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Accurate prediction of groundwater levels (GWL) is critical for sustainable utilization and scientific 
management of groundwater resources. However, precise forecasting of GWL fluctuations faces 
significant challenges due to the complex nonlinear coupling effects of hydrogeological conditions 
and hydro-meteorological factors. In recent years, research on GWL prediction based on deep learning 
models has become a cutting-edge topic in the field of hydrogeology. This study focused on Jinan City, 
China, and constructed a novel hybrid deep learning model that integrates graph neural networks to 
capture spatial relationships and recurrent neural networks to model temporal dynamics, effectively 
learning the complex spatio-temporal patterns in the data, namely the Spatio-Temporal Graph 
Prediction Model (STGPM). Our approach uniquely captures both hydrological connectivity between 
monitoring wells and multi-scale temporal dependencies, overcoming key limitations of conventional 
time-series models. Comparative experiments demonstrate that STGPM outperforms the benchmark 
models on the test set, achieving the lowest prediction errors (MAE = 0.039, RMSE = 0.052) and the 
highest coefficient of determination (R2=0.988). Notably, for the monitoring well data not involved in 
model training, the STGPM still maintains excellent predictive accuracy (MAE = 0.062, RMSE = 0.087, 
R2=0.980), demonstrating the model’s strong generalization ability to unmonitored locations. 
This study provides water resource managers with a reliable decision-support tool for sustainable 
groundwater management and spring conservation strategies. The proposed methodological 
framework also offers a transferable solution for addressing various environmental forecasting 
challenges characterized by spatial heterogeneity.
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Groundwater resources, as the most abundant and valuable freshwater resources globally, play a crucial role in 
various key areas vital to human activities, such as agricultural irrigation, industrial production, and potable 
water supply1–3. However, global groundwater systems are currently facing multiple pressures, including 
overexploitation, environmental pollution, and climate change, which have led to a marked deterioration in 
both the quantity and quality of groundwater4. A representative case is Jinan City, China, renowned as the 
“Spring City” for its iconic karst spring system, with four major spring groups—Baotu Spring, Heihu Spring, 
Pearl Spring, and Wulongtan Spring—distributed within its territory, and it has a rich variety of groundwater 
types5. With the rapid development of socio-economy and the continuous advancement of urbanization, the 
area of spring recharge zones is sharply decreasing. The significant increase in surface imperviousness has 
severely impaired the infiltration and recharge capacity of karst water, disrupting the natural balance of the 
regional groundwater system. In recent years, the decline in groundwater levels in the spring distribution 
areas has posed a severe threat to sustainable spring outflow. Groundwater level (GWL) is a key indicator for 
measuring the availability and accessibility of groundwater and is closely related to various hydrological and 
ecological processes6–8. Consequently, accurate GWL prediction constitutes not only an essential foundation for 
groundwater conservation and ecosystem protection but also a prerequisite for formulating sustainable water 
management strategies and realizing sustainable utilization9,10.

However, GWL prediction constitutes a complex systemic process, where dynamic variations are a 
comprehensive response to coupled interactions of climatic, topographic, and hydrogeological factors11,12. This 
inherent complexity poses significant challenges for precise GWL modeling. Recent advances have witnessed 
global efforts in developing quantitative and qualitative prediction approaches to establish high-accuracy, 
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robust GWL forecasting models. Current methodologies for groundwater simulation primarily follow two 
paradigms: physically-based numerical models and data-driven artificial intelligence models. Physically-based 
numerical models, such as MODFLOW13 and FEFLOW14, simulate groundwater flow by solving governing 
partial differential equations derived from physical laws using numerical discretization techniques (e.g., 
finite difference15, finite element16, and finite volume methods17. These models offer a notable advantage by 
explicitly elucidating the physical processes driving GWL fluctuations18. Nevertheless, the prediction accuracy 
of such methods is inherently constrained by two critical limitations: the difficulty in accurately parameterizing 
complex surface water potential fields and the frequent unavailability of precise hydrogeological parameters10,19. 
Furthermore, their high demands for computational resources and data volume often hinder the precise scenario 
simulation and real-time forecasting20,21. These limitations have sparked growing interest among researchers 
in data-driven artificial intelligence approaches. Benefiting from their strong capability for nonlinear pattern 
recognition, artificial intelligence methods have demonstrated remarkable advantages and application potential 
in groundwater forecasting, effectively overcoming the constraints of traditional statistical techniques22.

Machine learning (ML), a vital research domain within artificial intelligence, uncovers complex mappings 
between predictors and response variables from historical data by eliminating the need for explicit representation 
of physical characteristics or underlying mechanisms, thereby providing a viable alternative to computationally 
intensive physical models23. Numerous studies have successfully integrated meteorological data with GWL 
datasets to train ML models24,25, including support vector machines26,27, random forests28, and artificial neural 
networks29. However, these individual ML models often struggle to address prediction uncertainties arising 
from model parameterization and structural limitations23. To address these challenges, hybrid ML models have 
emerged as valuable tools in groundwater simulation. By combining the predictive capabilities of multiple ML 
algorithms, the hypothesis space for groundwater dynamics prediction can be effectively expanded, thereby 
enabling more comprehensive analysis of complex factor interactions4. For instance, Pham, et al. 30 conducted 
an in-depth investigation into the performance of seven ML models for GWL prediction, demonstrating that 
the ensemble learning methods Bagging-RT and Bagging-RF outperformed the other five ML models. Despite 
the advancements represented by these ML and hybrid models, they primarily remain limited to point-based 
forecasting, failing to incorporate the spatial interdependencies between monitoring locations, a critical factor 
in aquifer systems. Furthermore, their performance is often hampered by sensitivity to hyperparameter selection 
and feature engineering31.

To enhance the robustness and accuracy of ML models, researchers integrated them with meta-heuristic 
optimization algorithms (e.g., Particle Swarm Optimization, Genetic Algorithm) for automated hyperparameter 
tuning9,32–34. For instance, Saroughi, et al. 35 employed the Honey Badger Algorithm (HBA) to optimize 
parameters of ANN and SVR models, with systematic evaluations confirming that the optimized HBA-ANN 
and HBA-SVR models significantly outperformed their standalone counterparts. In further research, the 
team integrated ANN with both Coot and Honey Badger optimization algorithms for GWL prediction in the 
Tabriz plain of Iran36. Statistical metric selection based on the Shannon entropy criterion verified the superior 
predictive performance of the Honey Badger optimization algorithm. This hybridization, as evidenced by studies 
like Thakur and Karmakar37, led to noticeable performance improvements. Nevertheless, while these optimized 
hybrids addressed parameterization issues, their ability to learn and generalize from the complex, coupled spatio-
temporal dynamics inherent in groundwater systems remained inadequate. In addition, although the intelligent 
optimization algorithms mentioned above demonstrate advantages in efficiency, the present study—considering 
the small number and discrete nature of the model’s hyperparameters—employs the more comprehensive and 
stable Grid Search method to ensure the optimality and reproducibility of the results.

Deep learning, a significant branch of machine learning, leverages deep neural architectures with high-
parameter capacity to effectively capture high-order nonlinear features and complex correlation patterns in 
data. Substantial empirical research has demonstrated the superior predictive performance of deep learning 
approaches over both standalone and hybrid ML methods in water resources management tasks12,20,38. Models 
such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRU) have become the 
benchmark for time-series forecasting in hydrology39,40. More recently, architectures like the Transformer have 
been explored for their superior ability to capture long-range dependencies through self-attention mechanisms41. 
Concurrently, Graph Neural Networks (GNNs), such as GraphSAGE42, have emerged as powerful tools for 
modeling relational data and spatial correlations, showing great potential in applications like water quality 
prediction. A nascent body of research has begun to explore the integration of these temporal and spatial 
architectures for spatio-temporal forecasting. Studies like Chen et al. 43 have proposed hybrid models (e.g., 
STGCN) combining graph convolutional networks with temporal modules, demonstrating promising results 
for regional-scale GWL prediction. Despite these advancements, a significant research gap persists. Inherently, 
GWL prediction is a quintessential complex spatio-temporal problem43. From a temporal perspective, GWL 
dynamics exhibit pronounced periodic fluctuations driven by meteorological conditions and seasonal cycles. 
Spatially, the inherent circulation mechanisms of groundwater cause water level changes in geographically 
adjacent areas to display strong spatial correlation. Existing research primarily leverages the nonlinear fitting 
capabilities of machine learning or deep learning to construct predictive models based on the autocorrelation 
(which measures the correlation of a time series with its own lagged values) and periodic characteristics of 
time-series data. However, these methods, relying solely on the autocorrelation features of time series, struggle 
to effectively characterize the spatial heterogeneity among monitoring wells, thereby limiting the prediction 
accuracy of the models.

To bridge this gap, this study developed a hybrid deep learning model that integrates spatiotemporal features, 
aiming to provide a scientific decision-support tool for groundwater management in Jinan City. The primary 
objectives and innovations of this work were threefold:
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	1.	 We developed a new deep learning framework that synergistically integrates GraphSAGE and a multi-branch 
GRU network, which successfully captured both the hydrological connectivity between monitoring wells and 
multi-scale temporal dynamics of groundwater systems. This design allowed the model to jointly capture 
immediate responses to rainfall events, seasonal fluctuations, and inter-annual trends;

	2.	 We introduced a trainable cross-attention mechanism to dynamically fuse the multi-scale temporal features 
with the spatially-aware graph embeddings, replacing simple concatenation or averaging. This enabled more 
effective and context-aware integration of spatio-temporal information.

	3.	 We designed a dedicated unseen-well test set to rigorously evaluate the model’s spatial extrapolation ability. 
The superior performance on this test set demonstrates that our model learns universal hydrogeological 
patterns rather than merely memorizing site-specific sequences.

The remainder of this paper is organized as follows: Section  “Materials and methods” describes the study 
area, data sources, preprocessing procedures, and the detailed architecture of the proposed STGPM model. 
Section “Results and discussion” presents the experimental results, including model performance comparisons, 
ablation studies, and interpretability analysis. Finally, section “Conclusion” concludes the study.

Materials and methods
The complete workflow of the methodology in this study was divided into three critical stages: data preprocessing, 
model construction, and model optimization and evaluation (Fig. 1). During the data preprocessing stage, a 
variety of techniques, including data cleaning and feature engineering, were employed to reconstruct raw data 
to meet the requirements for model training. The data were also reasonably partitioned to ensure their quality 
and usability. The modeling phase developed an architecture specifically designed to capture both the temporal 

Fig. 1.  Workflow diagram of the methodology.

 

Scientific Reports |        (2025) 15:44535 3| https://doi.org/10.1038/s41598-025-28200-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


dependencies and spatial correlations inherent in GWL dynamics, establishing a robust foundation for prediction 
tasks. During the model optimization and validation stage, hyperparameters were iteratively optimized using a 
loss function and an optimizer until convergence, resulting in the optimal model performance. A comprehensive 
performance validation was conducted through a multi-indicator, multi-dimensional evaluation system. The 
experimental design included performance comparison, ablation experiments, and model interpretability 
analysis to ensure the accuracy and reliability of the model.

Study area and datasets
Study area
This study focused on the administrative region of Jinan City, which is located in the eastern part of North China 
Plain, in the middle and western part of Shandong Province, East China (Fig. 2). The geographical location 
ranges from 36°02’ N to 37°54’ N and from 116°21’ E to 117°59’ E, with a total area of 8,154 km2.The study 
area featured a warm-temperate continental monsoon climate situated in the mid-latitude inland area. This 
climatic characteristic results in significant seasonal differences in precipitation, with the majority of rainfall 
concentrated in the summer months (June to August), accounting for about 70% of the annual precipitation. 
Additionally, there is considerable inter-annual variability in precipitation. It is worth noting that atmospheric 
precipitation serves as the dominant recharge source for the karst aquifer system.

Jinan is situated in a transition zone between the low-mountain hills of central-southern Shandong and 
the alluvial plain of northwestern Shandong. The topography is higher in the south and lower in the north. 
The southern consists of Ordovician limestone karst aquifers, while the northern is characterized by igneous 
aquitards. This geological structure creates a natural hydrogeological unit with “southern recharge-northern 
barrier” that drives regional groundwater flow along a predominant south-to-north gradient44. The karst water 
in the central piedmont plain serves as the main water supply for Jinan, with an average GWL of 45.68 m. In 
contrast, the southern hilly areas are primarily composed of fracture water, with an average GWL of 227.36 m. 
Both karst and fracture water levels exhibit significant fluctuations.

Datasets
In this study, we utilized GWL observation data as the target variable and integrated multiple input variables to 
construct the dataset for predictive modeling. We collected static attribute data from 27 monitoring wells located 
within the study area (Fig. 2c), including geographical coordinates (longitude and latitude), wellhead elevation, 
and aquifer type. Concurrently, we obtained GWL time series recorded at 7-day intervals from January 2018 to 
October 2023, providing absolute elevation values (meters) relative to the national vertical datum.

To capture the complex dynamics of groundwater fluctuations, this study comprehensively considered the 
lag effect and driving mechanism, and incorporated three key driving factors: (1) Historical GWL data (τ time-
lagged terms): characterizing temporal autocorrelation in groundwater systems; (2) Meteorological variables 
(precipitation, temperature, evapotranspiration): representing external climatic forcing; (3) Spatial factors 
(water levels of adjacent monitoring wells): quantifying the spatial correlation. Among them, the lag effect 
was captured through historical GWL time-lags, while the external driving mechanisms were represented by 
meteorological and spatial factors. These meteorological data were sourced from the National Earth System 
Science Data Center (http://www.geodata.cn/main/), which provides a 1 km resolution monthly dataset for the 
Chinese region (1901–2023), with each product containing 12 monthly bands. Data from 2018 to 2023 were 
selected to ensure temporal consistency with the GWL observation data. Through data preprocessing methods, 
the gridded meteorological data were precisely matched with the locations of each monitoring well, constructing 
a spatiotemporally consistent multivariate analysis dataset.

Data preprocessing
Data preprocessing constitutes a critical and indispensable step in the construction of deep learning models, 
playing a decisive role in enhancing model performance34. Our systematic preprocessing pipeline comprised 
four key phases: (1) data cleaning; (2) multi-source data fusion; (3) feature engineering; (4) dataset partitioning. 
The workflow of data processing is illustrated in Fig. 3.

Data cleaning
Given the susceptibility of groundwater level (GWL) observations to sensor errors and environmental 
disturbances, this study implemented rigorous noise reduction protocols to enhance signal-to-noise ratios. To 
address heterogeneity of multi-source data, we systematically unified the sampling frequency and measurement 
units across all monitoring wells, thereby eliminating potential biases from data inconsistencies23. Specifically: 
(1) depth-to-water measurements were converted to elevation head values using wellhead benchmarks, (2) 
high-frequency daily data were resampled to 7-day resolution using arithmetic averaging to maintain temporal 
consistency, and (3) a stringent quality control filter was applied to select wells with a missing rate of less than 
30% and no gaps exceeding one consecutive month during 2018–2023. Missing values were then imputed using 
seasonal-trend decomposition (STL) to preserve the statistical properties of hydrological time series45.

Multi-source data fusion
This study employed a systematic data fusion approach to achieve spatio-temporal synchronization between 
meteorological variables and GWL observations. Utilizing the ArcGIS 10.8 platform, we first extracted monthly 
bands (2018–2023) from raster datasets for each meteorological element (precipitation, temperature, and 
potential evapotranspiration) through raster processing. The “Extract Values to Points” spatial analyst tool 
was then applied to derive precise time-series of meteorological elements at all 27 monitoring well locations. 
Temporal alignment was rigorously enforced by establishing unified timestamp indices that synchronize GWL 
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Fig. 2.  Geographical location of the study monitoring well in Jinan City, Shandong Province. (a) Displays the 
location of Shandong Province within China; (b) provides a zoomed-in view of Shandong Province, with a 
focus on Jinan, shown in the highlighted area; (c) presents a detailed topographic map of the study area and 
GWL monitoring wells, with the elevation ranging from 3 to 982 m. This figure was created using ArcGIS 
10.8.1. The provincial-level administrative boundary map of China and the administrative boundary map of 
Shandong Province were obtained from the Resource and Environmental Science Data Platform ​(​​​h​t​t​p​s​:​/​/​w​w​w​
.​r​e​s​d​c​.​c​n​/​​​​​) under a free download policy. Note: Some monitoring wells (e.g., W3, W4, W5 and W16, W17) are 
in very close proximity, and their markers overlap visually.
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records with corresponding meteorological measurements, ultimately generating a spatiotemporally coherent 
multivariate dataset. This fusion process ensured rigorous spatiotemporal alignment of multi-source datasets, 
establishing a robust foundation for subsequent spatiotemporal modeling.

Feature engineering
Temporal feature engineering: Beyond fundamental meteorological variables (precipitation, temperature, 
and evapotranspiration), we leveraged the time lag of GWLs to generate lagged GWL features. Autocorrelation 
function (ACF) analysis of GWL time series across monitoring wells revealed that 20 wells had a significant 
lag step of 2, while the remaining 7 wells demonstrated a significant lag step of 3. To optimize the trade-off 
between model complexity and feature representation capacity, this study adopted the maximal consensus lag 
order (lag 2) across all monitoring wells. Consequently, we constructed the GWL lag features for 7-day lagged 
values (GWL_lag1) and 14-day lagged values (GWL_lag2) as model inputs. Table 1 presents comprehensive 
statistics (Mean, Min, Max, STDEV, etc.) for both input and target variables (2018–2023), providing quantitative 
characterization of aquifer system dynamics and data basis for prediction model training.

Spatial feature engineering: The spatial dataset delineated the geographical coordinates (latitude and 
longitude) and static attributes (elevation referenced to national geodetic datum, aquifer type classification) for 

Input variables Output variable

Precipitation  (mm) Temperature  (ºC) Evaporation  (mm) GWL_lag1  (m) GWL_lag2  (m) GWL (m)

Max 384 29 199.5 434.51 434.51 434.51

Min 0 -4 23.1 −42.89 −42.89 −42.89

Mean 63 14 98.62 76.58 76.27 76.85

Median 30 15 94.6 45.26 44.59 45.44

STD 80.44 10.23 55.36 93.02 93.00 93.03

Skew 1.87 −0.20 0.14 1.73 1.74 1.71

Table 1.  Statistical description of the input and output variable.

 

Fig. 3.  The workflow diagram of data preprocessing for GWL prediction modeling.
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all monitoring wells. Subsequently, we can precisely compute the hydraulic connectivity metrics between each 
monitoring well based on Euclidean distances. Table 2 provides representative examples of spatial dataset for 
some monitoring wells.

Normalization: Given the well-documented sensitivity of deep neural networks to input feature scales, 
this study implemented rigorous normalization using Scikit-learn machine learning library in the Python 
environment. This preprocessing step effectively eliminated the dimensional differences between features, 
ensuring the stability and convergence efficiency of model training and laying the data foundation for subsequent 
modeling.

Dataset partitioning
To ensure systematic and reliable evaluation of the model, this study adopted the following data partitioning 
strategy: Initially, the time-series data of two monitoring points randomly selected from the 27 monitoring points 
were reserved as an independent unseen-well test set to evaluate model performance on unseen monitoring 
wells. The data of the remaining 25 wells were divided according to the time series, with the data of 2023 year 
serving as the conventional test set for final validation of prediction accuracy. Data from 2018 to 2022 were used 
as the model development set, which was strictly divided into a training set (80%) and a validation set (20%) in 
chronological order. Here, the training set facilitated the learning and optimization of model parameters, while 
the validation set was used to monitor the generalization ability in real time during the training process and 
to prevent over-fitting. After partitioning, the training, validation, conventional test, and unseen-well test sets 
contained approximately 5,220, 1,305, 1, 075, and 608 samples, respectively.

Ultimately, model performance was assessed through dual evaluation levels: The conventional test set was 
used to evaluate temporal extrapolation capability, that is, the predictive accuracy for future time points on 
known monitoring wells; The unseen-well test set was used to assess spatial extrapolation performance, that is, 
the predictive adaptability to new monitoring wells. This dual testing strategy evaluated the model performance 
across both temporal and spatial dimensions, ensuring the comprehensiveness and reliability of the model 
evaluation.

Model construction
Inherently, GWL prediction is a complex systems problem with significant spatiotemporal coupling 
characteristics, where dynamic variations are simultaneously influenced by temporal evolution and spatial 
interactions. In the temporal dimension, GWL exhibits sequential dependence through continuous evolution, 
with new observations dynamically correlated to their historical states. Spatially, fluctuations in GWL at 
adjacent monitoring wells show significant hydraulic interdependencies. In response to these characteristics, 
this study designed a hybrid GWL prediction model integrating spatio-temporal features (STGPM), whose core 
architecture was organically composed of three key modules: spatial feature extraction, multi-scale temporal 
feature extraction, and spatio-temporal feature fusion. The structure of the overall model was shown as Fig. 4, 
which fully incorporated the spatio-temporal coupling mechanisms of the groundwater system, providing a 
scientifically rigorous modeling paradigm for accurate GWL prediction.

Construction of the K-nearest neighbor graph
To effectively capture hydraulic connectivity between monitoring wells, this study constructed a K-nearest 
neighbor (KNN) graph based on the geographical coordinates of monitoring wells, where each monitoring 
well was regarded as a node of the undirected graph. This graph structure could effectively capture the local 
spatial correlation among monitoring wells, providing neighborhood information for subsequent spatial feature 
aggregation. The specific steps were as follows:

Coordinate extraction: Extracted latitude and longitude coordinates of each monitoring well from their 
spatial information to form an N × 2 coordinate matrix (where N is the number of monitoring points, N = 25).

K-Nearest neighbors calculation: Utilized the nearest neighbor algorithm to calculate the K nearest 
neighbors for each monitoring well and obtained the Euclidean distances to these nearest neighbors.

Edge construction: Traversed each node and established undirected edges between it and its nearest 
neighbors, with edge weights set as the inverse of Euclidean distance. This weighting scheme ensured stronger 
connections between geographically closer nodes, thereby more accurately reflecting the spatial relationships 
between wells.

The final undirected graph G (V, E) completely characterized the spatial topology structure of the monitoring 
well network, where V = {v1, v2, . . . , vm} represented the monitoring wells and E = {e1,2, ei,j , . . . , vm,n} 
described the strength of spatial connections between them. This undirected graph served as input to the 
GraphSAGE model, providing accurate neighborhood information for subsequent spatial feature extraction.

ID Lon Lat Elev AquiferType

W1 370,114,220,003 117.345 36.731 55.64 1

W2 370,114,220,004 117.606 36.558 481.13 3

… … … … … …

W27 370,113,220,002 116.730 36.404 92.67 3

Table 2.  Representative examples of Geospatial characteristics and static attributes of monitoring wells.
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Spatial feature extraction
This study utilized the GraphSAGE model to learn spatial feature representations of monitoring wells. The 
model effectively captured spatial dependencies between nodes by leveraging both the feature and structural 
information of nodes through neighbor sampling and feature aggregation mechanisms.

Node sampling: For each target node ν ∈ V , we employed a hierarchical sampling strategy to determine 
its multi-hop neighbor set N (v). The sampling process primarily focused on two parameters: the number 
of sampling layers D and the sampling size per layer. D represented the maximum hop count for neighbor 
aggregation. Experimental results demonstrated that the model achieved optimal performance when D = 2.

Node aggregation: The GraphSAGE model provided three aggregation functions: mean aggregation, LSTM 
aggregation, and pooling aggregation. Comparative experiments indicated that while both LSTM aggregation 
and pooling aggregation delivered good performance, the former exhibited significant computational 
inefficiency. Therefore, this study selected the pooling aggregation function, which operated by first applying a 
nonlinear transformation to the embedding of each neighbor node via a fully connected network, followed by 
the integration of neighborhood information to generate the target node embedding using max or mean pooling 
operations. The mathematical formulation was as follows:

	 AGGREGATEpool
d = max

({
σ

(
Wpoolh

d
ui

+ b
)

, ∀ ui ∈ N (ν )
})

.� (1)

Building upon these two processes, we first initialized the feature vector representation hv  for each node. For each 
node ν ∈ V , its neighbor nodes N (v) were obtained through node sampling. Subsequently, the aggregation 
function (Eq. 1) was employed to integrate feature information from neighboring nodes. Finally, the aggregated 
neighborhood features were combined with the node’s own features through a nonlinear transformation to 
generate the updated node embedding representation, formulated as follows:

	 hd
v = σ

(
Wd · CONCAT

(
hd−1

v , hd
N (ν )

))
.� (2)

Fig. 4.  Structure of the overall model.
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Multi-scale temporal feature extraction
In the process of GWL prediction, the representation ability of temporal features is a critical factor influencing 
model accuracy. Inspired by Chen, et al. 43, this study employed a multi-branch GRU architecture that processed 
time-series data at different temporal scales in parallel, enabling joint modeling of both short-term fluctuations 
and long-term trends.

Considering the hydrological response characteristics of the karst aquifer system in Jinan, we defined three 
distinct sliding window lengths: short-term (one month), medium-term (6 months), and long-term (12 months) 
windows. The short-term window focused on recent GWL fluctuations. The medium-term window covered 
semi-annual hydrological cycles to model seasonal variation patterns, while the long-term window was dedicated 
to learning interannual trends. The original time series was partitioned into multiple subsequences according 
to these different window lengths. For example, considering a time series Tw = {x1, x2, . . . , xn} composed 
of the GWL observations from monitoring well w, to predict the GWL value at time t, if the sliding window 
was set to 3, the GWL values from the three preceding time steps were extracted, forming the input sequence 
{xt−3, xt−2, xt−1}. These sub-sequences from the three distinct sliding windows were fed into three separate 
GRU branches, with each branch specifically processing the sub-sequence in a specific temporal scale. This 
parallel architecture enabled comprehensive modeling of both short-term perturbations (e.g., rainfall responses) 
and long-term evolutionary trends (e.g., seasonal cycles) in groundwater dynamics.

To further optimize feature fusion, this study introduced an attention mechanism to adaptively integrate 
multi-scale features. Let h1, h2, and h3 denote the output feature vectors from the short-term, medium-term, 
and long-term GRU branches, respectively. The importance weights β i of each branch were calculated through 
the attention mechanism. The feature fusion process based on attention weights can be expressed as:

	
ht =

3∑
i=1

βi · hi� (3)

This mechanism dynamically adjusted the contribution weights of features across different temporal scales, 
generating more discriminative spatio-temporal feature representations. The design not only preserved scale-
specific information but also enhanced predictive capability through synergistic feature interactions.

Spatio-temporal feature fusion
The core of spatiotemporal feature fusion lies in establishing coupled representations of spatial and temporal 
features. This study employed a cross-attention mechanism46 to integrate temporal and spatial features, enabling 
more comprehensive feature representation. Through the aforementioned spatial and temporal feature extraction 
processes, supposed we obtain two feature sequences hs and ht, where hs was the spatial feature sequence and 
ht was the temporal feature sequence. The spatio-temporal cross-attention mechanism allowed one sequence 
(spatial features) to serve as Query, while the other sequence (temporal features) acted as both Key and Value. 
The Query, Key, and Value can be expressed as:

	 Q = hsWq, K = htWk, V = htWv,� (4)

where Wq , Wk , and Wv  represented the projection matrices for Query, Key, and Value, respectively.
The cross-attention scores between spatial nodes and temporal steps were obtained by computing the 

similarity between Query and Key:

	
A = softmax

(
QKT

√
dk

)
� (5)

where dk  was the dimension of the Key, serving as a scaling factor for the dot product to prevent gradient 
vanishing. Each element A (i, j) in the attention matrix quantified the dependency strength between the i-th 
monitoring well and the j-th timestep.

Finally, temporal features were aggregated to spatial nodes through a weighted sum:

	 Z = A · V � (6)

Model optimization and evaluation
Experimental setup
The hardware and software environment configurations employed for model optimization and evaluation were 
detailed in Table 3.

To ensure the reproducibility of our proposed STGPM model, this subsection provided a comprehensive 
description of the specific architectural configurations used for each component. The final architecture was 
summarized in Table 4.

Hyperparameter optimization
To identify the optimal hyperparameter configuration for STGPM, a systematic grid search strategy was 
employed. This exhaustive method was selected due to the discrete and limited nature of the hyperparameter 
space, ensuring a comprehensive evaluation of all possible combinations to achieve globally optimal performance 
within the defined search domain, rather than settling for a computationally efficient but potentially local 
optimum.
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Specifically, the grid search examined three critical parameters: learning rate, batch size, and the number 
of sampled neighbor nodes. The learning rate varied within the range of 10−4 to 10−2, the batch size was 
tested at values of [16, 32, 64, 128] to balance computational efficiency and training stability, and generalization 
performance. The number of samples per hop was set to 1, 3, and 5 to determine the optimal amount of 
neighborhood information to aggregate for spatial feature extraction. The optimization objective was trained 
to minimize the Mean Squared Error (MSE) between its predictions and the truth groundwater level values. 
Each parameter combination underwent 100 training evaluations with early stopping patience to prevent 
overfitting. The training and validation loss curves were meticulously monitored to ensure convergence and 
assess generalization performance. This optimal configuration was subsequently used to train the final model 
on the combined training and validation sets for all subsequent performance evaluations reported in this study.

Similarly, we adopted a rigorous approach where each model underwent an independent hyperparameter 
optimization process using the same grid search strategy for each baseline model. The search space for each 
model included key architectural parameters: the number of layers [1, 2] and the number of hidden units [32, 64, 
128]. Final optimized hyperparameter configurations for all compared models were shown in Table 5.

Hyperparameter LSTM GRU STGCN STGPM

Number of layers 2 2 2 (GCN)/1 (Temporal) 2 (GraphSAGE)/1 (GRU per branch)

Hidden dimension 128 128 64 (GCN)/128 (Temporal) 64 (Spatial)/32,64,64 (Temporal)

Temporal Window 12 (steps) 12 (steps) 12 (steps) 4, 24, 48 (steps)

Learning rate 0.001 0.001 0.001 0.001

Batch size 64 64 64 64

Optimizer AdamW AdamW AdamW AdamW

Dropout rate 0.2 0.2 0.1 0.1

Early stopping patience 15 15 15 15

Table 5.  Final optimized hyperparameter configurations for all compared models.

 

Component Parameter Value

GraphSAGE

Number of Layers 2

Embedding Dimension 64

Aggregation Function Max-pooling

Multi-branch GRU

Number of GRU Layers 1

Hidden State Dimension (Short-term) 32

Hidden State Dimension (Medium-term) 64

Hidden State Dimension (Long-term) 64

Dropout Rate 0.1

Attention Mechanism
Attention Dimension 128

Attention Heads 4

Fully-Connected

Number of Layers 2

Hidden Layer Dimension 64

Output Dimension 1

Activation Function (Hidden) ReLU

Activation Function (Output) Linear

Table 4.  Detailed architecture of the STGPM.

 

CPU Intel Core 11th (8 core), i9-11900, 2.50 GHz

GPU NVIDIA GeForce GTX1660 12G

Hard disk SSD 1 TB M.2 SATA

RAM 16G 2400 MHz DDR4 (2 × 8G)

Operating system Microsoft Windows 10 Pro,64 bits

CUDA version 12.6

Programming language Python 3.13.0

Deep learning framework Pytorch 2.7.0

Table 3.  Experiment environment.
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Evaluation metrics
To comprehensively evaluate model performance, this study employed a multi-dimensional metric system for 
quantitative analysis. The evaluation framework included the Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), and Coefficient of Determination (R2). Each metric provided distinct insights: MAE measured 
the absolute deviation between predicted and observed values, RMSE quantified the dispersion degree of 
prediction errors, and R2 assessed goodness-of-fit. The combination of these three indicators can objectively 
assess the prediction accuracy and model stability from different perspectives, providing a reliable quantitative 
basis for model comparison.

The MAE is the average absolute difference between predicted and observed values, quantifying the absolute 
magnitude of prediction errors. As the most intuitive metric, MAE is less sensitive to outliers due to the use of 
absolute values. Its formulation is given by:

	
MAE = 1

n

∑
n
i=1 |yi − ŷi| ,� (7)

where yi and ŷi denote observed and predicted values, respectively, and n is the sample size.
The RMSE, calculated as the square root of the mean squared errors, provides greater sensitivity to prediction 

variability and extreme errors. The calculation method for RMSE is as follows:

	
RMSE =

√
1
n

∑
n
i=1(yi − ŷi)2

.� (8)

R2 quantifies the proportion of variability in the target variable explained by the model from a statistical 
perspective, serving as an important indicator of goodness-of-fit. An R2 value closer to 1 indicates a better fit, 
while an R2 close to 0 or negative suggests a poor model fit. The formula for calculating R2 is as follows:

	

R2 = 1 −
∑ n

i=1(yi − ŷi)2

∑ n

i=1

(
yi−

−
y
)2 ,� (9)

where 
−
y  is the mean of the observed values.

It is important to note that for model evaluation, the predictions were inverse-transformed back to the original 
scale (meters) before calculating the MAE, RMSE, and R2 metrics to ensure their physical interpretability.

Model interpretability
Despite the superior predictive performance of machine learning and deep learning models in groundwater level 
prediction, their inherent “black box” nature limits the interpretability of the model decision-making process. 
Model interpretability aims to uncover the underlying mechanisms between input features (such as rainfall, 
evaporation, and groundwater extraction) and prediction outcomes, providing a scientific basis for water 
resource management decisions.

This study employed the SHapley Additive exPlanations (SHAP) framework, rooted in cooperative game 
theory, to quantify feature contributions to the model’s prediction results by calculating the SHAP values of 
each feature. The advantage of this approach was that SHAP values can simultaneously reveal both the polarity 
(positive/negative influence) and relative importance of each feature’s impact on predictions. This method 
transformed opaque model behavior into interpretable, physically consistent logic, thereby comprehensively 
assessing model behavior.

Results and discussion
Analysis of precipitation, temperature, evapotranspiration, and GWL distribution
The multi-source dataset in this study included four key hydrological variables: precipitation, temperature, 
evapotranspiration, and GWL. As shown in Fig. 5, linear trend (LT) analysis was applied to decompose and 
visualize the temporal trends of these variables from 2018 to 2023, revealing the dynamic characteristics of each 
variable. The results indicate that both precipitation and potential evapotranspiration exhibit significant seasonal 
cyclical variations and are synchronous, with higher values in summer months (June-August) and lower values in 
winter months (December-February). This pattern aligns closely with the study area’s typical monsoon climate. 
Similarly, temperature data displays marked annual cyclical fluctuations, peaking in the summer and reaching 
their lowest points in winter. GWL shows an overall upward trend during the observation period, superimposed 
with periodic fluctuations that are coupled with the seasonal pattern of precipitation: water levels rise during 
the wet season (summer) and decline during the dry season (winter). These observations confirm that seasonal 
variations of meteorological factors are key drivers of GWL fluctuations, providing crucial insights into the 
dynamic response mechanisms of the groundwater system in the study area.

Analysis of the model performance
Model training and error variation
This study employed systematic grid search4 to optimize key hyperparameters of the STGPM model (as detailed 
in section “Hyperparameter optimization”), which indicated that the model achieves optimal performance with 
a learning rate of 0.001, batch size of 64, and three samples per hop. As shown in Fig. 6, the model exhibits a 
rapid error reduction during the initial phases of training, followed by convergence to a stable low-loss region. 
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This training dynamic not only confirms the rationality of the parameter configuration but also highlights the 
model’s excellent generalization capability.

Performance comparison between STGPM and benchmarks
We conducted a systematic performance evaluation of STGPM by comparing it with three representative 
baseline models: the classical LSTM, GRU, and spatio-temporal graph convolutional network (STGCN). This 
comparative experiment aimed to validate the advantages of the STGPM model over existing mainstream 
methods in the task of GWL prediction. To ensure the fairness and comparability, all models adopted unified 
data partitioning strategies following the method in section “Dataset partitioning”, the data from 2023 were used 
as the test set, and the remaining data were divided into training and validation sets in an 8:2 ratio. Quantitative 
comparison was conducted using the evaluation metrics (MAE, RMSE, and R2) defined in section “Evaluation 
metrics”. In terms of model training, a completely consistent hyperparameter setting was adopted: a learning 
rate of 0.001, 100 training epochs, a batch size of 64, with AdamW optimizer for parameter optimization and 
mean squared error (MSE) as the loss function. We did not employ identical network structures across models, 
as their fundamental operating principles differ (e.g., sequential processing vs. graph convolution). Instead, 
we adopted a rigorous approach where each model underwent an independent hyperparameter optimization 
process using the same grid search strategy. The final reported performance for each baseline model corresponds 
to its individually optimal configuration (Table 5) identified through this process. This strategy ensured that we 

Fig. 6.  Training and validation error curves.

 

Fig. 5.  Time series of monthly average precipitation, temperature, evapotranspiration, and GWL from 2018 to 
2023.

 

Scientific Reports |        (2025) 15:44535 12| https://doi.org/10.1038/s41598-025-28200-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


were comparing the best possible performance of each model architecture on our dataset, thereby attributing 
performance differences to the inherent efficacy of the models’ inductive biases for spatio-temporal groundwater 
level prediction, rather than to arbitrary or suboptimal structural choices. To statistically validate the performance 
stability and robustness of the compared models, we conducted 10 independent training runs for each model 
with different random seeds.

Table 6 presents the evaluation results of four prediction models on the groundwater dataset. The experimental 
results demonstrate that STGPM achieves superior predictive performance, with the lowest errors on the test 
set (MAE = 0.039, RMSE = 0.052) and the highest R2 (0.988), significantly outperforming the other benchmark 
models. Although STGCN shows slightly lower accuracy than STGPM, it still markedly exceeds traditional 
LSTM and GRU models. These findings confirm the critical role of spatial feature modeling in GWL prediction. 
Both STGPM and STGCN effectively capture spatial interactions between monitoring wells through graph 
neural networks, whereas traditional LSTM/GRU models, which rely solely on time series modeling, fail to 
represent this spatial dependencies, thereby resulting in limitations in predictive performance.

Figure 7 presents the distribution of the RMSE on the conventional test set across 10 independent runs using 
box plots. The results clearly indicate that the proposed STGPM model not only achieved the lowest median 
RMSE but also exhibited the most stable performance, as evidenced by its compact box and short whiskers. This 
signifies that the STGPM’s superior performance is highly consistent and less sensitive to random initialization. 
In contrast, while the STGCN also shows relatively stable performance, its error distribution is significantly 
higher than that of the STGPM. The traditional LSTM and GRU models display both higher median errors and 
considerably larger variances. This statistical evidence reinforce the conclusion that the STGPM provides a more 
accurate and reliable solution for groundwater level prediction.

Fig. 7.  The boxplot figure of the distribution of RMSE values on the conventional test set.

 

Model Stage MAE RMSE R2

LSTM
Training 0.188 ± 0.012 0.164 ± 0.015 0.889 ± 0.011

Testing 0.154 ± 0.011 0.139 ± 0.013 0.891 ± 0.009

GRU
Training 0.161 ± 0.009 0.151 ± 0.010 0.912 ± 0.012

Testing 0.139 ± 0.008 0.121 ± 0.009 0.928 ± 0.009

STGCN
Training 0.095 ± 0.006 0.125 ± 0.008 0.956 ± 0.008

Testing 0.095 ± 0.007 0.103 ± 0.006 0.965 ± 0.008

STGPM
Training 0.062 ± 0.004 0.064 ± 0.003 0.980 ± 0.001

Testing 0.039 ± 0.002 0.052 ± 0.002 0.988 ± 0.001

Table 6.  Performance evaluation of different models.
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Predicted performance of new monitoring wells
The aforementioned experimental results demonstrate that existing models performed well in temporal 
prediction for trained monitoring wells. However, their capabilities for spatial extrapolation still need to be 
verified. To systematically evaluate the spatial generalization ability of the STGPM model, this study designed a 
dedicated prediction experiment using data from untrained monitoring wells.

Following the data partitioning scheme in Sect.  2.2.4, we randomly selected two monitoring wells to 
construct an unseen-well test set, with their data entirely excluded from model training. After the model was 
trained, the time-series data of these unseen monitoring wells were fed into the trained model for prediction. 
This experimental design enabled the assessment of the model’s predictive ability for GWL at entirely new spatial 
locations, as the model must rely on the universal patterns it has learned rather than the memory of specific 
monitoring wells to make inferences.

Table 7 presents the average results over 10 independent runs. The scatter plot derived from the optimal 
result is shown in Fig.  8. From the results, STGPM maintains excellent prediction accuracy on untrained 

Fig. 8.  Scatter plot comparison of predicted and actual values for new monitoring wells using different models: 
(a) LSTM; (b) GRU; (c) STGCN; (d) STGPM.

 

Model MAE RMSE R2

LSTM 0.158 ± 0.012 0.124 ± 0.015 0.898 ± 0.008

GRU 0.141 ± 0.005 0.125 ± 0.004 0.913 ± 0.006

STGCN 0.089 ± 0.003 0.112 ± 0.004 0.961 ± 0.002

STGPM 0.062 ± 0.002 0.087 ± 0.003 0.980 ± 0.001

Table 7.  Performance evaluation results of predicted new monitoring wells.
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wells, significantly outperforming the other models. This demonstrates that STGPM possesses strong spatial 
generalization capabilities and can effectively adapt to monitoring well data not involved in the training process. 
It is worth noting that the STGCN shows limited performance improvement, likely due to constraints in its 
ability to characterize features at unseen nodes.

Analysis of ablation experiments
To validate the effectiveness of the proposed methods, a series of ablation experiments were designed. Specifically, 
the impact of the following three modifications on model performance was evaluated: (1) Removing GraphSAGE 
(STGPM− G): Retaining only temporal feature learning from the dataset; (2) Removing the multi-branch GRU 
(STGPM− M): Using a single-branch GRU with a fixed time window; (3) Removing the spatio-temporal attention 
(STGPM− A): Employing simple feature concatenation instead. The prediction results of these three experimental 
configurations on the test set are presented in Table 8.

The experimental results demonstrate that the complete STGPM model achieves the best on the test set, 
significantly outperforming the variant models in the ablation studies. This indicates that STGPM can make more 
accurate predictions when incorporating spatial feature correlations, multi-branch GRU, and spatio-temporal 
attention modules. Specifically, removing GraphSAGE (STGPM− G) causes the most significant performance 
drop (MAE: 0.1382, RMSE: 0.3718, R2: 0.8658) compared to STGPM. This highlights the critical importance 
of spatial feature modeling, as GraphSAGE effectively captures spatial dependencies in the data. Without it, the 
model relies solely on temporal features and cannot fully utilize spatial information, leading to a substantial 
decrease in prediction accuracy. When the multi-branch GRU is removed (STGPM− M), the performance decline 
is relatively smaller, but still inferior to the complete model. This suggests that the multi-branch GRU enhance 
temporal modeling capability by extracting features at different time steps, while the single-branch GRU fails 
to adequately capture multi-scale temporal patterns. Removing the spatio-temporal attention (STGPM− A) also 
reduces performance, particularly in terms of RMSE and R2. This highlights the attention mechanism plays a 
crucial role in feature fusion, as simple concatenation cannot adequately capture the interactions between spatial 
and temporal features, whereas attention dynamically weighted feature contributions to improve performance. 
These ablation experiments show that GraphSAGE, multi-branch GRU, and the spatio-temporal attention 
mechanism all contribute significantly to STGPM’s performance. Their combined effect enable STGPM to 
achieve high accuracy and stability in prediction tasks.

Analysis of feature importance and correlation
Following the construction and training of STGPM, we employed SHAP analysis to quantitatively evaluate the 
predictive contributions of input features, as shown in Fig. 9. The results indicate that among the five input 
features (precipitation, temperature, evapotranspiration, GWL_lag1, and GWL_lag2), the SHAP values of the 
previous water level (GWL_lag1) and precipitation are relatively high, suggesting that they are the primary 
driving factors affecting water level variations. Notably, GWL_lag1 has the highest SHAP value, reflecting 
the strong autocorrelation characteristics of GWLs. While GWL_lag2, temperature, and evapotranspiration 
all contribute to GWL prediction, their impacts are comparatively smaller. It is worth mentioning that while 
evapotranspiration generally tends to lower the water level, it may exhibit local positive correlation during the 
irrigation season due to artificial recharge.

The presence of correlated features among input variables can compromise model stability and increase 
sensitivity to uncertainties. To evaluate input stability, this study further quantified linear dependencies among 
features using the Pearson correlation coefficient. Figure 10 displays the correlation matrix among input features, 
where the size of each pixel reflects similarity between features. The higher the Pearson index, the stronger 
their correlation. Results demonstrate the correlation coefficients for all feature pairs are below 0.1, confirming 
no significant correlations among the input features. The input dataset thus meet the basic requirement of 
feature independence for machine learning models, which effectively avoids the risk of overfitting due to feature 
redundancy and ensures the reliability of the prediction results.

Conclusion
This study proposed a novel deep learning approach that significantly advanced groundwater level forecasting 
capabilities. By integrating GraphSAGE’s spatial representation power with a multi-branch GRU architecture 
featuring attention mechanisms, our framework successfully captured both the hydrological connectivity 
between monitoring wells and multi-scale temporal dynamics of groundwater systems. The model’s exceptional 
performance demonstrated the critical importance of explicitly incorporating spatial dependencies for accurate 
and generalizable predictions.

Through comprehensive ablation studies and benchmarking against state-of-the-art models, we established 
three key contributions to the field: First, the STGPM provided a novel architectural paradigm for spatio-

Model MAE RMSE R2

STGPM 0.0407 0.0535 0.9869

STGPM− G 0.1382 0.3718 0.8658

STGPM− M 0.0428 0.2069 0.9538

STGPM− A 0.0412 0.2021 0.9555

Table 8.  Results of the ablation experiments.
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temporal modeling in hydrogeology that effectively addressed the limitations of conventional time-series 
approaches. Second, through rigorous experimental validation, we quantitatively demonstrated the critical 
contribution of spatial features—specifically hydraulic connectivity between adjacent monitoring wells—to both 
prediction accuracy and model generalizability. Third, beyond providing a high-performance forecasting tool 
for groundwater dynamics, our methodology offered a valuable reference framework for addressing prediction 
challenges in other environmentally complex systems characterized by strong spatial heterogeneity, such as 
water quality forecasting and soil moisture prediction.

In future work, we will collect more data for model training to enhance its predictive capability and accuracy. 
By leveraging these improvements, researchers and decision-makers can advance their understanding and 
management of groundwater resources, ultimately contributing to the implementation of sustainable water 
management practices.

Fig. 9.  The feature importance scores of input parameters in the STGPM.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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