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Epigenetic and transcriptomic
alterations precede amyloidosis in
the Alzheimer’s disease AppN--¢-F
knock-in mouse model

Mariam Okhovat'™, Cora E. Layman?, Brett A. Davis', Alexandra Pederson?, Abigail O'Niel?,
Sarah Holden?, Kat Kessler?, Sonia N. Acharya3, Kandace J. Wheeler?, Kimberly A. Nevonen?,
Jarod Herrera®, Samantha Ward?, Katinka Vigh-Conrad®, Andrew Adey>*, Jacob Raber?® &
Lucia Carbone®35*

Understanding Alzheimer’s disease (AD) from its earliest stages is essential for uncovering initial
mechanisms of pathology and developing interventions. Here, we use the humanized App"t-¢-F
mouse model, which develops early amyloid pathology along a predictable timeline, to characterize
epigenetic changes in the brain and blood at early pre-symptomatic, as well as later, stages of
disease progression. We identified alterations in chromatin accessibility, gene expression, and DNA
methylation before and after amyloidosis, in the absence of advanced age. Despite broadly stable
hippocampal cell composition, App"-¢-F mice exhibit major gene expression differences preceding
amyloid plaque deposition, particularly in pathways related to mitochondrial function and protein
biosynthesis. In later stages of pathology, immune pathways were upregulated, consistent with
established neuroinflammatory processes in AD. Extensive DNA methylation changes were also
detected in both blood and hippocampus at early and late pathology stages. Many blood methylation
differences at early stages overlapped brain cis-regulatory elements and mapped near differentially
expressed hippocampal genes, with enrichment in neuronal development and synaptic pathways,
underscoring a potential link between blood methylation and brain physiology and supporting the
potential of blood DNA methylation as an early biomarker of amyloidosis. Notably, five genes,
including Rbfox1 and Camtal, showed coordinated epigenetic dysregulation in both brain and blood
prior to amyloidosis, highlighting them as potential early blood-based biomarkers.

Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder and the most common cause
of dementia, affecting millions of people worldwide!. AD is characterized by hallmark pathological features,
including extracellular amyloid-p (AB) plaques, intracellular tau neurofibrillary tangles, neuroinflammation,
and widespread synaptic and neuronal loss®. Despite decades of intensive research, the precise mechanisms
driving the onset and progression of AD remain elusive, including whether intracellular or extracellular Ap
causally contributes to the disease beyond being a hallmark?, and effective therapeutic options are limited. One
of the greatest challenges in AD research lies in uncovering the molecular and cellular changes that arise during
the preclinical phase, a prolonged asymptomatic stage during which pathological features, such as AP deposition,
develop”. This phase, which can span several decades, represents a critical window for therapeutic intervention
aimed at preventing or delaying the onset of clinical symptoms. However, studying preclinical AD, presents
several challenges, particularly when working with human subjects, including difficulties in identifying at-risk
individuals, limited access to relevant tissues, the presence of confounding factors (e.g., aging and lifestyle),
variability in disease progression, and the subtlety of molecular changes at early stages of pathology. Overcoming
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these barriers is critical for understanding the early mechanisms driving AD and enabling the development of
effective strategies to combat later symptoms.

To address these challenges, a range of genetically modified animal models, particularly transgenic mice,
have been developed®. While no single model fully replicates the complexity of AD, each successfully mimics
key features of the condition making their detailed characterization crucial for understanding AD mechanisms.
A prominent model is the App™-6F mouse® which carries a knock-in of the human amyloid precursor protein
(APP) with three specific mutations: the Swedish mutation (KM670/671NL), which increases the overall
production of AB,; and AB,,; the Arctic mutation (E693G), which promotes the formation of insoluble Af
fibrils; and the Beyreuther/Iberian (1716F) mutation, which raises the ratio of Ap,, to AB,,. The App™-¢F model
exhibits early-onset amyloid pathology starting at 2 months (~ 8 weeks) of age, with neuropathology progressing
to saturation by 7 months (~ 28 weeks). Cognitive impairments typically manifest by 6 months (~ 24 weeks)”.
This predictable disease timeline makes the App™"6F model useful for studying molecular changes across all
stages of pathology, particularly the preclinical stages. Importantly, due to the early onset of disease in this
model the confounding effects of advanced age are minimized, offering a robust platform for investigating early
molecular events leading to amyloidosis and for identifying blood-based biomarkers of brain dysregulation
before the onset of clinical symptoms. However, despite its promise, the AppN-"%F model has not yet been used
to examine epigenetic remodeling before and after amyloid onset. This gap limits our understanding of both the
model itself and the epigenetic mechanisms driving and contributing to AD pathology, ultimately hindering
efforts to identify early epigenetic biomarkers and therapeutic targets.

In this study, we leveraged a combination of single-nucleus and bulk epigenetic and transcriptomic data from
a cohort of App™-CF mice and their wild-type littermates to characterize molecular differences across three ages,
ranging from postnatal week 3 (an early pre-symptomatic stage prior to detectable AB pathology®) to postnatal
week 24 (representing advanced pathology with near-saturation of AP and the onset of cognitive decline)®.
Our study specifically focuses on the hippocampus, a brain region critical for memory, learning, and spatial
navigation® which is known to exhibit early and pronounced vulnerability in AD, with significant tissue loss and
connectivity disruptions!®. Our findings reveal substantial early epigenetic and gene expression dysregulation
in the hippocampus of App™-6F mice prior to the onset of severe amyloidosis. Importantly, we also identified
early DNA methylation signals in peripheral blood of the App™!-G-F mice that warrant further study as potential
blood-based biomarkers for preclinical AD, paving the way for development of blood-based diagnostic tools in
preclinical AD.

Results
Hippocampal cell composition remains largely stable during progression of amyloid
pathology
To investigate epigenetic and transcriptomic changes preceding and following onset of severe amyloidosis in
the brain and blood of the App™-"6F mouse model, we collected hippocampus and blood from 30 AppN-C-F
and 30 wild-type littermates. The cohort included equal numbers of male and female, sampled at postnatal
week 3 (weaning), 8, and 24 (n=5 per sex/genotype/age combination; Fig. 1A). All assays conducted in this
study (Fig. 1B) were performed on tissue from the same 60 individual animals. We selected postnatal week 3
(W3) to represent an early pre-symptomatic stage, prior to detectable AB pathology®, enabling investigation of
initial molecular changes preceding severe amyloidosis in the hippocampus and blood. Postnatal week 8 (W8)
represents an intermediate stage associated with early progression of AB pathology in the App™--F model, while
postnatal week 24 (W24) represents advanced pathology, approaching Ap saturation and coinciding with onset
of cognitive decline® (Fig. 1A).

Changes in brain cell composition, including neuron loss and gliosis, have been reported in AD!!. To
investigate changes in brain cell-composition and chromatin accessibility in the App™-¢F mice before and
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Fig. 1. The App™"%F mouse model allows studying A pathology along a defined timeline (A) The reported
timeline of A pathology in the App™-G-F model and timepoints investigated in this study. (B) A summary of
all assays conducted in this study.
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during progression of AP pathology, we used hippocampus single-cell ATAC-seq (snATAC-seq) to study
AppNEOF (n=5 per sex) and wild-type littermates (n=>5 per sex) at W3, W8 and W24. To improve cell yields in
our snATAC-seq assay, nuclei from biological replicates were pooled to create one pool per sex/genotype/age
combination yielding a total of 12 pools, comprising 14,907 cells. Given the lack of reported sex differences in
amyloidosis patterns in the App™-¢F model® and to improve statistical robustness, male and female pools were
treated as replicates within each age and genotype combination. To identify and characterize cell types within
our snATAC-seq dataset, we conducted unsupervised clustering and identified 21 cell clusters (Fig. 2A). Cross-
reference of cluster-specific accessible chromatin regions with known marker genes (Fig. 2B; Supplementary
Fig. 1)!12 identified the following cell-types: microglia (n=615 cells), oligodendrocyte (n=1,729), precursor/
immature oligodendrocyte (n=349), endothelial (n=127), astrocyte (n=771), Cajal-Retzius cells (n=63),
excitatory neurons (n=38,070) and inhibitory neurons (n=1,362) (Fig. 2B; Supplementary Table 1). Although
most clusters were successfully annotated, four (C8, C9, C10 and C19) could not be confidently classified due to
ambiguous or inconsistent chromatin accessibility patterns (Fig. 2B; Methods). These clusters, which comprise a
total of 471 cells, likely represent rare or transitional cell types (C8 and C10), as well as technical noise (C9 and
C19) and were therefore excluded from downstream analysis.

We used cell distribution across clusters to estimate cellular composition of the hippocampus across
ages and genotypes (Fig. 2C; Supplementary Table 1). Across all samples, excitatory neurons were the most
prevalent cell type (61.0% +0.44; mean + SEM), followed by inhibitory neurons in most cases (12.6% +0.73%;
mean = SEM). Due to low cell recovery from wild-type mice at W8 (<100 cells), this time point was excluded
from downstream snATAC-seq analyses, limiting our ability to draw conclusions about chromatin accessibility
patterns at this stage (Fig. 2C; Supplementary Table 1). We noted a mild trend towards increase in microglia and
oligodendrocyte abundance in App™t-G-F mice with increased age (Fig. 2C), consistent with progressive amyloid
pathology and expected neuroinflammatory changes. However, statistical analysis of cell type proportions
revealed no significant differences in any cell types between genotypes or across time points (adjusted p>0.05;
Supplementary Table 1).

Chromatin accessibility changes are detected in inhibitory neurons later in amyloidosis

To identify condition-specific changes in chromatin accessibility, we first performed marker peak analysis and
identified snATAC-seq peaks unique to each age/genotype/cell-type condition (q<0.1). At W3, significant
marker peaks were identified exclusively in excitatory neurons (n=6), while at W24, most marker peaks were
found in inhibitory neurons (n=37; Supplementary Table 1). The scarcity of marker peaks in other cell types is
likely due to the low and inconsistent number of cells representing those cell types in our dataset (Supplementary
Table 1). Marker peaks corresponding to W3 excitatory neurons in App™-"¢F mice overlapped with several genes
relevant to AD pathology and neurodegeneration, such as the mammalian target of rapamycin (mTOR) and
Smpd3'>1*. Considering that marker peaks were predominantly detected in excitatory and inhibitory neurons,
and that other cell types had insufficient counts, we focused subsequent differential snATAC-seq analysis on
neurons at W3 and W24 (Supplementary Table 1). Consistent with our previous findings, in early stages of
pathology (W3), we only detected three significantly different App™"%F vs. WT chromatin accessibility peaks,
all of which were identified in excitatory neurons (FDR<0.1) and exhibited reduced accessibility in App™L-¢-F
mice compared to WT (Fig. 2D). One of these differential peaks was found at the promoter of the Kdmé6a
gene, which codes for an X-linked H3K27 histone demethylase whose dysregulation disrupts neurodevelopment
(Supplementary Fig. 2; Supplementary Table 1)!>16.

In contrast to W3, differential accessibility peaks at W24 were more numerous and confined to inhibitory
neurons (n=>542; Fig. 2D; Supplementary Table 1). These peaks were roughly evenly split between regions
of increased (~69%) and decreased accessibility (~41%) in App™“F GO term analysis of these regions
revealed enrichment of several pathways related to neuron projection, neurogenesis, and synaptic signaling
(Fig. 2E; Supplementary Table 2), indicating major changes in function of inhibitory neurons during later
amyloidosis. Several of the differential accessibility regions at W24 overlapped directly with AD-relevant genes
(Supplementary Table 1). For example, inhibitory neurons of App™-"G-F mice exhibited higher accessibility
at a putative enhancer located in the intron of Optn (Optineurin) gene (log2fold change=4.34, FDR=0.07;
Supplementary Fig. 2), a receptor that increases expression of autophagic genes to reduce neurotoxicity and
inflammation in AD'7. Moreover, App™"6-F mice showed reduced accessibility at a putative intronic enhancer
at the Ptk2b gene, also known as Pyk2 or Protein tyrosine kinase 2 beta (log2fold change= —2.48, FDR=0.02;
Supplementary Fig. 2), which is a susceptibility gene for late-onset Alzheimer’s disease. PTK2B is implicated
in AD through its involvement in synaptic plasticity, calcium signaling, and neuroinflammatory pathways,
all of which are disrupted in AD'32, There were no overlap between differential peaks identified at W3 and
W24, indicating a shift in epigenetic dysregulation AD pathology progresses, with differential accessibility
peaks increasingly identified in inhibitory neurons in association with genes involved in neurogenesis, synaptic
signaling, and neuroinflammation.

Significant gene expression changes precede neuropathology in the hippocampus of
App"t-eFmice

The overall stability we observed in hippocampal cell composition across genotypes and ages alleviates concerns
that differential gene expression in bulk tissue from our model would be drastically skewed by cell composition
differences that have been previously reported in AD'"?!. Thus, to investigate gene expression changes in the
hippocampus before and during AD pathology, we performed RNA-seq data on bulk hippocampus tissue of
the same 60 AppM-UF and wild-type mice used in our snATAC-seq assay (n=5 per sex, genotype and age
group; Supplementary Table 3). Our initial assessment of overall effect of sex revealed only 27 genes with
significant differential expression between males and females (adjusted p<0.05), suggesting minimal sex-
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Fig. 2. snATAC-seq reveal cell-specific changes in chromatin accessibility in early vs. late AB pathology.

(A) Uniform manifold approximation and projection (UMAP) dimensionality reduction after iterative

LSI of snATAC-seq data from 12 sample pools. Each dot represents a single nucleus (1 =14,907), colored

by its corresponding cluster (left) or cell type (right). Bar plot shows the number of cells per cluster, with
corresponding cluster colors and assigned cell type (B) Genomic tracks display chromatin accessibility at

a subset of marker genes used to annotate cell types in this study. (C) Estimated average hippocampus cell
composition is shown for each time point and genotype. The n refers to the number of nuclei recovered after
quality control filtering. Cell composition for WT at W8 is not presented due to low nuclei count (n=_88) (D)
MA plots of differential snATAC-seq peaks reveal chromatin accessibility differences in excitatory neurons
during early pathology (W3), while in late pathology (W24), these differences are exclusive to inhibitory
neurons. (E) Significant gene ontology (GO) terms associated with differentially accessible regions in
inhibitory neurons at W24.
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related transcriptional differences (Supplementary Table 3). Consequently, we conducted differential expression
analyses using both sexes as biological replicates, while including sex as a covariate in the model. We found that
the number of differentially expressed genes (DEGs) between App™N-G-F and WT mice varied drastically across
the three timepoints.

The highest number of DEGs were identified at W3 (n=2,628; adjusted p<0.05), despite lack of detectable
amyloidosis at this age®, suggesting complex gene regulatory changes occur even before severe amyloid
accumulation and neuropathology. DEGs at W3 were evenly split between being over-expressed (49.7%;
n=1,306) and under-expressed (50.3%; n=1,322) in App™"¢F mice (Fig. 3A; Supplementary Table 3). The
numbers of DEGs were much lower at W8 (n=4) and W24 (n=156). The four DEGs identified at W8 were all
under-expressed in App™N--GF hippocampus compared to controls, while at W24 nearly all DEGs (94%; n=147)
were over-expressed (Fig. 3A). Across disease stages, only 17 DEGs were shared across timepoints, all between
W3 and W24 (Fig. 3A), and several (8 out of 17) displayed opposing expression changes between these ages,
suggesting dynamic regulation across early and late amyloid pathology. Among these, Cx3cr1 was most notable,
showing significant downregulation at both W3 and W24. This chemokine receptor, primarily expressed in
microglia, plays a key role in modulating microglial activation and amyloid-B (Ap) clearance??. Prior studies in
AD mouse models have shown that CX3CRI deficiency exacerbates AP pathology, tau hyperphosphorylation,
neuritic dystrophy, synaptic loss, neurodegeneration, and cognitive impairment?>%.

We cross-referenced our DEGs against those reported in a recent study by Rico et al. 2024%, which profiled
gene expression in the hippocampus of App™V-G-F males at 6 weeks and 7 months of age. We found several shared
DEGs, specifically, 4 of their 36 DEGs at 6 weeks and 32 of their 292 DEGs at 7 months were also differentially
expressed in our dataset at one or more time points, with the majority overlapping at W3 (Supplementary
Table 3). Of note, Fabp7 was a DEG in our study at W3 and was also differentially expressed at both 6 weeks
and 7 months in Rico et al. 2024. FABP7 (Fatty Acid Binding Protein 7) is consistently upregulated in AD
mouse models and in brains of human AD patients, especially near amyloid plaques®>2°. This protein has been
implicated in neuroinflammation and altered lipid metabolism, processes that may drive early hippocampal
dysfunction®>?°. We also compared our findings with a recent meta-analysis based on bulk gene expression data
from frontal and temporal lobes of human AD brains?” and observed that 96 of the 760 DEGs reported in AD
patient brains were also identified in our RNA-seq analysis (Supplementary Table 3). Among these, a notable
example is Agp4, which has been implicated in tau pathology as well as amyloid-f deposition and clearance in
mouse models**-3, and is also considered a potential therapeutic target for AD in humans®..

We next investigated the correspondence between our bulk RNA-seq and snATAC-seq results (Supplementary
Table 4). Of the DEGs identified, 41 also overlapped a significant differential chromatin accessibility region
in excitatory neurons at W3 or inhibitory neurons at W24. Three of these genes, Kdm6a, Lars2, and Hvcnl,
showed both transcriptional and chromatin changes at the same age: Kdm6a at W3, and Lars2 and Hvcnl at
W24. All three of these genes have been implicated in AD or neurodegeneration. Notably, elevated Kdmé6a
expression is associated with resilience to age-related cognitive decline in male mice®? and AD-related toxicity
in mouse models, particularly in females, as the gene escapes X-chromosome inactivation®. In humans, genetic
variation in KDMG6A is linked to higher brain expression and correlates with reduced cognitive decline in
aging and preclinical AD in both sexes®; Lars2, encoding mitochondrial leucyl-tRNA synthetase, is critical for
mitochondrial protein synthesis and its reduced expression is associated with mitochondrial dysfunction and
cognitive decline in AD mouse models, while its overexpression has been proposed as a potential therapeutic
strategy for AD patients*; and increased Hvcnl expression is linked to neuroinflammation and microglial-
mediated neurodegeneration in neurodegenerative and ischemic mouse models***. The remaining 38 DEGs
associated with differential accessibility, were differentially expressed in bulk hippocampus at W3, but exhibited
chromatin changes in inhibitory neurons at W24, reflecting either shifts in cellular vulnerability during disease
progression or dataset limitations (e.g., low, and variable cell counts in our snATAC-seq assay). Several of the
genes in this group, such as Rbfox1>” and Auts2®%, are implicated in neurodevelopmental disease, suggesting that
key AD and neurodevelopmental genes are altered at the epigenetic and transcriptional levels, spanning early
stages before amyloid pathology (W3) through later stages of disease progression (W24). Altogether, the large
number of DEGs identified at W3, along with the variable patterns of gene expression observed from W3 to
W24, suggest that widespread gene dysregulation precedes severe neuropathology and that disruption of various
genes contributes to AD as the brain advances through stages of pathology.

Gene expression profiles reveal distinct pathways involved in pre- and post-amyloidosis

To shed light on the physiological states of the App™"G-F brain as it transitions from exhibiting no symptoms
to severe amyloid pathology®, we set to identify over-represented biological pathways among differentially
expressed genes (DEGs; q<0.05) at each time point using EnrichR* (Supplementary Table 5). DEGs identified
at W3, which comprised of both upregulated and downregulated genes, were enriched in several biological
pathways, even though AP pathology is lowest at this stage. Significantly enriched biological pathways (q<0.01)
included major pathways of protein biosynthesis and catabolism including “gene expression”, “mRNA splicing”,
“translation’, and “proteasomal protein catabolic process”, likely reflecting alteration in gene expression paradigms
before or in response to the earliest traces of amyloidosis. The rest of significant pathways were mostly relevant to
“mitochondria function and organization” (Fig. 3B; Supplementary Table 5), consistent with previous reports in
AD patients suggesting mitochondria and metabolic dysregulation as one of the earliest mechanisms leading to
pathology*®*!. Many of the DEGs corresponding to these pathways have been previously implicated in cellular
respiration (e.g., components of the electron transport chain, such as Ndufa8 and Cycl), or mitochondrial
organization (e.g, translocase of inner mitochondrial membrane genes, such as Timm23 and Timm44), indicative
of extensive disruption of mitochondrial function in our model preceding amyloid neuropathology. At W8, the
number of DEGs (n=4) was too small to provide reliable gene ontology enrichment. However, DEGs at W24,
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We also identified 209 genes with significant “age-by-genotype interaction” (q<0.05), representing genes
whose expression is affected differently during aging in App™-"GF versus WT mice, and clustered them based
on their expression trajectories (Fig. 3C; Supplementary Table 6). Most of these genes were also identified as a
DEG in at least one time point (Supplementary Table 6), showing a dynamic relationship with age in App™-0-F
mice. Specifically, 121 of the genes with significant interaction were differentially expressed at W3, one at W8,
72 at W24, and 12 at both W3 and W24. Among the gene clusters with significant age-by-genotype interaction,
two clusters (clusters 1 and 2) contained genes with highly divergent App™-CF expression at W3, exhibiting
opposite age-dependent changes in expression between genotypes (Fig. 3C; Supplementary Table 6). Given the
early and distinct expression divergence of these genes, they may be involved in the onset and progression of
neuropathy. While we did not detect significant enrichment of biological pathways among the genes in these
clusters (q<0.05), they did include several genes implicated in neurodegeneration, such as Crebbp, Atxn2, and
Mt3%2-%_ Four other clusters (clusters 6, 7, 8, and 9) represented genes whose expression trajectory culminated
in highly divergent expression at W24 (Fig. 3C; Supplementary Table 6). These genes were enriched in several
immune response pathways, including B-cell proliferation, dendritic cell antigen processing/presentation, and
phagocytosis (Supplementary Table 6). This suggests that the immune response follows a markedly different
trajectory and reaches a highly divergent state in brains predisposed to AP pathology.

DNA methylation patterns in brain and blood of App":®F mice differ from wild-types and are
linked to hippocampal gene regulation

We used whole genome bisulfite sequencing (WGBS; Supplementary Table 7), on the same individuals used
for snATAC-seq and RNA-seq, to investigate DNA methylation changes in the hippocampus and blood of
AppNt-OF mice throughout disease progression, and to determine if methylation changes in the blood reflect
gene dysregulation in the brain. To explore the role of DNA methylation in disease progression of the AppN-0-F
model, we first identified significant differentially methylated regions (DMRs; difference in methylation >10%
and q<0.05) in hippocampus and blood of App™-"GF mice relative to WT, while including sex as a covariate
(Supplementary Table 8). To better infer the functional roles of DMRs, each was assigned to the gene with
the nearest transcription start site, assuming it to be the most likely regulatory target. In the hippocampus,
we identified 537 significant DMRs between App™l-G-F and wild-type mice at W3, 276 at W8 and 510 at W24,
In the blood, there were 664 DMRs at W3, 3,476 at W8 and 262 at W24 (Fig. 4A; Supplementary Table 8).
Approximately 5% of genes associated with hippocampal DMRs in the brain, and 4% of DMR-associated genes
in the blood were shared across two or all three time points in the same tissue, suggesting some persistence of
DNA methylation dysregulation throughout disease progression (Fig. 4A). In the hippocampus, over half of the
DMRs were hypermethylated in each time point (Fig. 4B). Based on visual inspection of the data, the overlap
of hippocampal DMRs with genomic features showed broadly similar patterns across all three time points, with
roughly equal numbers of DMRs falling into genic vs. intergenic regions. Among the DMRs overlapping genes
(i.e., genic), most overlapped intronic regions. The majority of intergenic DMRs were distal to genes, suggesting
they may overlap distal gene regulatory elements (Fig. 4C). In the blood, DMRs at W3 and W24 showed broadly
similar methylation changes and genomic feature overlaps as DMRs in the hippocampus. However, blood DMRs
at W8 were more numerous, mostly hypomethylated and predominantly genic, with nearly half overlapping
exons (Fig. 4A and C).

We next evaluated the correspondence between DNA methylation in the hippocampus and the blood. Overall,
we found average gene promoter methylation in blood and brain of individuals to be significantly correlated
regardless of age and genotype (Supplementary Fig. 3). We identified several genes that were differentially
methylated in both hippocampus and blood (although their DMRs were not necessarily located at the same
exact genomic position). Most of these genes showed differential methylation in the blood at W8 (Fig. 4D), likely
due to the high number of blood DMRSs at this age. Notably, W3 showed the second-highest number of DMR-
associated genes shared between the brain and blood (Fig. 4D), indicating the potential to detect early blood-
based epigenetic signals that reflect brain epigenetic state during the initial stages of disease. When we restricted
the analysis to DMRs overlapping the exact same genomic regions, rather than those associated with the same
genes, we identified only seven shared DMRs between brain and blood, with two detected at the same age
(Supplementary Table 8; Supplementary Fig. 4). One of these, is a 1 kb non-coding DMR located approximately
15 kb upstream of the Timprss15 gene, displaying 32% hypomethylation in the brain and 37% hypomethylation in
the blood of App™-“"F mice at W3. This hypomethylation remains significant in the blood by W8. (Supplementary
Table 8; Supplementary Fig. 4). Tmprss15 is thought to play a role in neurogenesis and/or APP metabolism and
has been found duplicated in some early-onset AD cases associated with Down syndrome*°. Despite containing
DMRs, Tmprss15 does not exhibit differential expression or chromatin accessibility based on our RNA-seq or
snATAC-seq data. Another DMR shared between blood and brain was observed at W8 overlapping the Eif4A3
gene (Supplementary Fig. 4). This region is 11% hypomethylated in blood, but 11% hypermethylated in brain.
Eif4A3 is an RNA-binding protein implicated in RNA metabolism, splicing, and nonsense-mediated decay*’, as
well as axon development?’, processes that may contribute to broader mechanisms of neurodegeneration. While
Eif4A3 does not show differential chromatin accessibility, it is significantly downregulated in the hippocampus at
W3 in our RNA-seq data (Supplementary Table 4). The rest of the DMRs shared between brain and blood were
associated with Mettl27, Tns1, Srp54b, Gm32357 and Rai2 genes (Supplementary Table 8; Supplementary Fig. 4).
These genes do not exhibit differential expression or accessibility in our datasets (Supplementary Table 4) and, to
our knowledge, lack strong ties to neurodevelopment or neurodegenerative disease.

Building on our RNA-seq findings, we examined the relationship between hippocampal gene expression
and DNA methylation across all DMRs. We identified 104 DEG that were associated with at least one DMR,
though not necessarily at the same age. Of these, 43 genes exhibited concurrent changes in DNA methylation
and gene expression within the hippocampus at the same age: 39 genes at W3, 3 at W24, and 1 at both W8
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and W24 (Supplementary Table 4). Of note, several of the differentially methylated and expressed genes at W3
have been previously implicated in AD, including Atxnl, Rbfox] and Ep300. Loss of Atxnl in mouse models
increases BACE1 expression and promotes amyloidogenic processing of APP, exacerbating Ap pathology in
AD-vulnerable brain regions*®. Similarly, loss or reduced expression of Rbfox1 is linked to increased amyloid
burden and widespread dysregulation of neuronal splicing programs that affect synaptic genes***, while the
histone acetyltransferase Ep300 (p300) modulates chromatin states and cognitive-related and amyloid-reducing
pathways®">2, Beyond these individual genes, we observed a broader pattern across all three time points and
in both blood and hippocampus, in which promoter DNA methylation levels were significantly negatively
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«Fig. 4. AppM%F mice show dynamic DNA methylation changes in hippocampus and blood. (A) Venn
diagram shows DMR-containing genes shared across different timepoints in blood and hippocampus. (B)
Bar heights shows number of DMRs in each timepoint and tissue. Shade within each bar indicates proportion
of DMRs that are hypermethylated (darker shade) vs. hypomethylated (white) in App™-%F mice, with exact
values also shown. (C) Pie charts show disruption of DMR overlapping various gene features. Intergenic
DMRs located > 3 kb from the start or end of a gene were classified as “distal intergenic”. Intergenic DMRs
located <3 kb from a gene start or end were categorized as being “upstream” or “downstream’, respectively. (D)
Upset plot shows number of gene associated with at least one DMR across three timepoints and two tissues,
illustrating the extent of overlap between these groups. (E) Dot plots display the statistical significance of the
top five most enriched biological Gene Ontology (GO) pathways associated with DMRs in the hippocampus
and blood.

correlated with hippocampal gene expression (Supplementary Fig. 5). These patterns suggest that DNA
methylation in both the blood and brain is broadly, and at times locally, associated with levels of gene expression
in the hippocampus. Based on a published single-cell atlas of adult mouse cerebrum cis-regulatory elements
(i.e. CREs)*, we found that 42% of our hippocampus DMRs at W3, 44.2% of DMRs at W8 and 38.2% of W24
DMRs overlap with at least one CRE identified in one or more mouse brain cell types. Similarly, in the blood,
33.6% of our DMRs at W3, 75.5% of DMRs at W8, and 28.2% at W24 overlapped with brain CREs>, indicating
that methylation changes detected in blood and hippocampus of App™-6F may impact function of brain gene
regulatory elements. Additionally, the distance between differentially expressed genes in the hippocampus
of App™-%F mice and the nearest DMRs in either blood or brain was significantly shorter than expected by
chance (Wilcoxon signed-rank test, p <0.05). All in all, these observations suggest that some DNA methylation
differences in App™-%F hippocampus and blood are tied to genotype-dependent alterations in hippocampal
gene regulation and expression. Gene ontology analysis of hippocampal DMRs revealed notable enrichment
in pathways related to neurodevelopment, synapse organization and cell projection at both early (W3) and late
(W24) disease stages (Benjamini-Hochberg adjusted p < 0.05; Fig. 4E). In line with the limited number of DEGs
at W8, hippocampus of App™-%F mice also exhibited the fewest DMRs at W8, with no significant gene ontology
pathways identified at this stage. Of note, blood DMRs at early stages of neuropathology (W3 and W8) also
showed significant enrichment in pathways related to neurogenesis and cell projection (Benjamini-Hochberg
adjusted p <0.05), but no significant pathways were recovered for blood DMRs at W24 (Supplementary Table 9;
Fig. 4E). Altogether, these observations suggest that epigenetic dysregulation associated with neuronal function
arises early and persists through stages of neuropathology and that early epigenetic alterations in the blood
could reflect neuronal dysfunction in App™t-C-F mice, highlighting the potential utility of blood methylation as
biomarkers for detecting early amyloidosis.

Integration of multi-omics data identifies potential early blood-based epigenetic biomarkers

for AB pathology

To identify genes exhibiting epigenetic and transcriptional dysregulation in App mice, we integrated our
multi-omics datasets by linking each differentially expressed genes to its closest differential snATAC-seq peaks
and differentially methylated regions in both the hippocampus and blood across all time points (Supplementary
Table 4). To pinpoint the subset of genes with potential for early detection of AR pathology in the blood, we
focused specifically on the W3 time point, aiming to capture molecular signatures prior to the emergence
of major histopathological or cognitive symptoms®. We established stringent criteria to maximize reliability
and generalizability of our candidate biomarkers: First, the candidate gene must contain a DMR in the blood
of AppN-6F mice at W3, allowing for early epigenetic detection in the blood. Second, the candidate genes
should contain at least one DMR in the hippocampus at W3, though exact sequence overlap between blood
and hippocampus DMRs is not necessary. Third, the candidate gene linked to DMRs should be differentially
expressed in the hippocampus of App™-G-F mice at W3.

Through the integration of our datasets, we identified five genes —Rbfoxl, Camtal, Diaph2, MkI2
and Manea— that exhibit significant epigenetic changes in the blood, as well as significant dysregulation
in the brain at W3, making them potential candidates for development of early blood-based biomarkers
(Fig. 5A; Supplementary Table 10). Of note, two of these genes (Rbfox1 and Camtal) are also implicated in
neurodevelopment and/or neuropathology, with RbfoxI particularly standing out due to its documented role
in early and preclinical AD*. Blood of App™"6"F mice showed a 1 kb region of significant hypomethylation in
an intron of Rbfox1, overlapping a putative mouse brain CRE (Fig. 5B;>). Average methylation at this DMR did
not correlate with expression of Rbfox1 in the hippocampus across individuals (Fig. 5B). However, AppN-0-F
mice showed significant, though mild, heightened expression of RbfoxI in the hippocampus at W3 (log2 fold
change=0.15, FDR=0.05; Supplementary Table 4) along with an intronic hypomethylated DMR, distinct from
the blood DMR (Fig. 5B). Camtal, a calcium-responsive transcriptional regulator highly expressed in the brain,
showed hypomethylated intronic DMRs in both hippocampus and blood at W3 (Fig. 5C), with mild expression
increase in the hippocampus (log2 fold change=0.15, FDR =0.02; Supplementary Table 4;>*). Of note, average
methylation at the Camtal W3 blood DMR was significantly correlated with hippocampal Camtal expression
across all individuals (r=0.35, p=0.04; Fig. 5C). While no clear link exists between Diaph2 and AD, methylation
at the W3 Diaph2 blood DMR was positively associated with hippocampal expression across all individuals
(r=0.42, p=0.027; Fig. 5D), indicating a potential functional link between this DMR and hippocampal gene
expression. All five genes identified as potential biomarkers display additional hyper- and/or hypomethylated
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Fig. 5. Identification of candidate early blood-based biomarker genes through integration of gene expression
and DNA methylation data. (A) Venn diagram displays the number of genes meeting the criteria for candidate
early blood-based biomarkers for amyloidosis. (B) Left: UCSC genome browser screenshots provide a zoomed-
out and zoomed-in view of the candidate biomarker DMR associated with RbfoxI, alongside additional brain
or blood DMRs identified at other time points. The CREs track displays mouse brain cis-regulatory elements
from Li et al. 2021. Right: A scatterplot shows the average methylation at the focal DMR versus the normalized
expression of the corresponding gene in the hippocampus. (C, D) Similar UCSC genome browser views and
methylation versus expression plots are shown for the candidate biomarkers associated with Camtal (C) and

Diaph2 (D).
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DMRs at W8 and/or W24, hinting at prolonged and cross-tissue dysregulation of these genes during amyloidosis
progression (Supplementary Table 4).

It should be noted that our data integration also identified many additional candidate genes that met
only a subset of our stringent biomarker criteria. Several of these genes were highly relevant to AD and/or
neurodevelopment (Supplementary Table 10). For instance, among the 48 genes that contained DMRs in
both the blood and brain of App™-¢F mice at W3 but were not DEGs, at least six have been widely implicated
in neurodevelopment and neurological diseases: Abcal3, Adgrl3, Cntnap2, Dabl, Dpp6 and Lingo2>5-.
Additionally, of the 48 candidate marker genes differentially methylated in the blood (but not hippocampus) and
differentially expressed in the hippocampus at W3, several are linked to neurodevelopment and neuropathology,
including AnksIb, Atxn2, Auts2, Dcc, Gabbr2, Hdac, Nfia, and Slc16a2%34461-66_ Overall, our findings highlight
five promising candidate genes, as well as many additional genes of interest, that merit further investigation as
potential early biomarkers or contributors to AD pathology.

Discussion

Understanding Alzheimer’s disease (AD) during its preclinical stages is critical for uncovering the early
mechanisms of neuropathology and identifying biomarkers for early diagnosis and intervention. However,
studying these early stages in humans poses major challenges, including limited access to relevant tissues, such
as the brain, and the inability to predict when disease onset will occur. These barriers underscore the need for
robust, well-characterized animal models. The App™-GF knock-in mouse model presents a valuable system in
this regard, as it develops early-onset amyloid pathology along a predictable timeline without overexpression
of APP beyond physiological levels and in the absence of endogenous murine APP (Fig. 1A). This model
provides a controlled system to investigate the mechanisms preceding severe AD neuropathology, independent
of advanced aging. While this model has been extensively characterized with respect to various phenotypes
including cognition®” behavior®, synaptic function®®, and even the microbiome?, its epigenetic landscape before
and after amyloidosis onset remains largely unexplored, limiting our understanding of the epigenetic basis of AD
and the development of early blood-based epigenetic biomarkers. In this study, we apply a multiomic approach
to examine epigenetic and gene expression changes in the hippocampus and peripheral blood of epigenetics of
AD pathology and development of blood-based early epigenetic biomarkers. All assays were performed on the
same set of 60 animals (5 biological replicates per condition), enabling direct comparisons across data types.

Despite the progressively worsening amyloid deposition reported previously in the brain of AppN--GF
mice®”%, we observed no significant differences in hippocampal cell composition between genotypes or across
the time points examined. While subtle compositional changes cannot be ruled out and might be detected in
larger datasets, our findings suggest they are unlikely to be substantial, supporting the use of bulk tissue analyses
for gene expression and DNA methylation without major confounding from cell type shifts. Despite the overall
stability in cell composition, the hippocampus of App™-"6F mice showed changes in chromatin accessibility
with age in neuronal cells. Other cell types, particularly glial cells, such as microglia and astrocytes, likely also
undergo significant changes during disease progression in our model, as observed in human AD studies’’.
However, we were unable to test them due to the low and variable non-neuronal cell counts in our snATAC-seq
assay. In early pathology stages (W3), we noted a few chromatin accessibility changes in excitatory neurons,
suggesting excitatory neurons to be susceptible to early AP deposition, aligning with previous findings in a tau
pathology mouse model’}, reports of selective neuronal vulnerability in neurodegenerative diseases’?, as well as
a higher hippocampal activity and pathological neuronal hyperexcitability in earlier stages of AD”>74. Later in
pathology (W24), changes in chromatin accessibility were only detected in inhibitory neurons. These changes
may reflect the increasing cellular stress due to AP burden and worsening neural network dysfunction, which
likely contributes to the cognitive impairment observed in the App™"F model around this age®. Epigenetic
modifications in inhibitory neurons may represent compensatory mechanisms aimed at maintaining inhibitory
control and mitigating excitatory neuron dysregulation or excitotoxicity’>’, as A pathology is known to disrupt
the delicate balance between excitatory and inhibitory neuronal activity in AD”>7%. These findings signify the
importance of understanding temporal and cell-type-specific mechanisms in AD for developing effective and
targeted therapeutic strategies. Our findings suggest that early-stage therapies targeting excitatory neurons may
help preserve function in early stages of the disease, while later interventions supporting inhibitory neurons
could stabilize neural networks and slow disease progression.

Surprisingly, the most extensive gene expression differences we found was in the hippocampus of three-week
old AppM-SF mice, despite the lack of cortical amyloid plaques at this age®. This extends recent findings from
Rico et al. 2024, which reported hippocampal transcriptional changes beginning as early as 6 weeks in App™-¢-F
males?*. Although the overlap between DEGs from this study and those reported in previous analyses of App™L-0-F
mice and AD patients was modest (likely in part reflecting differences in experimental design and analysis) our
results highlight regulatory disruptions in many AD-relevant genes and identify alterations in metabolism and
protein biosynthesis pathways as among the earliest transcriptional changes in the hippocampus, consistent with
patterns reported in both mouse models®* and AD patients’””8. The pronounced gene expression differences at
W3 might reflect genotype-by-age differences in expression trajectories, developmental transitions unique to
this age, and greater variability or non-linear regulatory dynamics during disease progression. Nevertheless,
our findings show that major molecular dysregulation precedes the onset of neuropathological symptoms,
underscoring the importance and promise of studying early stages of disease. The small number of significant
DEGs at W8 may be attributable to technical limitations in our study. However, if validated by further research,
this finding could indicate that W8 represents a transitional stage in disease progression in this model, during
which compensatory mechanisms begin to fail, giving way to neuroinflammation and synaptic dysfunction.
Further studies focused on this timepoint could help clarify the molecular events happening during this period.
Consistently, at W24, when amyloid deposition is the most pronounced, the changes in expression profile
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mostly showed enrichment of immune and neuroinflammatory pathways. The upregulation of genes associated
with microglial activation, phagocytosis, and cytokine signaling at this later stage aligns with the high level
of AP plaques reported at this age and the well-documented role of neuroinflammation in later stages of AD
pathology”®. The observed changes in synapse pruning pathways at W24 further align with the cognitive deficits
reported in the AppN-OF model at this age®, suggesting that the immune response may play a role in synaptic
loss and dysfunction during AD progression. Overall, the variations in gene expression patterns in early versus
late amyloidosis suggest that the brain undergoes drastically different physiological phases as symptoms emerge
and worsen.

Our whole-genome bisulfite sequencing revealed that significant DNA methylation differences also exist
between App™-"G-F and wild-type mice, spanning all stages of disease in both the hippocampus and blood. In
the hippocampus, differentially methylated regions in early (W3) and late (W24) stages showed enrichment of
neurodevelopment and neuron connectivity pathways. These findings suggest persistent epigenetic dysregulation
linked to hippocampal neuronal function throughout disease progression. Interestingly, hippocampus of W8
AppN-SF mice exhibited the fewest DMRs and no significant pathway enrichment, supporting the idea that
this stage may represent a transitional phase, a hypothesis warranting further investigation. In the blood we
observed dynamic methylation changes across timepoints, with a striking increase in DMRs at W8. Although
direct overlaps between blood and brain DMRs were rare, the broad associations between blood methylation and
hippocampal gene regulation, overlap of blood DMRs with brain cis-regulatory elements, and the proximity of
DMRs to hippocampal DEGs, suggest that blood methylation patterns broadly reflect gene dysregulation in the
brain. Furthermore, both blood and brain DMRs were enriched in pathways related to neuronal development in
the earliest stage of amyloidosis, underscoring a link between peripheral epigenetic signals in the blood and early
brain dysregulation. These findings highlight the potential utility of blood DNA methylation as a biomarker for
detecting early stages of amyloidosis and related neuropathological processes.

By integrating our multi-omics data, we identified DMRs at Rbfox1, Camtal, Diaph2, MkI2 and Manea as
the most promising biomarker candidate genes exhibiting epigenetic dysregulation in both brain and blood
before onset of severe amyloidosis. Notably, the current mouse and human literature clearly implicates Rbfox1
and Camtal in neurodevelopment and/or neuropathology®*-%¢, with RbfoxI (RNA Binding Fox-1 Homolog 1)
being particularly significant™. RbfoxI encodes a neuronal RNA-binding protein, and recent human studies
have identified it as a novel locus associated with AD during preclinical stages®. In AD patients, RBFOXI is
notably localized around amyloid-p plaques and reduced RBFOX1 expression correlates with a higher amyloid-f
burden®. In DNA methylation human studies, RBFOX1 has been shown to exhibit differential DNA methylation
in the blood of individuals with AD and mild cognitive impairment®’, as well as in cortical brain tissue of
AD patients®!. Camtal (calmodulin-binding transcription activator 1) is a transcription factor regulating gene
expression in response to calcium signaling. Dysregulated calcium signaling is associated with several hallmarks
of AD in both patients and mouse models, including amyloid- deposition, tau hyperphosphorylation, synaptic
dysfunction, and apoptosis, suggesting that CAMTA1 may contribute to AD progression®>. CAMTA1 has been
implicated in episodic memory®* an immediate recall, as well as various neurological and neurodegenerative
diseases, including intellectual disability, ataxia, and amyotrophic lateral sclerosis®*-%. Additionally, in humans
CAMTAL is thought to regulate neuroprotective genes under stress, and significant differences in CAMTAI
DNA methylation have been found in the peripheral blood of stroke patients?’, in the blood of individuals
with mild-cognitive impairment®® and in the blood and brain cortex (including prefrontal cortex) of AD
patients®®81:38 highlighting its potential relevance as a candidate for further investigation in AD and amyloidosis.
Moving forward, validating these candidates in humans, and elucidating their functional roles in early disease
progression will be critical. Nevertheless, our findings underscore the potential of DNA methylation at these loci
as early indicators of amyloidosis and provide a foundation for further research into the mechanisms driving
their epigenetic dysregulation.

Despite the intriguing findings of our study, several limitations warrant consideration. First, the App
mouse model used in this study mirrors familial autosomal dominant AD, which accounts for only 1-5% of all AD
cases, raising questions about the generalizability of our findings to sporadic and late-onset AD. Moreover, this
model does not develop tau pathology, a hallmark of AD, potentially overlooking critical amyloid-tau interactions.
Furthermore, our analysis was limited to three timepoints and one brain region, which may miss key transitions
in gene expression and epigenetic regulation occurring at other intervals or in other tissues. Second, the brain’s
heterogeneous cellular composition and the differential vulnerability of cell types to AD pathology® highlight
the need for single nucleus approaches with improved resolution and sample sizes, as well as reduced technical
variability. Such methods would provide more precise insights into cell-type-specific dynamics, addressing the
limitations of bulk tissue analysis. Also, for our snATAC-seq assay we pooled hippocampal nuclei from mice of
the same genotype and sex to obtain sufficient input material. Although we aimed to contribute equal material
from each animal, pooling can introduce uneven representation across individuals, and we recovered variable
cell numbers across conditions. This limitation constrained the resolution of our snATAC-seq analysis, and our
chromatin accessibility findings should therefore be interpreted with caution and validated in future studies.
Finally, we used both male and female samples as replicates to enhance statistical power, and because we did
not detect major sex differences in gene expression patterns. While this strategy may obscure potential sex-
specific epigenetic differences, it does not compromise our goal of identifying universal mechanisms of early
pathology that are relevant to both sexes. Nonetheless, given the well-established sex differences in AD risk and
progression®, future research should employ larger sample sizes to enable the investigation of whether distinct
molecular and epigenetic mechanisms drive pathology development in males versus female App™t-F mice.

While subject to some limitations, our findings nevertheless illustrate the unique strength of a multi-omics
approach for uncovering epigenetic and transcriptional alterations that arise before overt neuropathology in
an amyloidosis mouse model. Many of the genes we found affected early in disease were previously implicated
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in AD or neurodevelopment in experimental mouse models and patients. Moreover, our results point to the
potential of blood-based epigenetic biomarkers as minimally invasive tools for early diagnosis and intervention
in Alzheimer’s disease. Future research should further validate these findings in human cohorts and elucidate the
functional consequences of these epigenetic and gene expression changes in both brain and peripheral tissues,
ultimately advancing our understanding of Alzheimer’s disease and informing strategies for intervention before
irreversible damage occurs.

Methods

Animal use approval statement

All procedures involving live animals complied with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals and with IACUC approval at Oregon Health & Sciences University.

ARRIVE accordance statement
All methods are reported in accordance with ARRIVE guidelines.

Mouse breeding paradigm and tissue collection

The mice were maintained on a 12/12 h light/dark schedule (lights on at 06:00). Laboratory chow (PicoLab
Rodent diet 20, #5053; PMI Nutrition International, St. Louis, MO, USA) and water were provided ad libitum.
We bred hAPP knock-in mice containing the Swedish, Iberian and Arctic mutation (i.e. AppN-GF) on a
C57BL/6 ] background, generated by Dr. Saito®®! and shared with us with C57BL/6 ] wild-type (WT) mice
from Jax. Heterozygous breeding pairs were set up to generate homozygous App™--%F and WT littermates. We
genotyped all offspring and only used homozygous App™-¢F and WT individuals for downstream analysis. The
genotyping protocols are available on the Riken Institute web site®*!. Briefly, we used primers reported in Table
1 to amplify part of exon 17 containing the Artic mutation. The PCR products were digested with the MbolI
restriction enzyme and genotype was determined based on digestion fragments (W'T genotype is cut into 171 bp
and 67 bp fragments, while presence of the Arctic mutation prevents digestion). For genotyping of the Iberian
mutations, we used PCR to amplify part of exon 17 containing the Iberian mutation (Table 1). The PCR products
were digested with the BsaBI restriction enzyme (WT amplicon is cut into 171 bp and 67 bp fragments, while
presence of the Iberian mutation prevents digestion). Due to COVID19-related modified operations, we shipped
some biopsy samples for genotyping to Transnetyx, Cordova, TN.

At postnatal week 3, 8, or 24 (W3, W8 or W24), we collected n=5 females and n=>5 males per genotype
(homozygous AppNt-G-F vs. WT), for a total of 60 individuals. The mice were euthanized by cervical dislocation.
Trunk blood was collected into EDTA-treated tubes. Blood was centrifuged at 5,500 g for 10 min and the
supernatant was transferred to a new tube and stored at—80 °C until assay. For each animal, the hippocampus
from both hemispheres was dissected, finely chopped and combined into a single sample. The chopped
hippocampus tissue from each individual was then split into three portions before freezing and storage at—80 °C.
Each portion was used for one of the three assays (i.e., snATAC-seq, RNA-seq, or WGBS) ensuring that all assays
were performed on the exact same individuals.

Single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) library
preparation and analysis

Fresh frozen hippocampus aliquots of the same 60 subject described above were used for snATAC-seq analysis.
Briefly, to obtain sufficient nuclei, we pooled hippocampus from replicates within each sex/age/genotype
combination, resulting in 12 final pools (one male and one female pool per age and genotype condition).
Tissue pools were homogenized separately in 2 mL chilled NIB (10 mM HEPES, pH 7.2, 10 mM NaCl, 3 mM
MgClz, 0.1% IGEPAL [v/v; Sigma-Aldrich, Cat#I8896], 0.1% Tween-20, and 1 x protease inhibitor [Roche,
Cat#11873580001]) and 10 mM D(+)-Glucosamine hydrochloride [Sigma Aldrich G1414] in a 7 mL dounce-
homogenizer on ice for 10 min. The homogenate was then strained through a 35 um strainer and counted using
a hemacytometer and trypan blue. The samples were centrifuged at 500 x g for 10 min at 4 °C. Samples were
aspirated, resuspended in ice-cold PBS-BSA buffer (0.5%. Bovine serum albumin (BSA), in 1 x PBS, and 30 mM
D(+)-Glucosamine hydrochloride) to obtain 50,000 nuclei/5 ul of PBS-BSA-glucosamine. We tagmented 50,000
nuclei for each condition by adding 5 ml ETB3 and 5 ml of an individual Tn5 (Table 2) at 37 °C for 1 h (f/c
of D-glucosamine was 10 mM) and iced 5 min. Nuclei were spun down (3 min, 500xg, 4 °C) and washed in
1.5 mL TMG buffer (36% TAPS premix (4X TAPS-TD buffer (132 mM TAPS (N-[Tris(hydroxymethyl)methyl]-
3-aminopropanesulfonic acid, Sigma-Aldrich, Cat#T0647-100G) pH=8.5, 264 mM potassium acetate, 40 mM
magnesium acetate), 64% glycerol)/SCALE wash buffer twice. Nuclei were counted with a hemacytometer and
trypan blue. Samples were multiplexed and processed as written in Step 2 (Gem Generation and Barcoding)
of the 10 x Genomics Single Cell ATAC v2 Kit protocol. 15 ml of each multiplexed pool of nuclei was added
to 60 ml of the 10 x Master Mix. We proceeded with the 10 x protocol. For Step 4.1.c (Sample Index PCR), we
substituted Sample Index N, Set A Reagent — with a ScaleBio S700 index primer compatible with the ScaleBio

Mutation | Left primer (5’-3") Right primer (5'-3") Ta Size (bp)
Arctic TGCTCATTGTTCCAGAGACG | GTGATGACAATCACGGTTGC | 50°C | 238
Iberian CCTTTTTCTCGGCTTCCTTT | CACTTGCAGACAAGCCTCCA |50°C | 203

Table 1. Primers used for genotyping.
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sample Count total | Vol PBS/BSA +glu | Post-TMG wash cnt | Tn5-SCALE 24-plex | 10XATAC primer index
1-T3.W.F 2276 220ul 800 9C SP705
2T3.WM 1.1476 114ul 0 9D SP705
3 T3.N.F° 1.5676 156 800 9E SP705
4T3N.M 1.176 110 400 9F SP705
5T8.W.F 2.276 220 800 9G SP705
6 T8.W.M 2.276 220 0 9H SP705
7 T8.N.F 1.476 140 3600 10B SP707
8 TS N.M 1.076 100 0 10C SP707
9 T24.W.F 1.0n6 100 800 10D SP707
10 T24 WM | 0.32/6 32 3200 10E SP707
11 T24N.F | 2.1"6 210 0 10F SP707
12T24N.M | 1.1276 112 16,400 10G SP707

Table 2. snATAC-seq library information. Primer index sequences were SP705:GGTCCAGACAAGGTCTAC
CTTGTGTTGAACAC, SP707:TCGGTACAGGAACGGTCATTGCTGATCCATAC.

tagmentation (Table 2). Libraries were processed as described in the 10 x Genomics Single Cell ATAC v2 Kit.
They were quantified via the Qubit dsDNA High Sensitivity assay (Thermo Fisher Q32851) and via the Agilent
Tapestation 4150 D500 tape (Agilent 5067-5592). Libraries were sequenced on the Illumina NextSeq2000 for
650 pM with a P2-200 flow cell (Illumina Inc., 20,046,812). ScaleBio tagmented libraries were sequenced paired-
end with 85 cycles for read 1, 125 cycles for read 2, 8 cycles for index 1, and 16 cycles for index 2.

Raw snATAC-seq data was processed using the previously described scitools package®?. Briefly, the
sequencing reads were demultiplexed, and the read names were replaced with the cell barcode and a unique
identifier. Reads were then mapped to the mouse genome (mm10) using BWA-MEM®. The resulting BAM files
were filtered to remove low quality and duplicated reads. Additionally, we removed all barcodes with less than a
specified number of reads. We used the ArchR (v 1.01) package® to filter cells with TSS enrichment <2, unique
fragments < 1000 and doublets. Using ArchR, iterative LSI dimension reduction and clustering was performed
using the 500 bp tile matrix, producing 21 clusters that were visualized via UMAP. Gene activity scores were
determined and used to find marker genes for each cluster. Cell clusters were manually annotated via manual
curation using top marker genes and publicly available data'?**. Out of the 21 clusters, four (clusters 8, 9, 10, and
19) could not be confidently classified and were broadly called “unclassified”. Clusters 9 and 19 were presumed
to represent technical noise due to their UMAP distribution and lack of distinct marker genes (Supplementary
Table 1). Clusters 8 and 10 were labeled as Trpm3-defined and Grm4-defined, respectively, based on their top
marker genes (Supplementary Table 1). Sample pools with fewer that 100 cells after filtering were excluded from
downstream analysis. This resulted in exclusion of the wild-type pool at W8 (n=88 cells). Cell composition
of each sample pool was determined as percentage of total cells in the pool belonging to any cluster. Cell type
proportion analysis was performed using the propeller method from the speckle v1.6.0 R library®> and calculated
per sample, followed by arcsine square-root transformation to stabilize variance. A linear model was fit using
limma v3.62.1%, with experimental group (time point+ genotype) and sex included in the model. Differential
proportion testing was performed using contrasts between conditions of interest, followed by empirical Bayes
moderation. Statistical significance was assessed using moderated t-tests, and results were extracted with the
topTable function.

Next, peaks were called at the pseudo-bulk level using all cells grouped by age/genotype combination, and
cell-type. This was accomplished by using the addGroupCoverages function with parameters minCells =30,
maxCells =100, minReplicates = 2, maxReplicates = 3, sampleRatio = 0.8 along with the addReproduciblePeakSet
functions with parameters peaksPerCell = 500 and minCells = 20. Marker peaks/genes for each cell type and age/
genotype combination were determined. Next, we focused only on excitatory and inhibitory neurons (granule
neurons were included as excitatory neurons). Peaks were called once again at the pseudo-bulk level grouped by
age/genotype and cell type. Parameters for the addGroupCoverages function were minCells = 20, maxCells = 100,
minReplicates =4, maxReplicates=8, sampleRatio=0.8, and parameters for addReproduciblePeakSet were
peaksPerCell =500 and minCells =20. Pairwise comparisons were performed using ArchR’s getMarkerFeatures
to identify regions with significantly different chromatin accessibility between WT and App™--OF at each age,
within excitatory neurons and inhibitory neurons.

Bulk RNA-seq library preparation and analysis

Total RNA was extracted from each of the 60 fresh frozen hippocampus aliquots without pooling as described
above, using the NEB Monarch Total RNA Miniprep Kit (Cat T2010S, New England Biolabs). Briefly, samples
were weighed and pulverized in a bead basher with DNA/RNA protection buffer. Pulverized samples were
incubated with Proteinase K at 55 °C for 5 min, followed by a 3 min centrifugation at 16,000 g. Supernatants
were mixed with lysis buffer and centrifuged in gDNA removal columns. The flow through was mixed with
100% Ethanol and centrifuged in RNA columns at maximum speed. The columns were incubated with DNAse
I/DNAse I buffer for 15 min at room temperature, followed by addition of priming buffer and centrifugation.
Finally, the column was washed twice with a wash buffer and the RNA was eluted in water. RNA concentrations
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were measured with Nanodrop (Thermofisher) and integrity was confirmed (RIN > 7) with the Bioanalyzer RNA
kit (Agilent). Samples were stored at—80 °C until further use. RNA-seq libraries were generated blindly from
lug of total RNA per animal, beginning with an rRNA depletion of samples using the NEBNext rRNA Depletion
Kit v2 for human/mouse/rat (New England Biolabs) according to manufacturer’s protocol. Samples were then
purified with NEBNext RNA Sample Purification Beads (New England Biolabs). The RNA was then fragmented,
primed, and reverse transcribed using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina
(New England Biolabs). Libraries were prepared using the NEBNext Ultra II (New England Biolabs), with size
selection to 300 bp using Ampure beads (Beckman Coulter). The final libraries were quantified using Qubit
(Thermofisher) and 150 bp paired-end sequenced (30-80 million reads per sample, Supplementary Table 3) on
the Illumina Nova-Seq 6000 Platform at the Massively Parallel Sequencing Shared Resource (MPSSR) at Oregon
Health and Science University (OHSU).

Raw reads were QCd using FastQC” and aligned to the mml0 genome using STAR® (-
runThreadN 8, -readFilesCommand zcat -outSAMstrandField intronMotif —-outFilterIntronMotifs
RemoveNoncanonicalUnannotated —quantMode GeneCounts —twopassMode Basic). The raw gene counts table
was generated using custom bash scripts and filtered by the filterByExpr function from edgeR*® with default
parameters and defining group membership as the combination of age and genotype. DESeq2!%° was used to
perform differential analysis. Pairwise comparisons were performed to compare gene expression between wild-
type and AppN-CF at each age separately with sex as a covariate. The LRT test from DESeq2 was used to find
genes with significant ageXgenotype interaction, followed by clustering according to the expression profile
pattern using the degPatterns function from DEGreport!'?’.

Whole genome bisulfite sequencing (WGBS) library preparation and analysis

DNA from each of the 60 hippocampus samples was extracted using the NEB Monarch Genomic DNA
Purification Kit (Cat T3010, New England Biolabs) according to manufacturer’s protocol and without pooling.
Extracted gDNA was quantified with Qubit (Thermofisher) and Nanodrop (Thermofisher) and stored at—80 °C.
DNA from 60 blood samples was extracted using the Purgene Genomic DNA Purification from Blood kit (Cat
D-5500, Qiagen) based on a modified version of the Puregene DNA purification from blood protocol (Gentra
Systems). Briefly, cell lysis solution was added directly to the frozen blood at a 5:1 ratio and incubated at 55 °C
overnight, followed by 40 min or 1,000 rpm agitation. The samples were cooled on ice and protein precipitation
solution was added (1:3 ratio) followed by 1,000 rpm agitation and 16,000 g centrifugation for 1 min. The
lysate was moved to a 1:1 ratio of isopropyl alcohol and centrifuged to pellet the DNA. Pellets were washed
with 80% ethanol, air dried, and resuspended at 65 °C with 1,000 rpm agitation. The gDNA samples were then
quantified with Qubit (Thermofisher) and Nanodrop (Thermofisher) and stored at-80 °C. To generate whole
genome bisulfite sequencing (WGBS) libraries for both hippocampus and blood,100 ng of gDNA per animal
was randomly sheared with a Bioruptor Pico Sonicator (Diagenode) at 30:30 on/off for 15 cycles. Libraries were
blindly prepared with the NEBNext Ultra II Modules (New England Biolabs) and the NEBNext Methylated
Adaptor (New England Biolabs), with size-selection to 200 bp using Ampure beads (Beckman Coulter). Bisulfite
conversion and subsequent cleanup was performed with the EZ DNA Methylation-Gold Kit (Zymo Research).
The converted libraries were PCR amplified using NEBNext Q5U polymerase and the NEBNext Multiplex Oligos
for Illumina (New England Biolabs) for unique library barcoding. The final libraries were quantified using Qubit
(Thermofisher) and then normalized and multiplexed for 100 bp paired-end sequencing on the Illumina Nova-
Seq 6000 Platform (Supplementary Table 7).

The blood and the hippocampus WGBS datasets were analyzed separately, but similarly. Raw sequencing
reads were trimmed with TrimGalore!%?, and then aligned to the mm10 reference genome with Bismark'® using
default parameters. Deduplication was performed with deduplicate_bismark, followed by bismark_methylation_
extractor with parameters —ignore 2, -ignore_r2 2, and —ignore_3prime_r2 2. Analysis for identifying Differentially
Methylated Regions (DMRs) was performed with methylKit!%* with the coverage files from Bismark methylation
extractor data serving as input, and applying a Chi-square test with overdispersion correction to obtain a
balance between sensitivity and specificity'?°. The genome was tiled into non-overlapping 1 kb tiles, that were
merged based on the following parameters: CpG coverage threshold > 1X, covered CpGs in the tile>0, and tile
present in >3 samples per group, resulting in 2,364,188 1 kb tiles in the blood samples and 2,363,219 tiles in the
hippocampus samples (corresponding to ~87% of the mouse genome). Sex was included as a covariate.

Overlap with gene features was determined using genomation'%, with default settings. Intersection with the
mouse cerebrum atlas of gene regulatory elements® was done using BEDtools'?”.

Gene Ontology term analysis

Gene ontology (GO) term analysis of DEGs from RNA-seq data was conducted using EnrichR*10810% with
default settings, with all annotated genes in the GO Biological Process 2024 as background. A subset of
significant pathways (q<0.01) was visualized across time points in dot plots using the ggplot2 library'!? in R. To
assess and visualize the enrichment of biological functions associated with differential snATAC-seq peaks and
WGBS DMRs, which include both coding and non-coding regions, we utilized gProfiler!!!. The gProfler analysis
were performed using the whole mm10 genome as background, with an ordered query (sorted by adjusted
p-values from most to least significant), using a 0.05 significance threshold based on the Benjamini-Hochberg
false discovery rate correction. Dot plots of a subset of significant biological pathways were generated using
ggplot2'%in R.

Multi-omics data integration
To integrate findings across our snATAC-seq, RNA-seq and WGBS datasets and prioritize candidate biomarker
genes based on concordant transcriptional and epigenetic changes, we linked DEGs from bulk RNA-seq to
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nearby differentially accessible regions (from snATAC-seq) and DMRs across both brain and blood. For
each DEG, we used the BEDtools'"” closest command with the -d option to identify the nearest differential
accessibility or DMR and compute the absolute distance between features. Separate analyses were conducted
for each omics modality (snATAC-seq, brain WGBS, blood WGBS) and added to one comprehensive table.
Only regions identified as significantly differential were considered for integration. These integrated results are
provided in Supplementary Table 4, enabling downstream filtering or prioritization based on co-occurrence or
proximity of regulatory signals.

To investigate the distance between DMRs and DEGs, we used the closest-features program (-closest —delim
' -dist) from the BEDOPS toolkit!!? to calculate distance of each DEG from the closest DMR. These observed
distances were then compared using the Wilcoxon signed-rank test to distances obtained against a randomly
shuffled set of DMRs, generated by BEDtools shuffle (-chrom -noOverlapping)'?’.

To assess overlap of DMRs with putative gene regulatory elements, we utilized the published single nucleus
atlas of adult mouse cerebrum cis-regulatory elements (CREs)*, and used bedtools intersect'”” was used to
identify DMRs with > 1 bp overlap in enhancer regions annotated in at least one cell type.

Data availability

Raw and processed RNA-seq, snATAC-seq and WGBS data generated as part of this study are available on the
NCBI Gene Expression Omnibus (GEO; [https://www.ncbi.nlm.nih.gov/geo/] (https://www.ncbi.nlm.nih.gov/g
eo0)) under accession numbers GSE290305, [GSE290154](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE290154) and GSE290397, respectively.
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