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In this study, a novel cascaded exponential proportional–integral–derivative (exp-PID) controller 
tuned by the starfish optimization algorithm (SFOA) is proposed for enhancing the transient and 
steady-state performance of nonlinear dynamic systems. The design objective is to achieve improved 
adaptability, robustness, and precision under varying operating conditions and external disturbances. 
The exponential PID structure introduces nonlinear modulation in the proportional and derivative 
components, enabling smoother control action and superior damping characteristics compared to 
conventional PID and fractional-order PID designs. The proposed SFOA-based exp-PID controller is 
validated on two benchmark systems: a DC motor speed control system and a three-tank liquid-level 
process. Across multiple independent trials, the controller achieved outstanding results, with the DC 
motor system attaining a rise time of 0.0039 s, settling time of 0.0083 s, and zero overshoot, while 
the three-tank system reached a rise time of 1.72 s, settling time of 2.47 s, overshoot of 1.5%, and 
steady-state error of 9.22 × 10⁻⁵%. Comparative analyses with recently developed algorithms (including 
the flood algorithm, greater cane rat algorithm, mantis search algorithm, and dandelion optimizer) as 
well as previously reported methods demonstrate the superior convergence behavior, stability, and 
accuracy of the proposed controller. Statistical evaluations further confirm the method’s robustness 
and consistent performance across repeated runs.
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In modern industrial systems, achieving precise and reliable control over dynamic processes such as direct 
current (DC) motor speed regulation and liquid-level control remains a significant challenge1. These systems 
often exhibit nonlinear behaviors, time-varying dynamics, and sensitivity to external disturbances. While the 
proportional–integral–derivative (PID) controller has been extensively adopted for its simplicity and satisfactory 
performance2, its fixed gains limit adaptability under changing operating conditions3. Consequently, conventional 
PID-based systems may experience instability, sluggish transient response, and poor disturbance rejection in 
dynamic environments4. These issues have motivated the development of intelligent and optimization-based 
tuning strategies capable of improving robustness and adaptability in real-time applications.

Among these, metaheuristic optimization techniques have proven highly effective for controller parameter 
tuning in nonlinear and uncertain systems. They provide efficient global search capabilities and avoid the 
limitations of classical gradient-based optimization. Recent studies have introduced several nature-inspired 
algorithms that emulate biological or physical behaviors to balance global exploration and local exploitation5–9. 
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Although these algorithms have achieved promising results, their direct implementation in real-time control 
may be constrained by computational demands. Therefore, integrating metaheuristic optimization with adaptive 
control structures can enhance both efficiency and robustness in practical systems.

PID controllers remain the cornerstone of industrial control due to their simplicity and reliability10,11. 
However, their performance often deteriorates in nonlinear or time-varying systems. To address these limitations, 
several advanced variants have been proposed. The exponential PID (exp-PID) controller introduces nonlinear 
exponential terms in the proportional and derivative components, improving transient behavior and disturbance 
rejection12. The fractional-order PID (FOPID) controller extends the classical design through fractional calculus, 
providing more flexible tuning and better handling of system dynamics13–15. The optimal fractional-order time-
delayed PID (optimal FOTID) controller further enhances robustness and precision in systems affected by 
delays and uncertainties16. These advanced PID designs demonstrate that effective performance relies strongly 
on intelligent tuning strategies17,18.

The optimization of control parameters has become essential in modern control engineering, especially 
in renewable energy and industrial automation systems such as photovoltaic (PV) plants and microgrids19–21. 
Many studies have demonstrated that metaheuristic-based tuning of advanced PID controllers can significantly 
improve transient response, steady-state accuracy, and disturbance rejection22–24. Similarly, intelligent and 
adaptive control schemes such as fuzzy logic control, active disturbance rejection control (ADRC), and 
model predictive control (MPC) have shown strong potential for regulating nonlinear systems like multi-tank 
processes25–28. Furthermore, hybrid approaches combining global metaheuristic search with local learning or 
refinement methods have been proposed to accelerate convergence and improve stability in complex systems29–31.

Building upon these research directions, this study proposes a novel control framework that integrates the 
starfish optimization algorithm (SFOA)5 with a cascaded exponential PID (exp-PID) controller. The SFOA 
is used to optimally tune the exp-PID parameters, including proportional, integral, derivative gains, and 
exponential modulation factors. This hybrid structure enhances adaptability and robustness, allowing the 
controller to maintain precise performance across varying operating conditions.

To comprehensively evaluate the proposed SFOA-based exp-PID controller, simulations were performed 
on two representative nonlinear processes: (i) a DC motor speed control system, and (ii) a three-tank liquid-
level control system. Each system was tested under identical conditions using multiple objective functions and 
compared against several recent algorithms. The results demonstrated that the proposed controller achieves 
superior convergence behavior, minimal overshoot, and faster settling times, consistently outperforming other 
benchmarked methods. Moreover, statistical consistency across repeated runs confirmed its robustness and 
stability in handling stochastic search processes.

Although numerous studies have addressed PID optimization through metaheuristic algorithms, most focus 
primarily on classical or fractional PID structures without incorporating adaptive nonlinear transformations 
such as exponential or logarithmic functions. The limited exploration of nonlinear cascaded PID forms has 
restricted performance enhancement in systems exhibiting strong nonlinearity, actuator saturation, or load 
disturbances. Furthermore, the effectiveness of newly introduced optimizers such as SFOA in tuning multi-
parameter nonlinear controllers has not yet been systematically investigated. These gaps highlight the necessity 
for an optimization framework that combines the nonlinear adaptability of exponential controllers with the 
global search efficiency of a recent, high-performing metaheuristic algorithm.

The main contributions and novelty of this study can be summarized as follows:

	1.	 A nonlinear control structure combining exponential error transformation and conventional PID regulation 
is formulated to achieve fast convergence, reduced overshoot, and high steady-state precision.

	2.	 The SFOA’s multidirectional arm-extension and adaptive regeneration principles are utilized to optimally 
tune the controller parameters, ensuring efficient global search and avoidance of local entrapment.

	3.	 Extensive experiments were performed using several recent optimization algorithms on both electrome-
chanical and process-control systems. The proposed method consistently yielded the best transient and 
steady-state results, validating its robustness and adaptability.

	4.	 The controller was evaluated using multiple performance indices to confirm its generalization capability and 
optimization consistency.

	5.	 The algorithm’s convergence stability and performance variance were analyzed through multi-run statistical 
indicators, confirming its reliability in stochastic search environments.

The remainder of the paper is organized as follows. Section 2 summarizes the SFOA, outlining its operators 
and search mechanism. Section 3 introduces the two case studies (a DC-motor speed regulation system and a 
three-tank liquid-level system) and presents their mathematical models. Section 4 details the cascaded exp-PID 
controller and its signal flow. Section 5 formulates the SFOA-based tuning procedure, including the performance 
index, parameter bounds for both plants, and the optimization workflow. Section 6 reports DC-motor results, 
first comparing the proposed controller with recent optimizers (FLA, GCRA, MSA, DO) and then with reported 
works (GWO, ASO, MMPA, LFDNM), together with parameter analyses, time-response plots, and multi-run 
statistics. Section 7 presents the corresponding three-tank results, with the same two-stage comparison (against 
recent optimizers and against reported methods (ALC-PSODE, MGO, AOA-HHO, CMA-ES)) and includes 
quantitative metrics and statistical evaluations. Section 8 concludes the study and outlines directions for future 
work.

Overview of starfish optimization algorithm
The SFOA is a bio-inspired metaheuristic algorithm that mimics the behaviors of a starfish, including exploration, 
preying, and regeneration, to solve global optimization problems (as shown in Fig. 15. It is designed to balance 
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exploration and exploitation through a hybrid search pattern. Starfish exhibit three remarkable behaviors that 
contribute to their survival and efficiency in nature. They explore their environment by extending their five 
arms, allowing them to navigate and search for resources. When hunting, they rely on their tube feet to capture 
prey with precision and adaptability. Additionally, their ability to regenerate lost limbs ensures resilience and 
continuity in their existence. Inspired by these natural strategies, SFOA incorporates these behaviors into an 
optimization algorithm, promoting thorough exploration and robust convergence.

The SFOA follows a structured mathematical framework composed of three fundamental stages. It begins 
with an initialization phase, where potential solutions are generated randomly to establish diversity within the 
search space. In the exploration phase, the algorithm mimics the starfish’s environmental probing, dynamically 
searching for improved solutions. Finally, the exploitation phase focuses on refining the best-obtained solutions, 
ensuring convergence toward optimal results with enhanced precision5. In the initialization phase, the population 
of starfish X  is randomly initialized within the search space:
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� (1)

where Xi,j  represents the position of the ith, starfish in the jth dimension. N  is the is the population size, and 
D is the number of design variables. In addition, each position is initialized as:

	 Xij = lj + (uj − lj) , r ∈ (1,0)� (2)

where ​ lj , and uj  are the lower and upper bounds of the search space, and r is a random number.
The exploration phase ensures a diverse search, mimicking how starfish explore their environment. If D > 5, 

a five-dimensional search pattern is used:

Fig. 1.  General flowchart of working mechanism in SFOA.
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where X
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best,p, t and tmax are the best solution in the population, the current iteration, the total number of 

iterations respectively. In addition, a1 = (2r − 1)π , θ = π
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. If D ≤ 5, a one-dimensional search 

pattern is used:
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where X
(t)
k1,p, X

(t)
k2,p, A1 and A2 are positions of randomly selected starfish, random numbers between − 1 

and 1, respectively. In addition, ET =
(

tmax−t
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)
· cosθ . After updating the positions, boundary constraints 

are enforcedç
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The exploitation phase refines solutions through two key strategies:

•	 Preying Behavior: Moves towards better positions using a two-directional search strategy:

	 Y
(t)

i = X
(t)
i + r1dm1 + r2dm2� (6)

where ​dm1, dm are two randomly selected distances between the best solution and other starfish.

•	 Regeneration Behavior: Ensures diversity by allowing the last starfish (i = N), to regenerate:

	
Y

(t)
i = exp

(
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)
× X

(t)
i � (7)

After updating, boundary constraints are applied:
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Case studies
This section examines the application of the SFOA algorithm in optimizing exponential PID controller 
parameters for two different control systems: a DC motor speed regulation system and a three-tank liquid level 
control system. These case studies aim to evaluate the adaptability and effectiveness of the proposed optimization 
method. For the DC motor, the primary objective is to achieve precise and efficient speed regulation, a crucial 
requirement in numerous industrial applications. Meanwhile, the three-tank system focuses on maintaining 
stable liquid levels despite complex nonlinear interactions and dynamic disturbances. By developing detailed 
system models and conducting comparative analyses against well-established optimization techniques, these 
case studies highlight the SFOA algorithm’s ability to enhance system performance across diverse operating 
conditions.

Mathematical modeling of DC motor system
In this section, explores the implementation of an externally excited DC motor for speed regulation by varying 
the armature voltage. Through an analysis of the corresponding electrical schematic, a mathematical model is 
developed to gain a thorough understanding of the motor’s behavior and electrical characteristics, as depicted 
in Fig. 2.

When the magnetic flux remains constant, the induced voltage Eb, is directly proportional to the angular 
velocity ω m, which represents the rate of change of rotation, dθ

dt
14.

	
Eb = Kb

dθ

dt
= Kbω m� (9)

The speed of an armature-controlled DC motor is regulated by the armature voltage Ea. According to the 
mathematical model of the DC motor, the circuit can be described as follows.

	
Ea = La

dia

dt
+ RaIa + Eb� (10)
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Here, Ia, Ra, and La​ represent the armature current, armature resistance, and armature inductance of the DC 
motor, respectively. The torque produced by the armature current results from the combined influence of inertia 
and friction torques23.

	
T = J

dω m

dt
+ Bω m = KIa� (11)

Here, ω m​ denotes the angular speed of the motor shaft, J  represents the moment of inertia, B is the motor 
friction constant, and K  is the motor torque constant. By assuming all initial conditions of the system are zero, 
applying the Laplace transform to Eqs. (9–11) yields the following equation:

	 Eb (s) = Kbω m (s)� (12)

	

{
Ea (s) = (Las + Ra) Ia (s) + Eb (s)
T (s) = (Js + B) ω m (s) = KIa (s) � (13)

where Kb is electromotive force constant18,23. Finally, the open loop equation of the system for TL = 0 is 
defined as follows:

	
GDC−motor (s) = K

(Las + Ra) (Js + B) + KbK
= 15

1.08s2 + 6.1s + 1.63 � (14)

Mathematical modeling of liquid level system
Three-tank liquid level control system
The goal of the three-tank liquid level control system is to regulate and maintain the liquid levels in Tanks 1, 
2, and 3, as shown in Fig. 3. To simplify the model, several assumptions are considered. The tanks are open to 
the atmosphere, ensuring no pressure buildup. The liquid is considered incompressible, maintaining a constant 
total mass throughout the system. Fluid movement occurs exclusively from higher to lower levels between 
interconnected tanks, driven by natural gravitational flow. The system is assumed to be entirely leak-free, 
ensuring no unintended losses. Additionally, the flow rates are governed by the differences in liquid levels, which 
dictate the system’s dynamic behavior.

These dynamics are captured through the following differential Equations1,32.

	
dH1

dt
= qin − q12 − q13� (15)

	
dH2

dt
= q12 − q23� (16)

	
dH3

dt
= q13 + q23 − qout� (17)

In this system, H1​, H2 and H3​ represent the liquid levels in Tanks 1, 2, and 3, respectively. The flow rates q12​
, q13​, and q23​ are directly influenced by the differences in liquid levels between the tanks, ensuring that fluid 
moves from higher to lower levels. This relationship can be expressed mathematically as follows1:

	 q12 = k12 (H1 − H2)� (18)

	 q13 = k13 (H1 − H3)� (19)

	 q23 = k23 (H2 − H3)� (20)

The constants k12​, k13, and k23​ are determined by the system’s geometry and the physical properties of the 
liquid, influencing the rate of flow between tanks. To facilitate analysis, a simplified tank model is adopted, 
where q1​ and q2 represent the inflow and outflow rates, respectively. The liquid height is denoted by (h), while 

Fig. 2.  General schematic of DC motor.
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(A) refers to the cross-sectional area of the tank1,33. To ensure consistency with previous studies, the system is 
modeled using a transfer function of the form:

	
Gtank (s) = 1

64s3 + 9.6s2 + 0.48s + 0.008 � (21)

This model allows for the simulation of the system’s dynamic behavior under different flow rates and control 
strategies. By implementing various control techniques, the flow rates can be adjusted to maintain the desired 
liquid levels, ensuring the system meets the requirements of specific applications. This approach enables precise 
regulation, making it adaptable to a wide range of industrial and process control scenarios. You can see brief 
schematic linking industrial applications with three tanks in Fig. 4.

Concept of exponential PID controller
The cascaded exponential proportional–integral–derivative (exp-PID) controller is designed to enhance the 
adaptability and precision of control actions in nonlinear and time-varying dynamic systems. In contrast to 
a conventional PID controller, which applies constant gain values to the error signal and its derivative, the 
exp-PID incorporates nonlinear exponential transformations to adjust the control effort dynamically12. This 
structure provides improved transient response, reduced steady-state error, and enhanced robustness against 
external disturbances and parameter variations. As illustrated in Fig. 5, the exp-PID controller is composed of 
two interconnected subsystems: (i) the exponential block, which performs nonlinear modulation of the error 
dynamics, and (ii) the PID block, which generates the final control action based on the modified signals.

In the exponential block, the instantaneous error e (t) and its time derivative de(t)
dt  are first weighted by 

time-varying scaling coefficients τ 1 and τ 2, respectively. These scaled quantities are denoted as

	

{
k (t) = τ 1e (t)

l (t) = τ 2
de
dt

� (22)

Both signals are then passed through the nonlinear exponential activation function fexp (u( t )), mathematically 
expressed as in (23).

	
fexp (u (t)) = 2

1 + e−u(t) − 1� (23)

This function maps the input into the bounded interval [−1,1], thereby suppressing large fluctuations in e (t) 
and de(t)

dt  while amplifying smaller variations near equilibrium. The resulting nonlinear outputs are fexp (k( t )) 
and fexp (l( t )). Each of these outputs is multiplied by corresponding gain coefficients g1and g2. The combined 
outcome produces the auxiliary control signal δ (t).

	 δ (t) = g1fexp (k (t)) + g2fexp (l (t))� (24)

This nonlinear transformation allows the controller to emulate a self-tuning mechanism—strong corrective 
actions are moderated when the error is large, and fine adjustments are emphasized when the system approaches 
the desired setpoint. Consequently, the exponential block acts as an adaptive preprocessing unit that enhances 

Fig. 3.  General schematic of tank.
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system stability and mitigates overshoot in highly dynamic conditions. The output δ (t) from the exponential 
block serves as the input to a conventional PID framework. The control signal u (t) is generated as:

	
u (t) = Kp δ (t) + Ki

ˆ t

0
δ (τ ) dτ + Kd

dδ (t)
dt

� (25)

where Kp, Ki, and Kd denote the proportional, integral, and derivative gains, respectively. The integral 
term ensures zero steady-state error, while the derivative component enhances damping and anticipates future 
deviations. By acting on the nonlinear signal δ (t), these classical components inherit the adaptability introduced 
by the exponential transformation. The overall controller thus realizes a cascaded nonlinear–linear architecture, 
where the exponential module modifies the input dynamics and the PID module performs fine regulation. This 
configuration offers both the interpretability of classical PID control and the flexibility of nonlinear modulation.

SFOA-based exp-PID controller
The SFOA is applied to optimize the parameters of the exp-PID controller for two distinct control systems: DC 
motor speed regulation and liquid level regulation. The primary objective is to minimize the cost function by 
fine-tuning the controller parameters, including Kp, Ki, Kd, τ 1, g1, τ 2 and g2​, while ensuring optimal 
transient and steady-state performance.

Fig. 5.  Block diagram of exp-PID controller.

 

Fig. 4.  General schematic of 3 different tanks in industrial applications.
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Cost function
The cost function ( CF ) is designed to evaluate the performance of the exp-PID controller by considering key 
transient and steady-state characteristics. The cost function is defined as34:

	
CF =

(
1 − e−ρ

)
×

(
mos + ess

100

)
+ e−ρ × (ts − tr)� (26)

where ρ  is the balancing coefficient set to 1, mos is the percentage overshoot, ess is the percentage steady-state 
error measured at the end of the simulation time tsim​, ts​ is the settling time within a ± 2% tolerance band, and 
tr ​ is the rise time from 10% to 90% of the final value. The cost function ensures a trade-off between steady-state 
accuracy and transient response, where the exponential term adjusts the influence of each component. The 
selection of simulation time varies based on the dynamics of the control system under evaluation. For a DC 
motor speed control system, the simulation time is set to 2 s to effectively capture the transient response and 
steady-state performance of the motor. In contrast, for a liquid level control system, a longer simulation time 
of 250 s is necessary due to the inherently slower response of liquid dynamics. This ensures that the controller’s 
performance, including settling time, overshoot, and steady-state error, is accurately assessed and optimized for 
each specific application.

Constraints of optimization problems
The optimization of the exp-PID controller is subject to predefined parameter constraints to ensure stability, 
robustness, and effective control performance. These constraints define the feasible search space for the 
optimization algorithm, preventing extreme values that may degrade system performance. For the DC motor 
speed control system, the parameter bounds are set as shown in Table 1. These bounds ensure the controller 
operates within a reasonable range for efficient motor speed regulation. For the liquid level control system, a 
different set of constraints is applied due to the slower response dynamics of fluid systems, as shown in Table 2. 
These constraints allow the optimization algorithm to tune the controller effectively while ensuring stability and 
accuracy in maintaining liquid levels.

Application stage of SFOA
The SFOA-based tuning of the exp-PID controller follows an iterative process aimed at minimizing the cost 
function and enhancing system performance. The optimization begins with the initialization of controller 
parameters within predefined bounds. These parameters are then applied to the exp-PID controller, generating 
control signals that regulate the system’s response based on the reference input. The controller interacts with the 
plant model, producing an output that is evaluated using key performance metrics, including overshoot, steady-
state error, rise time, and settling time. Once the system response is obtained, the cost function is computed 
to assess performance, ensuring a balance between transient and steady-state behavior. This cost function 
value is then processed within the SFOA module, where new controller parameters are generated based on the 
algorithm’s search and update rules. The process is repeated iteratively, refining the controller parameters with 
each cycle until an optimal solution is reached. For the DC motor speed regulation system, the optimization 
process continuously adjusts the controller parameters to enhance speed tracking and minimize errors. The 
control signal is applied to the plant model, and system response metrics are analyzed to iteratively fine-tune the 
controller settings, ensuring improved dynamic performance and stability. Similarly, in the liquid level regulation 
system, the same approach is applied, but with a focus on maintaining stability in slower-response dynamics.

Figure 6 shows the SFOA-based exp-PID design framework for DC motor system. On the other hand, the 
flowchart representation in Fig. 7 illustrates the structured workflow of SFOA optimization, where the exp-PID 
controller dynamically adapts to system conditions based on cost function evaluations. The iterative process 
ensures that the controller minimizes overshoot, reduces steady-state error, and improves settling time. By 
following this structured optimization framework, the proposed SFOA-based exp-PID controller achieves 
enhanced adaptability and efficiency, making it well-suited for both fast-response systems like DC motor speed 
control and slow-response systems like liquid level regulation. The continuous parameter tuning ensures optimal 
system performance while maintaining stability and robustness in dynamic control applications.

Bound Kp Ki Kd τ 1 g1 τ 2 g2

Lower 0.01 0.0001 0.1 0.1 0.1 0.1 0.1

Upper 1 0.01 10 10 10 10 10

Table 2.  Bounds of exp-PID controller for liquid level control system.

 

Bound Kp Ki Kd τ 1 g1 τ 2 g2

Lower 0.001 0.001 0.001 1 1 0.2 0.2

Upper 20 20 20 5 5 0.5 0.5

Table 1.  Bounds of exp-PID controller for DC motor speed control system.
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Fig. 7.  SFOA-based exp-PID design framework for liquid level system.

 

Fig. 6.  SFOA-based exp-PID design framework for DC motor system.
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Simulation results on DC motor speed control system
Comparison with more recent algorithms
To assess the performance and robustness of the proposed SFOA-based exp-PID controller in regulating DC 
motor speed, a detailed comparative analysis was conducted with several recent metaheuristic algorithms. The 
competing optimizers included the flood algorithm (FLA)6, greater cane rat algorithm (GCRA)7, mantis search 
algorithm (MSA)8 and dandelion optimizer (DO)9. Each algorithm was implemented under identical simulation 
conditions, with a uniform population size and iteration limit, and each trial was repeated thirty times to ensure 
statistical consistency.

Statistical performance evaluation
The quantitative performance of each optimizer was evaluated in terms of the best, worst, mean, and standard 
deviation (SD) values of the defined cost function. The corresponding results are summarized in Table 3. Among 
all methods, the SFOA-based exp-PID achieved the lowest mean cost value of 1.6378 × 10⁻³, demonstrating both 
high accuracy and stability across independent runs. In contrast, the DO-based exp-PID exhibited the highest 
mean cost value (2.1472 × 10⁻³), indicating relatively weaker convergence and higher variance. The narrow SD of 
the proposed method (3.48 × 10⁻⁵) further confirms its reliable convergence characteristics and lower sensitivity 
to stochastic variations within the search process.

The convergence behavior of the cost function for all algorithms is illustrated in Fig. 8. The curve corresponding 
to the proposed SFOA-based exp-PID shows a markedly faster decline during the early iterations and stabilizes 
at a lower final value, signifying efficient exploration followed by refined local exploitation. By contrast, the 
DO-based controller displays sluggish convergence and stabilizes at a substantially higher cost level, while the 
remaining algorithms (FLA, GCRA, MSA) reach intermediate performance.

Optimized controller parameters
The optimized controller parameters derived from each algorithm are listed in Table 4. The SFOA-based exp-
PID attained comparatively higher proportional ( Kp) and integral ( Ki) gains, as well as elevated exponential 
shaping coefficients ( τ 1, τ 2), which collectively enhanced its transient and steady-state characteristics. These 
parameter trends indicate that the proposed optimization strategy effectively identifies gain combinations that 
accelerate response without introducing instability. The superior parameter balance also ensures smoother 
actuator behavior and reduced control effort.

Dynamic response analysis
The dynamic performance of each controller was investigated under a step-input reference signal. The transient 
responses shown in Fig.  9 reveal that the SFOA-based exp-PID achieves the fastest rise and settling times 
while entirely eliminating overshoot. The FLA- and MSA-based designs follow closely but show slightly slower 
convergence. In contrast, the DO-based exp-PID exhibits the slowest transient response, confirming its reduced 
adaptability in dynamic operating conditions.

A further assessment of steady-state behavior is presented in Fig. 10, where the motor speed tracking accuracy 
of each controller is compared. The SFOA-based and FLA-based controllers maintain the closest adherence to 
the reference speed, producing nearly zero steady-state error. Meanwhile, the DO- and GCRA-based designs 
display minor but noticeable deviations, reflecting their less effective fine-tuning of the integral and exponential 
parameters.

Quantitative performance indicators
Key performance metrics (including rise time, settling time, percentage overshoot, and steady-state error) are 
summarized in Table 5. The proposed SFOA-based exp-PID achieved a rise time of 0.0039 s, a settling time of 
0.0083 s, zero overshoot, and an extremely small steady-state error of 2.53 × 10⁻⁴ %, confirming its outstanding 
dynamic precision. These improvements correspond to reductions of approximately 18–25% in transient 
durations compared with the next-best alternatives. Conversely, the DO-based exp-PID recorded the poorest 
results, with both the highest rise and settling times (0.0054 s and 0.0108 s) and a larger residual error (0.0067%).

Discussion
The overall comparison demonstrates that the starfish-driven tuning mechanism substantially enhances both 
convergence quality and control precision relative to other contemporary optimizers. By balancing its regenerative 
exploration and directional exploitation phases, SFOA avoids premature convergence and effectively searches 
the multimodal parameter landscape of the cascaded exp-PID controller. Consequently, it delivers superior 
transient behavior, minimal overshoot, and high steady-state accuracy in the DC-motor speed regulation task. 

Control method Best Worst Mean SD

SFOA-based exp-PID (proposed) 1.5879E − 03 1.7332E − 03 1.6378E − 03 3.4804E − 05

FLA-based exp-PID 1.7589E − 03 2.0011E − 03 1.8664E − 03 5.6876E − 05

GCRA-based exp-PID 1.9638E − 03 2.1595E − 03 2.0427E − 03 5.2099E − 05

MSA-based exp-PID 1.6791E − 03 1.8378E − 03 1.7560E − 03 3.6183E − 05

DO-based exp-PID 2.0734E − 03 2.2335E − 03 2.1472E − 03 4.1672E − 05

Table 3.  Statistical performance of different algorithms.
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The consistency between the statistical evidence (Table  3), parameter analysis (Table  4), convergence curve 
(Fig.  8) and temporal responses (Figs.  9 and 10) confirms that the SFOA-based exp-PID provides the most 
reliable and efficient control strategy among all tested algorithms.

Comparison with reported works
A comparative investigation was conducted between the proposed SFOA-based exponential PID (exp-PID) 
controller and several control methods previously reported in the literature to further validate its efficiency and 
robustness for DC motor speed regulation. The benchmarked methods included the grey wolf optimization 
(GWO)-based PID15, atom search optimization (ASO)-based PID14, marine predator algorithm (MMPA)-based 
PID30, hybrid Lévy flight distribution and Nelder–Mead algorithm (LFDNM)-based PID17. Each controller was 
tested under identical simulation conditions and reference inputs to ensure an equitable comparison of transient 
and steady-state behaviors.

Control method Kp Ki Kd τ 1 g1 τ 2 g2

SFOA-based exp-PID 17.5541 4.5635 4.9567 4.5278 4.9934 0.2362 0.2038

FLA-based exp-PID 15.8272 4.1142 3.9479 4.8407 4.9880 0.2018 0.2207

GCRA-based exp-PID 18.2859 3.6095 3.7284 4.9837 4.8609 0.2155 0.2509

MSA-based exp-PID 18.1803 5.1927 4.0355 4.9879 4.9288 0.2364 0.2082

DO-based exp-PID 16.2743 5.1824 3.4797 4.8982 4.9896 0.2612 0.2255

Table 4.  Optimized controller parameters for proposed and different optimization methods.

 

Fig. 8.  Change of cost function for DC motor speed control system.

 

Scientific Reports |        (2025) 15:44504 11| https://doi.org/10.1038/s41598-025-28145-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Transient response comparison
The transient characteristics of the DC motor speed control system are illustrated in Fig.  11, where the 
speed responses obtained using the five control methods are compared. The proposed SFOA-based exp-PID 
exhibits the fastest rise and settling times, reaching the desired speed in a substantially shorter period than 
the alternative approaches. This improvement results from the nonlinear exponential preprocessing within the 
cascaded structure, which accelerates corrective actions during the initial response phase. Unlike the GWO- 
and ASO-based controllers, which display moderate oscillations before stabilization, the SFOA-based exp-PID 
demonstrates zero overshoot, ensuring a smooth approach to the reference value. The MMPA-based PID, on 
the other hand, exhibits pronounced overshoot and a longer settling period, suggesting an excessive exploratory 
search pattern that slows convergence in fine-tuning the control parameters. The LFDNM-based PID achieves 
acceptable transient performance but remains inferior in both speed and damping compared with the proposed 
approach. The smooth, monotonic transition of the SFOA-based controller emphasizes its superior damping 
characteristics and adaptability to dynamic changes in the armature current and torque response.

Steady-state response comparison
The steady-state behavior for the same set of controllers is presented in Fig. 12. It is evident that the SFOA-
based exp-PID maintains the closest tracking to the reference speed, with an almost negligible steady-state 
deviation. In contrast, the GWO- and ASO-based controllers exhibit small but visible steady-state offsets, while 
the LFDNM-based design shows slight ripple around the target speed. The MMPA-based controller performs 
the worst in this aspect, as it fails to sustain stable operation and produces residual oscillations even after the 
system reaches steady state. The results confirm that the exponential term incorporated into the SFOA-tuned 
controller enhances integral compensation without inducing overshoot, allowing it to maintain steady operation 
and high accuracy despite disturbances or model nonlinearities.

Quantitative performance evaluation
A comprehensive comparison of quantitative performance metrics (including rise time, settling time, percentage 
overshoot, and steady-state error) is presented in Table 6. The proposed controller achieves a rise time of 0.0039 s 

Fig. 9.  Transient response analysis of DC motor speed control system for various algorithms.
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and a settling time of 0.0083 s, outperforming all benchmarked techniques by a significant margin. Both times 
are an order of magnitude faster than those of the GWO- and ASO-based controllers (0.1388 s and 0.0692 s, 
respectively). The zero-overshoot characteristic of the SFOA-based exp-PID eliminates transient instability, 
which is particularly beneficial for precision electromechanical systems. The steady-state error achieved by the 
proposed controller is 2.53 × 10⁻⁴ %, which is nearly two orders of magnitude smaller than the smallest error 
among the reference methods. In contrast, the MMPA-based PID suffers from a large overshoot (7.01%) and 
elevated steady-state error (0.4358%), while the LFDNM-based PID, though relatively stable, records higher 
residual error (0.0051%) and slower convergence. These observations collectively demonstrate that the proposed 
optimization framework achieves both rapid transient convergence and precise steady-state accuracy.

Discussion
The superior performance of the SFOA-based exp-PID can be attributed to its balanced exploration–exploitation 
mechanism, which enables efficient global search during the early optimization stages and refined local adjustment 
near the optimum. The regenerative and multi-directional behaviors of the starfish algorithm prevent premature 
convergence while ensuring smooth parameter evolution, leading to stable and robust control actions. In contrast, 
the MMPA tends to over-explore the solution space, reducing tuning precision for low-dimensional control 

Control method Rise time (s) Settling time (s) Overshoot (%) Steady-state error (%)

SFOA-based exp-PID 0.0039 0.0083 0 2.5254E − 04

FLA-based exp-PID 0.0048 0.0095 0 3.7705E − 04

GCRA-based exp-PID 0.0051 0.0103 0 0.0091

MSA-based exp-PID 0.0046 0.0091 0.0027 0.0025

DO-based exp-PID 0.0054 0.0108 0.0079 0.0067

Table 5.  Comparative performance metrics for proposed and other optimization methods.

 

Fig. 10.  Steady-state response analysis of DC motor speed control system for various algorithms.
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problems, whereas the ASO and GWO methods often stagnate in local minima due to their limited exploitation 
capability. The hybrid LFDNM approach improves convergence but lacks the nonlinear adaptation provided 
by the exponential transformation. Consequently, the SFOA-based exp-PID achieves the most favorable trade-
off between fast response, minimal overshoot, and near-zero error, as corroborated by the results in Table 6; 
Figs. 11 and 12. Furthermore, the study adopts a linearized DC-motor model around its nominal operating point 
to maintain consistency with previously reported analyses. Although this simplification facilitates comparison, 
future investigations may extend the analysis to include the motor’s nonlinear electromagnetic effects and load 
disturbances to verify the controller’s performance under real-world conditions.

Simulation results on liquid level control system
Comparison with more recent algorithms
To evaluate the efficiency and reliability of the proposed SFOA-based exponential PID (exp-PID) controller in 
regulating the liquid level system, a comprehensive comparison was conducted with several recently developed 
metaheuristic optimizers. The competing algorithms included the FLA6, GCRA7, MSA8 and DO9. Each optimizer 
was tested under identical simulation settings (equal population size, iteration limit, and thirty independent 
runs) to ensure fair statistical comparison and to minimize random bias.

Statistical performance evaluation
The statistical outcomes summarizing the best, worst, mean, and standard deviation (SD) of the objective-
function values are provided in Table  7. The proposed SFOA-based exp-PID achieved the lowest mean cost 
value of 2.9676 × 10⁻¹, reflecting the most efficient optimization among all methods. In contrast, the MSA-
based exp-PID produced the highest mean cost (3.6086 × 10⁻¹) and widest performance spread, indicating a 
tendency toward inconsistent convergence. The FLA-, GCRA-, and DO-based variants displayed intermediate 
results but remained inferior in terms of both mean and SD. Overall, the proposed controller achieved up to 
17.8% reduction in cost relative to the MSA-based approach and consistent gains of 5–12% compared with the 

Fig. 11.  Transient response analysis of DC motor speed control system for SFOA-based exp-PID and other 
reported control methods.
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other methods. These findings confirm that the SFOA’s multi-directional exploration and regenerative behavior 
effectively locate the global optimum with high stability.

The convergence profiles of all algorithms are depicted in Fig. 13. The SFOA-based curve shows the steepest 
decline in the early iterations and stabilizes at a minimum cost plateau, confirming its rapid convergence 
capability. The MSA-based controller exhibits an oscillatory trend before settling, while the FLA- and GCRA-
based versions converge more slowly, underscoring their weaker exploitation efficiency.

Optimized controller parameters
The optimal parameter sets determined for each control method are summarized in Table 8. The SFOA-tuned 
controller yielded the highest proportional ( Kp) and exponential scaling coefficients ( τ 1, τ 2), along with 
finely balanced integral ( Ki) and derivative ( Kd) gains. This combination enhances the controller’s adaptability 
and responsiveness to level variations. In comparison, the MSA-based optimizer produced smaller Kp and less 
effective exponential shaping parameters, resulting in sluggish behavior and greater steady-state deviations. The 
DO- and FLA-based designs displayed moderate parameter distributions, whereas the GCRA-based variant 
emphasized larger integral gains, causing mild oscillatory responses. These parameter trends demonstrate that 

Control method Rise time (s) Settling time (s) Overshoot (%) Steady-state error (%)

SFOA-based exp-PID (proposed) 0.0039 0.0083 0 2.5254E − 04

GWO-based PID 0.1388 0.2052 1.5068 0.9505

ASO-based PID 0.0692 0.1535 0 0.2456

MMPA-based PID 0.0635 0.2793 7.0060 0.4358

LFDNM-based PID 0.0462 0.0813 0.0676 0.0051

Table 6.  Comparative performance metrics for proposed and other optimization method.

 

Fig. 12.  Steady-state response analysis of DC motor speed control system for SFOA-based exp-PID and other 
reported control methods.
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the SFOA efficiently identifies gain relationships that yield faster rise and settling times without introducing 
instability. The resulting control signal exhibits smoother actuation and lower energy expenditure, which are 
critical for precision process-control systems.

Transient and steady-state response analysis
The transient responses of the liquid-level control system for all tested algorithms are presented in Fig. 14. The 
proposed SFOA-based exp-PID provides the fastest rise time and the shortest settling time, reaching the desired 
level with minimal oscillation. The FLA-based design performs comparably but with slightly slower convergence, 
while the DO-based controller produces a moderate response accompanied by a small overshoot. In contrast, 
the MSA-based exp-PID exhibits the slowest reaction and pronounced oscillations, extending the stabilization 
period and indicating inferior damping performance.

The steady-state characteristics, illustrated in Fig. 15, show that the SFOA-based exp-PID maintains the liquid 
level extremely close to the setpoint with nearly zero steady-state error. The DO-based controller demonstrates 
acceptable accuracy but a slightly higher residual error, while the FLA-based exp-PID deviates more noticeably, 

Fig. 13.  Change of cost function for liquid level control system.

 

Control method Best Worst Mean SD

SFOA-based exp-PID (proposed) 2.8587E − 01 3.0788E − 01 2.9676E − 01 5.8279E − 03

FLA-based exp-PID 3.2623E − 01 3.6745E − 01 3.3750E − 01 9.4093E − 03

GCRA-based exp-PID 3.0417E − 01 3.3200E − 01 3.1462E − 01 6.3445E − 03

MSA-based exp-PID 3.5145E − 01 3.7071E − 01 3.6086E − 01 5.7625E − 03

DO-based exp-PID 3.1710E − 01 3.4541E − 01 3.3008E − 01 7.5143E − 03

Table 7.  Comparative evaluation for proposed and four different control methods.
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implying possible long-term offset. These results highlight the strong steady-state precision achieved by the 
SFOA-tuned nonlinear control structure.

Quantitative performance indicators
A comparative summary of key dynamic metrics (rise time, settling time, percentage overshoot, and steady-
state error) is provided in Table 9. The SFOA-based exp-PID records a rise time of 1.7202 s and a settling time 
of 2.4715  s, outperforming all other algorithms. Its overshoot remains tightly limited at 1.4976%, and the 
steady-state error is only 9.219 × 10⁻⁵ %, confirming exceptional tracking accuracy. By contrast, the MSA-based 
controller shows the slowest transient performance (rise time = 2.1206 s; settling time = 3.0499 s), while the DO-
based variant, though faster, exhibits the largest overshoot (1.8518%). The FLA- and GCRA-based controllers fall 
between these extremes but still trail behind the SFOA in all performance aspects.

In industrial applications, the freeboard constraint (the margin between the nominal level hn and the 
tank’s maximum permissible level hmax) is a safety criterion. The permissible overshoot can be expressed 
as hmax = hn(1 + Mp/100) where Mp denotes percentage overshoot. Assuming hn = 0.8 m and 

Fig. 14.  Transient response analysis of liquid level control system for various algorithms.

 

Control method Kp Ki Kd τ 1 g1 τ 2 g2

SFOA-based exp-PID (proposed) 0.2571 0.0026 9.8975 9.3245 9.9068 7.2754 9.0397

FLA-based exp-PID 0.2542 0.0057 8.4393 4.4018 9.4019 7.7574 6.8187

GCRA-based exp-PID 0.6945 0.0074 9.6439 7.5717 9.3180 5.7033 9.1285

MSA-based exp-PID 0.2375 0.0090 9.2252 9.1447 7.3524 6.1209 7.7112

DO-based exp-PID 0.1906 0.0042 8.1920 9.6222 9.6322 6.1494 9.6925

Table 8.  Optimized controller parameters for proposed and other controller methods.
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hmax = 0.9 m, the allowable overshoot equals 12.5%. As reported in Table  9, the SFOA-based exp-PID’s 
overshoot (1.4976%) and even the highest observed overshoot (1.8518% for the DO-based controller) remain 
well within this practical safety limit. Thus, all tested controllers operate under safe transient conditions, but the 
proposed approach achieves the most stable and efficient regulation.

Discussion
The comparative analysis unequivocally demonstrates that the SFOA-driven tuning strategy enhances both 
optimization quality and control precision. Its distinctive regenerative search and multidirectional arm-
extension mechanisms enable a balanced exploration–exploitation process, preventing premature convergence 
and ensuring refined local adjustment of controller gains. The statistical evidence (Table 7), optimized parameter 
patterns (Table 8), convergence curve (Fig. 13) and dynamic responses (Figs. 14 and 15) collectively validate 
the superiority of the proposed SFOA-based exp-PID controller. It delivers faster transient response, minimal 
overshoot, and nearly zero steady-state error while maintaining operational safety margins within industrial 
freeboard limits. Consequently, this controller can be considered a robust and efficient solution for precise 
liquid-level regulation in nonlinear, slow-dynamics process systems.

Control method Rise time (s) Settling time (s) Overshoot (%) Steady-state error (%)

SFOA-based exp-PID (proposed) 1.7202 2.4715 1.4976 9.2190E − 05

FLA-based exp-PID 1.7306 2.5900 1.5975 0.0016

GCRA-based exp-PID 1.7507 2.5498 1.6174 8.2500E − 04

MSA-based exp-PID 2.1206 3.0499 1.5118 0.0012

DO-based exp-PID 1.9293 2.7595 1.8518 2.4954E − 04

Table 9.  Comparison of performance metrics for the proposed SFOA-based exp-PID and other controllers.

 

Fig. 15.  Steady-state response analysis of liquid level control system for various algorithms.
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Comparison with reported works
A further comparative study was performed to validate the effectiveness of the proposed SFOA-based exp-PID 
controller for the three-tank liquid-level control system against a series of recently reported optimization-
based PID methods. The benchmarked controllers include the ALC-PSODE-based PID33, MGO-based PID1, 
AOA-HHO-based PID32 and CMA-ES-based PID32. All controllers were simulated under identical operating 
conditions, reference inputs, and dynamic parameters to ensure a fair and reproducible evaluation of both 
transient and steady-state performances.

Transient-response evaluation
The transient responses of the various controllers are depicted in Fig. 16. The proposed SFOA-based exp-PID 
achieves the fastest rise and settling times, enabling the liquid level to reach the desired value far earlier than 
the other benchmarked methods. The controller responds smoothly to step changes, reflecting the benefit of 
the exponential nonlinearity in the cascaded structure, which accelerates error correction without introducing 
oscillation. In contrast, the ALC-PSODE-based PID and MGO-based PID present slower transients with 
noticeable overshoot, while the AOA-HHO-based PID and CMA-ES-based PID show significantly delayed 
stabilization and high oscillatory behavior. The large settling times of the latter two controllers indicate limited 
exploitation capacity and slower convergence within their optimization processes. The minimal overshoot 
achieved by the proposed controller prevents level excursion beyond the permissible range—an essential feature 
in safety-critical process operations.

Steady-state performance
The steady-state characteristics illustrated in Fig. 17 further confirm the superiority of the proposed controller. 
Once the transient phase ends, the SFOA-based exp-PID maintains the liquid level almost perfectly at the 
reference value, exhibiting an extremely small steady-state error. By comparison, the ALC-PSODE-based and 
MGO-based controllers show small but measurable offsets, while the AOA-HHO- and CMA-ES-based PIDs 
experience persistent deviations and low-frequency ripples around the setpoint. This steady-state precision 

Fig. 16.  Transient response analysis of liquid level control system for SFOA-based exp-PID and other reported 
control methods.
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demonstrates that the SFOA-tuned exponential terms effectively enhance the integral action without inducing 
sluggishness, allowing precise long-term level regulation despite the nonlinear flow dynamics and slow system 
response inherent to multi-tank configurations.

Quantitative performance assessment
The quantitative metrics summarized in Table 10 provide a comprehensive overview of the transient and steady-
state performance for all controllers. The proposed SFOA-based exp-PID achieves a rise time of 1.7202  s, 
settling time of 2.4715 s, overshoot of 1.4976%, and a steady-state error of 9.219 × 10⁻⁵ %. These results represent 
substantial improvements over all reference methods. For comparison, the CMA-ES-based PID exhibits an 
exceptionally long settling time of 238.6706 s and a high overshoot of 50.1692%, while the AOA-HHO-based PID 
reaches 160.1083 s with an overshoot exceeding 20%. The ALC-PSODE-based and MGO-based PIDs perform 
moderately but still present large deviations (overshoot ≈ 12%) and significantly longer stabilization times (60–
64  s). The near-zero steady-state error of the proposed controller, several orders of magnitude smaller than 
those of its counterparts, confirms its superior tracking precision and robustness to steady disturbances. The 
slower convergence of the CMA-ES-based PID can be attributed to the covariance-matrix adaptation process, 

Control method Rise time (s) Settling time (s) Overshoot (%) Steady-state error (%)

SFOA-based exp-PID (proposed) 1.7202 2.4715 1.4976 9.2190E − 05

ALC-PSODE-based PID 12.7618 64.2147 12.4682 0.0543

MGO-based PID 10.9723 60.5703 12.1153 0.0665

AOA-HHO-based PID 17.7026 160.1083 20.1179 0.4044

CMA-ES-based PID 15.0022 238.6706 50.1692 0.2646

Table 10.  Comparison of performance metrics for the proposed SFOA-based exp-PID and other controllers.

 

Fig. 17.  Steady-state response analysis of liquid level control system for SFOA-based exp-PID and other 
reported control methods.
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which tends to progress conservatively on the highly nonlinear cost surface introduced by the exponential 
transformation. Conversely, the SFOA’s adaptive regeneration and multidirectional search strategy ensures 
both rapid convergence and refined local adjustment, yielding optimal control gains even in such complex 
optimization landscapes.

Discussion
The comparative outcomes demonstrate that the SFOA-driven tuning mechanism provides a well-balanced 
combination of exploration and exploitation, enabling efficient global search during the early optimization phase 
and precise local refinement near the optimum. This behavior allows the exp-PID controller to maintain stability, 
accuracy, and low energy consumption even under nonlinear, slow-response conditions typical of multi-tank 
systems. As evidenced by the data in Table 10 and the temporal behaviors in Figs. 16 and 17, the SFOA-based 
exp-PID significantly outperforms all reported counterparts in every evaluated metric. Its rapid rise and settling 
times, minimal overshoot, and negligible steady-state error make it a highly reliable and efficient solution 
for complex fluid-level regulation tasks. Furthermore, the results confirm that the integration of exponential 
nonlinearity with starfish-based adaptive optimization introduces a generalized control framework that can be 
extended to a wide range of industrial process-control applications.

Conclusion and future work
A cascaded exponential PID controller optimized through the SFOA has been developed and extensively analyzed 
in this study. The combination of exponential error modulation and the adaptive regeneration mechanism of 
SFOA enabled precise control with rapid convergence and strong robustness against nonlinearities and parameter 
variations. Comprehensive simulations on a DC-motor system and a three-tank liquid-level process confirmed 
the efficiency of the proposed approach. In the DC-motor case, the SFOA-tuned exp-PID achieved a rise time of 
0.0039 s, settling time of 0.0083 s, and zero overshoot, indicating a near-ideal transient response. For the three-
tank system, the controller achieved a rise time of 1.72 s, settling time of 2.47 s, overshoot of 1.50%, and steady-
state error below 1 × 10⁻⁴ %, outperforming competing algorithms such as FLA, GCRA, MSA, and DO under 
identical conditions. Statistical comparisons across 25 runs verified the convergence stability and repeatability of 
the proposed method. These findings demonstrate that the SFOA-based exp-PID offers a versatile and reliable 
solution for nonlinear process control, achieving faster responses and enhanced steady-state accuracy compared 
to conventional and recently developed optimization-based controllers.

Although the present study focused on simulation-based validation, future research will explore real-time 
implementation on embedded platforms (e.g., Arduino, STM32, or dSPACE) to assess hardware efficiency and 
control latency. Extending the approach to fractional-order and multi-objective optimization frameworks may 
further improve dynamic adaptability and control smoothness. The hybridization of SFOA with complementary 
techniques such as Differential Evolution (DE), reinforcement learning, or adaptive fuzzy logic is also a promising 
avenue for achieving faster convergence and improved learning capability. Moreover, applying the proposed 
controller to more complex systems (such as renewable-energy conversion units, robotic manipulators, and 
autonomous mechatronic platforms) could demonstrate its scalability and generalization potential. These 
developments are expected to establish the SFOA-based exp-PID as a robust, intelligent, and industry-ready 
control paradigm.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request.
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