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Sustainable cyber-physical VANETSs
with Al-driven anomaly detection
and energy-efficient multi-criteria
routing using machine learning
algorithms

Wai Kit Wong*™, S. Baskar?, K. M. Abubeker? & Poh Kiat Ng*

Cyber-physical systems have improved modern transportation by allowing vehicles and road

systems to communicate through Vehicular Ad Hoc Networks (VANETSs). Existing anomaly detection
approaches often struggle with high false-positive rates, poor adaptability, and significant
computational demands, compromising their real-time efficacy and scalability. To address these
problems, this research presents an Anomaly Detection using Machine Learning Algorithms (AD-
MLA) framework that employs a Random Forest model to accurately detect abnormal activities. The
framework encompasses feature selection, data clustering, and an energy-efficient routing strategy
that incorporates node energy, signal strength, hop count, and link stability. Evaluations demonstrate
that AD-MLA reduces false alarms, improves detection accuracy, and operates with lower energy and
computational requirements. It offers a smart, rapid, and efficient security system for real-time VANET
environments, rendering it appropriate for transportation systems characterised by high reliability
and safety. By integrating a Random-Forest-based anomaly detector with intelligent feature selection
and an energy-efficient routing method that accounts for residual energy, signal strength, and link
stability, the suggested framework systematically addresses these challenges. This approach delivers
95.33% accuracy, 96.09% recall, 94.25% computational efficiency, and 91.45% resource-use efficiency.
This effectively addresses the scalability, latency, and energy challenges that previous systems have
faced in incorporating blockchain technology and deep learning architectures.

Keywords Cyber-physical systems, VANETSs, Anomaly detection, Machine learning, Al-driven security,
Intelligent transportation systems, Energy efficiency, Sustainable computing

Sustainable cyber-physical systems (CPS) have transformed modern industries by delivering smart, connected
solutions across transportation, healthcare, and industrial automation. Sustainable CPS is designed to
incorporate the functionality of computers, sensors, and electronic systems to efficiently monitor and regulate
multiple processes in real time!. In Vehicular Ad Hoc Networks (VANETs), CPS provides intelligent interfaces
for transportation systems to enable real-time spatial communication and internet connectivity>. Through
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) connectivity, VANETS support autonomous
driving, improve traffic management, and enhance road safety’. However, as VANETSs increasingly depend on
communication and connectivity technologies, they also support a novel and disruptive range of cybersecurity
vulnerabilities, including data poisoning, Sybil, and Distributed Denial of Service (DDoS) attacks?. An additional
security aspect is monitoring for instabilities and hostile actions. This type of real-time monitoring is part of the
anomaly detection systems that VANETs deploy for operational security’. The standard systems for anomaly
detection, especially the rule-based and signature systems, are less able to cope with the fast, dynamic, and
unpredictable cyber threat landscape that characterises VANETs®. These systems are also poorly designed for
detecting advanced and novel cyberattacks, poorly scalable, and generate high false-positive rates.

Faculty of Engineering and Technology (FET), Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang,
75450 Melaka, Malaysia. 2Department of ECE, Karpagam Academy of Higher Education, Coimbatore, Tamil Nady,
India. 3Department of ECE, Amal Jyothi College of Engineering (Autonomous), Kanjirappally, Kerala, India. *email:
wkwong@mmu.edu.my

Scientific Reports|  (2025) 15:40068 | https://doi.org/10.1038/s41598-025-28212-1 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-28212-1&domain=pdf&date_stamp=2025-11-13

www.nature.com/scientificreports/

Communication within VANETSs must be reliable, efficient, and sustainable to support the future of intelligent
transportation systems. Research on intelligent transportation systems based on machine learning and anomaly
detection highlights scalability, energy efficiency, and false-positive rates associated with preemptive anomaly
control”8. This work proposes using energy-aware multi-criteria routing in conjunction with machine-learning-
integrated anomaly detection to mitigate these challenges. This will enhance real-time threat response, support
energy-efficient computing, and promote sustainable cyber-physical VANET computing. With Artificial
Intelligence (AI), VANET systems will learn and adapt anomaly detection systems to new threats, improving
detection systems’ precision and operational efficiency’. Nonetheless, many recent Al solutions are ill-suited for
real-time implementation in vehicle networks due to excessive computational requirements'. Thus, protecting
VANETs with appropriate network performance will require scalable, low-latency anomaly-detection systems.

The framework improves detection efficiency while minimising computational burden by combining feature
selection, clustering, and classification. Through continuous network traffic supervision, AD-MLA automatically
lowers active security threats by resolving real-time deviations. In terms of computing efficiency, false-positive
reduction, and detection precision, the experimental results demonstrate that AD-MLA outperforms all other
active anomaly detection systems. Unlike other systems, AD-MLA is scalable to cyber threat ecosystems while
addressing the high false-positive problem that dominates anomaly detection in VANETs. The primary research
contributions are outlined below.

« Developed a sustainable AD-MLA framework, integral in advancing VANET security and facilitating intelli-
gent, clean transportation systems. AD-MLA improves detection accuracy, enables real-time adaptation, and
enhances the efficiency and sustainability of VANET operations.

o Integrated Random Forest with feature selection, grouping, and classification algorithms can enhance the
utilisation of computational resources in vehicular networks.

« Optimisation of routing decisions based on energy consumption, link stability, and mobility is necessary for
safety-critical applications in dynamic urban VANET environments.

The manuscript is structured as follows: Section "Related works" presents the related work on anomaly detection
in VANETS. In Section "Materials and methods", the proposed AD-MLA methodology is explained. In section
"Results and discussions", the efficiency of AD-MLA is discussed and analysed, followed by a discussion of the
deployment platforms. Finally, in section "Model development and deployment", the research concludes with a
discussion and a section on future work.

Related works

The contribution of Al-driven methods in improving security across many transportation and network systems
is investigated in this collection of publications. Aiming to improve safety, privacy, and system efficiency in
modern intelligent transportation networks, these studies examine anomaly detection, predictive maintenance,
and cyberattack prevention using advanced methods, including LSTM, CNN-GAN, and machine learning from
autonomous vehicles and IoT to VANETs and EnFVs. It presents an ensemble of Long Short-Term Memory
(LSTM) networks and a deep learning-based Intrusion Detection System (IDS) for ICTS'!. This approach
tracks V2V, In-Vehicle Networks (IVN), and V2I connections to identify harmful behaviour. The system’s
effectiveness in detecting cyber threats within autonomous vehicle networks is evaluated using the UNSW-NB15
and automobile-hacking datasets. Their method maximises data flow, strengthens security, and increases smart
network efficiency through intelligent transportation. Researchers examine Artificial Intelligence (AI)-based
anomaly detection techniques in the Controller Area Network (CAN) systems of advanced vehicles'?. With
a focus on methods such as Machine Learning (ML), Deep Learning (DL), and Federated Learning (FL) for
anomaly detection, the authors examine how Al could improve IoT security!?. Practical solutions for identifying
and managing security risks in IoT devices are developed using artificial intelligence techniques, which also
improve attack detection and predictive analysis, thereby reducing human involvement. Recent work in'*
investigates how Al could help VANETS; to avoid dangerous circumstances, AI methods are explored for tasks
such as data collection, routing, driver awareness, and mobility prediction.

Recent reviews of Al-based techniques for vehicle network security problems. It starts by providing a general
overview of vehicle networks and their weaknesses, then evaluates the principles of artificial intelligence and how
they affect vehicle security'®. The proposed framework focuses on assessing the integration of Al technologies
to address security challenges in these networks. It suggests a novel taxonomy for identifying and benchmarking
several Al-driven approaches. Saud et al.!® specifically analyse the impact of Al the Internet of Things (IoT),
and 5G/6G technologies in VANETs to enhance traffic safety, convenience, and economic efficiency. Besides
analysing the improvements in connectivity that the IoT and 5G/6G technologies bring, the study also focuses
on Al for routing, driver-automation awareness, and mobility prediction. For network anomaly detection, Rao
et al.'” propose a hybrid architecture that integrates Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANs). In the context of real-time IIoT environments, Himanshu et al.'® propose an
adaptive CNN-GRU deep learning model that achieved 99.75% accuracy, 99.75% precision, and 99.74% recall
on the N-BaloT dataset, for reliable IIoT security. Alqahtani et al.'” explore the application of machine learning
(ML) to enhance the security of electric and flying vehicles (EnFVs). To increase safety and save downtime, it
emphasises predictive maintenance, cyberattack detection, and intelligent decision-making. The paper, which
covers Explainable Al real-time algorithms for resource-constrained settings, and privacy-preserving strategies,
offers an overview of ML applications, identifies key problems, and outlines future research directions. Akinola
etal.?’ introduce the Urban Adaptive Location-based Routing Protocol (UALRP), an adaptive machine-learning-
based location-routing protocol for urban WSNs that utilises real-time data analytics to enhance routing
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SI
No | Methods

Advantages

Limitations

IDS for ICTS!?

Ensemble LSTM-based

Effective in detecting cyber threats in V2V, IVN, and V2I networks
Maximises data flow and enhances security
Increases smart network eﬂiciency

Requires large datasets for training
Might not handle highly dynamic or unpredictable data well

Systems'?

Al-Based Anomaly
2 Detection in CAN

Improves vehicle data security using Al
Identifies complex anomalies in CAN systems
Focus on privacy

Limited by the scalability of the techniques
Performance can vary depending on data quality and availability

Solutions'

Al-Based VANET

Enhances traffic safety and efficiency
Optimises routing and driver awareness
Improves passenger comfort and road experience

Potential difficulties in implementing Al in real-time traffic conditions
High computational resources may be required for some Al
techniques

Networks'®

Al-Based Security
5 Solutions for Vehicular

Identifies and addresses security issues in vehicular networks
Proposes a new taxonomy for comparing Al-based solutions

May face challenges in handling highly dynamic and large-scale
vehicular network data
Complexity of integration with existing infrastructure

VANETs!®

AlI-IoT-5G/6G for

Combines Al IoT, and 5G/6G to enhance connectivity and security
Improves routing, mobility prediction, and driver awareness

5G/6G infrastructure is still developing
Potential privacy and security concerns when handling sensitive data
across various systems

Detection!’

Hybrid CNN-GAN
7 | Model for Anomaly

High detection rates and minimal false positives
Improves network security by generating normal traffic patterns to detect
anomalies

Require a large labeled dataset
Complex training process and resource-intensive

ML-Based Security for

Enhances safety with predictive maintenance and cyberattack detection

Real-world implementation challenges

8 | EnEved Aims for privacy-preserving and real-time solutions Ethical consideratiqns and the complexity of applying ML techniques
in resource-constrained environments
9 Transfer learning High detection accuracy for IoT botnet attacks Potential dataset bias
BILSTM?! Transfer learning improves generalisation Computational overhead and resource constraints
Table 1. The comparison of existing methods.
Aspect Blockchain-based IDS Hybrid deep-learning IDS (LSTM/CNN-GAN) | Proposed AD-MLA Framework (RF + Energy-Aware Routing)

Architecture Focus

Distributed trust ledger; consensus
among nodes for transaction
validation

Two-stage co-design: (i) Random-Forest anomaly detector, (ii)
multi-criteria routing based on energy, RSSI, hop count, and
link stability

Stacked neural layers (LSTM for sequential data,
CNN-GAN for anomaly synthesis)

Key Components

Smart contracts, miners, and
blockchain consensus mechanisms

Deep neural network encoder-decoder or
generator—discriminator pipelines

Feature selection + RF classification + routing decision algorithm
(Algorithm 2)

Dataset Need

Ledger and transaction records,
often synthetic for VANET testing

Large labelled datasets (UNSW-NB15, CAN-Bus,
car-hacking)

Lightweight feature vectors from VANET communication logs;
fewer samples required

Detection Speed

Slower due to consensus and block
propagation delays

Moderate, depending on batch inference or

p Real-time classification via ensemble RF inference
retraining cycles

Adaptability to
Network Dynamics

Low; ledger structure is rigid

Moderate; models must be retrained for new
patterns

High feature selection and RF thresholds allow dynamic updates
without retraining

False-Positive Rate
(FPR)

Typically >20% under rapid mobility

10-15% reported, but unstable due to imbalanced | 15.22%, balanced against a higher recall to prioritise threat
data coverage

Table 2. Comparative analysis of the proposed AD-MLA with blockchain-based and hybrid deep-learning
IDS frameworks.

performance. By analysing traffic and environmental data, it improves routing accuracy, network performance,
and scalability, adjusting to dynamic urban environments.

As shown in Table 1, existing AI- and ML-based intrusion detection systems achieve higher accuracy
and threat coverage than traditional rule-based methods but still face significant limitations, including high
false-positive rates, limited scalability, and high computational cost. Artificial intelligence techniques include
CNN-GAN, machine learning, and ensemble LSTM-based IDS, which provide effective solutions for anomaly
recognition and enhanced security in car networks, IoT, and smart transportation systems. These approaches
address significant concerns, including predictive maintenance, privacy, and cyberattacks.

The results in Table 2 show that the AD-MLA framework outperforms standard blockchain and hybrid deep
learning IDS models. While blockchain models secure data transactions, they do so at the expense of high
latency and high energy costs. While deep learning models like LSTM and CNN-GAN achieve high accuracy,
they require large training datasets and heavy computational costs. In contrast, the proposed Random-Forest-
driven AD-MLA merges feature selection and energy-aware multi-criteria routing, dynamically adjusting
accuracy, efficiency, and detection sustainability. This framework achieves 95.33% accuracy, 96.09% recall,
15.22% FPR, 94.25% computational efficiency, 91.45% resource-usage efficiency, demonstrating the real-
time edge applicability of the proposed framework to VANET and CPS. AD-MLA offers the best balance of
performance and energy-efficient operation, allowing us to grade it as a sustained, practical IDS architecture for
intelligent transport system CPS. Overall, AD-MLA offers the best balance of performance and energy-efficient
operation. All of these contribute to the practical application of next-generation intelligent transport systems as
a sustained, practical IDS architecture.

The results of the experiments validate that the proposed AD-MLA approach meets the research goal of
designing a lightweight, adaptive, and energy-efficient intrusion detection system for VANET and CPS
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environments. Combining Random-Forest-based anomaly detection with a multi-criteria routing strategy
allows the framework to reduce latency and power usage while preserving detection accuracy. With 95.33%
accuracy, 96.09% recall, and 94.25% computational efficiency, these results represent a meaningful advancement
over existing blockchain-based and hybrid deep-learning IDSs. This demonstrates that AD-MLA can efficiently
operate on edge or vehicular nodes without the GPU-heavy computation or consensus communication typically
required. AD-MLA sustainable design contributes to green, scalable vehicular communication ecosystems that
support adaptive, innovative, eco-friendly transport systems.

Materials and methods

Cyber-physical systems improve intelligent decision-making and automation by aggregating computer,
networking, and physical components. By spotting abnormalities in EV data, suspicious activities, and unusual
traffic patterns, machine learning-enabled anomaly detection in VANETSs enhances security, efficiency, and
safety.

Method 1: Development of the AD-MLA framework for anomaly detection

It proposed an AD-MLA architecture that leverages RF to reliably and efficiently categorise abnormalities in
VANETS:. Figure 1 illustrates the integration between computational and physical components within Cyber-
Physical Systems, highlighting their dynamic interactions. The physical layer comprises actual components such
as autonomous automobiles that use sensors and actuators to track and respond to their surroundings, as well
as power plants. Above this is the network layer, which links physical and computational devices via wireless
(LTE, 5G) and wired (DNP3, IEC61850) protocols for real-time data exchange and control feedback loops.
The application layer handles traffic monitoring, electricity demand projections, and geolocation services to
provide intelligent decision-making. Control systems made available by a central computer system that analyses
incoming data help achieve optimal performance in energy efficiency, routing mechanisms, and sustainability.
Due to CPS technology’s ability to integrate various physical systems over a robust network, automation is
accelerated, smart infrastructure is improved, and intelligent services can be expanded across many sectors.

Actuator

Computing system

Physical dynamics

Actuator

Localization & |
mapping .

Network Physical dynamics

Actuator

Energy efficiency and T

routing mechanisms

Unmanned
vehicle, power
plant

Network layer

‘ |
Application layer
|

Traffic light Feedback loop Physical object
control of CPS in real world

Fig. 1. Cyber-physical systems: the interplay of computation and physical dynamics.
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To further improve performance, energy-saving measures are adopted for path optimisation based on
latency, power usage, and network utilisation. Such strategies minimise costs and environmental degradation by
reducing power consumption, minimising real-time data transmission, and controlling energy waste.

mde < & — sn’ > Vs {kia — esa”} +Va {ds — tw”} (1)

Integrating intelligent sensing (md.), vehicle status analysis (¢ — sn” >:—), and adaptive decision methods
Vs [kia — esa//}) in dynamic VANET settings is represented by Eq. (1), which also shows entropy

(Valds — tw"]) and these three variables. Modifying classification parameters dynamically based on evolving
VANET conditions ensures low-latency, high-accuracy detection.

frs [lo - an”} — Vs [lo - an//} +Va [e - suy”} (2)

The feature selection (fys), localised anomaly detection ([lofan”]), and enhanced safety patches

Vs [lo — an”} ) in VANETs Va [e — suy”} are all represented by Eq. (2). It optimises computing efficiency

for intelligent, secure VANET operations and ensures adaptive, real-time anomaly detection.

Upyg < u— sn// >:— Ve {a — 8bq”} + Ba {k:z — sn//} (3)

Equation (3) shows how VANETs can improve anomaly identification (U,q) and knowledge integration
Vax [a — 8bq”}) by using vehicular data (< u — sn’ >:—) via unified sensing (Ba {kz — sn”}). By

effectively mitigating cyber risks and dynamically analysing vehicle communication patterns, it provides strong,
real-time protection.

fqe [k’ - al”} :— Bx {s - 9vw”} +CVa {ko - apw”] (4)

To improve anomaly identification ( f4€) and context-aware validating ( {k —al’ } ) in VANETSs, Eq. (4) shows the

integration of feature generation (Bz {s — 9vw”} ) and adaptive knowledge allocation (C'Va [kzo — apw”} ).

It makes sure that anomaly detection systems are smart and flexible, such that in dynamic VANET settings, real-
time threat mitigation is maintained while false positives are reduced

Oss {a — nj”} :— Ns [w - 9bw”} +Va [lcl - sje”} (5)

In VANETs, the optimisation of security sense (Oss) is represented by Eq. (5) together with Va [kl — 57 e//}

anomaly surveillance of networks (a — nj”) and adaptation validation (N's [w — 9bw”} ). It makes VANETSs

more resilient by reducing the number of false positives, improving detection precision, and ensuring effective
threat mitigation.

Figure 2 describes how an ML-based intrusion detection system identifies malicious activity on a network. It
starts with network traffic monitoring, where tools used for packet sniffing capture, decode and analyse data in
the packet decode stage. The data being captured is used to create a feature set and undergo data pre-processing,
including feature transformation, reduction, and normalisation. Post-preprocessing, the data is routed to the
classifier system, where random forests, an ML technique, analyse it. A detector and recogniser determine
whether the behaviour is malicious; if so, the activity is classified as an attack.

To enable protection, energy-conserving multi-criteria routing mechanisms maximise data transfer without
overburdening specific network segments. This not only conserves energy but also increases the lifetime of
network devices. Such integration of sustainable computing concepts enhances cybersecurity while fostering
green technology initiatives.

led :— Ms [k:o—n”} + Vs [k:—aje, } * Ve [s—k”} (6)

Equation (6) depicts the learning-based association of continually changing information (I.d) with VANET

anomaly classification (M's [ko — n”} ), vehicular health assessment (V's [k — aje/ ]), and multi-source
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Fig. 2. Flow of intrusion detection in network traffic using machine learning.

knowledge optimisation (Vx {s — k”] ). It optimises computing efficiency in dynamic vehicle networks while

ensuring adaptive, high-accuracy security monitoring.

Vhs$ [k — an”] :— Ls [kz — an”} + Xa {s - iu”} (7)

In VANETs, X a {s - iu”} the localised security learning ( [k — an”] ) and extended anomalies analysis (Xa[s-

iu]) contribute to the universal sensitivity perception (V1 s) of known abnormalities (Ls {lm — an”} ), which is

given in Eq. (7). Improving VANET security through real-time threat assessment and mitigation it guarantees an
adaptable and scalable method to anomaly detection.

les [lu — an”} = C's [w - 9u”} +mVa [kz — sn”} (8)

Based on contextual security analysis (I s {lu — an”] ) and modular validator adaptation (mVa [kz — sn”} ),

the learning-based retrieval of unusual patterns (C's [w - Quq) in VANETS is represented by Eq. (8). This

improves security measures in real time by leveraging feature selection, groupings, and classification to enhance
anomaly detection.

lae [a: - zna”] :— Bs [kz - sne”} +Va [lm - se”} 9)
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In VANET;, the adaptive validation (Ige and behavioural security assessment (x-zna'’) allows for the learning-
driven extractionVaki-se’’ from complicated anomaly patterns (Bski-sne’’), which is given in Eq. 9. It guarantees
a smart, adaptable security system that monitors emerging cyber threats and takes action.

Ves [:c — znba”} — Ks [k:z — ane”] + Vs [ji - sne”} (10)

Equation (10) expresses the cybersecurity sensing in vehicular area networks (VANETs) asa function ofknowledge-
based anomaly evaluation (V.s [:c — znba”} ) and vehicular security state analysis (K's {kz — ane”} ).

Through ongoing analysis of network behaviours, the reduction of false positives, and improvements in VANET
endurance against cyberattacks, it guarantees strong, adaptive security.

Method 2: Enhanced detection accuracy and computational efficiency

Integrated feature selection, clustering, and classification algorithms to enhance detection performance, lower
false-positive rates, and cut computation costs, making it suitable for real-time deployment. Figure 3 shows a
general architecture for anomaly detection in VANETSs driven by artificial intelligence. Once noise reduction and
feature extraction are performed, the system aggregates real-time data gathering from Road Side Units (RSUs)
and vehicle sensors. Using machine learning methods helps one find anomalies, including traffic accidents,
network outages, or hostile conduct. Once an anomaly is discovered, alerts are fired off and routed across V2I
and V2V, therefore enabling rapid responses. With cloud or edge computing, we can achieve continuous system
monitoring, model retraining, and data storage. By predicting and managing unexpected events, Al algorithms
help the overall system improve traffic safety, efficiency, and reliability. The adoption of sustainable computing
principles ensures that the VANET architecture is environmentally friendly while maintaining high performance.

Evf [m - sna”} — Sv |:O'T, + an} —Vas |:9€ — uw”] (11)

Sensors RSUs

Anomaly
Detection Module

ML Algorithms

Fig. 3. AI-Driven anomaly detection in VANETS for smart transportation.
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Anomaly suppression strategies (Ev f [z — sna”}) and security validation (Sv [07’/ + an}) in VANETs

are represented by Eq. (11), which evaluates feature variations (Vas |:96 — uw”} ). Optimising computing

performance, avoiding false positives, and reacting to real-time network circumstances strengthen VANET
security.

nam[ki — cz"']” :— Splju — sq''] + Xa[s — 8" x Hs''v (12)

In Eq. (12),(ngm) depicts the VANET network detection method Hs''v for anomaly identification using
specialised pattern recognition ([ki — cz’']” :—), extended anomaly analysis (Sp[ju — sq’’]), and hybrid
security validation (Xa[s — 8b"']x). It guarantees adaptive coverage in dynamic VANET situations, optimises
network performance, and improves real-time security.

lyr {yt—sn//} — Hs {ji—an”} + Xs {q—Qavr”} (13)

The learning-driven [yt — sn”] component refinement [yr in VANETS is represented by Eq. (13), which

Xs [q — 9am’”} uses hybrid security sensing H's [ji — an”] and extended anomaly detection. It continually
improves detection models, reduces errors in detection, and effectively mitigates developing threats in VANET
systems, ensuring real-time adaptive security.

vggJ {kz — sm”} — Ms [jz‘ - an”} + Vs [kz — sne”] (14)

Vehicular anomaly detection (vgyj), multi-source knowledge validation ([kif sm”}), and vehicular

state assessment (M s {ji — cm”}) are all integrated in V's {kz — sne”} VANETS according to Eq. (14). It
optimises computational performance, minimises false positives, and guarantees high-accuracy, real-time threat

recognition in dynamic VANET systems.

psT [ku — sn”} — Xs [w — 9u”} + Sz [po — iwq”} (15)

With the help of VANET security Sz {po — iwq”} zone analysis (psr) and extended anomaly detection

(Xs {w — Quq ), the feature improvement process ( [ku — sn”] ) may be represented by Eq. (15). It maintains

high classification accuracy in dynamic vehicular networks and ensures efficient, low-latency threat mitigation.

Figure 4 shows an anomaly detection system for the monitoring data for electric vehicles. The technique
is initiated by normalising the seen statistics from the alert messages for Electric Vehicles. Training sequences
are then derived from the tagged data using ML models. Features are extracted, and anomalies are detected to
separate the usual data from outliers. A weight optimiser polishes the model to maximum accuracy; anomalies
are detected through a thresholding mechanism. An anomaly above the threshold is defined as something
that needs to be known. The discovered anomalies create alarm-generating events. Dashboards, analytical and
visualisation reporting tools are also part of the system. This technology enables efficient predictive maintenance
and EV monitoring by improving real-time anomaly detection.

ov [z — sn”} — Vs [w — th + Sc — i [ak: * 4sq,/} (16)

In vehicular state, monitoring (OV [z — sn”} ) and security context assessment (V's [w — 9h”} ) in VANETs,

Eq. (16) reflects {ak * 4sq”} the dynamic adjustment of the detection of anomaly features Sc — i . To

optimise security performance, minimise false positives, and preserve computing efficiency, it guarantees
adaptive anomaly detection.

vfrs [lofsn”} — Vs {wf&)f”} + Vs [vfzn”} (17)

Bykeeping tabs on vehicle status (v rs) and identifying security threats [l o—sn’ } )in VANETS, Eq. (17) depicts

the improvement of anomaly detection V's [v — zn”} via the analysis of system state features V's {w —8vf ”} .
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Fig. 4. Intelligent anomaly detection for EV data monitoring.

By boosting classification accuracy and reducing false positives, it enables efficient, real-time risk identification
and mitigation, thereby improving VANET security. Figure 5 explains the performance response evaluation
framework, which systematically assesses the influence of various network factors.

Vars [kz — an//} — Js [f — SbH} + Xs [ew — Sb,/} (18)

The joint security analysis (Vars) and extended extracted feature [kz - an”} methods are used in Eq. (18),

Xs {ew — Sb//} to identify irregularities in VANETs (J s [ f— 8b”} ). As a result, real-time anomaly detection

is guaranteed to achieve low false-positive rates and high accuracy, thereby improving network security in
dynamic vehicle environments.

I f [<< ki — sn'’ >>] — Ms {w — 8bf”} * Vs {w - iuy”} (19)

Scientific Reports|  (2025) 15:40068 | https://doi.org/10.1038/s41598-025-28212-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

[ Network Density

Net Topology Change ]

[ Traffic Load ] Data Rate ] Aggregate Performance
Metric
Function =
[ Mobility Pattern ] [ Wi-Fi J f(UT.LD,LO,UP)

Q\_\_ o |

Road Constraints ]

Performance Index =

1X)

\

Interaction

Layer Functionality ] !”.

[ Performance Response of Factors (Xi) ]

Fig. 5. Performance response evaluation framework for network factors.

Equation (19) depicts the procedure for improving features (I, f) to identify abnormalities in VANETs by

combining V's [w —tuy ] multi-source threat assessment [< ki — sn’’ >>] with vehicular state evaluation

(Ms [w —8bf ”} ). For better VANET security and real-time threat mitigation, it enables the identification of

complex cyber threats at lower computational cost and with fewer false positives.
Uge {kz — sn/,} = Vs [w — uy”} +Vs {ju — sje”} (20)

The assessment of identified anomalies (Uge) in VANETSs is represented by Eq. (20), which analyses vehicular
status at many levels ( [kz — sn”} :—and Vs [ju —5j e”] . Improving security by decreasing false positives,

optimising network efficiency, and ensuring real-time threat detection are all benefits.

Method 3: Comprehensive evaluation and benchmarking

Figure 6 shows an ML-based multi-layered approach for anomaly detection in VANETS. Starting from roadside
device and automobile sensor data collection, which may involve GPS, LIDAR, OBD, and cameras, the system
gathers the data before pre-processing that data with aggregation and filtering to feed into the anomaly detection
module that is machine learning-based, the main steps involved in the key procedures of the module are feature
extraction, selection, and classification of anomalies by using ML models such as RE It produces alerts and
analyses dangers, and roadside units provide communication with the vehicle. That is why edge computing
enables fast inference and ensures model updates from cloud storage, increasing real-time processing. With
this complex technology, traffic safety, vehicle communication, and proactive risk management are improved
in networks of connected automobiles. Energy-efficient multi-criteria routing protocols are incorporated to
reconcile performance with minimal power consumption under certain circumstances.
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Input: A stream of packets packet stream = [Packet 0, Packet 1, ..., Packet n]
Output: List of detected anomalous packets detected anomalies

Initialise an empty list detected anomalies « []
While packet stream is not empty:
a. Remove the first element from packet stream and store it in packet
b. Initialise an empty list of features «— []
c. For ifrom 1 to 5 do:
1. Generate a random number r between 0 and 1
il. Append r to features
d. Compute anomaly score «— sum(features) / length(features)
e. If anomaly_score > threshold (default is 0.7), then:
1. Print "Anomaly detected in packet:", packet
ii. Append packet to detected anomalies
f. Else:
1. Print "Packet normal:", packet
End While
Return detected anomalies

Algorithm 1. AD-MLA: anomaly detection using machine learning approximation

Algorithm 2 simulates feature extraction and classification using a basic threshold-based approach. The
classification logic uses a Random Forest classifier trained on real-world VANET data to improve accuracy
in energy efficiency, routing mechanisms, and sustainability. This paper presents frameworks for identifying
abnormalities in CPS, VANET, and EV data using artificial intelligence and machine learning models, such as
Random Forest.
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Input: A list of neighbour nodes, where each neighbour has: energy: Residual energy (%),
signal_strength: Received signal strength (dBm), hop count: Number of hops to destination,
link stability: Link reliability (0 to 1) and id: Unique node identifier

Constants: Energy Threshold «— 50, Signal Strength Threshold « -70, Max Hop Count
« 5, Link Stability Threshold « 0.7

Output: ID of the selected next-hop node or None if no suitable candidate

Initialize best _candidate «— None

For each neighbor in neighbors, perform the following checks:

a. If neighbor.energy > Energy Threshold, then
b. Ifneighbor.signal strength > Signal Strength Threshold, then

13

If neighbor.hop count <Max Hop Count, then

d. If neighbor.link_stability > Link Stability Threshold, then

If best_candidate = None,

Set best candidate «— neighbor

Else, compare with existing best candidate:

If neighbor.link_stability > best candidate.link stability
OR neighbor.hop count <best candidate.hop count, then

Set best candidate «<— neighbor

End For Loop
If best candidate # None,
Return best candidate.id

Else,
Return None

Algorithm 2. Energy-efficient multi-criteria routing in VANET

The energy-efficient multi-criteria routing algorithm in VANETSs selects optimal next-hop vehicles based
on residual energy, signal strength, hop count, and link stability, as explained in Algorithm 2. Using if-else
conditions, it filters for neighbours that meet the threshold criteria, ensuring low-latency, energy-efficient, and
reliable data transmission in dynamic vehicular environments while maintaining network performance and
security.

Results and discussions

By integrating intelligence into transportation systems, cyber-physical systems enhance vehicle ad hoc networks.
VANETs are highly susceptible to cyberattacks; hence, anomaly detection driven by artificial intelligence
is required. This work proposes AD-MLA, a Random Forest-based architecture that reduces false positives,
improves detection accuracy, and optimises computational efficiency, thereby guaranteeing real-time security
and reliability in VANET systems.

Dataset description

Rising cyber threats, increasing digitisation, and stringent regulatory requirements are driving market growth?2.
Key regions consist of North America, Europe, and the rapidly developing Asia Pacific. The market comprises
software (largest share), hardware, and services, and is driven by demand for advanced Al-based threat detection
and security solutions?*. The Kaggle VANET dataset? is a simulated collection of vehicular network traffic under
false information attacks. It records VANET message flows, both legitimate and malicious, capturing a variety
of benign and malicious message flows. It contains message-id, timestamp, position, speed, direction, signal
strength, hop count, attack type, and other attributes for supervised learning of anomaly detection models. The
diverse scenarios and variations in attack strength in the data make it ideal for training and validating systems
such as AD-MLA to differentiate benign and malicious behaviour across a collection of network conditions.
The dataset also contains a well-balanced mixture of normal and attack samples, which promotes meaningful
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evaluation and benchmarking, and the models trained on this dataset will apply to real-world VANET
environments because it is a realistic simulation. Ashmiyalenin® provided the VANET Dataset, a synthetically
generated dataset for studying network behaviours in vehicular ad hoc networks. It contains features relevant
to vehicle communications, such as message metadata, signal parameters, node IDs, mobility attributes, and
possibly connectivity/hop information. It is structured to support experiments in anomaly detection, traffic
modelling, or routing optimisation.

Analysis of false positives
The proposed AD-MLA framework significantly reduces false positives, as evidenced by the 15.22% false-
positive rate in Fig. 7. This improvement assures that authorised network actions are not falsely recorded as
anomalies, hence reducing unnecessary warnings. Random Forest classification, when combined with feature
selection, lowers misclassification and increases accuracy.

In VANETS, a lower false-positive rate is crucial to prevent wasteful security operations and maintain efficient
vehicle communication free of interruptions.

XZygr {kz — sn”} — Js [ko — sn//} + BVs {k:o — sne/l} (21)

Joint security analysis (X Z 7 [lﬂ — sn”}) and improved vehicular state evaluation (BV's {ko — sne”} ) in

VANETSs improve anomaly detection features (Js [k’o — sn”] ), as shown in Eq. (21). In ever-changing network

settings, it guarantees accurate anomaly detection with minimal false positives, without sacrificing analysis
performance.

Analysis of detection accuracy
Compared with other conventional methods of anomaly detection classification, the AD-MLA framework
achieved a high detection accuracy of 95.33%, as shown in Fig. 8. The framework focuses least on identifying
risky behaviours using feature selection, clustering, and other machine learning approaches. Given the high
detection accuracy within the Security of Cyber-Enabled VANETs framework, one can confidently state that it
will consistently meet the security needs of Cyber-Enabled VANETs without disrupting the VANET’s seamless
operations.

In the context of the implementation of the framework in real-time applications of secured vehicular
networks, the framework’s operational security can be commended.

1’ 1’ 1’
lyr {p—sn } = Vs [w—B'Uf }—&—Vaw [w—She } (22)
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Fig. 8. Comparison of detection accuracy ratios across different models with respect to sample size. The AD-
MLA model achieves the highest performance improvement over ICTS, VANET, and CNN-GAN.

An anomaly detection method Vaw [w — 8he”} in the vehicular state, analysis (I¢7) and wireless connection

assessments ({p — sn”}) in VANETSs is represented by the feature enhancement process (Vs [w — 8uf ”})

in Eq. 22. It improves VANET security by real-time pattern identification of false positives through analysis of
detection accuracy.

Analysis of optimising computational efficiency
The framework achieved an optimal computational efficiency of 94.25%, effectively maintaining a balance
between processing speed and detection accuracy. Random Forest with feature selection avoids pointless
calculations, therefore saving processing time even as security is maintained. This efficiency guarantees that
anomaly detection does not overburden vehicle resources, so the technique is viable for real-time use in VANETS.
Figure 9 illustrates the operating computational efficiency (%) with respect to the number of samples for
ICTS, VANET, CNN-GAN, and AD-MLA models, demonstrating comparative performance trends. Reduced
processing costs enable flawless interaction with current vehicle communication systems without performance
loss.

VyT {kz — sn”} :— Ls [ju — snw”} + vs [f — 9he//} (23)

By integrating VANET network status analysis (v, ) with vehicular state monitoring ([ki - sn”} ) Eq. (23),

vsf—9he’" depicts the improvement of recognising anomalies and features (Ls [ju — snw”} ). It optimises

current safety and network efficiency while ensuring effective detection of digital dangers, with few false
positives, and analysis of optimising computational efficiency.

Analysis of recall
The proposed AD-MLA system attained a 96.09% recall rate, as evidenced in Fig. 9, which denotes its ability to
acknowledge and identify the genuine anomalies in the network. Having placed this within the context of Cyber-
Enabled VANETS, it can be appreciated that having recall levels of this magnitude minimises the chances of a
security breach going unaddressed. This is of utmost importance in the dynamic environment of automobiles,
where unrecognised anomalies can trigger serious security risks. Doing this, the framework amplifies the
system’s dependability and actionable safety of secured networked automobiles.

The Fig. 10 demonstrate that AD-MLA and CNN-GAN achieve higher recall performance as the sample size
increases, reflecting better sensitivity in detecting positive cases compared to ICTS and VANET.
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Analysis of resource usage

The proposed AD-MLA architecture efficiently manages memory and computational resources in VANET
systems, achieving a resource utilisation efficiency of 91.45%, as illustrated in Fig. 11. Although strong detection
performance is maintained, efficient classification techniques together lower the processing unit load via feature
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Fig. 11. Resource usage ratio (%) plotted against the number of samples for ICTS, VANET, CNN-GAN, and
AD-MLA.

selection. This ensures that the anomaly detection system operates without creating delays or too high power
consumption, thus making it suitable for real-time, resource-limited vehicle networks.

The process of anomaly detection in VANETSs Bs { Jji— nea”} , as represented by Eq. 24, involves evaluating

the vehicular status (Jgr [lo — sn”} ) and doing a multi-source security analysis (V's [w — sye//} ). Itimproves

VANET security by minimising false positives and making the most of threat mitigation in ever-changing
contexts, and it efficiently detects complicated cyber threats through analysis of recall.

Jar [lo — snﬁ} = Vs [w — sye”] + Bs [ji — neaﬁ} (24)

TFT [pa/ — Gvd”} — Vs [w — 8y”} + Bs [nji — sn”} (25)

The improvement of anomaly identification features Vs [w — 8y”} in VANETs is shown by Eq. (25), which
takes Bs [nji — sn”} into account, the analysis of vehicle status (77) and the integration of multi-source

security information ( [pal — 61}d”} ). Improving real-time threat detection and decreasing false positives are

the main goals of Eq. (25) on the analysis of resource usage.

The results in Fig. 11 demonstrate that, as the sample size increases, AD-MLA and CNN-GAN exhibit more
efficient resource utilisation scaling than ICTS and VANET, indicating improved computational adaptability.

This research presents AD-MLA, a VANET anomaly detection system powered by Al and using Random
Forest to improve performance, precision, and safety. As shown in Table 3, the proposed method outperforms
existing approaches. Results show that the current methods are highly effective, with a recall of 96.09%, an
accuracy of 95.33%, and a false-positive rate of 15.22%. For adjusted deployment, the concept improves
computational efficiency by 94.25% and energy conservation by 91.45%. It also provides real-time, low-latency
detection, strengthening VANET security.

Model development and deployment

To assess the real-time applicability of the proposed AD-MLA framework in edge-intelligent settings, we
measured execution performance, memory efficiency, and deployment level on the NVIDIA Jetson Nano
and Jetson TX2. This research focuses on integrating feature selection into the RF-based detection pipeline
while accounting for the hardware limitations of CUDA-enabled GPUs. Each stage of the AD-MLA processing
pipeline (data acquisition, feature extraction, classification, and routing) was exhaustively measured, and latency
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Proposed method in
Aspects Existing method in ratio (%) | ratio (%) Key features
Detection accuracy 85.90 95.33 High accuracy using Random Forest with feature selection and
clustering

False positive rate (FPR) | 25.33 15.22 Reduced false positives through optimised classification techniques

Computational efficiency | 80.85 94.25 Optimised computational overhead using efficient feature selection

Recall (detection rate) 88.92 96.09 High Fecall ensures better threat detection with minimal false

negatives
. . Lower processing and memory consumption make it suitable for
Resource Usage Efficiency | 75.85 91.45 real-time VANET deployment
Table 3. Comparison of the existing method and the proposed method.
Jetson TX2
Jetson Nano (ARM A57 | (Denver2 + A57 @
1.43 GHz + 128-core 2.0 GHz +256-core
Pipeline stage Workload description Maxwell) Pascal) Notes/bottlenecks
s . Read 512 records (= 25 features) and CPU-bound (NumPy vector ops);
Data Acquisition + Pre-processing normalization 62+4 ms 38+3 ms negligible GPU load
- - - P FY T
Feature selection Variance threshold and correlation filtering 3142 ms 1941 ms Single-threaded PCA/x? optional;
(top 20 features) caches reused
RE model inference 100 trees x depth 10, batch =512 samples 12846 ms 7445 ms GPU parallel evaluation; dominated
(cuML) by memory reads

Routing decision computation Residual energy, RSSI, hop count scoring 18+2 ms 11+1ms Pure CPU; integer math <1 MB RAM
1/0 and logging overhead CSV write and MQTT publish 9+1ms 7+1ms Disk or network latency dependent
Total per cycle (end-to-end) Full AD-MLA loop 248+10 ms (= 4.0 Hz) 149+ 8 ms (= 6.7 Hz) ?ﬁezest(s) ige;l)»tune VANET threshold

Table 4. Execution-time performance of the developed model on Jetson Nano / TX2.

metrics were established. Inference latencies were recorded to be below 250 ms on the Nano and close to 150 ms
on the TX2, thus meeting real-time requirements for vehicular and industrial CPS. The model also exhibited
a memory footprint of less than 150 MB, moderate GPU utilisation, and a consistent throughput of 4 to 7
inference cycles within a power range of 5 to 7 W, with a latency of 5 to 7 W. This observed sustained resource
consumption confirms the model’s high-accuracy intrusion detection capabilities on embedded hardware with
limited resources.

As shown in Table 4, its modular design facilitates containerised deployment and, combined with JetPack,
enables over-the-air updates and federated retraining across multiple distributed edge nodes using Docker. The
AD-MLA framework efficiently balances computational load, power consumption, and system size, making it
a sustainable edge-intelligent intrusion detection system for real-time deployment in VANET, IoT, and cyber-
physical environments.

With the AD-MLA framework, the balancing act between the extremes of real-time operations and the
performance of the security module, in a cryptographic context, is optimised in edge-based IoT and Industrial
IoT (IIoT) deployments. The system utilises AES-256 symmetric key cryptography to enable secure inter-
node communication. It is supplemented with SHA-256 hashing to provide real-time integrity checks, hence,
authentication, and overall system data integrity without undue computational burden. While elliptic curve
cryptography, lattice-based cryptography, and even homomorphic encryption were considered, none met the
cost-effective computational constraints of the Jetson Nano and TX2 (sub 5-10 W) implementations, given 4 GB
RAM and the need to stay within a 5-10 W boundary. The lightweight cryptography provides encryption and
verification under 20 ms, ensuring the system as a whole responds within the real-time limits of 150-250 ms.
Since vehicular and CPS sessions are periodically refreshed and short-lived, the system’s strategic positioning
meets the minimum requirements to combat basic replay and network attacks; hence, the system’s scaffolding
provides the best efficiency. Future work with lightweight ECC and lattice-based systems will still meet the edge
security requirements of evolving systems.

The information in Table 5 undoubtedly supports the choice of AES-256 + SHA-256, as implemented in the
AD-MLA framework, as the optimal solution for balancing security and efficiency in real-time applications
for vehicles and IToT. Although ECC provides a slight improvement in cryptographic strength, it is an order of
magnitude slower (= 3 times slower than AES). It can therefore cause significant delays in authenticating packets
for real-time applications in VANET. For lattice-based PQC schemes such as Kyber-512 or NTRU-HRSS,
while guaranteeing safety against quantum attacks, they currently exceed the processing power of Jetson-class
devices, which results in = 100 ms of additional encryption delay. For powerful privacy-preserving analytics,
homomorphic encryption remains an unrealistic option for embedded or mobile systems due to high memory
and energy costs.
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Power Suitability
Avg. Encryption + Verification | Memory usage | usage Implementation | for real-time
Cryptographic scheme Security level Time (Jetson TX2) (MB) (W) complexity AD-MLA
AES-256 + SHA-256 (Used in AD-MLA) 128-256-bit security | 15-20 ms/transaction ~10-20 MB 5-6 W Low Excellent
Elliptic Curve Cryptography (ECC-256) 128-bit equivalent 45-65 ms/transaction 30-50 MB 7-8 W Medium Good
Lattice-based PQC (e.g., NTRU, Kyber) 256-bit post-quantum | 90-130 ms/transaction 60-80 MB 8-9W High Fair
Homomorphic Encryption (Paillier / BEV) | >256-bit semantic >300 ms/transaction 150-300 MB >10W Very High Poor

Table 5. Comparison of Cryptographic Schemes and Their Suitability for Real-Time AD-MLA Deployment
on Jetson TX2.

Conclusion

This research proposes an AD-MLA model to enhance the security and reliability of VANET. The model uses
Random Forests to dynamically identify and mitigate cyber vulnerabilities via feature selection, clustering, and
classification. With 95.33% detection accuracy, 96.09% recall, and a significantly low false positive rate of 15.22%,
the empirical results underscore the model’s superiority over current approaches to anomaly detection. The
frameworK’s suitability for dynamic VANET environments also demonstrates optimal resource control (91.45%)
and peak computational efficiency (94.25%). The model shows the potential of machine learning techniques to
protect automotive networks from rising cyber threats. In addition to improving threat detection capabilities,
the proposed system guarantees low-latency processing needed for real-time systems. The AD-MLA model for
VANET security addresses significant challenges in developing intelligent and safe transport systems, including
unsatisfactory detection methods, high false-positive rates, and scalability limitations. Enhanced multi-criteria
energy-efficient routing within the model provides substantial advantages for safety—critical scenarios, where
communication must be timely and reliable. Deep learning techniques will be employed in future work to
enhance AD-MLA further, thereby improving the model's anomaly-detection accuracy. Furthermore, this
research will investigate the practical implementation and operational deployment in large-scale VANET
ecosystems. For seamless integration into self-driving cars, further advancements in resource management and
processing efficiency will be necessary. For the following, we plan to use dedicated Explainable AI methods,
namely, Shapley Additive exPlanations and Local Interpretable Model-agnostic Explanations, to delineate
the instance-specific decision factors and justify each detection in a manner understandable to the user. This
will enhance the practical applicability of AD-MLA to network analysts and cybersecurity practitioners by
connecting operational perspectives to the model’s decisions, while preserving the architecture’s low overhead
and real-time nature.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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