
Sustainable cyber-physical VANETs 
with AI-driven anomaly detection 
and energy-efficient multi-criteria 
routing using machine learning 
algorithms
Wai Kit Wong1, S. Baskar2, K. M. Abubeker3 & Poh Kiat Ng1

Cyber-physical systems have improved modern transportation by allowing vehicles and road 
systems to communicate through Vehicular Ad Hoc Networks (VANETs). Existing anomaly detection 
approaches often struggle with high false-positive rates, poor adaptability, and significant 
computational demands, compromising their real-time efficacy and scalability. To address these 
problems, this research presents an Anomaly Detection using Machine Learning Algorithms (AD-
MLA) framework that employs a Random Forest model to accurately detect abnormal activities. The 
framework encompasses feature selection, data clustering, and an energy-efficient routing strategy 
that incorporates node energy, signal strength, hop count, and link stability. Evaluations demonstrate 
that AD-MLA reduces false alarms, improves detection accuracy, and operates with lower energy and 
computational requirements. It offers a smart, rapid, and efficient security system for real-time VANET 
environments, rendering it appropriate for transportation systems characterised by high reliability 
and safety. By integrating a Random-Forest-based anomaly detector with intelligent feature selection 
and an energy-efficient routing method that accounts for residual energy, signal strength, and link 
stability, the suggested framework systematically addresses these challenges. This approach delivers 
95.33% accuracy, 96.09% recall, 94.25% computational efficiency, and 91.45% resource-use efficiency. 
This effectively addresses the scalability, latency, and energy challenges that previous systems have 
faced in incorporating blockchain technology and deep learning architectures.
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Sustainable cyber-physical systems (CPS) have transformed modern industries by delivering smart, connected 
solutions across transportation, healthcare, and industrial automation. Sustainable CPS is designed to 
incorporate the functionality of computers, sensors, and electronic systems to efficiently monitor and regulate 
multiple processes in real time1. In Vehicular Ad Hoc Networks (VANETs), CPS provides intelligent interfaces 
for transportation systems to enable real-time spatial communication and internet connectivity2. Through 
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) connectivity, VANETs support autonomous 
driving, improve traffic management, and enhance road safety3. However, as VANETs increasingly depend on 
communication and connectivity technologies, they also support a novel and disruptive range of cybersecurity 
vulnerabilities, including data poisoning, Sybil, and Distributed Denial of Service (DDoS) attacks4. An additional 
security aspect is monitoring for instabilities and hostile actions. This type of real-time monitoring is part of the 
anomaly detection systems that VANETs deploy for operational security5. The standard systems for anomaly 
detection, especially the rule-based and signature systems, are less able to cope with the fast, dynamic, and 
unpredictable cyber threat landscape that characterises VANETs6. These systems are also poorly designed for 
detecting advanced and novel cyberattacks, poorly scalable, and generate high false-positive rates.
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Communication within VANETs must be reliable, efficient, and sustainable to support the future of intelligent 
transportation systems. Research on intelligent transportation systems based on machine learning and anomaly 
detection highlights scalability, energy efficiency, and false-positive rates associated with preemptive anomaly 
control7,8. This work proposes using energy-aware multi-criteria routing in conjunction with machine-learning-
integrated anomaly detection to mitigate these challenges. This will enhance real-time threat response, support 
energy-efficient computing, and promote sustainable cyber-physical VANET computing. With Artificial 
Intelligence (AI), VANET systems will learn and adapt anomaly detection systems to new threats, improving 
detection systems’ precision and operational efficiency9. Nonetheless, many recent AI solutions are ill-suited for 
real-time implementation in vehicle networks due to excessive computational requirements10. Thus, protecting 
VANETs with appropriate network performance will require scalable, low-latency anomaly-detection systems.

The framework improves detection efficiency while minimising computational burden by combining feature 
selection, clustering, and classification. Through continuous network traffic supervision, AD-MLA automatically 
lowers active security threats by resolving real-time deviations. In terms of computing efficiency, false-positive 
reduction, and detection precision, the experimental results demonstrate that AD-MLA outperforms all other 
active anomaly detection systems. Unlike other systems, AD-MLA is scalable to cyber threat ecosystems while 
addressing the high false-positive problem that dominates anomaly detection in VANETs. The primary research 
contributions are outlined below.

•	 Developed a sustainable AD-MLA framework, integral in advancing VANET security and facilitating intelli-
gent, clean transportation systems. AD-MLA improves detection accuracy, enables real-time adaptation, and 
enhances the efficiency and sustainability of VANET operations.

•	 Integrated Random Forest with feature selection, grouping, and classification algorithms can enhance the 
utilisation of computational resources in vehicular networks.

•	 Optimisation of routing decisions based on energy consumption, link stability, and mobility is necessary for 
safety-critical applications in dynamic urban VANET environments.

The manuscript is structured as follows: Section "Related works" presents the related work on anomaly detection 
in VANETs. In Section "Materials and methods", the proposed AD-MLA methodology is explained. In section 
"Results and discussions", the efficiency of AD-MLA is discussed and analysed, followed by a discussion of the 
deployment platforms. Finally, in section "Model development and deployment", the research concludes with a 
discussion and a section on future work.

Related works
The contribution of AI-driven methods in improving security across many transportation and network systems 
is investigated in this collection of publications. Aiming to improve safety, privacy, and system efficiency in 
modern intelligent transportation networks, these studies examine anomaly detection, predictive maintenance, 
and cyberattack prevention using advanced methods, including LSTM, CNN-GAN, and machine learning from 
autonomous vehicles and IoT to VANETs and EnFVs. It presents an ensemble of Long Short-Term Memory 
(LSTM) networks and a deep learning-based Intrusion Detection System (IDS) for ICTS11. This approach 
tracks V2V, In-Vehicle Networks (IVN), and V2I connections to identify harmful behaviour. The system’s 
effectiveness in detecting cyber threats within autonomous vehicle networks is evaluated using the UNSW-NB15 
and automobile-hacking datasets. Their method maximises data flow, strengthens security, and increases smart 
network efficiency through intelligent transportation. Researchers examine Artificial Intelligence (AI)-based 
anomaly detection techniques in the Controller Area Network (CAN) systems of advanced vehicles12. With 
a focus on methods such as Machine Learning (ML), Deep Learning (DL), and Federated Learning (FL) for 
anomaly detection, the authors examine how AI could improve IoT security13. Practical solutions for identifying 
and managing security risks in IoT devices are developed using artificial intelligence techniques, which also 
improve attack detection and predictive analysis, thereby reducing human involvement. Recent work in14 
investigates how AI could help VANETs; to avoid dangerous circumstances, AI methods are explored for tasks 
such as data collection, routing, driver awareness, and mobility prediction.

Recent reviews of AI-based techniques for vehicle network security problems. It starts by providing a general 
overview of vehicle networks and their weaknesses, then evaluates the principles of artificial intelligence and how 
they affect vehicle security15. The proposed framework focuses on assessing the integration of AI technologies 
to address security challenges in these networks. It suggests a novel taxonomy for identifying and benchmarking 
several AI-driven approaches. Saud et al.16 specifically analyse the impact of AI, the Internet of Things (IoT), 
and 5G/6G technologies in VANETs to enhance traffic safety, convenience, and economic efficiency. Besides 
analysing the improvements in connectivity that the IoT and 5G/6G technologies bring, the study also focuses 
on AI for routing, driver-automation awareness, and mobility prediction. For network anomaly detection, Rao 
et al.17 propose a hybrid architecture that integrates Convolutional Neural Networks (CNNs) and Generative 
Adversarial Networks (GANs). In the context of real-time IIoT environments, Himanshu et al.18 propose an 
adaptive CNN-GRU deep learning model that achieved 99.75% accuracy, 99.75% precision, and 99.74% recall 
on the N-BaIoT dataset, for reliable IIoT security. Alqahtani et al.19 explore the application of machine learning 
(ML) to enhance the security of electric and flying vehicles (EnFVs). To increase safety and save downtime, it 
emphasises predictive maintenance, cyberattack detection, and intelligent decision-making. The paper, which 
covers Explainable AI, real-time algorithms for resource-constrained settings, and privacy-preserving strategies, 
offers an overview of ML applications, identifies key problems, and outlines future research directions. Akinola 
et al.20 introduce the Urban Adaptive Location-based Routing Protocol (UALRP), an adaptive machine-learning-
based location-routing protocol for urban WSNs that utilises real-time data analytics to enhance routing 
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performance. By analysing traffic and environmental data, it improves routing accuracy, network performance, 
and scalability, adjusting to dynamic urban environments.

As shown in Table 1, existing AI- and ML-based intrusion detection systems achieve higher accuracy 
and threat coverage than traditional rule-based methods but still face significant limitations, including high 
false-positive rates, limited scalability, and high computational cost. Artificial intelligence techniques include 
CNN-GAN, machine learning, and ensemble LSTM-based IDS, which provide effective solutions for anomaly 
recognition and enhanced security in car networks, IoT, and smart transportation systems. These approaches 
address significant concerns, including predictive maintenance, privacy, and cyberattacks.

The results in Table 2 show that the AD-MLA framework outperforms standard blockchain and hybrid deep 
learning IDS models. While blockchain models secure data transactions, they do so at the expense of high 
latency and high energy costs. While deep learning models like LSTM and CNN-GAN achieve high accuracy, 
they require large training datasets and heavy computational costs. In contrast, the proposed Random-Forest-
driven AD-MLA merges feature selection and energy-aware multi-criteria routing, dynamically adjusting 
accuracy, efficiency, and detection sustainability. This framework achieves 95.33% accuracy, 96.09% recall, 
15.22% FPR, 94.25% computational efficiency, 91.45% resource-usage efficiency, demonstrating the real-
time edge applicability of the proposed framework to VANET and CPS. AD-MLA offers the best balance of 
performance and energy-efficient operation, allowing us to grade it as a sustained, practical IDS architecture for 
intelligent transport system CPS. Overall, AD-MLA offers the best balance of performance and energy-efficient 
operation. All of these contribute to the practical application of next-generation intelligent transport systems as 
a sustained, practical IDS architecture.

The results of the experiments validate that the proposed AD-MLA approach meets the research goal of 
designing a lightweight, adaptive, and energy-efficient intrusion detection system for VANET and CPS 

Aspect Blockchain-based IDS Hybrid deep-learning IDS (LSTM/CNN–GAN) Proposed AD-MLA Framework (RF + Energy-Aware Routing)

Architecture Focus
Distributed trust ledger; consensus 
among nodes for transaction 
validation

Stacked neural layers (LSTM for sequential data, 
CNN–GAN for anomaly synthesis)

Two-stage co-design: (i) Random-Forest anomaly detector, (ii) 
multi-criteria routing based on energy, RSSI, hop count, and 
link stability

Key Components Smart contracts, miners, and 
blockchain consensus mechanisms

Deep neural network encoder–decoder or 
generator–discriminator pipelines

Feature selection + RF classification + routing decision algorithm 
(Algorithm 2)

Dataset Need Ledger and transaction records, 
often synthetic for VANET testing

Large labelled datasets (UNSW-NB15, CAN-Bus, 
car-hacking)

Lightweight feature vectors from VANET communication logs; 
fewer samples required

Detection Speed Slower due to consensus and block 
propagation delays

Moderate, depending on batch inference or 
retraining cycles Real-time classification via ensemble RF inference

Adaptability to 
Network Dynamics Low; ledger structure is rigid Moderate; models must be retrained for new 

patterns
High feature selection and RF thresholds allow dynamic updates 
without retraining

False-Positive Rate 
(FPR) Typically > 20% under rapid mobility 10–15% reported, but unstable due to imbalanced 

data
15.22%, balanced against a higher recall to prioritise threat 
coverage

Table 2.  Comparative analysis of the proposed AD-MLA with blockchain-based and hybrid deep-learning 
IDS frameworks.

 

SI 
No Methods Advantages Limitations

1 Ensemble LSTM-based 
IDS for ICTS12

Effective in detecting cyber threats in V2V, IVN, and V2I networks
Maximises data flow and enhances security
Increases smart network efficiency

Requires large datasets for training
Might not handle highly dynamic or unpredictable data well

2
AI-Based Anomaly 
Detection in CAN 
Systems13

Improves vehicle data security using AI
Identifies complex anomalies in CAN systems
Focus on privacy

Limited by the scalability of the techniques
Performance can vary depending on data quality and availability

4 AI-Based VANET 
Solutions14

Enhances traffic safety and efficiency
Optimises routing and driver awareness
Improves passenger comfort and road experience

Potential difficulties in implementing AI in real-time traffic conditions
High computational resources may be required for some AI 
techniques

5
AI-Based Security 
Solutions for Vehicular 
Networks15

Identifies and addresses security issues in vehicular networks
Proposes a new taxonomy for comparing AI-based solutions

May face challenges in handling highly dynamic and large-scale 
vehicular network data
Complexity of integration with existing infrastructure

6 AI-IoT-5G/6G for 
VANETs16

Combines AI, IoT, and 5G/6G to enhance connectivity and security
Improves routing, mobility prediction, and driver awareness

5G/6G infrastructure is still developing
Potential privacy and security concerns when handling sensitive data 
across various systems

7
Hybrid CNN-GAN 
Model for Anomaly 
Detection17

High detection rates and minimal false positives
Improves network security by generating normal traffic patterns to detect 
anomalies

Require a large labeled dataset
Complex training process and resource-intensive

8 ML-Based Security for 
EnFVs20

Enhances safety with predictive maintenance and cyberattack detection
Aims for privacy-preserving and real-time solutions

Real-world implementation challenges
Ethical considerations and the complexity of applying ML techniques 
in resource-constrained environments

9 Transfer learning 
BILSTM21

High detection accuracy for IoT botnet attacks
Transfer learning improves generalisation

Potential dataset bias
Computational overhead and resource constraints

Table 1.  The comparison of existing methods.
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environments. Combining Random-Forest-based anomaly detection with a multi-criteria routing strategy 
allows the framework to reduce latency and power usage while preserving detection accuracy. With 95.33% 
accuracy, 96.09% recall, and 94.25% computational efficiency, these results represent a meaningful advancement 
over existing blockchain-based and hybrid deep-learning IDSs. This demonstrates that AD-MLA can efficiently 
operate on edge or vehicular nodes without the GPU-heavy computation or consensus communication typically 
required. AD-MLA’s sustainable design contributes to green, scalable vehicular communication ecosystems that 
support adaptive, innovative, eco-friendly transport systems.

Materials and methods
Cyber-physical systems improve intelligent decision-making and automation by aggregating computer, 
networking, and physical components. By spotting abnormalities in EV data, suspicious activities, and unusual 
traffic patterns, machine learning-enabled anomaly detection in VANETs enhances security, efficiency, and 
safety.

Method 1: Development of the AD-MLA framework for anomaly detection
It proposed an AD-MLA architecture that leverages RF to reliably and efficiently categorise abnormalities in 
VANETs. Figure 1 illustrates the integration between computational and physical components within Cyber-
Physical Systems, highlighting their dynamic interactions. The physical layer comprises actual components such 
as autonomous automobiles that use sensors and actuators to track and respond to their surroundings, as well 
as power plants. Above this is the network layer, which links physical and computational devices via wireless 
(LTE, 5G) and wired (DNP3, IEC61850) protocols for real-time data exchange and control feedback loops. 
The application layer handles traffic monitoring, electricity demand projections, and geolocation services to 
provide intelligent decision-making. Control systems made available by a central computer system that analyses 
incoming data help achieve optimal performance in energy efficiency, routing mechanisms, and sustainability. 
Due to CPS technology’s ability to integrate various physical systems over a robust network, automation is 
accelerated, smart infrastructure is improved, and intelligent services can be expanded across many sectors.

Fig. 1.  Cyber-physical systems: the interplay of computation and physical dynamics.
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To further improve performance, energy-saving measures are adopted for path optimisation based on 
latency, power usage, and network utilisation. Such strategies minimise costs and environmental degradation by 
reducing power consumption, minimising real-time data transmission, and controlling energy waste.
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VANET conditions ensures low-latency, high-accuracy detection.
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 are all represented by Eq. (2). It optimises computing efficiency 

for intelligent, secure VANET operations and ensures adaptive, real-time anomaly detection.
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Equation  (3) shows how VANETs can improve anomaly identification (Uvd) and knowledge integration 
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) by using vehicular data (≪ u − sn
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). By 

effectively mitigating cyber risks and dynamically analysing vehicle communication patterns, it provides strong, 
real-time protection.
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To improve anomaly identification (fge) and context-aware validating (
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) in VANETs, Eq. (4) shows the 

integration of feature generation (Bx
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). 

It makes sure that anomaly detection systems are smart and flexible, such that in dynamic VANET settings, real-
time threat mitigation is maintained while false positives are reduced
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In VANETs, the optimisation of security sense (Oss) is represented by Eq. (5) together with V a
[
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anomaly surveillance of networks (a − nj
′′

) and adaptation validation (Ns
[
w − 9bw

′′
]

). It makes VANETs 

more resilient by reducing the number of false positives, improving detection precision, and ensuring effective 
threat mitigation.

Figure 2 describes how an ML-based intrusion detection system identifies malicious activity on a network. It 
starts with network traffic monitoring, where tools used for packet sniffing capture, decode and analyse data in 
the packet decode stage. The data being captured is used to create a feature set and undergo data pre-processing, 
including feature transformation, reduction, and normalisation. Post-preprocessing, the data is routed to the 
classifier system, where random forests, an ML technique, analyse it. A detector and recogniser determine 
whether the behaviour is malicious; if so, the activity is classified as an attack.

To enable protection, energy-conserving multi-criteria routing mechanisms maximise data transfer without 
overburdening specific network segments. This not only conserves energy but also increases the lifetime of 
network devices. Such integration of sustainable computing concepts enhances cybersecurity while fostering 
green technology initiatives.
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Equation  (6) depicts the learning-based association of continually changing information (lcd) with VANET 

anomaly classification (Ms
[
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′′
]

), vehicular health assessment (V s
[
k − aje
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), and multi-source 
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knowledge optimisation (V x
[
s − k

′′
]

). It optimises computing efficiency in dynamic vehicle networks while 

ensuring adaptive, high-accuracy security monitoring.
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In VANETs, Xa
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) and extended anomalies analysis (Xa[s-

iu]) contribute to the universal sensitivity perception (∀hss) of known abnormalities (Ls
[
ki − an

′′
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), which is 

given in Eq. (7). Improving VANET security through real-time threat assessment and mitigation it guarantees an 
adaptable and scalable method to anomaly detection.
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the learning-based retrieval of unusual patterns (Cs
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) in VANETs is represented by Eq.  (8). This 

improves security measures in real time by leveraging feature selection, groupings, and classification to enhance 
anomaly detection.
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Fig. 2.  Flow of intrusion detection in network traffic using machine learning.
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In VANETs, the adaptive validation (lde and behavioural security assessment (x-zna′′) allows for the learning-
driven extractionVaki -se′′ from complicated anomaly patterns (Bski -sne′′), which is given in Eq. 9. It guarantees 
a smart, adaptable security system that monitors emerging cyber threats and takes action.
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Equation (10) expresses the cybersecurity sensing in vehicular area networks (VANETs) as a function of knowledge-

based anomaly evaluation (Vcs
[
x − znba

′′
]

) and vehicular security state analysis (Ks
[
ki − ane

′′
]

). 

Through ongoing analysis of network behaviours, the reduction of false positives, and improvements in VANET 
endurance against cyberattacks, it guarantees strong, adaptive security.

Method 2: Enhanced detection accuracy and computational efficiency
Integrated feature selection, clustering, and classification algorithms to enhance detection performance, lower 
false-positive rates, and cut computation costs, making it suitable for real-time deployment. Figure 3 shows a 
general architecture for anomaly detection in VANETs driven by artificial intelligence. Once noise reduction and 
feature extraction are performed, the system aggregates real-time data gathering from Road Side Units (RSUs) 
and vehicle sensors. Using machine learning methods helps one find anomalies, including traffic accidents, 
network outages, or hostile conduct. Once an anomaly is discovered, alerts are fired off and routed across V2I 
and V2V, therefore enabling rapid responses. With cloud or edge computing, we can achieve continuous system 
monitoring, model retraining, and data storage. By predicting and managing unexpected events, AI algorithms 
help the overall system improve traffic safety, efficiency, and reliability. The adoption of sustainable computing 
principles ensures that the VANET architecture is environmentally friendly while maintaining high performance.
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Fig. 3.  AI-Driven anomaly detection in VANETs for smart transportation.
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Anomaly suppression strategies (Evf
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) and security validation (Sv
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) in VANETs 

are represented by Eq.  (11), which evaluates feature variations (V as
[
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). Optimising computing 

performance, avoiding false positives, and reacting to real-time network circumstances strengthen VANET 
security.
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In Eq.  (12),(ndm) depicts the VANET network detection method Hs′′v for anomaly identification using 
specialised pattern recognition ([ki − cz′′]” :→), extended anomaly analysis (Sp[ju − sq′′]), and hybrid 
security validation (Xa[s − 8b′′]∗). It guarantees adaptive coverage in dynamic VANET situations, optimises 
network performance, and improves real-time security.
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 uses hybrid security sensing Hs
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 and extended anomaly detection. It continually 

improves detection models, reduces errors in detection, and effectively mitigates developing threats in VANET 
systems, ensuring real-time adaptive security.
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Vehicular anomaly detection (vggj), multi-source knowledge validation (
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), and vehicular 

state assessment (Ms
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) are all integrated in V s
[
ki − sne

′′
]

 VANETs according to Eq.  (14). It 

optimises computational performance, minimises false positives, and guarantees high-accuracy, real-time threat 
recognition in dynamic VANET systems.
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With the help of VANET security Sz
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 zone analysis (pf r) and extended anomaly detection 

(Xs
[
w − 9u

′′
]

), the feature improvement process (
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) may be represented by Eq. (15). It maintains 

high classification accuracy in dynamic vehicular networks and ensures efficient, low-latency threat mitigation.
Figure 4 shows an anomaly detection system for the monitoring data for electric vehicles. The technique 

is initiated by normalising the seen statistics from the alert messages for Electric Vehicles. Training sequences 
are then derived from the tagged data using ML models. Features are extracted, and anomalies are detected to 
separate the usual data from outliers. A weight optimiser polishes the model to maximum accuracy; anomalies 
are detected through a thresholding mechanism. An anomaly above the threshold is defined as something 
that needs to be known. The discovered anomalies create alarm-generating events. Dashboards, analytical and 
visualisation reporting tools are also part of the system. This technology enables efficient predictive maintenance 
and EV monitoring by improving real-time anomaly detection.
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In vehicular state, monitoring (∂∀
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′′
]

) and security context assessment (V s
[
w − 9h

′′
]

) in VANETs, 

Eq.  (16) reflects 
[
ak ∗ 4sq

′′
]

 the dynamic adjustment of the detection of anomaly features Sc − iu
′′

. To 

optimise security performance, minimise false positives, and preserve computing efficiency, it guarantees 
adaptive anomaly detection.

	
vf rs

[
lo − sn

′′
]

:→ V s
[
w − 8vf

′′
]

+ V s
[
v − zn

′′
]

� (17)

By keeping tabs on vehicle status (vf rs) and identifying security threats (
[
lo − sn

′′
]

) in VANETs, Eq. (17) depicts 

the improvement of anomaly detection V s
[
v − zn

′′
]

 via the analysis of system state features V s
[
w − 8vf

′′
]

. 
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By boosting classification accuracy and reducing false positives, it enables efficient, real-time risk identification 
and mitigation, thereby improving VANET security. Figure  5 explains the performance response evaluation 
framework, which systematically assesses the influence of various network factors.

	
Vdrs

[
ki − an

′′
]

:→ Js
[
f − 8b

′′
]

+ Xs
[
ew − 8b

′′
]

� (18)

The joint security analysis (Vdrs) and extended extracted feature 
[
ki − an

′′
]

 methods are used in Eq. (18), 

Xs
[
ew − 8b

′′
]

 to identify irregularities in VANETs (Js
[
f − 8b

′′
]

). As a result, real-time anomaly detection 

is guaranteed to achieve low false-positive rates and high accuracy, thereby improving network security in 
dynamic vehicle environments.

	
lrf

[
≪ ki − sn′′ ≫

]
:→ Ms

[
w − 8bf

′′
]

∗ V s
[
w − iuy

′′
]

� (19)

Fig. 4.  Intelligent anomaly detection for EV data monitoring.
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Equation  (19) depicts the procedure for improving features (lrf ) to identify abnormalities in VANETs by 

combining V s
[
w − iuy

′′
]

 multi-source threat assessment [≪ ki − sn′′ ≫] with vehicular state evaluation 

(Ms
[
w − 8bf

′′
]

). For better VANET security and real-time threat mitigation, it enables the identification of 

complex cyber threats at lower computational cost and with fewer false positives.

	
Ude

[
ki − sn

′′
]

:→ V s
[
w − uy

′′
]

+ V s
[
ju − sje

′′
]

� (20)

The assessment of identified anomalies (Ude) in VANETs is represented by Eq. (20), which analyses vehicular 

status at many levels (
[
ki − sn

′′
]

:→ and V s
[
ju − sje

′′
]

. Improving security by decreasing false positives, 

optimising network efficiency, and ensuring real-time threat detection are all benefits.

Method 3: Comprehensive evaluation and benchmarking
Figure 6 shows an ML-based multi-layered approach for anomaly detection in VANETs. Starting from roadside 
device and automobile sensor data collection, which may involve GPS, LIDAR, OBD, and cameras, the system 
gathers the data before pre-processing that data with aggregation and filtering to feed into the anomaly detection 
module that is machine learning-based, the main steps involved in the key procedures of the module are feature 
extraction, selection, and classification of anomalies by using ML models such as RF. It produces alerts and 
analyses dangers, and roadside units provide communication with the vehicle. That is why edge computing 
enables fast inference and ensures model updates from cloud storage, increasing real-time processing. With 
this complex technology, traffic safety, vehicle communication, and proactive risk management are improved 
in networks of connected automobiles. Energy-efficient multi-criteria routing protocols are incorporated to 
reconcile performance with minimal power consumption under certain circumstances.

 

Fig. 5.  Performance response evaluation framework for network factors.
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Fig. 6.  AI-driven anomaly detection in vehicular networks.

 

Scientific Reports |        (2025) 15:40068 11| https://doi.org/10.1038/s41598-025-28212-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 1.  AD-MLA: anomaly detection using machine learning approximation

Algorithm 2 simulates feature extraction and classification using a basic threshold-based approach. The 
classification logic uses a Random Forest classifier trained on real-world VANET data to improve accuracy 
in energy efficiency, routing mechanisms, and sustainability. This paper presents frameworks for identifying 
abnormalities in CPS, VANET, and EV data using artificial intelligence and machine learning models, such as 
Random Forest.
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Algorithm 2.  Energy-efficient multi-criteria routing in VANET

The energy-efficient multi-criteria routing algorithm in VANETs selects optimal next-hop vehicles based 
on residual energy, signal strength, hop count, and link stability, as explained in Algorithm 2. Using if-else 
conditions, it filters for neighbours that meet the threshold criteria, ensuring low-latency, energy-efficient, and 
reliable data transmission in dynamic vehicular environments while maintaining network performance and 
security.

Results and discussions
By integrating intelligence into transportation systems, cyber-physical systems enhance vehicle ad hoc networks. 
VANETs are highly susceptible to cyberattacks; hence, anomaly detection driven by artificial intelligence 
is required. This work proposes AD-MLA, a Random Forest-based architecture that reduces false positives, 
improves detection accuracy, and optimises computational efficiency, thereby guaranteeing real-time security 
and reliability in VANET systems.

Dataset description
Rising cyber threats, increasing digitisation, and stringent regulatory requirements are driving market growth22. 
Key regions consist of North America, Europe, and the rapidly developing Asia Pacific. The market comprises 
software (largest share), hardware, and services, and is driven by demand for advanced AI-based threat detection 
and security solutions23. The Kaggle VANET dataset24 is a simulated collection of vehicular network traffic under 
false information attacks. It records VANET message flows, both legitimate and malicious, capturing a variety 
of benign and malicious message flows. It contains message-id, timestamp, position, speed, direction, signal 
strength, hop count, attack type, and other attributes for supervised learning of anomaly detection models. The 
diverse scenarios and variations in attack strength in the data make it ideal for training and validating systems 
such as AD-MLA to differentiate benign and malicious behaviour across a collection of network conditions. 
The dataset also contains a well-balanced mixture of normal and attack samples, which promotes meaningful 
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evaluation and benchmarking, and the models trained on this dataset will apply to real-world VANET 
environments because it is a realistic simulation. Ashmiyalenin25 provided the VANET Dataset, a synthetically 
generated dataset for studying network behaviours in vehicular ad hoc networks. It contains features relevant 
to vehicle communications, such as message metadata, signal parameters, node IDs, mobility attributes, and 
possibly connectivity/hop information. It is structured to support experiments in anomaly detection, traffic 
modelling, or routing optimisation.

Analysis of false positives
The proposed AD-MLA framework significantly reduces false positives, as evidenced by the 15.22% false-
positive rate in Fig. 7. This improvement assures that authorised network actions are not falsely recorded as 
anomalies, hence reducing unnecessary warnings. Random Forest classification, when combined with feature 
selection, lowers misclassification and increases accuracy.

In VANETs, a lower false-positive rate is crucial to prevent wasteful security operations and maintain efficient 
vehicle communication free of interruptions.

	
XZf r

[
ki − sn

′′
]

:→ Js
[
ko − sn

′′
]

+ BV s
[
ko − sne

′′
]

� (21)

Joint security analysis (XZf r
[
ki − sn

′′
]

) and improved vehicular state evaluation (BV s
[
ko − sne

′′
]

) in 

VANETs improve anomaly detection features (Js
[
ko − sn

′′
]

), as shown in Eq. (21). In ever-changing network 

settings, it guarantees accurate anomaly detection with minimal false positives, without sacrificing analysis 
performance.

Analysis of detection accuracy
Compared with other conventional methods of anomaly detection classification, the AD-MLA framework 
achieved a high detection accuracy of 95.33%, as shown in Fig. 8. The framework focuses least on identifying 
risky behaviours using feature selection, clustering, and other machine learning approaches. Given the high 
detection accuracy within the Security of Cyber-Enabled VANETs framework, one can confidently state that it 
will consistently meet the security needs of Cyber-Enabled VANETs without disrupting the VANET’s seamless 
operations.

In the context of the implementation of the framework in real-time applications of secured vehicular 
networks, the framework’s operational security can be commended.

	
lf r

[
p − sn

′′
]

:→ V s
[
w − 8vf

′′
]

+ V aw
[
w − 8he

′′
]

� (22)

Fig. 7.  Comparison of false positive ratios across different network architectures for varying sample sizes.
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An anomaly detection method V aw
[
w − 8he

′′
]

 in the vehicular state, analysis (lf r) and wireless connection 

assessments (
[
p − sn

′′
]

) in VANETs is represented by the feature enhancement process (V s
[
w − 8vf

′′
]

) 

in Eq. 22. It improves VANET security by real-time pattern identification of false positives through analysis of 
detection accuracy.

Analysis of optimising computational efficiency
The framework achieved an optimal computational efficiency of 94.25%, effectively maintaining a balance 
between processing speed and detection accuracy. Random Forest with feature selection avoids pointless 
calculations, therefore saving processing time even as security is maintained. This efficiency guarantees that 
anomaly detection does not overburden vehicle resources, so the technique is viable for real-time use in VANETs.

Figure 9 illustrates the operating computational efficiency (%) with respect to the number of samples for 
ICTS, VANET, CNN-GAN, and AD-MLA models, demonstrating comparative performance trends. Reduced 
processing costs enable flawless interaction with current vehicle communication systems without performance 
loss.

	
vyr

[
ki − sn

′′
]

:→ Ls
[
ju − snw

′′
]

+ vs
[
f − 9he

′′
]

� (23)

By integrating VANET network status analysis (vyr) with vehicular state monitoring (
[
ki − sn

′′
]

), Eq. (23), 

vsf − 9ℎe′′ depicts the improvement of recognising anomalies and features (Ls
[
ju − snw

′′
]

). It optimises 

current safety and network efficiency while ensuring effective detection of digital dangers, with few false 
positives, and analysis of optimising computational efficiency.

Analysis of recall
The proposed AD-MLA system attained a 96.09% recall rate, as evidenced in Fig. 9, which denotes its ability to 
acknowledge and identify the genuine anomalies in the network. Having placed this within the context of Cyber-
Enabled VANETs, it can be appreciated that having recall levels of this magnitude minimises the chances of a 
security breach going unaddressed. This is of utmost importance in the dynamic environment of automobiles, 
where unrecognised anomalies can trigger serious security risks. Doing this, the framework amplifies the 
system’s dependability and actionable safety of secured networked automobiles.

The Fig. 10 demonstrate that AD-MLA and CNN-GAN achieve higher recall performance as the sample size 
increases, reflecting better sensitivity in detecting positive cases compared to ICTS and VANET.

Fig. 8.  Comparison of detection accuracy ratios across different models with respect to sample size. The AD-
MLA model achieves the highest performance improvement over ICTS, VANET, and CNN-GAN.
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Analysis of resource usage
The proposed AD-MLA architecture efficiently manages memory and computational resources in VANET 
systems, achieving a resource utilisation efficiency of 91.45%, as illustrated in Fig. 11. Although strong detection 
performance is maintained, efficient classification techniques together lower the processing unit load via feature 

Fig. 10.  Recall ratio (%) plotted against the number of samples for ICTS, VANET, CNN-GAN, and AD-MLA 
models.

 

Fig. 9.  Operating computational efficiency (%) as a function of the number of samples for ICTS, VANET, 
CNN-GAN, and AD-MLA models.
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selection. This ensures that the anomaly detection system operates without creating delays or too high power 
consumption, thus making it suitable for real-time, resource-limited vehicle networks.

The process of anomaly detection in VANETs Bs
[
ji − nea

′′
]

, as represented by Eq. 24, involves evaluating 

the vehicular status (Jdr
[
lo − sn

′′
]

) and doing a multi-source security analysis (V s
[
w − sye

′′
]

). It improves 

VANET security by minimising false positives and making the most of threat mitigation in ever-changing 
contexts, and it efficiently detects complicated cyber threats through analysis of recall.

	
Jdr

[
lo − sn

′′
]

:→ V s
[
w − sye

′′
]

+ Bs
[
ji − nea

′′
]

� (24)
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′′
]
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The improvement of anomaly identification features V s
[
w − 8y

′′
]

 in VANETs is shown by Eq. (25), which 

takes Bs
[
nji − sn

′′
]

 into account, the analysis of vehicle status (τf r) and the integration of multi-source 

security information (
[
ρσ

′
− 6vd

′′
]

). Improving real-time threat detection and decreasing false positives are 

the main goals of Eq. (25) on the analysis of resource usage.
The results in Fig. 11 demonstrate that, as the sample size increases, AD-MLA and CNN-GAN exhibit more 

efficient resource utilisation scaling than ICTS and VANET, indicating improved computational adaptability.
This research presents AD-MLA, a VANET anomaly detection system powered by AI and using Random 

Forest to improve performance, precision, and safety. As shown in Table 3, the proposed method outperforms 
existing approaches. Results show that the current methods are highly effective, with a recall of 96.09%, an 
accuracy of 95.33%, and a false-positive rate of 15.22%. For adjusted deployment, the concept improves 
computational efficiency by 94.25% and energy conservation by 91.45%. It also provides real-time, low-latency 
detection, strengthening VANET security.

Model development and deployment
To assess the real-time applicability of the proposed AD-MLA framework in edge-intelligent settings, we 
measured execution performance, memory efficiency, and deployment level on the NVIDIA Jetson Nano 
and Jetson TX2. This research focuses on integrating feature selection into the RF-based detection pipeline 
while accounting for the hardware limitations of CUDA-enabled GPUs. Each stage of the AD-MLA processing 
pipeline (data acquisition, feature extraction, classification, and routing) was exhaustively measured, and latency 

Fig. 11.  Resource usage ratio (%) plotted against the number of samples for ICTS, VANET, CNN-GAN, and 
AD-MLA.
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metrics were established. Inference latencies were recorded to be below 250 ms on the Nano and close to 150 ms 
on the TX2, thus meeting real-time requirements for vehicular and industrial CPS. The model also exhibited 
a memory footprint of less than 150  MB, moderate GPU utilisation, and a consistent throughput of 4 to 7 
inference cycles within a power range of 5 to 7 W, with a latency of 5 to 7 W. This observed sustained resource 
consumption confirms the model’s high-accuracy intrusion detection capabilities on embedded hardware with 
limited resources.

As shown in Table 4, its modular design facilitates containerised deployment and, combined with JetPack, 
enables over-the-air updates and federated retraining across multiple distributed edge nodes using Docker. The 
AD-MLA framework efficiently balances computational load, power consumption, and system size, making it 
a sustainable edge-intelligent intrusion detection system for real-time deployment in VANET, IoT, and cyber-
physical environments.

With the AD-MLA framework, the balancing act between the extremes of real-time operations and the 
performance of the security module, in a cryptographic context, is optimised in edge-based IoT and Industrial 
IoT (IIoT) deployments. The system utilises AES-256 symmetric key cryptography to enable secure inter-
node communication. It is supplemented with SHA-256 hashing to provide real-time integrity checks, hence, 
authentication, and overall system data integrity without undue computational burden. While elliptic curve 
cryptography, lattice-based cryptography, and even homomorphic encryption were considered, none met the 
cost-effective computational constraints of the Jetson Nano and TX2 (sub 5–10 W) implementations, given 4 GB 
RAM and the need to stay within a 5–10 W boundary. The lightweight cryptography provides encryption and 
verification under 20 ms, ensuring the system as a whole responds within the real-time limits of 150–250 ms. 
Since vehicular and CPS sessions are periodically refreshed and short-lived, the system’s strategic positioning 
meets the minimum requirements to combat basic replay and network attacks; hence, the system’s scaffolding 
provides the best efficiency. Future work with lightweight ECC and lattice-based systems will still meet the edge 
security requirements of evolving systems.

The information in Table 5 undoubtedly supports the choice of AES-256 + SHA-256, as implemented in the 
AD-MLA framework, as the optimal solution for balancing security and efficiency in real-time applications 
for vehicles and IIoT. Although ECC provides a slight improvement in cryptographic strength, it is an order of 
magnitude slower (≈ 3 times slower than AES). It can therefore cause significant delays in authenticating packets 
for real-time applications in VANET. For lattice-based PQC schemes such as Kyber-512 or NTRU-HRSS, 
while guaranteeing safety against quantum attacks, they currently exceed the processing power of Jetson-class 
devices, which results in ≈ 100 ms of additional encryption delay. For powerful privacy-preserving analytics, 
homomorphic encryption remains an unrealistic option for embedded or mobile systems due to high memory 
and energy costs.

Pipeline stage Workload description

Jetson Nano (ARM A57 
1.43 GHz + 128-core 
Maxwell)

Jetson TX2 
(Denver2 + A57 @ 
2.0 GHz + 256-core 
Pascal) Notes/bottlenecks

Data Acquisition + Pre-processing Read 512 records (≈ 25 features) and 
normalization 62 ± 4 ms 38 ± 3 ms CPU-bound (NumPy vector ops); 

negligible GPU load

Feature selection Variance threshold and correlation filtering 
(top 20 features) 31 ± 2 ms 19 ± 1 ms Single-threaded PCA/χ2 optional; 

caches reused

RF model inference 100 trees × depth 10, batch = 512 samples 
(cuML) 128 ± 6 ms 74 ± 5 ms GPU parallel evaluation; dominated 

by memory reads

Routing decision computation Residual energy, RSSI, hop count scoring 18 ± 2 ms 11 ± 1 ms Pure CPU; integer math < 1 MB RAM

I/O and logging overhead CSV write and MQTT publish 9 ± 1 ms 7 ± 1 ms Disk or network latency dependent

Total per cycle (end-to-end) Full AD-MLA loop 248 ± 10 ms (≈ 4.0 Hz) 149 ± 8 ms (≈ 6.7 Hz) Meets real-time VANET threshold 
(< 250 ms)

Table 4.  Execution-time performance of the developed model on Jetson Nano / TX2.

 

Aspects Existing method in ratio (%)
Proposed method in 
ratio (%) Key features

Detection accuracy 85.90 95.33 High accuracy using Random Forest with feature selection and 
clustering

False positive rate (FPR) 25.33 15.22 Reduced false positives through optimised classification techniques

Computational efficiency 80.85 94.25 Optimised computational overhead using efficient feature selection

Recall (detection rate) 88.92 96.09 High recall ensures better threat detection with minimal false 
negatives

Resource Usage Efficiency 75.85 91.45 Lower processing and memory consumption make it suitable for 
real-time VANET deployment

Table 3.  Comparison of the existing method and the proposed method.
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Conclusion
This research proposes an AD-MLA model to enhance the security and reliability of VANET. The model uses 
Random Forests to dynamically identify and mitigate cyber vulnerabilities via feature selection, clustering, and 
classification. With 95.33% detection accuracy, 96.09% recall, and a significantly low false positive rate of 15.22%, 
the empirical results underscore the model’s superiority over current approaches to anomaly detection. The 
framework’s suitability for dynamic VANET environments also demonstrates optimal resource control (91.45%) 
and peak computational efficiency (94.25%). The model shows the potential of machine learning techniques to 
protect automotive networks from rising cyber threats. In addition to improving threat detection capabilities, 
the proposed system guarantees low-latency processing needed for real-time systems. The AD-MLA model for 
VANET security addresses significant challenges in developing intelligent and safe transport systems, including 
unsatisfactory detection methods, high false-positive rates, and scalability limitations. Enhanced multi-criteria 
energy-efficient routing within the model provides substantial advantages for safety–critical scenarios, where 
communication must be timely and reliable. Deep learning techniques will be employed in future work to 
enhance AD-MLA further, thereby improving the model’s anomaly-detection accuracy. Furthermore, this 
research will investigate the practical implementation and operational deployment in large-scale VANET 
ecosystems. For seamless integration into self-driving cars, further advancements in resource management and 
processing efficiency will be necessary. For the following, we plan to use dedicated Explainable AI methods, 
namely, Shapley Additive exPlanations and Local Interpretable Model-agnostic Explanations, to delineate 
the instance-specific decision factors and justify each detection in a manner understandable to the user. This 
will enhance the practical applicability of AD-MLA to network analysts and cybersecurity practitioners by 
connecting operational perspectives to the model’s decisions, while preserving the architecture’s low overhead 
and real-time nature.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Cryptographic scheme Security level
Avg. Encryption + Verification 
Time (Jetson TX2)

Memory usage 
(MB)

Power 
usage 
(W)

Implementation 
complexity

Suitability 
for real-time 
AD-MLA

AES-256 + SHA-256 (Used in AD-MLA) 128–256-bit security 15–20 ms/transaction ≈ 10–20 MB 5–6 W Low Excellent

Elliptic Curve Cryptography (ECC-256) 128-bit equivalent 45–65 ms/transaction 30–50 MB 7–8 W Medium Good

Lattice-based PQC (e.g., NTRU, Kyber) 256-bit post-quantum 90–130 ms/transaction 60–80 MB 8–9 W High Fair

Homomorphic Encryption (Paillier / BFV)  > 256-bit semantic  > 300 ms/transaction 150–300 MB  > 10 W Very High Poor

Table 5.  Comparison of Cryptographic Schemes and Their Suitability for Real-Time AD-MLA Deployment 
on Jetson TX2.
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