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The proposed bidirectional converter exhibits a superior voltage gain compared to conventional 
designs and maintains low current ripple on both sides, making it highly suitable for photovoltaic 
and fuel cell applications. Notable features include the use of compact output filter capacitors, 
adequate voltage gain in both operational modes, and the elimination of coupled inductors. In step-up 
operation, switches S1 and S2 are activated simultaneously, while in step-down operation, switches 
S3, S4, and S5 are triggered at the same time. This switching scheme enables the converter to operate 
in each mode with a single PWM control signal, thereby simplifying the control circuitry. A thorough 
analysis has been carried out for both operating modes, and experimental verification using a 400 W 
prototype has confirmed a peak efficiency of 96.3%, validating the theoretical predictions.
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  Bidirectional converters support power transfer in both directions, making them ideal for EVs, smart grids, 
UPS, aerospace, and renewable energy applications1–3. Their ability to interface sources with storage removes 
the need for separate converters, resulting in more compact designs and higher efficiency. Bidirectional DC–DC 
converters (BDCs) can be classified as either isolated or non-isolated. In isolated architectures, a high-frequency 
transformer facilitates the DC–AC–DC conversion process while ensuring galvanic isolation between the low-
voltage side (LVS) and the high-voltage side (HVS). In applications where isolation is unnecessary, non-isolated 
BDCs are generally preferred owing to their reduced structural complexity and simplified control requirements.

Non-isolated converter configurations include Cuk, SEPIC/Zeta, coupled-inductor, conventional buck–boost, 
three-level4–7, multilevel, and switched-capacitor types8. For Cuk and SEPIC/Zeta designs, the cascaded two-
stage arrangement leads to lower conversion efficiency9,10. While coupled-inductor converters can deliver high 
voltage gain by adjusting the turns ratio11, they face persistent issues with leakage inductance, and their power 
processing capability is constrained by the magnetic core capacity. A coupled-inductor-based modification of the 
SEPIC converter was proposed in12, achieving high efficiency, high voltage gain, and soft-switching operation, 
but at the expense of additional active switches and capacitors. Battery charging and discharging are typically 
managed by bidirectional DC-DC converters (BDDCs), which must provide high buck gain during charging and 
high boost gain during discharging, while minimizing or eliminating current ripple on the battery side13–16. A 
wide range of converter designs and control techniques have been developed to address source current ripple. 
Coupled-inductor high-gain converters can significantly suppress ripple by selecting an appropriate turns 
ratio, but this enables either high voltage gain or ripple cancellation, not both at once. Non-coupled-inductor 
converters aimed at low source current ripple are generally classified into two groups: methods that decrease 
ripple amplitude and those that completely eliminate it at a specific duty ratio17.

Switched-capacitor converters offer a straightforward structure, simple control, and high scalability. By 
directing capacitor charge and discharge through different paths, energy can be transferred between the low- 
and high-voltage sides to attain high voltage gain. Early single-capacitor bidirectional designs18,19 exhibited 
low efficiency, leading to the development of interleaved switched-capacitor converter20 aimed at minimizing 
input current ripple. An interleaved configuration can effectively suppress significant current ripple on the low-
voltage side (LVS)21. Complete ripple cancellation, however, requires the duty cycle to be locked to a specific 
ratio determined by the interleaving phase count. Ripple injection circuits, classified as active or passive, offer 
another suppression method. In the active scheme22, a ripple mirror circuit offset the inherent LVS ripple. 
Yet, eliminating the ripple entirely necessitates a fixed duty cycle, thereby constraining the attainable voltage 
conversion range. Reference23 introduced a DC–DC converter using voltage multiplier cells, providing high 
conversion ratio and low voltage stress. However, attaining such high gain necessitates multiple multiplier cells, 
which reduces power density and raises cost. In other works24–27, coupled-inductor designs achieve high voltage 
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gain by adjusting the turns ratio of the magnetic components. A persistent drawback is leakage inductance, which 
induces voltage spikes on the switches, requiring snubber circuits to recover the associated energy. Reference28 
introduces an active filter for source current ripple suppression, consisting of two switches, an inductor, and 
two capacitors. Although the converter’s voltage gain is preserved, the added components increase size and 
lower power density. The filter capacitors are regulated by separate converters operating at different frequencies 
and duty cycles, necessitating additional control circuitry and an isolation transformer. In29, a synchronous-
switching bidirectional DC–DC converter was studied for LV-side ripple elimination, though it produced high 
HV-side ripple and used many switches.

The main contributions of this work are as follows: the development of a converter topology capable of 
maintaining low current ripple on both the high- and low-voltage sides; improved voltage gain in step-
up operation and reduced gain in step-down operation; and the introduction of a design free from coupled 
inductors and switched capacitors, thereby enhancing power density while mitigating problems associated with 
leakage inductance and inrush current. In summary, this work presents a new bidirectional high step-up/step-
down DC–DC converter topology that achieves high voltage gain with low device stress. Unlike most existing 
converters, the proposed design is free from coupled inductors and switched-capacitor networks, resulting in a 
simpler structure, reduced component count, and higher overall efficiency.

In this paper, Sect.“The proposed bidirectional converter” presents the description of the proposed converter 
along with its operation in both step-up and step-down modes. The steady-state analysis and design equations 
are provided in Sect.  “Steady-state analysis of the proposed converter”. In Sect.  “Small-signal analysis and 
controller design of the converter”, the small-signal model of the proposed converter for both operating modes is 
developed, and stability considerations are discussed. To benchmark the proposed topology against prior works, 
a comprehensive comparison is conducted in Sect.  “Comparative assessment with recent advances”. Finally, 
Sect. “Loss analysis of a bidirectional DC-DC converter” provides the experimental results of a 400 W prototype 
to validate the theoretical analyses.

The proposed bidirectional converter
The proposed bidirectional converter, depicted in Fig. 1, consists of five switches, three inductors, and three 
capacitors. In the forward mode, switches S1 and S2 are simultaneously triggered while switches S3 through S5 
remain off. Conversely, in the backward mode, switches S3 and S4 are triggered in a similar manner, with S1 
and S2 turned off. Therefore, a single PWM pulse is sufficient to control the converter in both operating modes. 
During state 2 of both step-up and step-down modes, the MOSFET body diodes conduct naturally when the 
corresponding switches are turned off, providing a freewheeling path for the inductor currents and ensuring 
continuous current flow.

Converter operation
For ease of analyzing the steady-state characteristics of the proposed converter, the following practical 
assumptions are applied: (a) all power semiconductor devices and energy storage elements are considered ideal, 
and the converter operates under continuous conduction mode (CCM); (b) the capacitances are sufficiently 
large such that the voltage across each capacitor remains essentially constant during each switching cycle. In each 
mode of operation, the converter functions in continuous conduction mode (CCM) and exhibits two separate 
switching modes. Figure  2 depicts the key waveforms in both the step-up and step-down operating modes. 
Figures 3 and 4 show the equivalent circuits of the converter in the step-up and step-down modes, respectively.

	 VC1 = VC2 = VC � (1) 

	 C1 = C2 = C� (2)

	
diL1

dt
= VL

L1
� (3)

	
diL2

dt
= VC1 + VC2

L2
� (4)

Fig. 1.  Circuit schematic of the proposed bidirectional converter.
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Fig. 4.  Equivalent circuit of the converter in step-down mode: (a) first state; (b) second state.

 

Fig. 3.  Equivalent circuit of the converter in step-up mode: (a) first state; (b) second state.

 

Fig. 2.  Representative waveforms of the proposed converter: (a) step-up operation; (b) step-down operation.
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Step-up mode
State 1:  switches S1 and S2 remain ON, while S3, S4, and S5 are kept OFF. Under these conditions, inductors L1 
and L3 store energy, whereas capacitors C1, C2, and C3 release their stored charge. During this period, the load is 
powered entirely by the output capacitor CoH. The corresponding state-space equations for the converter in this 
operating state are expressed as follows.

	 VC1 = VC2 = VC � (9)

State 2:  With switches S1 and S2 turned off, the body diodes of S4, S5, and S3 conduct. During this interval, 
inductors L1 and L3 release their stored energy to the output, while capacitors C1, C2, and C3 are being charged. 
This mode concludes once the switches are turned on again.
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Step-down mode
State1:  In this state, switches S4, S5, and S3 are in the on-state, while S1 and S2 remain off. Inductor L3 is ener-
gized, and with S1 and S2 turned off, capacitors C1 and C2 are effectively paralleled, delivering their stored energy 
to the output via L1. Simultaneously, capacitor C3 supplies energy to magnetize the coupled inductor. During this 
mode, both L1 and L3 undergo a linear charging process. The state-space representation of the converter in this 
operating mode is expressed as follows.
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State 2:  During this stage, switches S4, S5, and S3 are in the off-state, causing the body diodes of S1 and S2 to 
conduct. Consequently, inductors L1 and L3 release their stored energy to the output, while capacitors C1, C2, 
and C3 are being energized.

	
diL1

dt
= −VL

L1
� (24)

	
diL3

dt
= −2VC

L2
� (25)

	
diL3

dt
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L3
� (26)
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dt
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C
� (27)
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Steady-state analysis of the proposed converter
This section provides a comprehensive analysis of the proposed bidirectional converter, including its voltage gain 
in both modes of operation, the voltage and current stresses on the components, and the design equations for 
the passive elements.

Voltage gain
The voltage–second balance principle is applied to all three inductors of the circuit for both step-up and step-
down operation modes. Based on these formulations, the expressions for the converter voltage gain in each 
mode are directly derived as follow.

	 L1 : VLDT + (VL − VC) (1 − D) T = 0� (30)

	
VC = VC1 = VC2 = VL

(1 − D) � (31)

	 L2 : (VC1 + VC2) DT − VC3 (1 − D) T = 0� (32)

	
VC3 = 2DVL

(1 − D)2 � (33)

	 L3 : (VC1 + VC2 + VC3 − VH) DT − VH (1 − D) T = 0� (34)

	
VH = (V C1 + VC2 + VC3)D = 2DVL

(1 − D)2 � (35)

	

VH

VL
= 2D

(1 − D)2 � (36)

For step-down mode:

	 L1 : (VC1 − VL) DT + (−VL) (1 − D) T = 0� (37)

	 VL = DV C1� (38)

	 L2 : −VC3DT + (VC1 + VC2) (1 − D) T = 0� (39)

	
VC3 = (VC1 + VC2) (1 − D)

D
� (40)

	 L3 : VHDT +
(
VH−(V C1 + VC2 + VC3)

)
(1 − D) T = 0� (41)

	
VH = VC1 + VC2 + VC3

1 − D
� (42)

	
VC1 = VC2 = VL

D
� (43)

	
VL

VH
= D2

2(1 − D)
� (44)
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Figure 5 depicts the voltage gain profiles of the converter under both step-up (Fig. 5(a) and step-down (Fig. 5(b)) 
operating modes.

Switch voltage stress
Using Kirchhoff ’s voltage law for the switch loop when the switches are OFF, the maximum voltage across them 
can be easily determined from the following Eq. 

	
VS1 = VS4 = VS5 = V C = VL

1 − D
� (45)

	
VS2 = VC2 + VC3 = (1 + D)VL

(1 − D)2 � (46)

	
VS3 = VC1 + VC2 + VC3 = 2VL

(1 − D)2 � (47)

Passive component design
Prior to selecting the capacitance values, it is essential to determine the average currents of the capacitors. By 
applying the ampere–second balance principle to capacitors C1, C2, C3, and Co, and utilizing Eqs. (2) and (4), the 
average currents of the inductors are derived as follows:

	
IL1 = 2DIH

(1 − D)2 � (48)

	
IL2 = DIH

(1 − D) � (49)

	 IL3 = IH � (50)

	
L1 ≥ VL(1 − DH)2

0.4IHf
� (51)

	
L2 ≥ VC3(1 − DH)2

0.2DIHf
� (52)

	
L3 ≥ 10DHVL

(1 − DH)IHf
� (53)

	
C1 = C2 ≥ IHD

f(1 − D)∆ VC
� (54)

	
C3 ≥ IHD

f∆ VC3
� (55)

Small-signal analysis and controller design of the converter
By presuming ideal characteristics for all semiconductor and passive elements, the averaged and small-signal 
representations are formulated using the state-space averaging technique. In the step-up configuration (Fig. 3(b)) 
as well as in the step-down configuration (Fig. 4(a)), conduction of S4 and S5 or their intrinsic diodes places C1 
and C2 in parallel, thereby enforcing voltage equality between C1 and C2.

Fig. 5.  Voltage gain plot of the converter: (a) step-up mode; (b) step-down mode.
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Modeling of the step-up operating mode
To analyze the dynamic behavior of the proposed bidirectional converter, the state-space averaging technique 
is employed. Considering ideal semiconductor and passive elements, two subintervals corresponding to switch 
ON and OFF states are modeled in step-up mode. By averaging these models over a switching cycle with duty 
ratio D the large‐signal model is expressed as below

	

A =




0 0 0 − 1−D
L1

0 0 0
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0
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− 1
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0 0 0 0
1−D
2C2

− D
C2
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0 0 0 0
0 1−D
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− D
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0 0 0 0

0 0 1
COH

0 0 0 − 1
ROCOH




� (56)
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C = [ 0 0 0 0 0 0 1 ]
D = [0]

� (58)

	 y + A (D) x = ẋ� (59)

	 Cx = B (D) VL� (60)

	
Gvd,step−up(s) = 2.273 ∗ 109s4 − 2.611 ∗ 1012s3 + 8.124 ∗ 1016s2 − 3.704 ∗ 1019s + 5.268 ∗ 1023

s6 + 45.45s5 + 6.327 ∗ 107s4 + 2.669 ∗ 109s3 + 6.767 ∗ 1014s2 + 2.338 ∗ 1016s + 2.634 ∗ 1020 � (61)

Modeling of the step-down operating mode
To investigate the dynamic performance of the proposed bidirectional converter in the step-down mode, the 
state-space averaging method is applied. Assuming ideal components, two switching intervals (ON and OFF 
states) are formulated, and their combination over a switching cycle with duty ratio D yields the corresponding 
large-signal model.
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B =




VL
2(1−D)L1
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


� (63)

	 C = [ 0 0 0 0 0 1 ]� (64)

	 D = [0]� (65)

	
Gvd(s) = 1.333e10s4 − 2.647e11s3 + 3.008e18s2 + 3.298e20s + 2.743e25

s6 + 1024s5 + 1.546 ∗ 108s4 + 1.107 ∗ 1011s3 + 5.271 ∗ 1015s2 + 9.753 ∗ 1017s + 3.744 ∗ 1022 � (66)

Dynamic behavior of the converter
Because the converter may exhibit nonminimum-phase behavior in step-up operation due to the presence of a 
right-half-plane zero, the crossover frequency ωc must be selected well below the RHP-zero frequency and also 
remain a small fraction of the switching frequency, i.e., ωc ≲ 0.2 ωz,RHP and ωc≪0.1 ωs. To ensure stable and 
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well-damped closed-loop performance, a PI controller of the form CPI(s) = Kp+Ki/s = Kp(1 + ωi/s) with ωi = Ki/
Kp is designed using loop-shaping. In the step-down operating mode, a PI controller is also adopted to regulate 
the output voltage and achieve stable closed-loop performance. Unlike the boost case, the buck configuration 
does not introduce a right-half-plane zero; therefore, the crossover frequency ωc can be selected higher, though 
it still must remain well below one-tenth of the switching frequency to ensure robustness, i.e., ωc≪0.1 ωs. The PI 
compensator maintains the same structure, CPI(s) = Kp+Ki/s = Kp(1 + ωi/s) where the zero is placed at ωi ≈ ωc/10 
to improve phase margin and enhance low-frequency tracking. The proportional gain Kp is again tuned by 
enforcing unity open-loop gain at the chosen ωc. This procedure ensures that in the step-down mode the system 
achieves sufficient phase margin and disturbance rejection, while the integral term guarantees zero steady-state 
error in output voltage regulation.

Figure 6 depicts the control block diagram of the proposed bidirectional converter, whereas Figs. 7 shows the 
system’s Bode plots for the step-up and step-down modes, respectively, comparing the cases with and without 
the PI controller.

Comparative assessment with recent advances
Table 1 provides a comparative evaluation of the proposed converter against previously reported topologies 
in terms of voltage gain in both operating modes, component count, current ripple on both sides, and overall 
efficiency. Converters20,24,30,31, and32 exhibit both lower voltage gain and higher ripple at the high-voltage 
port, necessitating larger filter capacitors. Although converters33–35 maintain low current ripple on both sides, 
their achievable gain remains limited. As illustrated in Fig. 8, the proposed converter demonstrates superior 
performance in both step-up and step-down operations, reducing the duty ratio in step-up mode while increasing 
it in step-down mode. Additionally, converter20 incurs considerable conduction losses due to its diode-based 
structure, whereas converter27 is unsuitable for low-voltage applications such as batteries or fuel cells because 
of its high input-side ripple. Figure 8 illustrates the comparative voltage gain characteristics for both operating 
modes, where (a) corresponds to the step-up mode and (b) represents the step-down mode. Figure 9 compares 
the maximum switch voltage stress (Fig. 9(a)) and the maximum switch current stress (Fig. 9(b)) among the 
converters listed in Table 1. As demonstrated in Fig. 9, the proposed converter achieves superior performance 
by substantially reducing the normalized switch voltage and current stress, leading to lower conduction losses 
and component ratings.

Figure 10 presents a comparative analysis of the estimated cost and power density for the proposed converter 
and several state-of-the-art topologies reported in the literature. Each converter is represented by two adjacent 
bars corresponding to the cost (in USD) and the power density (in W/cm³). As illustrated, the proposed design 
exhibits a balanced performance achieving a significantly higher power density while maintaining a moderate 
overall cost compared with most reference converters.

Loss analysis of a bidirectional DC-DC converter
This section presents a detailed loss analysis of a bidirectional DC-DC converter operating in step-up and step-
down mode. The goal is to calculate the conduction and switching losses of MOSFETs, conduction losses of body 

Fig. 6.  Schematic diagram of the control circuit of the proposed bidirectional converter.
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diodes, copper and core losses of the inductors, and losses in the capacitors, as well as to estimate the overall 
efficiency.

Step-up mode losses
MOSFET Conduction Losses: The conduction loss of each MOSFET is calculated using:

	
PCon(Sw) =

(∑2

i=1
IRMS−Si

2RDS−i

)
= 0.04 ∗

(
4.362 + 2.142)

= 1.085W � (67)

MOSFET Switching Losses: The switching losses due to turning on and off the MOSFETs are estimated by:

Fig. 7.  The Bode diagram of the proposed converter: (a) operation in step-up mode, (b) operation in step-
down mode.
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PSwitching(Sw) =
(∑2

i=1

1
2I

DS−Si
VDS−i(tr + tf )fsw

)

= 0.5* (4.36*120 + 2.14*345) *180*10−9*50*103 = 4.5W
� (68)

MOSFET Capacitive Turn-On Losses: The capacitive turn-on (drain-to-source capacitance) losses are calculated 
using:

	

PCapacitive(Sw) =
(∑2

i=1

1
2 .C

Oss−Si
V 2

DS−ifsw

)

= 0.5 ∗ 603 ∗ 10−12 ∗ 50 ∗ 103 ∗ (1202 + 3452) = 3.17W

� (69)

Fig. 8.  Comparative plots of the converter: (a) voltage gain comparison in step-up mode, (b) voltage gain 
comparison in step-down mode.

 

Converter

Voltage gain
Number of 
elements

Current 
ripple Efficiency(%)

Step-up Step-down L S C T1 LV HV S.D2 S.U3

20 1
(1−DH )2 DL

2 2 3+
2Diode 4 11 Low High 95.9 97.2

24 1
(1−DH )2 DL

2 2 4 3 9 Low High 96 95.2

26
1+DH

(1−DH )2 DL
2

2−DL
2 5 4 11 Low High 97.2 96.8

27
2−DH

(1−DH )2 DL
2

1+DL
2 5 4 11 High Low 95 95.2

30 2
(1−DH ) DL

2
2 5 4 11 Low High 95.2 95.3

31 1−DH +DH
2

(1−DH )2
DL

2

1−DL+DL
2 3 4 4 11 Low Low 91.8 93

32 DH
2

(1−DH )2
DL

2

(1−DL)2 3 4 4 11 Low Low 97 97

33 DH
2

(1−DH )2
DL

2

(1−DL)2 3 6 4 13 Low Low 92 91

34
2−DH

(1−DH )
DL

2
1+DL

3 5 5 13 Low High 95.3 95.7

35
2+DH

(1−DH )
DL

3−DL
3 5 4 12 Low High 96.6 92.6

Proposed
2DH

(1−DH )2 DL
2

2(1−DL)
3 5 5 13 Low Low 96.3 96

Table 1.  Performance comparison between the proposed converter and other previously developed converters. 
1.Total number of components 2. Step-down 3. Step-up.
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Body Diode Conduction Losses: Conduction losses for the MOSFET body diodes are estimated by:

	

∑5

i=3
Iav−DSi VF = (1.2 + 0.99 + 1.011) ∗ 1.3 = 4.29W � (70)

Inductor Copper Losses: The copper losses in the inductors are computed as:

	

PCon,Inductors =
∑3

i=1
RL1iIRMS′ L1i

2

= 0.015 ∗ 8.42 + 0.04 ∗ 0.462 + 0.2 ∗ 1.112 = 1.79W

� (71)

Inductor Core Losses The core losses are estimated conservatively based on ferrite volume and typical loss 
density at 50 kHz:

	
PCore,Inductors =

∑3

i=1
f ∗ ki ∗ Ae ∗ le ∗ V

b

Core
∗ ∆ B

(
Von

NAef∆ B

)α −1

= 0.73W � (72)

Fig. 10.  Comparison of estimated cost and power density among the proposed converter and other reported 
topologies.

 

Fig. 9.  Comparative plots of the converter: (a) normalized switch voltage stress in step-up mode, (b) 
normalized switch current stress in step-up mode.
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The total core loss for the three Ferrite inductors is modeled and verified to be 0.73 W using the comprehensive 
loss equation at a switching frequency 50 kHz. The calculation incorporates the core’s effective area (Ae), set 
at 0.5 * 10− 4 m2, and a peak-to-peak flux density change ∆ B = 0.1T . The key loss parameters for the Ferrite 
material are the frequency coefficient α , approximately 2.5 the volume coefficient (b), approximately 1, and the 
material coefficient (k), which is determined by the selected material and design to be 4.61 * 105.

Capacitor Losses: Capacitor ESR losses are calculated using:

	

PCap =
∑5

i=1
RCiIRMS,Ci

2

= 0.02 ∗ 1.52 + 2 ∗ 0.015 ∗ 0.82 + 2 ∗ 0.492 ∗ 0.05 + 0.015 ∗ 0.5742 = 0.11W
� (73)

In this mode, the total converter loss is obtained from theoretical calculations by summing the conduction and 
switching losses of the semiconductors, the copper and core losses of the inductors, and the ESR losses of the 
capacitors. The efficiency is then expressed as

	
Eff boost = Po

Po + Ploss
= 400

400 + 15.67 ≈ 96.23%� (74)

Step-down mode losses
The same methodology applied for boost mode is also used to analyze the converter in step-down mode at full 
load. In this configuration, three switches are actively conducting while the body diodes of the remaining two 
switches carry current. The total losses are calculated by summing the conduction and switching losses of the 
active MOSFETs, the losses in the body diodes, the copper and core losses of the inductors, and the ESR losses 
of the capacitors. The efficiency is then determined as the ratio of the output power to the total of output power 
and losses. The detailed formulas used for each component’s loss calculation are presented. The loss analysis, 
detailing the distribution for both step-up and step-down modes, is summarized in the breakdown shown in 
Fig. 11.

	
PCon(Sw) =

(∑3

i=1
IRMS−Si

2RDS−i

)
= 0.27 ∗ 1.112 + 2 ∗ 0.04 ∗ 2.082 = 0.68W � (75)

	

PSwitching(Sw) =
(∑3

i=1

1
2I

DS−Si
VDS−i(tri + tfi)fsw

)

= 0.5 ∗ 1.11 ∗ 160 ∗ 245 ∗ 10−9 ∗ 50 ∗ 103 + 2 ∗ 0.5 ∗ 0.97 ∗ 120 ∗ 180 ∗ 10−9 ∗ 50 ∗ 103 = 2.1W

� (76)

	

PCapacitive(Sw) =
(∑3

i=1

1
2 .C

Oss−Si
V 2

DS−ifsw

)

= 0.5 ∗ 870*10−12 ∗ 1802*50*103 + 2 ∗ 0.5*603*10−12∗1202*50*103 = 1.51W

� (77)

	

∑2

i=1
Iav−DSi VF = (1.11 ∗ 1.3 + 3.32 ∗ 1.3) = 5.76W � (78)

	
PCon,Inductors =

∑3

i=1
RL1iIRMS′ L1i

2 = 0.02 ∗ 8.332 + 0.07 ∗ 1.262 + 0.07 ∗ 1.232 = 1.63W � (79)

	
PCore,Inductors =

∑3

i=1
f ∗ ki ∗ Ae ∗ le ∗ V

b

Core
∗ ∆ B

(
Von

NAef∆ B

)α −1

= 0.64� (80)

	

PCap =
∑4

i=1
RCiIRMS,Ci

2

= 0.02 ∗ 1.112 + 0.015 ∗ 1.152 + 0.015 ∗ 0.8162 + 0.015 ∗ 1.022 + 0.05 ∗ 0.6322 = 0.09W
� (81)

	
Eff buck = Po

Po + Ploss
= 400

400 + 12.41 ≈ 96.99%� (82)

Experimental verification
For experimental validation of the theoretical analyses, a laboratory prototype of the proposed converter was 
built, featuring a 400 W power rating and compact dimensions of 7*10*3.5 cm3. The detailed parameters of 
this prototype are listed in Table  2, and a photograph of the hardware implementation is shown in Fig.  12. 
Experimental results for both step-up and step-down operation modes are provided in Figs.  13 and 14, 
respectively. Specifically, Fig. 13(a) presents the gate voltage waveforms of switches S1 and S2, while Fig. 13(b) 
illustrates the drain–source voltage and current of S1. The current waveform of inductor L1 is presented in 
Fig. 13(c). The drain–source voltage and current of switch S2 are illustrated in Fig. 13(d), whereas Fig. 13(e) 
provides the measured input and output voltage profiles of the converter. The dynamic response of the converter 
to load variations, confirming the effectiveness of the control loop, is shown in Fig.  13(f). Likewise, for the 
step-down mode, Fig.  14(a) shows the gate voltage waveforms of switches S3 and S4, and Fig.  14(b) depicts 
their drain–source voltages. The drain-source currents of switches S3 and S4 are displayed in Fig. 14(c), and the 
corresponding current for S5 is illustrated in Fig. 14(d). Capacitor voltage waveforms (C1–C3) are presented in 
Fig. 14(e), and the dynamic load response is illustrated in Fig. 14(f). The dynamic response characteristics of 
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Parameter & Component Values

Rated power 400 W

Low voltage side 48 V

High voltage side 360 V

L1, L2 400µH

L3 800µH

C1,C2,C3 10µF

CLV,CHV 220 µF

f 50 kHz

S3 IRFP460

Other switches IRFP260N

Table 2.  Parameter specifications utilized in the experimental setup.

 

Fig. 11.  Loss breakdown for (a) step-up operation and (b) step-down operation.
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the converter to input voltage changes are illustrated in Fig. 15, showing transient behavior under both sudden 
(Figs. 15(a), 15(b)) and linear (Fig. 15(c)) changes in the input voltage. Specifically, Fig. 15(c) depicts step-up 
operation where the input voltage rises steadily from 40 V to 100 V while the output voltage remains fixed at 
360 V. Altogether, these experimental findings corroborate the theoretical analysis.

Converter efficiency
According to Fig.  16, the efficiency of the proposed bidirectional converter improves as the output power 
increases in both the step-up and step-down modes. At light loads, conduction and switching losses play a more 
dominant role in lowering efficiency, but their influence becomes less pronounced as the load grows, resulting in 
higher overall performance. When comparing the two modes, the step-down operation exhibits slightly better 
efficiency than the step-up operation, mainly due to fewer active switch turn-ons, lower circulating currents, and 

Fig. 13.  Step-up mode practical results: (a) gate voltage of S1, S2(b) drain-source voltage and current of S1(c) 
current of L1(d) drain-source voltage and current of S2(e) regulated output voltage and input voltage (f) 
dynamic response of the proposed converter.

 

Fig. 12.  Laboratory implementation of the proposed converter.
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therefore reduced losses. In general, the converter maintains an efficiency 96.3% in step-down mode and 96% in 
step-up mode at full load, confirming its effectiveness and suitability for practical applications.

Conclusion
This study presents a novel bidirectional DC–DC converter capable of delivering very high voltage gain in the 
step-up mode and substantially reduced voltage gain in the step-down mode. The design employs only two 
switches operating concurrently in step-up mode and three switches operating together in step-down mode, 
which simplifies the control structure. Moreover, the proposed configuration achieves low current ripple on both 
input and output sides, enabling the use of smaller filter capacitors. Experimental results validate the effectiveness 
of the converter, showing excellent efficiency of 96% in step-up operation and 96.3% in step-down operation.

Fig. 14.  Step-down mode practical results: (a) gate voltage of S3, S4(b) the drain-source voltage of S3 and S4(c) 
the drain-source current of S3 and S4(d) the drain-source current of S5(e) voltages across capacitors C1, C2, and 
C3(f) dynamic response of the proposed converter.
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Data availability
All data generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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Fig. 16.  Efficiency curves of the proposed converter in both step-up and step-down modes under varying 
output load conditions.

 

Fig. 15.  Dynamic response of the converter to input voltage variations: (a) abrupt input voltage change from 
40 V to 100 V in step-up mode; (b) abrupt high-voltage side change from 480 V to 300 V in step-down mode; 
and (c) linear input voltage change from 40 V to 100 V in step-up mode.
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