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Accurately predicting the specific heat capacity of nanofluids is critical for optimizing their performance
in engineering and industrial applications. This study explores twelve machine learning and deep
learning models using conventional and stacking ensemble techniques. In the stacking framework,
alinear regression model is employed as a meta-learner to improve base model performance.
Additionally, two nature-inspired metaheuristic optimization algorithms—Particle Swarm
Optimization and Grey Wolf Optimization—were used to fine-tune the hyperparameters of machine
learning models. This research is based on a comprehensive dataset of 1,269 experimental nanofluid
samples, with key inputs including nanofluid type (hybrid and direct), temperature, and volume
concentration. To improve model generalization, data augmentation strategies inspired by polynomial/
Fourier expansions and autoencoder-based methods were implemented. The results demonstrate that
the stacked multi-layer perceptron model, integrated with linear regression, achieved the highest
predictive accuracy, recording an R2 score of 0.99927, a mean squared error of 466.06, and a root mean
squared error of 21.58. Among standalone machine learning models, CatBoost was the best performer
(R2score: 0.99923, MSE: 487.71, RMSE: 22.08), ranking second overall. The impact of metaheuristic
optimization was significant; Grey Wolf Optimization, for instance, reduced the LightGBM model’s
mean squared error from 29386.43 to 6549.006. These findings underscore the efficacy of hybrid ML/DL
frameworks, advanced data augmentation, and metaheuristic optimization in predictive modeling of
nanofluid thermophysical properties, providing a robust foundation for future research in heat transfer
applications.

Keywords Nanofluids, Specific heat capacity, Thermophysical property, Metaheuristic optimization,
Machine learning, Deep learning

The accurate prediction of specific heat capacity (C)) is crucial for optimizing the thermal performance of
nanofluids in various industrial and engineering applications, including heat exchangers, cooling systems, and
energy storage technologies. Traditional empirical and analytical methods often fail to capture the complex
nonlinear relationships governing the thermophysical properties of nanofluids, leading to the need for more
advanced data-driven approaches. While recent efforts have sought to improve these classical correlations
by incorporating temperature-dependent terms!, they still generally lack the flexibility of machine learning
(ML) and deep learning (DL) techniques. Consequently, data-driven techniques have gained prominence for
modeling experimental datasets, demonstrating superior predictive performance and broader applicability
across varying nanofluid formulations?. This investigation presents an integrated framework combining ML,
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DL, and metaheuristic optimization for Cp prediction in nanofluids. Rather than depending on constrained
parametric equations, the methodology utilizes a comprehensive dataset encompassing temperature (°C), volume
concentration (¢), and specific heat capacity measurements. Rigorous preprocessing was implemented to ensure
data quality, incorporating polynomial and Fourier-based feature expansions alongside autoencoder-driven
data augmentation to preserve fundamental physical dependencies. These strategies build upon established
work applying computational intelligence to nanofluid thermophysical characterization, including recent
advances in artificial intelligence and comprehensive reviews of ML-based approaches®®. The study evaluates
twelve ML and DL algorithms in standard and stacked configurations, with Linear Regression (LR) serving as
the meta-model to enhance prediction accuracy by integrating linear relationships with sophisticated feature
representations from base learners. Hyperparameter optimization employs Particle Swarm Optimization (PSO)
and Grey Wolf Optimization (GWO), both recognized for efficiently navigating high-dimensional parameter
spaces’ 4. Machine learning techniques have demonstrated remarkable effectiveness in predicting the specific
heat capacity of nanofluids. Said et al. (2022) explored the use of ensemble ML techniques for modeling the heat
capacity of water-based hybrid nanofluids in solar energy applications. Similarly, Alade et al. (2019) developed
an optimized support vector regression model using Bayesian algorithms to predict the specific heat capacity of
alumina/ethylene glycol nanofluids. Oh and Guo (2024) extended this research by evaluating the applicability of
various ML algorithms in predicting the heat capacity of complex nanofluids'>-"".

Deymi et al. (2023) employed various ensemble learning techniques to model the specific heat capacity of
nanofluids, demonstrating the superior predictive capability of integrated models compared to conventional
correlations'®. In a related study, Deymi et al. (2023) developed empirical correlations for estimating the
specific heat capacity using GRG, GP, GEP, and GMDH algorithms, highlighting the effectiveness of hybrid and
evolutionary learning methods in capturing nonlinear thermophysical behavior!®. Further, Deymi et al. (2024)
applied a radial basis function neural network (RBFNN) optimized by evolutionary algorithms to evaluate the
density of mono-nanofluids, achieving enhanced accuracy and generalization?’. More recently, Deymi et al.
(2025) proposed innovative mathematical correlations using white-box machine learning models to estimate
nanofluid density, providing interpretable insights into parameter influence and model transparency?!.

Further contributions have been made in leveraging Al particularly Artificial Neural Networks (ANNs), for
predictive modeling of specific heat capacity. This approach has been repeatedly shown to be a powerful tool
for this task. For instance, Esfe et al. (2022) employed multilayer perceptron (MLP) artificial neural networks
to investigate the effects of different nanoparticles on specific heat capacity and density?2. The robustness of
ANNS has been validated by several highly focused studies. Colak (2020) developed an optimal ANN model to
predict the specific heat of Y,Os/water nanofluids, achieving exceptionally high accuracy with a very low average
error®. In a subsequent study, Colak (2021) again used ANNs to successfully model ZrO,/water nanofluids,
providing a detailed comparison of the predictive performance of different training algorithms. This strong
trend of using ANNs for high-accuracy predictions extends to other compositions as well*!. Gupta and Mathur
(2023) demonstrated improved accuracy over traditional models by applying ANNs?*, while Mishra et al. (2024)
reinforced this by using ANN-based models for transient heat transfer in CN'T nanomaterials, and Boldoo et
al. (2021) used an ANN to predict properties of MWCNT nanoparticle-enhanced ionic liquids?®l- 27, Other
advanced models and applications have also gained traction. Chaudhary et al. (2025) utilized ML models to
predict the specific heat capacity of half-Heusler compounds, highlighting the adaptability of AI techniques
beyond nanofluids®®. Liu et al. (2023) expanded this approach by integrating ML-assisted modeling for ionic
liquid-organic solvent binary systems®. Sajjad et al. (2021) introduced a deep learning framework for estimating
the boiling heat transfer coefficient of porous surfaces, showcasing the potential of AI in capturing complex
heat transfer mechanisms®. The integration of AI with numerical simulations has also been explored, with
Albdour et al. (2024) applying ML for predicting condensation heat transfer and Elshehabey et al. (2024) and
Knoerzer (2024) demonstrating its use in complex convection and heating predictions®~33. In addition to ML
and deep learning-based studies, prior research has laid the foundation for AI-driven predictive modeling of
nanofluid thermophysical properties. Adun et al. (2021) conducted a critical review of the specific heat capacity
of hybrid nanofluids, identifying key trends and challenges in data-driven modelling®*. This is a topic that has
also seen recent experimental investigation, such as the work by Colak et al. (2020) on Al,O;-Cu/water hybrid
nanofluids®. Alade et al. (2019) and Alade et al. (2018) contributed significantly to the field by developing
support vector regression models for predicting thermal conductivity and specific heat capacity**- 3. Moreover,
Mathur et al. (2024) examined soft computing approaches for predicting specific heat capacity, demonstrating
the effectiveness of hybrid Al techniques in thermophysical property estimation®.

The integration of ML, deep learning, and numerical simulations has significantly improved prediction
accuracy and broadened the applicability of AI techniques in thermophysical property modeling. These
advancements provide a solid foundation for further research in optimizing thermal performance across various
industrial applications. By integrating advanced data augmentation, modeling, and optimization techniques,
this study establishes a highly accurate and scalable predictive framework for nanofluid specific heat capacity
estimation. The methodology aligns with previous predictive modeling work on composite materials and heat
exchangers, demonstrating the significance of AI-driven approaches in thermophysical analysis and providing a
foundation for improved design and application of nanofluids in thermal management systems.

The principal contributions of this study are:

« Comprehensive dataset assembly: A rigorously vetted dataset of 1,269 unique records spanning single-com-
ponent and hybrid nanofluids was compiled, including composition, temperature (°C), volume fraction (¢),
and specific heat capacity. Incomplete or inconsistent records were excluded.
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« Systematic model benchmarking: Twelve predictive models—eight machine-learning and four deep-learn-
ing architectures—were evaluated in baseline and stacked configurations, enhanced through polynomial/
Fourier expansions or autoencoder augmentation, with hyperparameters optimized using PSO or GWO.

« Performance and deployment metrics: Standard regression metrics (MSE, RMSE, MAE, R?), training time,
inference latency, and memory footprint were measured, enabling selection of architectures balancing accu-
racy with computational efficiency.

These contributions establish the first optimization-driven workflow for real-time nanofluid specific heat
capacity estimation, addressing a critical gap in thermal-fluid materials research.

The structure of the paper is organized as follows: Sect. Methodology provides an in-depth explanation of the
materials and methods employed in this study. Section Results and discussion presents the experimental results
and includes a discussion that lays the groundwork for the conclusions, which are outlined in Sect. Conclusion.

Methodology

The present study aims to establish a comprehensive framework for accurately predicting the specific heat
capacity of nanofluids by integrating experimental data and advanced preprocessing methodologies. This work
addresses critical gaps in conventional empirical approaches by leveraging diverse datasets from nanofluids
and hybrid nanofluids®, enabling the development of a robust predictive model. The dataset includes essential
thermophysical parameters such as temperature (°C), volume concentration (¢), and specific heat capacity. To
ensure its suitability for modeling, the dataset underwent rigorous preprocessing to clean and standardize the
data. Furthermore, advanced techniques such as Polynomial and Fourier inspired expansions* and autoencoder-
based data augmentation® were applied to enrich feature representation, ensuring the preservation of critical
physical relationships within the data.

The study employed a comprehensive evaluation framework incorporating twelve machine learning’
and deep learning models, assessed through an extensive set of performance metrics. To further advance
predictive accuracy, this work uniquely integrates two state-of-the-art metaheuristic algorithms Particle Swarm
Optimization (PSO) and Grey Wolf Optimization (GWO) for systematic hyperparameter optimization of the
machine learning models'!"1%. This comparative optimization strategy, applied exclusively to machine learning
architectures, enables identification of optimal parameter configurations across complex, high-dimensional
search spaces, representing a methodological advancement in nanofluid property prediction.

The methodological framework developed in this study focuses on advancing the prediction of thermophysical
properties, particularly the specific heat capacity of nanofluids, which is a critical parameter for optimizing
performance in various engineering and industrial applications. A detailed overview of the methodology is
illustrated in Fig. 1, showcasing the systematic workflow from data collection to model deployment.

Dataset description

The dataset utilized in this study integrates two distinct sources: the nanofluids dataset, which consists of 285
samples, and the hybrid nanofluids dataset, derived from peer-reviewed literature®® comprising 984 samples.
This combined dataset results in a total of 1,269 samples. The input features include the Nanofluids, Temperature
(°C), and Volume Concentration (¢), while the output feature is the experimentally measured Specific Heat
Capacity of the nanofluids.

The integration of these datasets enhances the diversity and representativeness of the data, covering a wide
range of nanofluid types and operating conditions. Supplementary Table 1 in Appendix outlines the nanofluid
dataset along with its sources, and Supplementary Table 2 in Appendix provides a summary of the hybrid
nanofluid dataset.

The relationship for the specific heat capacity of the nanofluid ( Cpany) is given by Eq. la:

Cpn
Cphnf = Cpos (1 + Ty (C};b; - 1)) (1a)

Where, Cphny represents the specific heat capacity of the nanofluid, Cpyy is the specific heat capacity of
the base fluid, Cpnp is the specific heat capacity of the nanoparticle, & , represents the volume fraction of
nanoparticles in the nanofluid.

This relation highlights the influence of nanoparticles on the overall specific heat capacity of the nanofluid,

depending on the relative thermal properties of the nanoparticle and the base fluid. The term (gf; Z;’ — 1)

reflects the contribution of the nanoparticle’s specific heat in modifying the thermal behavior of the nanofluid.

Colak et al. (2020) established a temperature-dependent correlation for the specific heat capacity (Cp)
as a function of temperature (7") using four empirical constants coefficient A, B, C and D for the Cu-Al,0,/
water nanofluid, the corresponding coefficient values are A = 0.0002322, B = 4.168, C = — 0.01175 and D =
0.6207 as defined in Eq. (1b)". This correlation has been incorporated into the present study to account for the
temperature-dependent variation of Cj, in the thermal analysis.

Cp= (AT + B)(1+C @ D) (1b)

The compiled dataset encompasses a wide array of nanofluids and hybrid nanofluids, incorporating various
nanoparticle combinations, as outlined in Tables 1 and 2.These combinations include Fe;Oy, AIN, SisNy, TiN,
and ALO; (Table 1), as well as MgO-TiO,, MWCNT-CuO, MWCNT-MgO, MWCNT-Sn0,, Al,Os-Cu, Al,Os-
GO, CuO-MgO-TiO,, CuO-MWCNT, MgO-MWCNT, Al,Os-MWCNT, CeO,-MWCNT, TiO,-MWCNT, ZnO-
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Fig. 1. Workflow of the methodology implemented.

Statistical Property | Temperature °C | Yolume Concentration (@) | SpecificHeat (Cphrnyf)
Minimum 14.94 0 2054

Maximum 70.20 9.3 8960

Mean 39.38103 1.47902 3816.19804

Median 39.92215 0.75000 3897.44526

Standard Deviation | 11.43809 2.02224 789.73872

Skewness 0.26716 2.30058 2.40576

Kurtosis -0.51626 4.79062 16.69692

Table 1. Overview and quantitative summary of the Dataset.

Feature Range
Temperature (°C) 14.94-70.20
Volume Concentration (¢) 0.000-9.300
Specific Heat 2054.00-8960.00

Table 2. Range of the features in Dataset.

MWCNT, MWCNT + Fe;0;, and SiO,+TiO, (Table 2).The base fluids employed include ND, EG, Water, DW,
and Green BG, showcasing a broad spectrum of fluid mediums. Overall, this study features twenty-one distinct
nanoparticle and base fluid pairings, highlighting the versatility and adaptability of nanofluid applications.
Nanofluids and hybrid nanofluids display exceptional thermal properties, such as improved heat transfer
and enhanced thermal conductivity, making them indispensable in fields like electronics cooling, automotive
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thermal management, heat exchangers, and biomedical technologies, including drug delivery systems and
targeted therapies. Their application potential also extends to solar concentration systems, emphasizing their
broad adaptability in renewable energy solutions®”.

The statistical properties summarized in Tables 1 and 2 offer key insights into the characteristics of the input
and output variables in this study: Temperature (°C), Volume Concentration (¢$), and Specific Heat ( Cphny).
Statistical analysis reflects a dataset characterized by considerable complexity and the presence of extreme values.
These distributional characteristics highlight the importance of accounting for a broad range of conditions when
investigating the thermal properties of nanofluids.

Dataset preprocessing
Data preprocessing is a fundamental step in ensuring the dataset’s quality and compatibility with predictive
models. The combined dataset, integrating the hybrid nanofluids dataset and the nanofluids dataset, resulted in
1,269 samples. This integration captured a wide variety of nanofluid types and operating conditions, enhancing
data diversity. Special care was taken to handle missing values and ensure data consistency. Any inconsistencies
or anomalies, such as duplicate entries or incorrect formats, were resolved to maintain the dataset’s integrity.

Categorical features, such as the nanofluids, were processed using one-hot encoding, converting categorical
variables into binary vectors. Then, the numerical features, including temperature and volume concentration,
were standardized to zero mean and unit variance to ensure uniform contribution during model training and
prevent dominance by features with larger ranges*®l- [*!, Statistical analysis provided valuable insights into the
dataset’s variability and helped confirm the adequacy of feature distributions for model training.

The dataset was then split into training and testing sets in an 80:20 ratio, allocating 80% of the data for model
training and 20% for evaluation. This split ensured unbiased testing and robust model assessment on unseen
data.

Augmentation
In machine learning and deep learning, model performance is closely tied to both the quality and quantity
of the data used. In this study, the dataset exhibited variability and included regions with underrepresented
samples. To address these issues and improve the generalization ability of the models, data augmentation was
applied by generating new data points from existing ones—while preserving key statistical properties and
physical relationships. This approach enhances model robustness and helps reduce overfitting, without altering
the imbalance ratio or introducing bias*2.

For this study, two augmentation techniques were utilized: Polynomial and Fourier Expansions Inspired and
Autoencoders-based. Each method contributed differently to enhancing the dataset, and their effects on the final
model performance were carefully evaluated.

Polynomial and fourier expansion inspired augmentation

This augmentation method enhances numerical features by applying polynomial and Fourier-inspired
transformations to generate higher-order features. These expansions allow the model to capture complex, non-
linear relationships and periodic patterns, thereby improving model robustness and its ability to generalize
across diverse data®.

Polynomial feature expansion Polynomial expansion introduces higher-order terms, allowing the model to
represent non-linear dependencies more effectively. For a feature x;, the polynomial expansion of degree d is
expressed as Eq. 2:

d 2 3 d
xz(‘):[xi7xi7mia'“7xi} (2)

This transformation introduces interaction terms and higher powers of features, which enables the model to
account for intricate relationships within the data**.

Fourier-Inspired expansion The Fourier-inspired expansion applies sine and cosine transformations at various
frequencies, allowing the model to capture periodic patterns in the data. While this approach is inspired by the
Fourier series, it does not follow the Fourier transformation in its strict mathematical form. For a numerical
feature z;, the Fourier-inspired transformation with n terms is given by Eq. 3%

Fourier (mgn)> = [sin (n.x;), cos (n.x;)] form=12,... N (3)

Here, N denotes the number of frequencies used. This introduces cyclic behavior, helping the model detect
periodic signals.

Combining both expansions The final augmented feature set is created by combining both the polynomial and
Fourier-inspired transformations. The expanded dataset Xczpandea is represented as Eq. 4:

Xezpanded = [Xpoly7 XfouTieT] (4)

This step is depicted in Fig. 2, where the polynomial features X,,0;y and the Fourier-inspired features X fourier
are concatenated to form a richer feature set. The augmented dataset is then created by combining the expanded
features with the original categorical ‘Nanofluid’ columns as shown in Eq. 5.
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Fig. 2. Architecture of Polynomial and Fourier Inspired Expansion Augmentation Technique.

Xaugmented = [X7 Xpolyy Xfoum'er] (5)

Figure 2 illustrates this complete augmentation pipeline, where original features are enriched with polynomial
and Fourier-inspired components to produce a more expressive dataset.

Autoencoder based augmentation
Autoencoders are employed for augmentation to enrich the dataset by generating new, slightly noisy versions of
the original data. The process involves learning a compact representation of the input data through the encoder
and then reconstructing it with small perturbations during the decoding stage. This approach helps the model
generalize better by introducing variations, especially when dealing with noisy or incomplete data®.

The Autoencoder architecture consists of two primary components: the encoder and the decoder. The
encoder maps the input data x into a lower-dimensional latent space z, the decoder reconstructs the input data
7 from this compressed representation. This is visualized in Fig. 3.

Encoder Function,

z = fencodev‘ (l’) (6)
Decoder Function,

E = fdecoder (Z) (7)

The autoencoder is trained to minimize the Mean Squared Error (MSE) loss between the original data x and the
reconstructed data 7, given by Eq. 8.

1 ~
L= NZ ivzl(‘rifxif (8)

where N is the number of samples in the dataset, and z; and Z; represent the original and reconstructed data
points, respectively.

Data augmentation with autoencoder Once the autoencoder is trained, the decoder is used to generate noisy
version of the original data by reconstructing it. The noisy data n.isy can be expressed as Eq. 9.
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Tnoisy = fdecoder (fencoder (l‘)) +e€ (9)

Where, e denotes the reconstruction noise. By repeating this process iteratively, multiple noisy variants are
produced. The final augmented dataset X,ugmented is formed by concatenating the original dataset X with the
generated noisy data Xy.0isy as shown in Eq. 10.

Xaugmented = [X7 Xnoisy] (10)

This process, as shown in Fig. 3, results in an augmented dataset containing both the original and noisy data,
improving the model’s ability to generalize.

Optimization

Optimization algorithms play a critical role in enhancing machine learning models by fine-tuning their
hyperparameters. They explore the hyperparameter space to identify configurations that improve model accuracy
and computational efficiency. In this study, optimization was applied after data preparation and augmentation to
effectively address the complexity of nanofluid-specific heat capacity prediction.

In this study, two nature-inspired optimization algorithms, Particle Swarm Optimization (PSO) and Grey
Wolf Optimization (GWO), were utilized. These algorithms were selected due to their proven ability to efficiently
explore complex, high-dimensional search spaces. Both approaches are adept at navigating a wide range of
hyperparameter combinations and converging toward a global optimum, making them particularly well-suited
for optimizing machine learning models*.

Particle swarm optimization
Particle Swarm Optimization (PSO) is a population-based optimization algorithm*® inspired by the social
behaviours of flocking birds and schooling fish. It optimizes a problem by iteratively adjusting a population
of particles, where each particle represents a potential solution in the search space. At each iteration, particles
update their positions based on both their own experience and the best solution found by the swarm.

The velocity update?® mechanism is governed by Eq. 11.

v§t+1) —w - vEt) +c1- 711 (pbesti — xgt)) +co-To- (gbest — Igt)) (11)

where, vit) is the particle’s velocity, xz@ is its position in the search space. pbest; represents the best-known

position of the particle, and gbest is the best global position found by the swarm. The coefficients c¢1 and c2
control the cognitive and social influences, while 71 and 72 are random variables, and w is the inertia weight
that balances exploration and exploitation.

The position of each particle is updated as shown in Eq. 12.

$§t+1) = mg.t) + U§t+1> (12)

This process continues until a stopping criterion such as convergence or maximum iterations is met.

PSO is well-suited for complex, non-differentiable optimization tasks, making it ideal for hyperparameter
tuning. In this study, PSO significantly improved model performance, as visualized in Fig. 4, which outlines the
algorithm’s workflow.

Grey Wolf optimization

Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm based on the social structure and
hunting behavior of grey wolves. The population is divided into four roles: Alpha (a), Beta (), Delta (§), and
Omega (w). The Alpha represents the best solution and leads the search, supported by Beta and Delta wolves,
which refine and communicate decisions. Omega wolves act as exploratory agents, preserving population
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Fig. 4. Workflow of Particle Swarm Optimization (PSO) Algorithm.

diversity and avoiding premature convergence®. This structured hierarchy ensures an effective balance between
exploration and exploitation.
The wolves’ positions are updated using Eq. 13.

Xi(t+1)=Xo (t) = ADa +C1.(Xa (t) — Xi (1)) (13)

where, A and C are coefficient vectors, and D, is the distance to the Alpha. The distance is computed using
Eq. 14.

D=|C.(Xp, — X,)| (14)
The coefficient vectors are defined as:
A=2a.r11 —a,
C=2r (15)

where, o decreases linearly from 2 to 0 over iterations, and r1 and r2 are random vectors in the range [0,1].

The algorithm iteratively updates solutions until convergence, or a stopping criterion is met. As illustrated
in Fig. 5, GWO was selected for its strong exploration-exploitation balance, making it highly effective for
hyperparameter optimization in machine learning.

Models

Accurate estimation of nanofluid specific heat capacity requires predictive models capable of capturing both
linear and complex non-linear patterns. The study employed twelve models, combining machine learning and
deep learning approaches. Machine learning models extracted structured relationships from input features,
while deep learning models integrated feature extraction and regression within a unified framework using
backpropagation®! for parameter adjustment based on error gradients.

A key methodological innovation is the implementation of a stacking ensemble approach with Linear
Regression as the meta-learner, which synergistically combines all twelve models to harness their complementary
predictive capabilities while mitigating individual limitations. To optimize performance, this study employs a
dual-optimization strategy: machine learning models underwent hyperparameter tuning using both Particle
Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) for comparative analysis, while deep learning
models relied on backpropagation for optimization. This hybrid approach maximizes each model class’s
predictive capability according to its computational characteristics.

Figures 6 and 7 illustrate the workflows for machine learning and deep learning pipelines, including model
training, tuning, evaluation, and ensemble integration.

Decision tree

The Decision Tree is a widely used algorithm that divides data into subsets based on feature values to generate
predictions. The model is represented by a tree structure, where each internal node corresponds to a decision rule
based on a feature, each branch represents the outcome of that decision, and each leaf node holds the prediction.
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Fig. 5. Workflow of the Grey Wolf Optimization (GWO) Algorithm.

Fig. 6. Generalized Workflow of Machine Learning Models Implementation.
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Fig. 7. Generalized Workflow of Deep Learning Models Implementation.

The algorithm splits the dataset iteratively by selecting features and thresholds that minimize a chosen impurity
metric, such as Gini Impurity or Entropy™2.

For regression tasks, Decision Trees aim to minimize the variance within subsets®®. The split criterion is
based on minimizing the Mean Squared Error (MSE) at each node, calculated as given by Eq. 16.

1 N2
MSEnode = E Z ?:1 (yz_ y) (16)
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Where 7 is the number of samples at the node, y; is the actual value, and g is the mean of the target values at the

node. Key hyperparameters include maximum tree depth, minimum samples for splits, and minimum samples
at leaves, which control complexity and generalization ability.

Random forest

Random Forest aggregates multiple decision trees to improve predictive accuracy. Each tree trains on a random
data subset, with final predictions made by averaging all individual tree outputs®. This ensemble approach
reduces variance and improves generalization compared to single decision trees, effectively capturing complex,
non-linear relationships in nanofluid specific heat capacity data. The performance of the random forest model is
influenced by the aggregation of individual tree predictions. Mathematically, the final prediction of the random
forest can be expressed as the average of the predictions made by each individual tree in the ensemble, as given
in Eq. 17.

T Z Ty (2) (17)

n

where T (x) is the prediction of the i-th tree and n is the number of trees in the forest.
K-Nearest neighbor (kNN)
K-Nearest Neighbors (kNN) predicts target values by averaging the values of the & closest neighbors using

distance metrics, typically Euclidean distance®®. The distance between two data points x; and x; in d-
dimensional space is computed as given in Eq. 18.

d(zs,z;) = \/Z @ik —zin)° (18)

where z; 1, and x; i represent the feature values of the i-th and j-th data points, respectively, and d is the
number of features. For regression tasks, the predicted target value y; for a data point x; is given by Eq. 19.

~ 1 k
Yi = % Z j=1Yi (19)

where y; is the target value for the j-th neighbor and & is the number of nearest neighbors.

LightGBM

Light Gradient Boosting Machine (LightGBM) is an optimized gradient boosting framework that builds tree
leaf-wise for improved performance with computational efficiency®®. This approach effectively captures complex
patterns in large nanofluid datasets. The objective function for training LightGBM can be written as given in
Eq. 20.

LO)=D il d) + Y 112 () (20)

where [(y;,9:) is the loss function (commonly squared error), {2 (fx) is the regularization term, n is the
number of data points, and K is the number of trees®’. The regularization term is given by Eq. 21.

2 (fi) =7 T+ 32 [lwl® e

where T is the number of leaves, y is the complexity parameter, A is the regularization parameter, and w
represents the tree’s weights.

Gradient boosting

Gradient Boosting builds decision trees sequentially, with each tree addressing errors made by previous ones.
This approach excels at capturing complex patterns in nanofluid specific heat capacity prediction by progressively
improving model performance through focus on residual errors. For Gradient Boosting Regression (GBR), the
objective function seeks to minimize the loss, typically expressed as given in Eq. 22.

LO)=> 1 [ -]+ 52 () (22)
where L (0 ) is the loss function, y; and y; are the true and predicted values, and f, represents individua trees.
AdaBoost
AdaBoost (Adaptive Boosting) combines multiple weak learners, typically decision trees, by training models

sequentially with emphasis on previously misclassified data points®®. The objective function for AdaBoost aims
to minimize the weighted error of the weak learners over iterations and is given by Eq. 23.

L) = Z imqw; @ exp(—y; @ H (z;)) (23)
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where w; are the weights assigned to the data points in each iteration. y; is the true class label of the sample ;.
H (z;) is the prediction made by the weak learner for sample x;. The sum is over all m data points.

XGBoost

Extreme Gradient Boosting (XGBoost) enhances traditional gradient boosting through improved regularization
techniques and parallel processing optimization®. It builds decision trees sequentially to correct previous errors
while balancing accuracy and model complexity. The objective function for each tree %k in XGBoost can be
expressed as given in Eq. 24.

L@)=) ilwnb)+ Y ka2 (fu), (24)

where [ (y;,¥;:) is the loss function that measure prediction errors, and (2 (f%) is the regularization term. The
regularization term is given by Eq. 25.

2 (f) =7 T+ Al (5)

Where v and A control tree complexity, T is the number of leaves and w represents the tree’s weight vector.
This regularization helps mitigate overfitting by constraining the complexity of individual trees in the ensemble.

CatBoost

CatBoost is a gradient boosting algorithm optimized for categorical features. It employs ordered boosting
to prevent overfitting and data leakage by ensuring predictions are based only on prior observations®!. The
objective function of CatBoost is a combination of a loss function L(y;, f (z;)) and a regularization term to
control model complexity. The general form of the objective function is given by Eq. 26.

L=3"" toss (g f (@) +A - () (26)

Where y; represents the true value, f (z;) the models prediction for the i-th sample, \.f2 (f) is the
regularization term that prevents overfitting. CatBoost’s ability to efficiently handle categorical data, coupled
with its innovative boosting framework, makes it a reliable choice for regression tasks involving diverse datasets,
such as those encountered in nanofluid property prediction.

Multi-Layer perceptron (MLP)
The Multi-Layer Perceptron (MLP) is a neural network architecture designed to capture complex, non-linear
relationships in data. Comprising of an input layer, hidden layers, and an output layer, the MLP uses activation
functions such as ReLU or Tanh to introduce non-linearity, enabling it to model intricate patterns effectively®2.
MLP is particularly suitable for tasks that require learning complex data representations and capturing non-
linear dependencies.

The MLP training process minimizes the loss function as given by Eq. 27.

LO)=) (i —5) +alwl’, (27)

where y; and ?Z are the actual and predicted values, w represents the weights, and o controls regularization.

In the ensemble framework, MLP serves as a feature extractor, with outputs from its penultimate layer
feeding into a Linear Regression model to combine deep learning’s representational power with linear model
interpretability.

Long Short-Term memory (LSTM)

Long Short-Term Memory (LSTM) is a recurrent neural network designed to capture long-term dependencies
in sequential data. Using memory cells, it overcomes the vanishing gradient problem faced by traditional RNNs.
The core of the LSTM model consists of three gates: the forget gate, the input gate, and the output gate. The forget
gate determines what information should be discarded from the previous cell state and is given by Eq. 28%.

fe=0 (Wszi + Ughi—1 + by) (28)
The input gate decides what new information will be added to the cell state, represented by Eq. 29.
it =0 (lert —|— Uiht_l + bz) (29)

The cell state is then updated by combining the previous cell state and the new candidate memory, as shown in
Eq. 30.

Ci=fi® Cio1+it® Cy (30)

Finally, the hidden state is calculated using the output gate, which determines the part of the cell state to output
given as Eq. 31.
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hi = 0 ® tanh (Cy) (31)

In this work, an additional configuration was implemented where LSTM served as a feature extractor. The
resulting representations captured underlying temporal dependencies and were used as inputs to a linear
regression model for predicting specific heat capacity.

Gated recurrent unit (GRU)
The Gated Recurrent Unit (GRU) is a recurrent neural network (RNN) designed to capture long-term
dependencies in sequential data while addressing the vanishing gradient issue. Compared to LSTM, GRU offers
similar performance with simpler and more computationally efficient architecture®®!- (¢4,

The GRU consists of two main gates: the update gate z; and the reset gate r;. The update gate determines how
much of the previous hidden state is carried forward, while the reset gate controls how much past information
should be forgotten. The candidate hidden state h; and the final hidden state h; are computed as given by

Eq332735':
2 =0 Wzt + Ushi—1) (32)
re =0 Wrxe + Urhi—1) (33)
f:t: tanh (Whaze + Up (1: © he — 1)) (34)
he=(1—2)® heoy + 2® he (35)

These mechanisms allow GRU to retain relevant temporal features while discarding noise.
In the stacked variant, GRU extracts latent temporal features for a Linear Regression model, combining
representational strength with linear model simplicity.

Autoencoder

An Autoencoder is a neural network used for unsupervised learning, often applied to dimensionality reduction
and feature extraction. It comprises an encoder that maps input « to a latent space & via a nonlinear activation
function f, as shown in Eq. 36.

h=f(We.z +b.) (36)

where We and be are the encoder’s weights and biases. The decoder reconstructs the input T from the latent
representation h using another nonlinear function g, as shown in Eq. 37.

z =g (Wah + bq) (37)

where Wy and by are the decoder’s weights and biases, and g is the activation function in the decoder. The
model is trained by minimizing the reconstruction error between the original input x and the reconstructed
output Z. The objective function for training the Autoencoder is given by the following Mean Squared Error
(MSE) loss as given by Eq. 38.

LO)=> il — & (38)

where z; is the input data, ; is the reconstructed data, and 7 is the number of data points.

In the stacked variant, the Autoencoder extracts latent features from the dataset, which are then input to
a Linear Regression model to predict the specific heat capacity of nanofluids. Training is performed using the
Adam optimizer with MSE as the loss function.

Performance metrics

In machine learning regression tasks, performance metrics are essential for evaluating a model’s accuracy and
ability to generalize. These metrics help compare different models and guide optimization efforts. In this study,
several performance metrics were used to assess the quality of the predictions, including the R? Score, Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Explained Variance Score,
Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE) and Max Error.
These metrics provide a comprehensive evaluation of prediction quality, capturing various aspects such as error
magnitude and model fit®.

Results and discussion

This section presents the outcomes of the experiments conducted in this study. The performance of the models
was evaluated using the metrics described in methodology, providing insights into their accuracy, robustness, and
generalization ability. Results are discussed in terms of overall prediction quality, the impact of hyperparameter
optimization, and the effectiveness of stacking and augmentation techniques.
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Dataset analysis
The dataset utilized in this study, as detailed in methodology, integrates nanofluid and hybrid nanofluid data,
resulting in a total of 1,269 samples. These samples cover diverse combinations of nanoparticles, base fluids,
and operational conditions, providing a robust foundation for predictive modeling. Input features include
Nanofluid, Temperature (°C), and Volume Concentration (¢) with the target variable being the experimentally
measured Specific Heat capacity. The dataset’s diversity and representativeness were further improved through
comprehensive preprocessing, which included one-hot encoding for categorical features and standardization for
numerical features.

Figure 8 illustrates the distribution of nanofluid samples in the dataset, showing the count for each nanofluid
type. The figure provides a clear overview of the relative frequency of different nanoparticles and base fluid
combinations, reflecting the dataset’s overall composition.

Feature distribution

The distribution of the key features in the dataset, as shown in Fig. 9, reveals valuable insights into the underlying
data patterns. The histograms for Temperature (°C), Volume Concentration (¢), and Specific Heat capacity
highlight the variability and representativeness of the dataset.

The temperature distribution shows a uniform spread between 20 °C and 50 °C with multiple plateaus,
featuring a secondary peak around 50 °C before tapering oft at 70 °C. This range encompasses typical operational
conditions for nanofluid applications in both industrial and experimental settings. Volume concentration (¢)
exhibits a right-skewed distribution, with most samples concentrated below 2% and peak frequency under 1%,
while including sparse but valuable data points up to 9%. This distribution aligns with practical applications
where lower concentrations are preferred for optimal thermal performance and stability. The specific heat
capacity demonstrates a unimodal distribution centered at 3500-4000 J/kg-K, with a secondary cluster in the
2000-3000 J/kg-K range, and extends from 2000 to 9000 J/kg-K. This wide range effectively captures the diverse
thermal behaviors across different nanofluid compositions and operating conditions, providing a comprehensive
foundation for predictive modeling.

The correlation analysis between the primary features reveals valuable insights into their interdependencies
(Fig. 10). The correlation matrix shows that volume concentration (¢) exhibits a moderate negative correlation
(r = -0.43) with specific heat capacity, indicating that as particle concentration increases, the specific heat
capacity tends to decrease. This aligns with the fundamental behavior of nanofluids, where higher particle
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concentration generally®” results in a decrease in specific heat capacity. In contrast, temperature shows negligible
correlations with both specific heat capacity (r = 0.02) and volume concentration (r = 0.12), suggesting that
temperature variations within the studied range have minimal impact on these other parameters. Notably, the
weak to moderate correlation coefficients across features indicate non-straightforward relationships, revealing
the presence of complex, non-linear interactions in nanofluid behavior that conventional correlation-based
approaches cannot adequately capture. This critical observation justifies the adoption of advanced machine
learning and deep learning modeling techniques capable of capturing these intricate multi-dimensional patterns.

Analyzing specific heat capacity trends across nanofluid compositions

To better understand the relationship between specific heat capacity and key input parameters, a series of visual
analyses were conducted for all twenty-one nanofluid compositions in the dataset. Figure 11, which visualizes
these relationships in a 3D feature space, immediately reveals the diverse and complex nature of the data. This
visualization highlights several distinct patterns across the compositions. For instance, compositions such as
AiIN/EG and TiN/EG are exceptionally sparse, representing nanofluids with very few available experimental
data points. This sparsity poses a significant modeling challenge, requiring a model capable of generalizing
from limited information. In contrast, fluids like Al,O,/EG and Al,0,/Water exhibit a highly structured, dense,
grid-like distribution. This visual pattern suggests a stable, systematic, and more readily predictable relationship
between the variables.

Finally, many of the hybrid nanofluids, including MWCNT-CuO/Water and A1203—MWCNT/Water,
demonstrate a high data volume but with significant vertical scatter in the specific heat capacity values. This
high variance indicates a much more complex and non-linear relationship, where C), is highly sensitive to input
parameter variations. This observed diversity in data patterns, ranging from sparse to highly structured and
complex, confirms that a single, simple analytical model (like the mixing model in Eq. 1) would be insufficient
to capture these varied behaviors. It validates the necessity for the sophisticated machine learning framework
developed in this study, which is designed to learn these unique patterns for each composition. A more granular
breakdown of these relationships is available in the Appendix (Supplementary Figs. 1, 2, and 3).

Baseline model performance analysis

Table 3 presents the baseline performance of twelve machine learning and deep learning models in predicting
the specific heat capacity of nanofluids. Each model was evaluated in both standalone form and in a stacked
configuration using Linear Regression as a meta-learner. The best-performing version of each model was selected
for comparison. Performance was assessed using standard metrics, while detailed architectural configurations
are available in Appendix Supplementary Table 3.

Among all configurations, the Autoencoder stacked with Linear Regression delivered the highest predictive
accuracy, achieving an R* score of 0.99921, the lowest MSE (509.21), and an RMSE of 22.56. Gradient boosting
models such as XGBoost and CatBoost also performed exceptionally well in their direct implementations,
achieving R? values of 0.99893 and 0.99876, respectively, and maintaining low error values.

Recurrent models, including GRU and LSTM when stacked with Linear Regression, also yielded strong
results, with R values exceeding 0.998. Other stacked configurations, such as MLP + LR and Gradient Boosting
stacked with Linear Regression, demonstrated competitive performance but were marginally outperformed
by the top models. In contrast, traditional models like Decision Tree and Random Forest achieved high R
scores (0.99699 and 0.99729) but showed relatively higher error metrics, indicating more limited performance
in capturing nuanced patterns within the data.
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Fig. 11. Showing the Relationship for Each Nanofluid Composition in 3D.

Overall, the Autoencoder stacked with Linear Regeression model stands out as the most effective baseline
configuration, followed closely by XGBoost and CatBoost.

Augmentation

Two augmentation techniques were applied: one inspired by Polynomial and Fourier expansions and the
other leveraging Autoencoder-based reconstruction. Specifically, the dataset was expanded to 6084 and 5064
additional samples, respectively, as detailed in Appendix Supplementary Table 4. The impact of each method
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Final Models R? Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 0.99699 1926.219 43.88872 | 27.33363 | 0.99701 | 0.00733 | 0.73071 | 178
Random Forest + LR 0.99729 1734.260 41.64445 | 23.72606 | 0.9973 | 0.00661 | 0.65524 | 311.23768
kKNN+LR 0.99252 4792.8369 | 69.23032 | 30.4877 | 0.99252 | 0.00924 | 0.89398 | 691.48382
LightGBM 0.95415 29386.438 | 171.42473 | 79.29507 | 0.95420 | 0.02117 | 2.05022 | 1008.3917
Gradient Boosting+ LR | 0.99471 3389.8957 | 58.22281 | 42.34641 | 0.99471 | 0.01175 | 1.17329 | 340.01416
AdaBoost+LR 0.94458 35517.396 | 188.46059 | 148.06786 | 0.94485 | 0.03955 | 3.93416 | 626.4249
CatBoost 0.99876 791.07331 | 28.12602 | 16.99067 | 0.99876 | 0.00458 | 0.45613 | 182.87230
XGBoost 0.99893 681.92540 | 26.11370 | 16.95128 | 0.99893 | 0.00455 | 0.45442 | 121.06347
MLP+LR 0.99786 1370.7032 37.02300 | 21.20976 | 0.99786 | 0.00569 | 0.57347 | 331.81693
GRU 0.99826 1113.1856 | 33.36444 | 22.83463 | 0.99842 | 0.00596 | 0.59937 | 174.52637
LSTM+LR 0.99857 917.79771 30.29518 | 22.05073 | 0.99857 | 0.00596 | 0.59515 | 104.54755
Autoencoders + LR 0.99921 509.21466 | 22.56579 | 13.29329 | 0.99921 | 0.00356 | 0.35602 | 114.69256

Table 3. Results of direct implementation of predictive Models.

Final DL models | A | R*Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
MLP+LR 1 | 0.99860 894.58980 | 29.90969 | 20.14475 | 0.99860 | 0.00527 | 0.52620 | 109.22297
GRU 1 10.99901 631.57643 | 25.13118 | 16.58329 | 0.99915 | 0.00443 | 0.44334 | 114.03687
LSTM+LR 1 |0.99884 740.51274 | 27.21236 | 17.0143 0.99885 | 0.00456 | 0.456 177.3122
Autoencoders+LR | 1 | 0.99853 940.02177 | 30.65977 | 18.22995 | 0.99853 | 0.00508 | 0.5083 198.1172

Table 4. Best deep learning model augmentation Results.

Final Models R? Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 0.99746 1625.80801 | 40.32130 | 26.07216 | 0.99748 | 0.00700 | 0.69795 178.0

Random Forest+ LR 0.99739 1672.00258 | 40.89012 | 26.92892 | 0.99742 | 0.00709 | 0.70782 148.81463
kKNN+LR 0.99845 990.88814 | 31.47837 19.85222 | 0.99845 | 0.00527 | 0.52737 114.21565
LightGBM 0.98954 6698.8749 81.84665 | 29.00447 | 0.98955 | 0.00865 | 0.83479 | 1093.34806
Gradient Boosting+LR | 0.99905 606.98975 | 24.63716 | 14.75201 | 0.99905 | 0.00393 | 0.39259 165.37062
AdaBoost+ LR 0.95093 31450.402 | 177.34261 | 143.74684 | 0.95112 | 0.03815 | 3.80505 518.75648
CatBoost 0.99923 487.71781 | 22.08433 | 13.33275 | 0.99924 | 0.00351 | 0.35084 93.33715
XGBoost 0.99893 683.73962 | 26.14841 15.95368 | 0.99893 | 0.00421 | 0.42050 123.48608
MLP+LR 0.99926 472.80095 | 21.74398 | 12.58413 | 0.99926 | 0.00340 | 0.34005 | 128.30288

Table 5. Particle swarm optimization results on machine learning Models.

was evaluated across multiple predictive models, with best performance results summarized in Tables 4 and 5. A
detailed breakdown of the augmentation process is available in Appendix (Supplementary Tables 5-7).

Polynomial and fourier expansion inspired augmentation

This augmentation approach applied higher-order polynomial and periodic transformations to numerical
features, expanding the dataset sixfold and improving its structural complexity. As presented in Table 6, the
Gated Recurrent Unit (GRU) model exhibited the best performance, achieving an R” score of 0.99901, MSE of
631.57, and RMSE of 25.13, reflecting strong generalization on the augmented data. CatBoost also performed
well, with an R? of 0.99896, MSE of 665.76, and RMSE of 25.80.

Stacked models, particularly Multilayer Perceptron (MLP) stacked with Linear Regression and LSTM stacked
with Linear Regression, also responded positively to this augmentation. The MLP model achieved an R score of
0.99860 with an RMSE of 29.91, while the LSTM model reached an R* of 0.99884 and RMSE of 27.21. Similarly,
the Random Forest stacked with Linear Regression and k-Nearest Neighbors (kNN) stacked with Linear
Regression models showed notable gains.

On the other hand, AdaBoost stacked with Linear Regression struggled to benefit from the added complexity,
recording an R of only 0.92916 and a notably high MSE of 45403.06. In contrast, the LightGBM model
improved significantly with this augmentation, reaching an R* score of 0.98318 and MSE of 10781.18. Overall,
while the performance boost varied by architecture, models capable of leveraging high-dimensional, non-linear
transformations such as GRU, CatBoost, and Light GBM demonstrated the most pronounced improvements.
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Final Models R? Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 0.99699 1931.3746 | 43.94741 | 27.46238 | 0.99699 | 0.00736 | 0.7344 178
Random Forest + LR 0.9977 1469.6999 | 38.33666 | 23.45429 | 0.99771 | 0.00619 | 0.61692 | 177.99946
KNN+LR 0.99785 1372.5477 | 37.04791 | 23.55665 | 0.99786 | 0.00617 | 0.61853 | 122
LightGBM 0.98318 10781.187 | 103.83249 | 28.65942 | 0.9832 | 0.00878 | 0.81655 | 1521.0977
Gradient Boosting+ LR | 0.99472 3380.0522 58.13821 | 42.25681 | 0.99472 | 0.01171 | 1.16962 | 340.01416
AdaBoost+LR 0.92916 45403.068 | 213.07995 | 147.83869 | 0.92933 | 0.04052 | 3.94398 | 1370.6301
CatBoost 0.99896 665.76746 | 25.80247 | 14.65029 | 0.99896 | 0.004 0.40035 | 128.18601
XGBoost 0.99844 998.57142 | 31.60018 | 18.35327 | 0.99845 | 0.00485 | 0.48388 | 171.73657
MLP+LR 0.99860 894.58980 | 29.90969 | 20.14475 | 0.99860 | 0.00527 | 0.52620 | 109.22297
GRU 0.99901 631.57643 | 25.13118 | 16.58329 | 0.99915 | 0.00443 | 0.44334 | 114.03687
LSTM+LR 0.99884 740.51274 | 27.21236 | 17.0143 | 0.99885 | 0.00456 | 0.456 177.3122
Autoencoders+LR 0.99853 940.02177 | 30.65977 | 18.22995 | 0.99853 | 0.00508 | 0.5083 198.1172

Table 6. Polynomial and fourier expansion inspired augmentation results on all the predictive Models.

Final Models R? Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 0.99664 2156.6546 | 46.43980 | 28.23981 | 0.99667 | 0.00767 | 0.76361 | 226.00000
Random Forest + LR 0.99748 1615.4743 | 40.19296 | 22.84916 | 0.99750 | 0.00630 | 0.62391 | 304.31282
kKNN+LR 0.95981 25761.553 | 160.50406 | 36.26153 | 0.96007 | 0.01228 | 1.58156 | 1834.3083
LightGBM 0.95879 26416.620 | 162.53190 | 69.74554 | 0.95879 | 0.01784 | 1.73823 | 1116.8087
Gradient Boosting+LR | 0.95641 27938.005 | 167.14666 | 84.51290 | 0.95658 | 0.02251 | 2.16719 | 1524.4830
AdaBoost+ LR 0.91043 57414.546 | 239.61333 | 155.56579 | 0.91086 | 0.04430 | 4.23366 | 1663.0491
CatBoost 0.97975 12978.483 | 113.92315 | 29.90608 | 0.97976 | 0.00971 | 1.00092 | 1196.0857
XGBoost 0.99677 2071.9906 | 45.51912 | 20.11639 | 0.99678 | 0.00576 | 0.56553 | 564.13477
MLP+LR 0.95730 27368.642 | 165.43471 | 50.25978 | 0.95783 | 0.01574 | 1.92467 | 1816.3771
GRU 0.99614 2471.9683 | 49.71889 | 32.29885 | 0.99636 | 0.00837 | 0.83858 | 325.73474
LSTM +LR 0.92570 47627.534 | 218.23734 | 113.82230 | 0.92653 | 0.03459 | 3.85559 | 2079.4233
Autoencoders+ LR 0.82454 112464.75 | 335.35766 | 203.74262 | 0.82455 | 0.05807 | 6.12088 | 2028.1938

Table 7. Autoencoder-based augmentation results on all the predictive Models.

Autoencoder-Based augmentation

The Autoencoder-based augmentation technique used deep learning autoencoders to extract latent features and
generate 5064 additional samples, enriching the dataset with structurally diverse yet consistent data points. The
model performance results are presented in Table 7.

Model responses to this augmentation varied. GRU achieved an R* of 0.99614, slightly lower than with
Polynomial and Fourier-based augmentation. XGBoost also declined to an R? of 0.99677 and MSE of 2,071.99.
CatBoost dropped more noticeably to an R* of 0.97975 and MSE of 12,978.48, suggesting misalignment with the
generated data.

In contrast, LightGBM and Random Forest stacked with Linear Regression improved, with R* scores of
0.95879 and 0.99748, respectively, indicating that some tree-based models benefitted from the added variability.
However, others struggled. k-Nearest Neighbours and Multilayer Perceptron, both stacked with Linear
Regression, declined, with kNN showing an R* of 0.95981 and MSE of 25,761.55. AdaBoost and LSTM stacks
also dropped significantly, with R* scores of 0.91043 and 0.92570.

The largest performance drop occurred in the Autoencoders stacked with Linear Regression model, which
recorded an R* of 0.82454 and MSE of 112,464.75. This indicates a poor fit between the generated data and the
model’s internal representations.

In summary, Autoencoder-based augmentation had mixed effects. It improved results for some models but
hindered others, depending on how well the new feature space aligned with each model’s learning approach.

Comparative analysis of deep learning models with optimal augmentation

This subsection compares the performance of deep learning models with Polynomial and Fourier Expansion
inspired augmentation (AI or 1) against Autoencoder-based augmentation (A2 or 2). The results in Table 4
show that A1 consistently enhanced model performance across key metrics, particularly for the GRU, LSTM,
and Autoencoders+LR.

Among the models, the GRU achieved the highest performance, closely followed by the LSTM stacked with
Linear Regression. The Autoencoders stacked with Linear Regression and MLP stacked with Linear Regression
also delivered excellent results with Polynomial and Fourier Expansion inspired augmentation (A1), though
their performance was slightly behind the recurrent models.
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Final Models R? Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 0.99746 1625.80801 | 40.32130 | 26.07216 | 0.99748 | 0.00700 | 0.69795 178.00000
Random Forest + LR 0.99739 1672.00258 | 40.89012 | 26.92892 | 0.99742 | 0.00709 | 0.70782 148.81463
kKNN+LR 0.99845 990.88814 | 31.47837 | 19.85222 | 0.99845 | 0.00527 | 0.52737 | 114.21565
LightGBM 0.98978 6549.0062 80.92593 | 28.11171 | 0.98978 | 0.00843 | 0.81587 | 1068.38786
Gradient Boosting+ LR | 0.99902 626.21541 | 25.02429 | 15.06049 | 0.99902 | 0.00400 | 0.39935 159.74076
AdaBoost+LR 0.95092 31455.399 | 177.35670 | 143.39257 | 0.95112 | 0.03798 | 3.78873 | 535.84895
CatBoost 0.99920 509.40400 | 22.56998 | 13.59114 | 0.99920 | 0.00358 | 0.35762 | 101.05405
XGBoost 0.99893 682.15078 | 26.11801 | 15.35519 | 0.99894 | 0.00404 | 0.40454 | 124.02148
MLP+LR 0.99927 466.06792 | 21.58860 | 13.14148 | 0.99927 | 0.00355 | 0.35490 | 104.24291

Table 8. Grey Wolf optimization results on machine learning Models.

ML Model OPT | R*Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 01 0.99746 1625.80801 | 40.32130 | 26.07216 | 0.99748 | 0.00700 | 0.69795 178.0

Random Forest + LR o1 0.99739 1672.00258 | 40.89012 | 26.92892 | 0.99742 | 0.00709 | 0.70782 148.81463
kKNN+LR o1 0.99845 990.88814 | 31.47837 | 19.85222 | 0.99845 | 0.00527 | 0.52737 114.21565
LightGBM 02 0.98978 6549.0062 80.92593 | 28.11171 | 0.98978 | 0.00843 | 0.81587 | 1068.38786
Gradient Boosting+LR | O1 0.99905 606.98975 | 24.63716 | 14.75201 | 0.99905 | 0.00393 | 0.39259 165.37062
AdaBoost +LR o1 0.95093 31450.402 | 177.34261 | 143.74684 | 0.95112 | 0.03815 | 3.80505 | 518.75648
CatBoost 01 0.99923 487.71781 | 22.08433 | 13.33275 | 0.99924 | 0.00351 | 0.35084 93.33715
XGBoost 02 0.99893 682.15078 | 26.11801 | 15.35519 | 0.99894 | 0.00404 | 0.40454 124.02148
MLP+LR 02 0.99927 466.06792 | 21.58860 | 13.14148 | 0.99927 | 0.00355 | 0.35490 104.24291

Table 9. Final optimization result on all the predictive Models.

Overall, Polynomial and Fourier Expansion inspired augmentation (AI) emerged as the most effective
strategy, offering notable improvements in accuracy and error reduction compared to Autoencoder-based
augmentation (A2).

Optimization

Following augmentation, optimization was conducted using Particle Swarm Optimization (PSO) and Grey
Wolf Optimization (GWO), with the Polynomial and Fourier Expansion-inspired augmentation selected due to
superior performance over autoencoder-based methods. This section presents the impact of these optimization
algorithms on model performance, with detailed results in Tables 5, 8 and 9 and Appendix Supplementary Tables
8-10.

PSO and GWO led to consistent improvements across error metrics (MSE, RMSE) and R? scores, particularly
benefiting ensemble and tree-based models. Due to the high computational cost, only the Multi-Layer Perceptron
(MLP) stacked with Linear Regression was optimized among deep learning models, focusing on hidden layer
neurons, activation functions, and regularization parameters.

Particle swarm optimization analysis

Particle Swarm Optimization (PSO) demonstrated its effectiveness in significantly improving the predictive
accuracy of the models, as evident in Table 5 and further detailed in Supplementary Table 8 of Appendix. The
Decision Tree model's MSE was reduced from 1926.21 in the baseline to 1625.8, while the RMSE decreased
from 43.88 to 40.32. These improvements, though modest, indicate better handling of outliers and increased
prediction stability.

The K-Nearest Neighbour (kNN) model stacked with Linear Regression showcased the most dramatic
improvement under PSO. Its MSE decreased from 4792.83 to 990.88, and RMSE dropped from 69.23 to 31.47.
This significant enhancement reflects PSO’s ability to refine hyperparameters effectively, improving the model’s
sensitivity to underlying data patterns.

Among the advanced models, CatBoost and Gradient Boosting stacked with Linear Regression excelled with
PSO optimization. CatBoost achieved an R* Score of 0.99923 and an MSE of 487.71, while Gradient Boosting
stacked with Linear Regression reached an R” Score of 0.99905 and an MSE of 606.98. These results highlight the
ability of PSO to complement ensemble models by fine-tuning their complex parameter spaces.

Grey Wolf optimization analysis

Grey Wolf Optimization (GWO) also proved to be an effective optimization technique, yielding comparable and,
in some cases, slightly better results than PSO, as evident in Table 8 and further detailed in Supplementary Table
9 of Appendix. The Decision Tree model maintained a similar level of improvement, with an MSE of 1625.8 and
RMSE of 40.32, reflecting the stability of the optimization method.
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The LightGBM model demonstrated notable gains under GWO, with its MSE reduced from 29386.43 in
the baseline to 6549.0062. However, while the improvement in error metrics was substantial, the Max Error
remained relatively high, suggesting limitations in addressing extreme outliers.

GWO also showcased its strengths with neural network-based models such as Multilayer Perceptron (MLP)
stacked with Linear Regression. The R* Score of this model reached 0.99927 with an MSE of 466.06, representing
slight but meaningful improvements over PSO. These results affirm GWO’s ability to explore hyperparameter
configurations effectively, particularly in high-dimensional parameter spaces.

Overall, both optimization techniques improved the models’ predictive capabilities, with GWO slightly
outperforming PSO in certain instances. The choice between these methods depends on the specific requirements
of the task, such as computational efficiency and the complexity of the model’s parameter space.

Comparative analysis of predictive models with optimal optimization techniques

A comparative analysis of Particle Swarm Optimization (O1) and Grey Wolf Optimization (O2) across models
is presented in Table 9, with further details in Appendix Supplementary Table 10. Both methods enhanced
predictive accuracy, though their effectiveness varied with model complexity.

O1 performed well with traditional and ensemble models. The Decision Tree model achieved an MSE of
1625.81 with an R? of 0.99746, and Random Forest with Linear Regression also showed consistent improvement.
CatBoost, optimized with OI, recorded one of the best results with an MSE of 487.71 and the lowest Max Error
of 93.33, demonstrating O1’s efficiency in tuning simpler architectures.

In contrast, O2 was more effective for complex models. The MLP stacked with Linear Regression achieved
the highest R* of 0.99927 and the lowest RMSE of 21.59. LightGBM showed a substantial MSE reduction
from 29386.43 to 6549.01 under O2, though the Max Error remained high. XGBoost also benefited from O2,
reinforcing its suitability for models with extensive parameter spaces.

In summary, OI is more effective for traditional and ensemble models, while O2 offers better results for deep
or complex architectures.

Overall results analysis

This section provides a comprehensive discussion of the overall results, including a detailed analysis of the
performance of machine learning and deep learning models with enhanced configurations. The two subsections,
4.5.1 and 4.5.2, examine the performance improvements resulting from augmentation and optimization
techniques and compare the baseline implementation to enhanced configurations.

Performance analysis of machine learning and deep learning models with enhanced configurations

The application of augmentation and optimization techniques, as summarized above, significantly improved the
predictive performance of the models. Table 10 presents the results of the machine learning and deep learning
models after incorporating these enhancements. A detailed study of this is provided in Supplementary Table 11
of the Appendix.

Notably, the models demonstrated substantial improvements in predictive accuracy and error minimization.
For example, Gradient Boosting stacked with Linear Regression, CatBoost, and MLP stacked with Linear
Regression achieved near-perfect R* Scores, reflecting their ability to effectively capture complex relationships
in the dataset. Among the deep learning models, GRU and LSTM (stacked with LR) also performed well,
demonstrating their suitability for handling temporal and sequential data.

Comparative analysis of baseline implementation versus enhanced configurations of Top-Performing models
The performance analysis in Table 10 identified the five best-performing models from the final implementation
with enhanced configurations. These models include Gradient Boosting stacked with Linear Regression, CatBoost,
XGBoost, MLP stacked with Linear Regression, and GRU. To further assess the impact of augmentation and
optimization techniques, Table 11 presents the baseline results of these models in their direct implementation
(without augmentation or optimization), while Table 12 provides their enhanced implementation results.

Final Models R? Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Decision Tree 0.99746 1625.80801 | 40.32130 | 26.07216 | 0.99748 | 0.00700 | 0.69795 178.0
Random Forest + LR 0.99739 1672.00258 | 40.89012 | 26.92892 | 0.99742 | 0.00709 | 0.70782 148.81463
KNN+LR 0.99845 990.88814 | 31.47837 | 19.85222 | 0.99845 | 0.00527 | 0.52737 | 114.21565
LightGBM 0.98978 6549.0062 80.92593 | 28.11171 | 0.98978 | 0.00843 | 0.81587 | 1068.38786
Gradient Boosting+ LR | 0.99905 606.98975 | 24.63716 | 14.75201 | 0.99905 | 0.00393 | 0.39259 | 165.37062
AdaBoost+LR 0.95093 31450.402 | 177.34261 | 143.74684 | 0.95112 | 0.03815 | 3.80505 | 518.75648
CatBoost 0.99923 487.71781 | 22.08433 | 13.33275 | 0.99924 | 0.00351 | 0.35084 93.33715
XGBoost 0.99893 682.15078 | 26.11801 | 15.35519 | 0.99894 | 0.00404 | 0.40454 | 124.02148
MLP+LR 0.99927 466.06792 | 21.58860 | 13.14148 | 0.99927 | 0.00355 | 0.35490 104.24291
GRU 0.99901 631.57643 | 25.13118 | 16.58329 | 0.99915 | 0.00443 | 0.44334 | 114.03687
LSTM+LR 0.99884 740.51274 | 27.21236 | 17.0143 | 0.99885 | 0.00456 | 0.456 177.3122
Autoencoders+LR 0.99853 940.02177 | 30.65977 | 18.22995 | 0.99853 | 0.00508 | 0.5083 198.1172

Table 10. Performance results of machine learning and deep learning models with enhanced Configurations.
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Final Models R2 Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Gradient Boosting+ LR | 0.99471 3389.89577 | 58.22281 | 42.34641 | 0.99471 | 0.01175 | 1.17329 | 340.01416
CatBoost 0.99876 791.07331 | 28.12602 | 16.99067 | 0.99876 | 0.00458 | 0.45613 | 182.87230
XGBoost 0.99893 681.92540 | 26.11370 | 16.95128 | 0.99893 | 0.00455 | 0.45442 | 121.06347
MLP+LR 0.99786 | 1370.70324 | 37.02300 | 21.20976 | 0.99786 | 0.00569 | 0.57347 | 331.81693
GRU 0.99826 | 1113.18563 | 33.36444 | 22.83463 | 0.99842 | 0.00596 | 0.59937 | 174.52637

Table 11. Performance results of the top 5 directly implemented predictive Models.

Final Models R2 Score | MSE RMSE MAE EVS MAPE | SMAPE | Max Error
Gradient Boosting+LR | 0.99905 606.98975 | 24.63716 | 14.75201 | 0.99905 | 0.00393 | 0.39259 | 165.37062
CatBoost 0.99923 | 487.71781 | 22.08433 | 13.33275 | 0.99924 | 0.00351 | 0.35084 | 93.33715
XGBoost 0.99893 682.15078 | 26.11801 | 15.35519 | 0.99894 | 0.00404 | 0.40454 | 124.02148
MLP+LR 0.99927 | 466.06792 | 21.58860 | 13.14148 | 0.99927 | 0.00355 | 0.35490 | 104.24291
GRU 0.99901 631.57643 | 25.13118 | 16.58329 | 0.99915 | 0.00443 | 0.44334 | 114.03687

Table 12. Performance results of the top 5 directly enhanced predictive Models.

Gradient Boosting Stacked with Linear Regression CatBoost

Fig. 12. Actual vs. Predicted Specific Heat Prediction Line Graph for the Top Five Enhanced Models.

In their baseline configurations (Table 11), these models displayed strong predictive capabilities. For instance,
CatBoost and XGBoost achieved high R? Scores of 0.99876 and 0.99893, respectively, while Gradient Boosting
stacked with Linear Regression exhibited competitive performance with an RMSE of 58.22. However, due to the
absence of augmentation and optimization techniques, error metric such as MSE were relatively higher.

In contrast, the enhanced implementations (Table 12) demonstrated substantial improvements across all
metrics. Gradient Boosting stacked with Linear Regression saw its RMSE drop from 58.22 in the baseline to
24.63 in the enhanced configuration, coupled with a near-perfect R* Score of 0.99905. Similarly, CatBoost
showed minor gains, achieving an RMSE reduction from 28.12 to 22.08 and an R* Score increase from 0.99876
t0 0.99923. MLP stacked with Linear Regression also benefitted, with its RMSE decreasing from 37.02 to 21.58
and MAE reducing from 21.2 to 13.14. The GRU model, also exhibited an improvement, achieving a higher R*
Score and lower error metrics in its enhanced configuration.

While the baseline configurations of the selected models already demonstrated robust performance, the
enhancements achieved through augmentation and optimization resulted in significantly better accuracy,
lower error metrics, and greater generalization. These findings reaffirm the value of incorporating advanced
methodologies to optimize machine learning and deep learning models for real-world applications.

Visual insights into the performance of enhanced models for specific heat capacity prediction

The visual evaluation of the optimally enhanced top 5 models offers critical insights into their predictive
performance for specific heat capacity under diverse input conditions. Figure 12 presents the Actual versus
Predicted plots, where a close alignment of data points along the 45-degree diagonal line is evident for all five
models. This strong adherence confirms high predictive accuracy. Notably, this alignment is consistent across
the entire range of specific heat capacity values, from the lowest to the highest, demonstrating that the models
are robust and generalize well rather than just modeling the mean. Figure 13 compares the distribution of actual
and predicted values. The plots demonstrate that the enhanced models closely replicate the actual multimodal
distribution curves of the dataset, which includes a primary peak as well as a distinct secondary cluster at lower
specific heat values. This indicates a strong generalization capability, as the models have successfully captured the
underlying data’s complex structure, not just its central tendency. The residual analysis in Fig. 14 provides further
validation of model reliability. For all top models, residuals are predominantly centred around zero and appear
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Gradient Boosting Stacked with Line CatBoost XGBoost

Fig. 13. Showing Specific Heat Distribution for the Top Five Enhanced Models.

‘Gradient Boosting Stacked with Linear Regression CatBoost XGBoost

Fig. 14. Residual vs. Fitted Prediction Analysis for the Top Five Enhanced Models.

randomly scattered, which suggests low bias and a uniform error distribution (homoscedasticity). The original
observation of occasional outliers, particularly for CatBoost and MLP stacked with Linear Regression at higher
specific heat capacity values, is also confirmed. These non-systematic errors likely correspond to more complex
or rare data points within the dataset that are inherently more difficult to predict. Additional evaluation metrics
are visualized in Figs. 15 and 16, and 17. The R* scores in Fig. 15 visually highlight the near-perfect fit for all the
best-performing models, reinforcing the qualitative assessment from Fig. 12. Figures 16 and 17, which plot the
various error metrics, allow for a more granular comparison. They visually illustrate the consistently low errors
(both percentage and absolute) across the models. While all models perform well, these plots also reveal the
subtle but consistent advantages of certain models, such as CatBoost and MLP stacked with Linear Regression,
which show visibly lower error bars. Collectively, these visual and quantitative analyses confirm the effectiveness
of the proposed enhancements in improving model performance, high fidelity, and robustness.

Computational performance analysis of top enhanced models
Table 13 summarizes the computational performance of the top five models based on prediction accuracy,
including key metrics such as training time, testing time, average inference time, and model size.

Among the top models, Gradient Boosting stacked with Linear Regression demonstrates efficient training
(1.23 s) but has the largest model size (1,123.798 KB). CatBoost is fast to train (0.528 s) and has a relatively small
model size (482.009 KB). XGBoost has the fastest training time (0.2 s), though it has a slightly larger model
size (638.161 KB). In comparison, MLP stacked with Linear Regression requires longer training time (20.44 s)
but has a moderate model size (482.428 KB). GRU, while having the longest training time (1643.39 s), has the
smallest model size (317.670 KB) but higher testing time (0.62 s).

Overall, CatBoost and XGBoost are the most computationally efficient due to their smaller training times
and moderate sizes, while MLP stacked with Linear Regression and GRU show higher computational demands.

Comprehensive analysis of specific heat predictions
The top five enhanced models—XGBoost, CatBoost, Gradient Boosting stacked with Linear Regression, MLP
stacked with Linear Regression, and GRU—exhibit high accuracy in predicting specific heat capacity values
across various nanofluids. Figure 18 presents the overall Actual versus Predicted plot, where data points closely
align with the 45-degree line, indicating minimal deviation and high predictive fidelity. Supplementary Fig. 4
in the Appendix further compares the predicted and experimental values for each nanofluid, offering a detailed
model-wise performance view and analysis.

Supplementary Fig. 5 in the Appendix illustrates the effect of temperature on predicted specific heat capacity
across different nanofluids. While the Supplementary Fig. 6 in Appendix illustrates the effect of volume
concentration on predicted specific heat capacity across different nanofluids.
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Fig. 17. RMSE and MAE for the Top Five Enhanced Models.
Gradient Boosting+LR 1.23520 0.00001 0.00001 1,123.798
CatBoost 0.52800 0.00099 0.00001 482.009
XGBoost 0.20593 | 0.00199 0.00001 638.161
MLP +LR 20.44244 0.00099 0.00001 482.428
GRU 1643.39918 0.62728 0.00247 317.670
Table 13. Computational performance metrics of top 5 Models.
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Fig. 18. Actual vs. Predicted Specific Heat for the Top 5 Enhanced Models.
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Although a direct numerical comparison with existing literature would be desirable, it was not feasible in this
study due to the use of a distinct dataset with different experimental parameters, nanoparticle concentrations,
and operating conditions. The studies reported in the literature vary significantly in terms of data sources,
preprocessing methods, and model input variables, which makes one-to-one metric comparison unreliable.
However, a qualitative assessment indicates that the present model exhibits consistent trends with previous
findings—specifically, the predicted thermal behavior and sensitivity patterns align with the general relationships
reported in earlier works. This confirms that the developed framework produces physically consistent and robust
predictions, even under differing dataset conditions.

Conclusion

This study successfully demonstrated the application of machine learning and deep learning models for accurately
predicting the specific heat capacity of nanofluids. By leveraging twelve ML and DL models, along with stacking
approaches and advanced optimization techniques, the study achieved highly precise predictions, with the
MLP + Linear Regression model emerging as the top performer (R* = 0.99927, MSE =406.06, RMSE =21.58).
Among standalone models, XGBoost and CatBoost exhibited strong performance, highlighting the effectiveness
of gradient boosting techniques in capturing nonlinear relationships within nanofluid datasets. The integration
of data augmentation techniques, specifically Polynomial and Fourier Expansions inspired and Autoencoders-
based, provided mixed results. While Polynomial and Fourier Expansion inspired augmentation significantly
improved model accuracy, Autoencoder-based augmentation showed mixed results, with certain models
experiencing performance degradation. This suggests that augmentation strategies should be carefully selected
based on the specific characteristics of the model architecture and dataset. Furthermore, the use of Particle
Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) for hyperparameter tuning significantly
enhanced model performance. PSO optimization improved the CatBoost model to an R* of 0.99923 with an
MSE of 487.71, while GWO further optimized the MLP + LR model to achieve an R* of 0.99927 with an MSE
of 466.06. The LightGBM model saw one of the most dramatic improvements under GWO, reducing its MSE
from 29386.43 to 6549.006 and RMSE from 171.42 to 80.92. These results underscore the effectiveness of nature-
inspired metaheuristic algorithms in fine-tuning complex models. Overall, the findings of this study highlight
the potential of advanced ML and DL techniques in modeling the thermophysical properties of nanofluids
with high precision. The hybrid approach combining stacking, augmentation, and metaheuristic optimization
proved highly effective in refining predictive capabilities. Future research can explore the incorporation of
more sophisticated deep learning architectures, alternative augmentation strategies, and hybrid optimization
frameworks to further enhance predictive accuracy. Additionally, applying this methodology to other
thermophysical properties of nanofluids, such as thermal conductivity and viscosity, could broaden its industrial
and engineering applications.

Data availability

The dataset generated and analyzed during this study is publicly available at https://github.com/AI4A-lab/Nanof
luid-Specific-Heat-Prediction-Dataset. The code is publicly available on GitHub by accessing the following link:
https://github.com/AI4A-lab/Advanced-Nanofluid-Heat-Capacity-Prediction_Hybrid-ML-DL.
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