2a12g6g11β1 − a9g3g7g11β1+
a9g6g7g11β1 − g3g9g11β1 + g6g9g11β1 − a1a11g3g12β1 + a7g1g3g12β1 + a11g4g12β1 − a12g4g12β1−
l2a7g6g12β1 + a1a12g6g12β1 + a7g3g7g12β1 − a7g6g7g12β1 + g3g8g12β1 − g6g8g12β1 − a2a7g3g13β1+
a1a9g3g13β1 − a9g4g13β1 + a7g5g13β1 + l2a2a11a13β3 − l2a1a11a15β3 − l2a2a7a17β3 + l2a1a9a17β3−
l2a9a13g1β3 + l2a7a15g1β3 + a2a11a13g3β3 − a1a11a15g3β3 − a2a7a17g3β3 + a1a9a17g3β3 − a9a13g1g3β3+
a7a15g1g3β3 + a11a15g4β3 − a12a15g4β3 − a9a17g4β3 + a9a18g4β3 − a11a13g5β3 + a12a13g5β3 + a7a17g5β3−
a7a18g5β3 + l2a9a13g6β3 − a2a12a13g6β3 − l2a7a15g6β3 + a1a12a15g6β3 + a2a7a18g6β3 − a1a9a18g6β3−
l2a9a13g7β3 + a2a11a13g7β3 + l2a7a15g7β3 − a1a11a15g7β3 − a2a7a17g7β3 + a1a9a17g7β3 − a9a13g1g7β3+
a7a15g1g7β3 − a9a13g3g7β3 + a7a15g3g7β3 + a9a13g6g7β3 − a7a15g6g7β3 + l2a15g8β3 − a2a17g8β3+
a15g1g8β3 + a15g3g8β3 − a15g6g8β3 + a15g7g8β3 − l2a13g9β3 + a1a17g9β3 − a13g1g9β3 − a13g3g9β3+
a13g6g9β3 − a13g7g9β3 + a2a13g10β3 − a1a15g10β3 − l2a9g11β3 + a2a11g11β3 − a9g1g11β3 − a9g3g11β3+
a9g6g11β3 − a9g7g11β3 − g9g11β3 + l2a7g12β3 − a1a11g12β3 + a7g1g12β3 + a7g3g12β3 − a7g6g12β3+
a7g7g12β3 + g8g12β3 − a2a7g13β3 + a1a9g13β3 + a11a15g4β1ε3 − a9a17g4β1ε3 − a11a13g5β1ε3 + a7a17g5β1ε3

+l2a9a13g6β1ε3 − l2a7a15g6β1ε3 − a15g6g8β1ε3 + a13g6g9β1ε3 + a9g6g11β1ε3 − a7g6g12β1ε3+
a9a13g6β3ε3 − a7a15g6β3ε3 − a2a11a13β1ε2ε3 + a1a11a15β1ε2ε3 + a2a7a17β1ε2ε3 − a1a9a17β1ε2ε3+
a9a13g1β1ε2ε3 − a7a15g1β1ε2ε3 − a15g8β1ε2ε3 + a13g9β1ε2ε3 + a9g11β1ε2ε3 − a7g12β1ε2ε3 + a9a13β3ε2ε3−
a7a15β3ε2ε3


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∆4 =





−a2a12a17g4g7β1 + a2a11a18g4g7β1 + a12a15g1g4g7β1 − a9a18g1g4g7β1 + a1a12a17g5g7β1 − a1a11a18g5g7β1

−a12a13g1g5g7β1 + a7a18g1g5g7β1 + l2a2a12a13g6g7β1 − l2a1a12a15g6g7β1 − l2a2a7a18g6g7β1+
l2a1a9a18g6g7β1 + a18g1g5g8β1 − l2a2a18g6g8β1 + a2a17g3g7g8β1 − a15g1g3g7g8β1 − a17g5g7g8β1+
a18g5g7g8β1 + l2a15g6g7g8β1 − a2a18g6g7g8β1 − a18g1g4g9β1 + l2a1a18g6g9β1 − a1a17g3g7g9β1+
a13g1g3g7g9β1 + a17g4g7g9β1 − a18g4g7g9β1 − l2a13g6g7g9β1 + a1a18g6g7g9β1 + a2a18g4g10β1

−a1a18g5g10β1 − a2a13g3g7g10β1 + a1a15g3g7g10β1 − a15g4g7g10β1 + a13g5g7g10β1 − a12g1g5g11β1+
l2a2a12g6g11β1 − a2a11g3g7g11β1 + a9g1g3g7g11β1 + a11g5g7g11β1 − a12g5g7g11β1 − l2a9g6g7g11β1+
a2a12g6g7g11β1 + g1g3g9g11β1 − l2g6g9g11β1 + g3g7g9g11β1 − g6g7g9g11β1 − a2g3g10g11β1+
g5g10g11β1 + a12g1g4g12β1 − l2a1a12g6g12β1 + a1a11g3g7g12β1 − a7g1g3g7g12β1 − a11g4g7g12β1+
a12g4g7g12β1 + l2a7g6g7g12β1 − a1a12g6g7g12β1 − g1g3g8g12β1 + l2g6g8g12β1 − g3g7g8g12β1+
g6g7g8g12β1 + a1g3g10g12β1 − g4g10g12β1 − a2a12g4g13β1 + a1a12g5g13β1 + a2a7g3g7g13β1−
a1a9g3g7g13β1 + a9g4g7g13β1 − a7g5g7g13β1 + a2g3g8g13β1 − g5g8g13β1 − a1g3g9g13β1+
g4g9g13β1 − a2a12a17g4β3 + a2a11a18g4β3 + a12a15g1g4β3 − a9a18g1g4β3 + a1a12a17g5β3−
a1a11a18g5β3 − a12a13g1g5β3 + a7a18g1g5β3 + l2a2a12a13g6β3 − l2a1a12a15g6β3 − l2a2a7a18g6β3+
l2a1a9a18g6β3 − l2a2a11a13g7β3 + l2a1a11a15g7β3 + l2a2a7a17g7β3 − l2a1a9a17g7β3 + l2a9a13g1g7β3

−l2a7a15g1g7β3 − a2a11a13g3g7β3 + a1a11a15g3g7β3 + a2a7a17g3g7β3 − a1a9a17g3g7β3 + a9a13g1g3g7β3−
a7a15g1g3g7β3 − a11a15g4g7β3 + a12a15g4g7β3 + a9a17g4g7β3 − a9a18g4g7β3 + a11a13g5g7β3−
a12a13g5g7β3 − a7a17g5g7β3 + a7a18g5g7β3 − l2a9a13g6g7β3 + a2a12a13g6g7β3 + l2a7a15g6g7β3

−a1a12a15g6g7β3 − a2a7a18g6g7β3 + a1a9a18g6g7β3 + l2a2a17g8β3 − l2a15g1g8β3 + a2a17g3g8β3−
a15g1g3g8β3 − a17g5g8β3 + a18g5g8β3 + l2a15g6g8β3 − a2a18g6g8β3 − l2a15g7g8β3 + a2a17g7g8β3

a15g3g7g8β3 + a15g6g7g8β3 − l2a1a17g9β3 + l2a13g1g9β3 − a1a17g3g9β3 + a13g1g3g9β3 + −a15g1g7g8β3−
a17g4g9β3 − a18g4g9β3 − l2a13g6g9β3 + a1a18g6g9β3 + l2a13g7g9β3 − a1a17g7g9β3 + a13g1g7g9β3−
a13g6g7g9β3 − l2a2a13g10β3 + l2a1a15g10β3 − a2a13g3g10β3 + a1a15g3g10β3 − a15g4g10β3 + a13g5g10β3−
a2a13g7g10β3 + a1a15g7g10β3 − l2a2a11g11β3 + l2a9g1g11β3 − a2a11g3g11β3 + a9g1g3g11β3 + a11g5g11β3−
a12g5g11β3 − l2a9g6g11β3 + a2a12g6g11β3 + l2a9g7g11β3 − a2a11g7g11β3 + a9g1g7g11β3 + a9g3g7g11β3

−a9g6g7g11β3 + l2g9g11β3 + g1g9g11β3 + g3g9g11β3 − g6g9g11β3 + g7g9g11β3 − a2g10g11β3 + l2a1a11g12β3−
l2a7g1g12β3 + a1a11g3g12β3 − a7g1g3g12β3 − a11g4g12β3 + a12g4g12β3 + l2a7g6g12β3 − a1a12g6g12β3

−l2a7g7g12β3 + a1a11g7g12β3 − a7g1g7g12β3 − a7g3g7g12β3 + a7g6g7g12β3 − l2g8g12β3 + a13g3g7g9β3

−g1g8g12β3 − g3g8g12β3 + g6g8g12β3 − g7g8g12β3 + a1g10g12β3 + l2a2a7g13β3 − l2a1a9g13β3 + a2a7g3g13β3

−a1a9g3g13β3 + a9g4g13β3 − a7g5g13β3 + a2a7g7g13β3 − a1a9g7g13β3 + a2g8g13β3 − a1g9g13β3 − a17g5g8β1ε3+
l2a15g6g8β1ε3 + a17g4g9β1ε3 − l2a13g6g9β1ε3 − a15g4g10β1ε3 + a13g5g10β1ε3 + a11g5g11β1ε3−
l2a9g6g11β1ε3 − g6g9g11β1ε3 − a11g4g12β1ε3 + l2a7g6g12β1 ⊖ ε3 + g6g8g12β1ε3 + a9g4g13β1ε3−
a7g5g13β1ε3 − a11a15g4β3ε3 + a9a17g4β3ε3 + a11a13g5β3ε3 − a7a17g5β3ε3 − l2a9a13g6β3ε3+
l2a7a15g6β3ε3 + a15g6g8β3ε3 − a13g6g9β3ε3 − a9g6g11β3ε3 + a7g6g12β3ε3 − a2a17g8β1ε2ε3+
a15g1g8β1ε2ε3 + a1a17g9β1ε2ε3 − a13g1g9β1ε2ε3 + a2a13g10β1ε2ε3 − a1a15g10β1ε2ε3 + a2a11g11β1ε2ε3

−a9g1g11β1ε2ε3 − g9g11β1ε2ε3 − a1a11g12β1ε2ε3 + a7g1g12β1ε2ε3 + g8g12β1ε2ε3 − a2a7g13β1ε2ε3+
a1a9g13β1ε2ε3 + a2a11a13β3ε2ε3 − a1a11a15β3ε2ε3 − a2a7a17β3ε2ε3 + a1a9a17β3ε2ε3 − a9a13g1β3ε2ε3

+a7a15g1β3ε2ε3 + a15g8β3ε2ε3 − a13g9β3ε2ε3 − a9g11β3ε2ε3 + a7g12β3ε2ε3
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

−a18g1g5g7g8β1 + l2a2a18g6g7g8β1 + a18g1g4g7g9β1 − l2a1a18g6g7g9β1 − a2a18g4g7g10β1

+a1a18g5g7g10β1 + a12g1g5g7g11β1 − l2a2a12g6g7g11β1 − g1g3g7g9g11β1 + l2g6g7g9g11β1+
a2g3g7g10g11β1 − g5g7g10g11β1 − a12g1g4g7g12β1 + l2a1a12g6g7g12β1 + g1g3g7g8g12β1−
l2g6g7g8g12β1 − a1g3g7g10g12β1 + g4g7g10g12β1 + a2a12g4g7g13β1 − a1a12g5g7g13β1 − a2g3g7g8g13β1+
g5g7g8g13β1 + a1g3g7g9g13β1 − g4g7g9g13β1 + a2a12a17g4g7β3 − a2a11a18g4g7β3 − a12a15g1g4g7β3+
a9a18g1g4g7β3 − a1a12a17g5g7β3 + a1a11a18g5g7β3 + a12a13g1g5g7β3 − a7a18g1g5g7β3−
l2a2a12a13g6g7β3 + l2a1a12a15g6g7β3 + l2a2a7a18g6g7β3 − l2a1a9a18g6g7β3 − a18g1g5g8β3+
l2a2a18g6g8β3 − l2a2a17g7g8β3 + l2a15g1g7g8β3 − a2a17g3g7g8β3 + a15g1g3g7g8β3 + a17g5g7g8β3−
a18g5g7g8β3 − l2a15g6g7g8β3 + a2a18g6g7g8β3 + a18g1g4g9β3 − l2a1a18g6g9β3 + l2a1a17g7g9β3−
l2a13g1g7g9β3 + a1a17g3g7g9β3 − a13g1g3g7g9β3 − a17g4g7g9β3 + a18g4g7g9β3 + l2a13g6g7g9β3−
a1a18g6g7g9β3 − a2a18g4g10β3 + a1a18g5g10β3 + l2a2a13g7g10β3 − l2a1a15g7g10β3 + a2a13g3g7g10β3−
a1a15g3g7g10β3 + a15g4g7g10β3 − a13g5g7g10β3 + a12g1g5g11β3 − l2a2a12g6g11β3 + l2a2a11g7g11β3−
l2a9g1g7g11β3 + a2a11g3g7g11β3 − a9g1g3g7g11β3 − a11g5g7g11β3 + a12g5g7g11β3 + l2a9g6g7g11β3−
a2a12g6g7g11β3 − l2g1g9g11β3 − g1g3g9g11β3 + l2g6g9g11β3 − l2g7g9g11β3 − g1g7g9g11β3−
g3g7g9g11β3 + g6g7g9g11β3 + l2a2g10g11β3 + a2g3g10g11β3 − g5g10g11β3 + a2g7g10g11β3 − a12g1g4g12β3+
l2a1a12g6g12β3 − l2a1a11g7g12β3 + l2a7g1g7g12β3 − a1a11g3g7g12β3 + a7g1g3g7g12β3 + a11g4g7g12β3−
a12g4g7g12β3 − l2a7g6g7g12β3 + a1a12g6g7g12β3 + l2g1g8g12β3 + g1g3g8g12β3 − l2g6g8g12β3+
l2g7g8g12β3 + g1g7g8g12β3 + g3g7g8g12β3 − g6g7g8g12β3 − l2a1g10g12β3 − a1g3g10g12β3 + g4g10g12β3−
a1g7g10g12β3 + a2a12g4g13β3 − a1a12g5g13β3 − l2a2a7g7g13β3 + l2a1a9g7g13β3 − a2a7g3g7g13β3+
a1a9g3g7g13β3 − a9g4g7g13β3 + a7g5g7g13β3 − l2a2g8g13β3 − a2g3g8g13β3 + g5g8g13β3 − a2g7g8g13β3+
l2a1g9g13β3 + a1g3g9g13β3 − g4g9g13β3 + a1g7g9g13β3 + l2g6g9g11β1 ∫

3
−g5g10g11β1 ∫

3
−l2g6g8g12β1 ∫

3
+

g4g10g12β1ε3 + g5g8g13β1ε3 − g4g9g13β1ε3 + a17g5g8β3ε3 − l2a15g6g8β3ε3 − a17g4g9β3ε3+
l2a13g6g9β3ε3 + a15g4g10β3ε3 − a13g5g10β3ε3 − a11g5g11β3ε3 + l2a9g6g11β3ε3 + g6g9g11β3ε3+
a11g4g12β3ε3 − l2a7g6g12β3ε3 − g6g8g12β3ε3 − a9g4g13β3ε3 + a7g5g13β3ε3 + g1g9g11β1ε2ε3−
a2g10g11β1ε2ε3 − g1g8g12β1ε2ε3 + a1g10g12β1ε2ε3 + a2g8g13β1ε2ε3 − a1g9g13β1ε2ε3 + a2a17g8β3ε2ε3−
a15g1g8β3ε2ε3 − a1a17g9β3ε2ε3 + a13g1g9β3ε2ε3 − a2a13g10β3ε2ε3 + a1a15g10β3ε2ε3 − a2a11g11β3ε2ε3+
a9g1g11β3ε2ε3 + g9g11β3ε2ε3 + a1a11g12β3ε2ε3 − a7g1g12β3ε2ε3 − g8g12β3ε2ε3 + a2a7g13β3ε2ε3 − a1a9g13β3ε2ε3





.� (50)

	

∆6 =





a18g1g5g7g8β3 − l2a2a18g6g7g8β3 − a18g1g4g7g9β3 + l2a1a18g6g7g9β3 + a2a18g4g7g10β3−
a1a18g5g7g10β3 − a12g1g5g7g11β3 + l2a2a12g6g7g11β3 + l2g1g7g9g11β3 + g1g3g7g9g11β3−
l2g6g7g9g11β3 − l2a2g7g10g11β3 − a2g3g7g10g11β3 + g5g7g10g11β3 + a12g1g4g7g12β3−
l2g1g7g8g12β3 − g1g3g7g8g12β3 + l2g6g7g8g12β3 + l2a1g7g10g12β3 + a1g3g7g10g12β3−
a2a12g4g7g13β3 + a1a12g5g7g13β3 + l2a2g7g8g13β3 + a2g3g7g8g13β3 − g5g7g8g13β3−
a1g3g7g9g13β3 + g4g7g9g13β3 − l2g6g9g11β3ε3 + g5g10g11β3ε3 + l2g6g8g12β3ε3 − g4g10g12β3ε3−
g5g8g13β3ε3 + g4g9g13β3ε3 − g1g9g11β3ε2ε3 + a2g10g11β3ε2ε3 + g1g8g12β3ε2ε3 − a1g10g12β3ε2ε3−
a2g8g13β3ε2ε3 + a1g9g13β3ε2ε3 − l2a1a12g6g7g12β3 − g4g7g10g12β3 − l2a1g7g9g13β3





.� (51)

The factorization method was used to remedy the principle ordinary differential equation (ODE) (41) as follows:

	
(
D2 − m2

1
) (

D2 − m2
2
) (

D2 − m2
3
) (

D2 − m2
4
) (

D2 − m2
5
) {

T ∗, φ∗, N∗, Φ∗, Ψ∗, Π∗, σ∗
ij , σ∗

1 , τ∗
1
}

(x) e(ωt+iℓz) = 0.� (52)

Where m2
n(n = 1, 2, 3, 4, 5) represent the roots that may be taken in the positive real part x → ∞. The solution 

of equation (ODE) (48) takes the following form (according to the linearity of the problem):

	
T ∗(x) =

5∑
n=1

Dn(ℓ, ω) e−mnx.� (53)

In the same way, the solutions of the other quantities can be expressed as:

	
N∗(x) =

5∑
n=1

D′
n(ℓ, ω) e−mnx =

5∑
n=1

H1nDn(ℓ, ω) e−mnx ,� (54)

	
Π∗(x) =

5∑
n=1

D′′
n(ℓ, ω) exp(−mnx) =

5∑
n=1

H2n Dn(ℓ, ω) exp(−mnx),� (55)

	
Φ∗(x) =

5∑
n=1

D′′′
n (ℓ, ω) exp(−mnx) =

5∑
n=1

H3n Dn(ℓ, ω) exp(−mnx),� (56)

	
Ψ∗ (x) =

5∑
n=1

D(4)
n (ℓ, ω) exp(−mnx) =

5∑
n=1

H4n Dn(ℓ, ω) exp(−mnx).� (57)
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φ∗ (x) =

5∑
n=1

D(5)
n (ℓ, ω) exp(−mnx) =

5∑
n=1

H5n Dn(ℓ, ω) exp(−mnx).� (58)

The solution of Eq. (35) can be represented as:

	 ψ∗(x) = D6(ℓ, ω) e−m6x.� (59)

Where m6 = ±√
g14 are the real roots of equation (33).

And the stress components are expressed as:

	
σ∗

xx =
5∑

n=1

H6n Dn(ℓ, ω) exp(−mnx) − 2iℓm6D6 exp(−m6x),� (60)

	
σ∗

zz =
5∑

n=1

H7n Dn(ℓ, ω) exp(−mnx) + 2iℓm6D6 exp(−m6x)� (61)

	
σ∗

xz =
5∑

n=1

H8nDn(ℓ, ω) exp(−mnx) − ( m2
6 + ℓ2)D6 exp(−m6x)� (62)

Since

	 u∗(x) = DΠ∗ + i ℓψ∗,� (63)

	 w∗(x) = i ℓ Π∗ − D ψ∗.� (64)

Then,

	
u∗(x) =

5∑
n=1

D′′
n(ℓ, ω) mne−mnx + iℓD6(ℓ, ω) exp(−m6x),� (65)

	
w∗(x) = iℓ

5∑
n=1

D′′
n(ℓ, ω) e−mnx + D6(ℓ, ω) m6 exp(−m6x).� (66)

To obtain σ1 and τ1 solutions, substitution from Eqs. (52), (53) in (39) and (40) is done to get:

	
σ∗

1 =
5∑

n=1

H8nDne−mnx,� (67)

	
τ∗

1 =
5∑

n=1

H9nDne−mnx.� (68)

Where Dn, D′
n, D′′

n , D′′′
n , D

(4)
n ,  and D

(5)
n , n = 1, 2, 3, 4, 5 are unknown parameters depending on 

the parameter ℓ, ω. The relationship between the unknown parameters Dn, D′
n, D′′

n , D′′′
n , D

(4)
n ,  and  

D
(5)
n , n = 1, 2, 3, 4, 5 can be obtained when using the main Eqs. (30–39) and (40), which take the following 

relationship:

	
H1n = − ε3

m2
n − g7

,

	

H2n =

(
(a2g4 − a1g5)

(
a2a18 + (1 + H1n)

(
m2

na15 − g12
))

−(
a2

(
m2

na13 − g11
)

+ a1
(
−m2

na15 + g12
)) (

(1 + H1n) g5 + a2
(
m2

n − g3 + H1nε2
))

)

−

{(((
−m2

n + g1
)

g5 + a2
(
m2

n − ℓ2)
g6

) (
a2

(
m2

na13 − g11
)

+ a1
(
−m2

na15 + g12
)))

(a2g4 − a1g5)(
−

((
m2

n − g1
) (

m2
na15 − g12

))
+ a2

(
−m2

na17 + g13
))

} ,

	
H3n = − 1

a2g4 − a1g5

((
1 + H1n − m2

nH2n + H2ng1
)

g5 + a2
(
m2

n − g3 + H2n

(
m2

n − ℓ2)
g6 + H1nε2

))
,

	
H4n = 1

g5

(
−m2

n + g3 − H3ng4 + H2n

(
−m2

n + ℓ2)
g6 − H1nε2

)
,

	
H5n = −1

(β1m2
n − β3) ,
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	 H6n =
(
a19m2

n − a22ℓ2)
H2n − a19 (( 1 + H1n)) + a20H3n + a21H4n,

	 H7n =
(
a22m2

n − a19ℓ2)
H2n − a19 (( 1 + H1n)) + a20H3n + +a21H4nH8n = 2I ℓ mn H3n,

	 H9n = (−η1mnH3n − η2mnH4n), H10n = (− η2mnH3n − η3mnH4n).� (69)

Applications
To get the constants D1, D2, D3, D4, D5, D6, a set of boundary conditions on the surface when x = 0, 
(suppose the boundary x = 0 is adjacent to the vacuum) takes the form:

	(i)	 Mechanical boundary condition wherein the surface of the half-space experiences a traction load.

	 σ∗
xx(0, z, t) = 0.� (70)

	(ii)	 The tangential stress boundary condition that the surface of the half-space is traction-free

	 σ∗
xz(0, z, t) = 0.� (71)

	(iii)	 Assuming that the boundary x = 0 is thermally insulated, we have

	 T ∗(0, z, t) = P2e(ωt+iℓz).� (72)

	(iv)	 The boundary condition for the carrier density is specified as follows:

	 N∗(0, z, t) = n0e(ωt+iℓz).� (73)

	(v)	 The two equilibrated stress boundary conditions at the free surface x = 0 when

	 σ∗
1(0, z, t) = 0 , τ∗

1 (0, z, t) = 0.� (74)

Applying Eqs. (66–70) in (49), (50), (55), (58), (63) and (64) we get

	

5∑
n=1

H6nDn − 2iℓm6D6 = 0,� (75)

	

5∑
n=1

H8nDn − ( m2
6 + ℓ2)D6 = 0,� (76)

	

5∑
n=1

Dn = P2� (77)

	

5∑
n=1

H1nDn = n0,� (78)

	

5∑
n=1

H10nDn = 0� (79)

	

5∑
n=1

H9nDn = 0� (80)

To get D1, D2, ....., D5, D6, we can put Eqs. (71–76) in the matrix

	




D1
D2
D3
D4
D5
D6


 =




H61 H62 H63 H64 H65 −2iℓm6
H81 H82 H83 H84 H85 −( m2

6 + ℓ2)
H11 H12 H13 H14 H15 0
H101 H102 H103 H104 H105 0
H91 H92 H93 H94 H95 0

1 1 1 1 1 0




−1

.




0
0

n0
0
0
p2


� (81)

The present analysis considers an instantaneous thermal shock applied at the free surface together with 
mechanical constraints that emulate a substrate-bonded configuration. This setup is physically representative of 
pulsed-laser or photoacoustic excitation in semiconductor and MEMS devices, where the energy deposition 
time is extremely short compared with the thermal relaxation time of the medium, and the mechanical constraint 
arises from substrate adhesion or packaging. Alternative boundary conditions, such as ramped or continuous 
heating or fully traction-free surfaces, can be readily implemented within the same mathematical framework 
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by modifying Eqs. (70–74). Such cases would be expected to produce smoother temperature gradients, smaller 
stress amplitudes, and altered dispersion characteristics. Future work will extend the present model to these 
configurations to assess their influence on stochastic variance and device-scale thermal reliability.

The temperature function
The Deterministic function
In the present formulation, the stochastic perturbations represented by the Wiener process are introduced 
through the boundary conditions rather than directly within the bulk domain. This modeling approach 
reflects realistic sources of uncertainty such as random temperature fluctuations, laser intensity variations, 
and environmental disturbances that primarily act at the semiconductor surface during photothermal 
excitation. Although the stochastic excitation is applied at the boundary, the resulting random effects are 
transmitted throughout the material domain via the coupled thermoelastic, carrier-diffusion, and double-
porosity interactions. Consequently, the internal variability observed in the thermal and mechanical fields 
arises as a propagated response to boundary randomness, which also accounts for the influence of fabrication 
defects, microstructural irregularities, and material heterogeneity. This boundary-driven stochastic 
framework is consistent with previously established formulations in stochastic thermoelasticity (e.g., Gupta and 
Mukhopadhyay40, Lotfy et al.41–44 and ensures both physical realism and analytical tractability of the model.

Utilizing Eqs. (32) and (53), the deterministic temperature takes the following modulation:

	
T (x, z, t) =

(
D1 exp(− k1x) + D2 exp(− k2x) + D3 exp (− k3x) +

D4 exp(− k4x) + D5 exp(− k5x)

)
exp (ω t + Ibz)� (82)

Establishing the temperature boundary of equation (72) as40:

	 T0 (0, z, t) = T1 = T ∗� (83)

Thus, T ∗ is a constant function.

The stochastic function
Currently, when the random function is integrated with the boundary, the resultant outcome can be stated 
as40–44:

	 T0(t) = T1 + φ0(t),� (84)

so that φ0(t) fulfills the condition below:

	 E [φ0(t)] = 0.� (85)

From Eqs. (85) and (82), we get:

	 E [T (x, z, t)] = T (x, z, t)� (86)

Consequently, the mean of all the sample paths of the temperature function corresponds to its deterministic one. 
Reformulating the temperature function41–44:

	 T (x, z, t) = Υ (x, z, t) + Γ (x, z, t) T0(t).� (87)

From Eqs. (84) to  (87), we obtain:

	 T (x, z, t ) = Υ (x, z, t ) + Γ(x, z, t ) [T ∗ + φ0( t )] .� (88)

Which can be simplified into,

	 T (x, z, t) = (Υ(x, z, t) + Γ(x, z, t)T ∗) + Γ(x, z, t)φ0(t)� (89)

After simplifications:

	 T (x, z, t) = T 1(x, z, t) + Γ(x, z, t)φ0(t)� (90)

Utilizing the property below:

	
(f ∗ g) (t) =

ˆ t

0
f (τ)g ( t − τ) dτ � (91)

We acquire:

	
T ( x, z, t) = T 1( x, z, t) +

ˆ t

0
Γ( x, z, t − u)φ(u)du.� (92)
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By incorporating the Wiener process function into the preceding equation, it can be reformulated as:

	
T (x, z, t) = T 1(x, z, t) +

ˆ t

0
Γ(x, z, t − u) dW (u)� (93)

Squaring the last equation, we get:

	

[T (x, z, t)]2 =
[
T 1(x, z, t)

]2 +
tˆ

0

tˆ

0

φ(u1)φ(u2)du1du2Γ(x, z, t − u1)Γ(x, z, t − u2)+

2
tˆ

0

T 1(x, z, t)φ(u)Γ(x, z, t − u)du




.� (94)

applying the expectation operator to every item for the equation above, we obtain:

	

E [T (x, z, t)]2 = E
[
T 1(x, z, t)

]2 +
tˆ

0

tˆ

0

E [φ(u1)φ(u2)] du1du2Γ(x, z, t − u1)Γ(x, z, t − u2)+

2
tˆ

0

E [φ(u)] T 1(x, z, t)Γ(x, z, t − u)du




.� (95)

Keeping in mind that:

	 E [φ (u)] = 0, E [φ (u1) φ (u2)] = δ (u1 − u2) .� (96)

Subsequently, Eq. (95), becomes:

	

V ar [T (x, z, t)] =
tˆ

0

tˆ

0

Γ (x, z, t − u1) Γ (x, z, t − u2) δ (u2 − u1) du1du2.� (97)

utilizing the property as follows:

	

bˆ

a

f (x)f (x − x0) dx = f (x0) ; a < x0 < b.� (98)

Subsequently, Eq. (97) is:

	

V ar [T (x, z, t)] =
tˆ

0

Γ (x, z, t − u1) Γ (x, z, t − u2) du1.� (99)

Setting, u1 = u2, then we have:

	

V ar [T (x, z, t)] =
tˆ

0

[Γ (x, z, t − u1)]2 du1.� (100)

Replacing  t − u1 by ϑ, we get:

	

V ar [T (x, z, t)] = −
oˆ

t

[Γ (x, z, ϑ)]2 dϑ =
tˆ

0

[Γ (x, z, ϑ)]2 dϑ.� (101)

Such that, V ar [T (x, z, t)] is the variance.

Carrier density function
The deterministic Carrier density
By Utilizing Eqs. (32) and (54), the deterministic carrier intensity takes the following modulation:
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N(x, z, t) =




h11D1 exp (−k1x) + h12D2 exp (−k2x) +
h13D3 exp (−k3x) + h14D4 exp (−k4x)

h15D5 exp (−k5x)


 exp (ω t + Ibz)� (102)

Stochastic Carrier density
Merging Eqs. (85) and (102) and following the same method as in section “The stochastic function”, the 
subsequent result is obtained:

	 E [N(x, z, t)] = N(x, z, t)� (103)

Therefore, the mean of all the sample paths of the carrier density function E [N(x, z, t)] matches its deterministic 
solution.

Reformulating Eq. (102) as:

	 N(x, z, t) = ω (x, z, t) + Z (x, z, t) T0� (104)

merging the Eq. (84) with Eq. (104), we obtain:41–44

	 N ( x, z, t) = ω ( x, z, t) + Z (x, z, t ) [T ∗ (t ) + φ0( t )] .� (105)

As done before, we get:

	
N ( x, z, t) = N1 ( x, z, t) +

ˆ t

0
Z(x, z, t − u ) φ(u) du,� (106)

	

V ar [N ( x , z, t)] =
tˆ

0

Z2( x , z, ϑ) d ϑ.� (107)

Hence, V ar [N ( x , z, t)] is the carrier intensity variance.

The volume fraction field corresponding to v1
The deterministic volume fraction field corresponding to v1
By merging the two Eqs. (32) and (56), the deterministic volume fraction fields corresponding to v1 takes the 
following modification:

	

Φ(x, z, t) =




h31D1 exp (−k1x) + h32D2 exp (−k2x) +
h33D3 exp (−k3x) + h34D4 exp (−k4x) +

h35D5 exp (−k5x)


 exp (ωt + Ibz) .� (108)

The stochastic volume fraction field corresponding to v1
Employing Eqs. (85) and (108) and following the same steps as in section “The stochastic function”, we obtain:

	 E [Φ(x, z, t)] = Φ(x, z, t)� (109)

As a result, the mean of all the sample paths of the volume fraction field corresponding to v1 E [Φ(x, z, t)] 
matches its deterministic solution.

Rewriting Eq. (108)41–44 as:

	 Φ(x, z, t) = ϕ(x, z, t) + Ξ(x, z, t)T0� (110)

merging the two Eqs. (84) and   (110), we obtain:

	 Φ(x, z, t) = ϕ(x, z, t) + Ξ(x, z, t) [T ∗ + φ0(t)] .� (111)

Upon simplifying Eq. (111) and using the convolution property, we get:

	
Φ(x, z, t) = Φ1(x, z, t) +

ˆ t

0
Ξ(x, z, t − u)φ(u)du� (112)

After following applying the same steps in section “The stochastic function” we get:

	

V ar [Φ(x, z, t)] =
tˆ

0

Ξ2(x, z, ϑ)dϑ.� (113)

Such that V ar [Φ(x, z, t)] is the volume fraction field variance.

Scientific Reports |        (2025) 15:41466 13| https://doi.org/10.1038/s41598-025-28079-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Displacement distribution
The deterministic displacement
Merging the two Eqs. (32) and (65), the deterministic function of u(x, z, t) is reformulated as:

	

u(x, z, t) =




h21D1 exp (−k1x) + h22D2 exp (−k2x) +
h23D3 exp (−k3x) + h24D4 exp (−k4x) +
h25D5 exp (−k5x) + iℓD6 exp (−k6x)


 exp (ω t + Ibz) .� (114)

Stochastic displacement
Using the two Eqs. (84) and (85) with Eq. (114), we get:

	 E [u( x, z, t)] = u (x, z, t).� (115)

Which says that, the mean of the displacement E [u(x, z, t)] matches its deterministic one.
Upon incorporating the stochastic term into Eq. (114), it can be restructured as:

	 u(x, z, t) = β (x, z, t) + U (x, z, t) T0� (116)

Or it may be rewritten as41–44:

	 u(x, z, t) = β (x, z, t) + U (x, z, t) [T ∗ + φ0(t)]� (117)

Using some substitutions to the earlier equation we get:

	
u(x, z, t) = u1(x, z, t) +

ˆ t

0
U(x, z, t − u)φ(u) du.� (118)

The variance is obtained by making the same steps as in section “The stochastic function”:

	

V ar [u (x, z, t)] =
tˆ

0

U2 (x, z, ϑ) dϑ.� (119)

Normal stress function
Deterministic normal stress
The normal stress function is formulated using Eqs. (32) and (60) as:

	

σxx ( x, z, t) =




h61D1 exp (−k1x) + h62D2 exp (−k2x) +
h63D3 exp (−k3x) + h64D4 exp (−k4x) +
h65D5 exp (−k5x) − 2iℓk6D6 exp (−k6x)


 exp (ω t + Ibz)� (120)

Stochastic normal stress
Merging the three Eqs. (84), (85) and (120) and implementing the property of the white noise we get:

	 E [σxx(x, z, t)] = σxx(x, z, t)� (121)

Where it shows that, the mean of the sample paths E [σxx(x, z, t)] matches the normal stress function in 
deterministic form.

Reformulating Eq. (120), we get:

	 σxx(x, z, t) = Ω(x, z, t) + S(x, z, t)T0.� (122)

substituting from Eq. (84) to the previous equation we get41–44:

	 σxx(x, z, t) = Ω(x, z, t) + S(x, z, t) [T ∗ + φ0(t)] .� (123)

Utilizing some algebraic steps to the last equation, we then have:

	
σxx(x, z, t) = σ1(x, z, t) +

ˆ t

0
S(x, z, t − u)φ(u)du� (124)

Making the same steps used in section “The stochastic function”, we find:

	

V ar [σxx(x, z, t)] =
tˆ

0

S2(x, z, ϑ)dϑ.� (125)
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The equilibrated stress corresponds to υ1
The deterministic equilibrated stress corresponds to υ1
From Eq. (32) and (67), the deterministic of the equilibrated stress corresponds to ν1 is:

	

σi ( x, z, t) =




h91M1 exp (−k1x) + h92M2 exp (−k2x) +
h93M3 exp (−k3x) + h94M4 exp (−k4x) +
h95M5 exp (−k5x)


 exp (ωt + Ibz)� (126)

The stochastic equilibrated stress corresponds to υ1
Merging the Eqs. (84) and (85), the result below is get:

	 E [σi(x, z, t)] = σi(x, z, t)� (127)

Which mean that, the mean of the sample paths E [σi(x, z, t)], matches its deterministic solution.
Reformulating Eq. (126), as:

	 σi(x, z, t) = ⊙(x, z, t) + �(x, z, t) T0.� (128)

Using Eqs. (84) and (128), the equation before is expressed as41–44:

	 σi(x, z, t) = ⊙(x, z, t) + �(x, z, t) [Θ∗ + φ0(t)] .� (129)

Or it may be rewritten as by using some substitutions as in section “The stochastic function”:

	
σi(x, z, t) = σ1

i (x, z, t) +
ˆ t

0
�(x, z, t − u)φ(u)du� (130)

Finally, the variance for the equilibrated stress field is:

	

V ar [σi(x, z, t)] =
tˆ

0

�2(x, z, ϑ)dϑ.� (131)

From a computational standpoint, the convolution-based variance expressions provide a highly efficient 
alternative to stochastic sampling. Because the governing equations are linear in the stochastic perturbations, 
the variance can be obtained analytically by convolving the deterministic Green’s function with the noise 
autocorrelation kernel, avoiding repeated random realizations. In our implementation, the variance post-
processing consumed less than 10 % of the deterministic computation time. The analytical structure of the 
variance formulation also lends itself naturally to Polynomial Chaos or surrogate-based representations, where 
the convolution kernel can be projected onto low-order orthogonal polynomials to enable rapid uncertainty 
quantification in multi-parameter studies.

Numerical results and discussion
The numerical evaluations were carried out using the material constants of n-type silicon, which is widely 
employed in semiconductor and MEMS applications. Table 1 summarizes the relevant physical parameters 
adopted in this study, including thermal, mechanical, and electronic properties28,29. These constants were 

Figure type What you describe Physical explanation to add

Temperature vs. distance/time “Temperature decreases with distance/time.”

Heat diffuses and dissipates through the porous
matrix; higher porosity increases resistance to
heat flow and reduces thermal wave speed.
Dual-phase-lag introduces delay, smoothing
temperature gradients

Stress/displacement profiles “Stress peaks decrease with porosity.”
Pores reduce load-carrying capacity, leading to
softer response and greater damping. Phase-lag
delays energy transfer, moderating
peak stresses

Two-temperature coupling (γ\gammaγ) “Larger γ reduces overheating.”
Enhanced coupling allows faster equilibration
between electron and lattice subsystems—less
thermal mismatch, lower stress concentration

Variance profiles “Variance highest near surface.”
Boundary is directly exposed to stochastic
excitation; as waves travel inward, mechanical
and thermal relaxation dissipate random energy

Comparison between models (CTE, LS, DPL) “DPL smoother and lower amplitude.”
Memory effects (phase-lags) account for
finite-speed thermal propagation, avoiding
unphysical infinite wave speeds of
classical Fourier models

Table 1.  The link between observed graphical behavior and its underlying physical interpretation.
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selected from standard semiconductor data sources and previous thermoelastic literature to ensure realistic 
modeling of coupled photothermal effects. In the International System of Units (SI), and the MATHEMATICA 
software is employed for plotting.

	 λ = 6.4 × 1010N.M−2, µ = 6.5 × 1010N.m−2, K = 3.86 × 103N.s−1.K−1, a = 2.5,

	 ω = −1 + 0.05i αt = 4.14 × 10−6K−1, ρ = 2330 Kg.m−3, C∗ = 695 J.Kg−1K−1,

	 T0 = 800K, z = 0.5, ξ = −1, τq = 0.002 s, τθ = 0.001 s, P = 4, p1 = 1 × 10−2, p2 = 2 × 10−2,

	 τ = 5 × 10−5, dn = −9 × 10−31, DE = 2.5 × 10−3, Eg = 1.11, t = 0.2.

Following Khalili35, the double porous parameters are taken as,

	α = 1.3 × 10−5N, b1 = 0.12 × 10−5N, γ = 1.1 × 10−5N.m−2, γ1 = 0.16 × 105N.m−2, γ2 = 0.219 × 105N.m−2,

	d = 0.1 × 1010N.m−2, b = 0.9 × 1010N.m−2, K2 = 0.1546 × 10−12N.m−2, K1 = 0.1456 × 10−12N.m−2.

In this section, we provide an in-depth numerical analysis of the thermoelastic and photothermal responses in 
a semiconductor medium with double porosity under the influence of hydrostatic initial stress, dual-phase-lag 
heat conduction, and two-temperature effects. The computations are carried out using dimensionless variables 
derived from the governing equations and boundary conditions introduced earlier. We use the MATHEMATICA 
to numerically solve the field equations and plot deterministic, stochastic, and variance profiles for key physical 
quantities such as temperature, displacement, carrier density, and stress components. The semiconductor 
material chosen is silicon, due to its industrial relevance and well-characterized physical parameters. The double 
porosity parameters are taken from Khalili35, while thermoelastic and electronic parameters are adopted from 
the literature cited in27–29.

Figure 1 displays the spatial distributions of deterministic temperature, normal stress, and displacement at 
selected time values t = 0.1,0.4,0.7 These deterministic profiles illustrate how the field responses evolve with 
time. Initially, at small ttt, all responses are sharply peaked, reflecting strong localization of photothermal energy 
near the excitation surface. As time increases, waveforms exhibit clear dispersion and decay, revealing the effects 
of dual-phase-lag (DPL) and double porosity. The thermal field diffuses more gradually compared to the elastic 
field due to the delayed response from both the heat flux and temperature gradient (τq  and τT ), as specified in the 
DPL model. Importantly, the two-temperature formulation results in smoother thermal gradients than classical 
single-temperature models. The distinction between lattice and electron temperatures allows for accurate 
modeling of nonequilibrium transport mechanisms, especially under ultrafast laser excitation conditions. The 
initial hydrostatic stress introduces a baseline stiffness that alters the phase velocity and amplitude attenuation of 
all fields, particularly evident in the early-time snapshots.

In Fig. 2, we observe the stochastic sample path profiles of temperature, stress, and carrier density at a fixed 
time t = 0.4. The randomness introduced into the boundary conditions and material parameters leads to diverse 
realizations of the physical quantities. These sample paths, while centered around the deterministic profiles, 
exhibit varying degrees of spread depending on the underlying field and its sensitivity to stochastic inputs. For 
example, temperature fluctuations are more pronounced near the thermal boundary due to direct dependence 
on thermal excitation, whereas stress fluctuations are more diffused, influenced by the integrated response of 
both temperature and displacement through the constitutive relations. The behavior of carrier density also 
demonstrates stochastic sensitivity, particularly in regions near the free surface, where boundary recombination 
probabilities play a dominant role. The stochastic modeling approach provides a more realistic depiction of 
physical behavior under practical conditions where exact initial or boundary data are rarely deterministic.

Figure 3 presents the variance of the physical fields with distance for the same time steps as in Fig. 1. The 
variance plots quantify the degree of uncertainty or deviation from the mean behavior, i.e., the deterministic 
solution. For temperature, the variance starts high at the surface and decays into the bulk, indicating that 
boundary randomness has a localized effect. However, in the case of displacement and stress, the variance is 
more uniformly distributed, signifying that mechanical fields are more globally influenced by random thermal 
perturbations. The inclusion of variance analysis is critical in design scenarios requiring robust performance 
under uncertainty, such as microelectronic or photothermal sensor systems, where peak temperature or stress 
must be kept within safe operational limits despite environmental randomness.

An important observation across all figures is the behavior of the stochastic sample paths in comparison 
with deterministic fields. The sample paths fluctuate around the deterministic solutions, validating that the 
deterministic profile represents the expected value (mean) of the stochastic ensemble. The variance curves, 
on the other hand, provide information on the reliability or stability of the system. High variance indicates 
potential instability or sensitivity to input uncertainty. In practice, this means that even if the mean field is 
within acceptable limits, the actual realization might exceed those limits due to variability. Thus, the inclusion of 
stochastic modeling is not only a theoretical enhancement but also a practical necessity in real-world applications.

Another key insight is the spatial trend of the variance. For temperature, the variance is surface-dominated, 
confirming that uncertainty is injected primarily through boundary excitation. For stress and displacement, the 
variance becomes more significant in the interior, implying a cumulative effect of randomness through coupling 
and wave propagation. This trend emphasizes the need to control both input variability and internal material 
heterogeneity to ensure safe and predictable performance. In optoelectronic applications, this could translate 
into tighter control over laser input stability and better material processing to minimize porosity fluctuations.
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The variance distributions in Fig. 3 quantify the mean-square fluctuations of temperature and stress 
around their deterministic means, representing the uncertainty arising from random boundary excitation. The 
magnitude of these variances lies within realistic physical limits for semiconductor materials, as the boundary 
noise intensity corresponds to ≤ 3 % of the applied photothermal load, consistent with experimental reports of 
laser intensity fluctuations. Consequently, the stochastic responses remain within the linear regime, ensuring 

Fig. 1.  Deterministic distributions of temperature, displacement, and normal stress versus distance at time 
instances t=0.1, 0.4, 0.7 under the dual-phase-lag and two-temperature model with double porosity. The solid 
blue curves represent deterministic field responses showing dispersion and attenuation behavior.
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bounded and physically meaningful results. Excessively large variance levels would imply a breakdown of linear 
thermoelastic assumptions and could lead to nonphysical outcomes; however, the present results are far from 
this threshold. The observed moderate variance (typically below 5 % of the mean amplitude) therefore reflects 

Fig. 2.  Stochastic sample paths of temperature, carrier density, and stress at t=0.4, illustrating random 
fluctuations due to boundary noise. Gray thin lines denote individual stochastic realizations, while the red 
solid curve indicates the deterministic mean profile. The results demonstrate how stochastic perturbations 
cluster around the deterministic solution.
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credible stochastic sensitivity, highlighting regions of higher uncertainty without compromising physical realism 
or model stability.

A preliminary sensitivity analysis was performed to identify the parameters that most strongly influence the 
stochastic variance of the thermoelastic fields. The results indicate that the boundary noise amplitude is the 
dominant factor controlling the overall variance magnitude, as the stochastic excitation enters directly through 

Fig. 3.  Variance profiles of temperature, displacement, and stress versus distance for t=0.1, 0.4, 0.7 under the 
same conditions as Figs. 1, 2. The solid green lines with shaded bands indicate the mean-square fluctuation 
amplitude (variance), quantifying the uncertainty propagation in the stochastic thermoelastic fields.
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the surface boundary. The double-porosity coefficients also exert a significant influence by modifying the 
internal coupling between pore pressures and elastic stresses, thereby amplifying or damping the propagation of 
boundary fluctuations. In addition, the dual phase-lag parameters and the two-temperature coupling factor 
affect the temporal spread of the variance, with larger lag values producing slower but more stable responses. 
These findings demonstrate that the model is robust to moderate parameter variations and provide practical 
guidance for experimental calibration, where controlling porosity and boundary-excitation stability is crucial 
for minimizing uncertainty in MEMS and semiconductor applications.

Guidelines for explaining physical trends across all figures
To strengthen the physical interpretation of the numerical results, Table 1 summarizes the main physical 
mechanisms responsible for the observed trends in the graphical results. For each figure type, the qualitative 
behavior is linked to its underlying thermoelastic or stochastic process, providing a clear connection between 
model parameters and their physical effects.

Conclusion
The motivation of this study stems from the growing need to understand and control stochastic thermoelastic 
behavior in semiconductor and MEMS devices subjected to random laser or thermal excitations. Traditional 
deterministic models cannot capture how such randomness affects field coupling, reliability, and thermal 
stability. The present stochastic DPL–two-temperature double-porosity framework directly addresses this 
limitation by integrating physical noise sources with memory and microstructural effects. This approach bridges 
theoretical modeling with practical design needs, providing a foundation for predicting performance variability 
in advanced micro- and nano-scale systems.

The present study develops a comprehensive analytical and stochastic framework for investigating the 
thermoelastic behavior of double-porosity semiconductor media under photothermal excitation and initial 
stress, governed by the dual-phase-lag (DPL) and two-temperature (TT) theories. The model captures the non-
equilibrium energy exchange between lattice and electron temperatures and the influence of micro–macro 
porosity coupling on wave propagation and attenuation. Closed-form solutions obtained via harmonic wave 
analysis and normal-mode techniques reveal that the DPL–TT formulation produces smoother and more stable 
field distributions than classical Fourier-based models.

The stochastic extension, introduced through Wiener process–based boundary noise, quantifies the variance 
and reliability of thermal and mechanical responses, demonstrating that thermal uncertainties dominate near 
the excitation surface, while mechanical variances propagate more uniformly. The variance magnitudes were 
verified to remain within experimentally realistic limits, confirming that the stochastic responses represent 
physically meaningful fluctuations rather than numerical instabilities. These results confirm that deterministic 
predictions remain accurate on average but must be supplemented by stochastic analysis for reliable MEMS and 
optoelectronic device design.

The proposed DPL–TT double-porosity stochastic model offers a unified, computationally efficient, 
and physically consistent approach for predicting temperature, stress, and carrier-density fluctuations in 
semiconductors. It provides a robust foundation for extending future research to fractional-order effects, 
anisotropic porosity, and correlated stochastic environments, paving the way toward predictive and uncertainty-
aware modeling of advanced microelectronic systems.

Limitations and future directions
The present stochastic thermoelastic model provides an analytically tractable framework for studying 
photothermal wave propagation in double-porosity semiconductors under the dual-phase-lag and two-
temperature theories. However, several simplifying assumptions were made to maintain closed-form solvability. 
The model presently neglects magnetic, piezoelectric, and rotational effects, and assumes isotropic and spatially 
uniform porosity coefficients. In practical materials, porosity may vary directionally or radially, introducing 
anisotropic stiffness and transport characteristics. Extending the formulation to include anisotropic or graded 
porosity would enable a more realistic description of advanced porous semiconductors and composite wafers.

Another promising extension involves replacing classical time derivatives with fractional-order derivatives, 
which would incorporate nonlocal memory effects and capture the anomalous heat and stress diffusion observed 
in micro- and nano-scale systems. Similarly, introducing magneto-thermoelastic coupling would broaden the 
applicability of the model to optoelectronic and magneto-sensitive semiconductor devices.

Beyond these physical generalizations, future work will also focus on numerical implementations and 
surrogate modeling—including polynomial chaos and reduced-order approaches—to facilitate large-scale 
uncertainty quantification and design optimization for MEMS and photothermal systems. These developments 
will enhance the predictive power of the stochastic DPL–two-temperature framework and extend its utility to 
practical engineering and materials design applications.

Data availability
The Current submission does not contain the pool data of the manuscript, but the data used in the manuscript 
will be provided on request from corresponding author ( **E.S.Elidy** ).
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