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Accurately predicting the specific heat capacity of nanofluids is critical for optimizing their performance 
in engineering and industrial applications. This study explores twelve machine learning and deep 
learning models using conventional and stacking ensemble techniques. In the stacking framework, 
a linear regression model is employed as a meta-learner to improve base model performance. 
Additionally, two nature-inspired metaheuristic optimization algorithms—Particle Swarm 
Optimization and Grey Wolf Optimization—were used to fine-tune the hyperparameters of machine 
learning models. This research is based on a comprehensive dataset of 1,269 experimental nanofluid 
samples, with key inputs including nanofluid type (hybrid and direct), temperature, and volume 
concentration. To improve model generalization, data augmentation strategies inspired by polynomial/
Fourier expansions and autoencoder-based methods were implemented. The results demonstrate that 
the stacked multi-layer perceptron model, integrated with linear regression, achieved the highest 
predictive accuracy, recording an R² score of 0.99927, a mean squared error of 466.06, and a root mean 
squared error of 21.58. Among standalone machine learning models, CatBoost was the best performer 
(R² score: 0.99923, MSE: 487.71, RMSE: 22.08), ranking second overall. The impact of metaheuristic 
optimization was significant; Grey Wolf Optimization, for instance, reduced the LightGBM model’s 
mean squared error from 29386.43 to 6549.006. These findings underscore the efficacy of hybrid ML/DL 
frameworks, advanced data augmentation, and metaheuristic optimization in predictive modeling of 
nanofluid thermophysical properties, providing a robust foundation for future research in heat transfer 
applications.
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The accurate prediction of specific heat capacity (Cp) is crucial for optimizing the thermal performance of 
nanofluids in various industrial and engineering applications, including heat exchangers, cooling systems, and 
energy storage technologies. Traditional empirical and analytical methods often fail to capture the complex 
nonlinear relationships governing the thermophysical properties of nanofluids, leading to the need for more 
advanced data-driven approaches. While recent efforts have sought to improve these classical correlations 
by incorporating temperature-dependent terms1, they still generally lack the flexibility of machine learning 
(ML) and deep learning (DL) techniques. Consequently, data-driven techniques have gained prominence for 
modeling experimental datasets, demonstrating superior predictive performance and broader applicability 
across varying nanofluid formulations2. This investigation presents an integrated framework combining ML, 
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DL, and metaheuristic optimization for Cp prediction in nanofluids. Rather than depending on constrained 
parametric equations, the methodology utilizes a comprehensive dataset encompassing temperature (°C), volume 
concentration (φ), and specific heat capacity measurements. Rigorous preprocessing was implemented to ensure 
data quality, incorporating polynomial and Fourier-based feature expansions alongside autoencoder-driven 
data augmentation to preserve fundamental physical dependencies. These strategies build upon established 
work applying computational intelligence to nanofluid thermophysical characterization, including recent 
advances in artificial intelligence and comprehensive reviews of ML-based approaches3–8. The study evaluates 
twelve ML and DL algorithms in standard and stacked configurations, with Linear Regression (LR) serving as 
the meta-model to enhance prediction accuracy by integrating linear relationships with sophisticated feature 
representations from base learners. Hyperparameter optimization employs Particle Swarm Optimization (PSO) 
and Grey Wolf Optimization (GWO), both recognized for efficiently navigating high-dimensional parameter 
spaces9–14. Machine learning techniques have demonstrated remarkable effectiveness in predicting the specific 
heat capacity of nanofluids. Said et al. (2022) explored the use of ensemble ML techniques for modeling the heat 
capacity of water-based hybrid nanofluids in solar energy applications. Similarly, Alade et al. (2019) developed 
an optimized support vector regression model using Bayesian algorithms to predict the specific heat capacity of 
alumina/ethylene glycol nanofluids. Oh and Guo (2024) extended this research by evaluating the applicability of 
various ML algorithms in predicting the heat capacity of complex nanofluids15–17.

Deymi et al. (2023) employed various ensemble learning techniques to model the specific heat capacity of 
nanofluids, demonstrating the superior predictive capability of integrated models compared to conventional 
correlations18. In a related study, Deymi et al. (2023) developed empirical correlations for estimating the 
specific heat capacity using GRG, GP, GEP, and GMDH algorithms, highlighting the effectiveness of hybrid and 
evolutionary learning methods in capturing nonlinear thermophysical behavior19. Further, Deymi et al. (2024) 
applied a radial basis function neural network (RBFNN) optimized by evolutionary algorithms to evaluate the 
density of mono-nanofluids, achieving enhanced accuracy and generalization20. More recently, Deymi et al. 
(2025) proposed innovative mathematical correlations using white-box machine learning models to estimate 
nanofluid density, providing interpretable insights into parameter influence and model transparency21.

Further contributions have been made in leveraging AI, particularly Artificial Neural Networks (ANNs), for 
predictive modeling of specific heat capacity. This approach has been repeatedly shown to be a powerful tool 
for this task. For instance, Esfe et al. (2022) employed multilayer perceptron (MLP) artificial neural networks 
to investigate the effects of different nanoparticles on specific heat capacity and density22. The robustness of 
ANNs has been validated by several highly focused studies. Çolak (2020) developed an optimal ANN model to 
predict the specific heat of Y₂O₃/water nanofluids, achieving exceptionally high accuracy with a very low average 
error23. In a subsequent study, Çolak (2021) again used ANNs to successfully model ZrO₂/water nanofluids, 
providing a detailed comparison of the predictive performance of different training algorithms. This strong 
trend of using ANNs for high-accuracy predictions extends to other compositions as well24. Gupta and Mathur 
(2023) demonstrated improved accuracy over traditional models by applying ANNs25, while Mishra et al. (2024) 
reinforced this by using ANN-based models for transient heat transfer in CNT nanomaterials, and Boldoo et 
al. (2021) used an ANN to predict properties of MWCNT nanoparticle-enhanced ionic liquids26]– [27. Other 
advanced models and applications have also gained traction. Chaudhary et al. (2025) utilized ML models to 
predict the specific heat capacity of half-Heusler compounds, highlighting the adaptability of AI techniques 
beyond nanofluids28. Liu et al. (2023) expanded this approach by integrating ML-assisted modeling for ionic 
liquid-organic solvent binary systems29. Sajjad et al. (2021) introduced a deep learning framework for estimating 
the boiling heat transfer coefficient of porous surfaces, showcasing the potential of AI in capturing complex 
heat transfer mechanisms30. The integration of AI with numerical simulations has also been explored, with 
Albdour et al. (2024) applying ML for predicting condensation heat transfer and Elshehabey et al. (2024) and 
Knoerzer (2024) demonstrating its use in complex convection and heating predictions31–33. In addition to ML 
and deep learning-based studies, prior research has laid the foundation for AI-driven predictive modeling of 
nanofluid thermophysical properties. Adun et al. (2021) conducted a critical review of the specific heat capacity 
of hybrid nanofluids, identifying key trends and challenges in data-driven modelling34. This is a topic that has 
also seen recent experimental investigation, such as the work by Çolak et al. (2020) on Al₂O₃-Cu/water hybrid 
nanofluids35. Alade et al. (2019) and Alade et al. (2018) contributed significantly to the field by developing 
support vector regression models for predicting thermal conductivity and specific heat capacity36]– [37. Moreover, 
Mathur et al. (2024) examined soft computing approaches for predicting specific heat capacity, demonstrating 
the effectiveness of hybrid AI techniques in thermophysical property estimation38.

The integration of ML, deep learning, and numerical simulations has significantly improved prediction 
accuracy and broadened the applicability of AI techniques in thermophysical property modeling. These 
advancements provide a solid foundation for further research in optimizing thermal performance across various 
industrial applications. By integrating advanced data augmentation, modeling, and optimization techniques, 
this study establishes a highly accurate and scalable predictive framework for nanofluid specific heat capacity 
estimation. The methodology aligns with previous predictive modeling work on composite materials and heat 
exchangers, demonstrating the significance of AI-driven approaches in thermophysical analysis and providing a 
foundation for improved design and application of nanofluids in thermal management systems.

The principal contributions of this study are:

•	 Comprehensive dataset assembly: A rigorously vetted dataset of 1,269 unique records spanning single-com-
ponent and hybrid nanofluids was compiled, including composition, temperature (°C), volume fraction (ϕ), 
and specific heat capacity. Incomplete or inconsistent records were excluded.
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•	 Systematic model benchmarking: Twelve predictive models—eight machine-learning and four deep-learn-
ing architectures—were evaluated in baseline and stacked configurations, enhanced through polynomial/
Fourier expansions or autoencoder augmentation, with hyperparameters optimized using PSO or GWO.

•	 Performance and deployment metrics: Standard regression metrics (MSE, RMSE, MAE, R²), training time, 
inference latency, and memory footprint were measured, enabling selection of architectures balancing accu-
racy with computational efficiency.

These contributions establish the first optimization-driven workflow for real-time nanofluid specific heat 
capacity estimation, addressing a critical gap in thermal-fluid materials research.

The structure of the paper is organized as follows: Sect. Methodology provides an in-depth explanation of the 
materials and methods employed in this study. Section Results and discussion presents the experimental results 
and includes a discussion that lays the groundwork for the conclusions, which are outlined in Sect. Conclusion.

Methodology
The present study aims to establish a comprehensive framework for accurately predicting the specific heat 
capacity of nanofluids by integrating experimental data and advanced preprocessing methodologies. This work 
addresses critical gaps in conventional empirical approaches by leveraging diverse datasets from nanofluids 
and hybrid nanofluids38, enabling the development of a robust predictive model. The dataset includes essential 
thermophysical parameters such as temperature (°C), volume concentration (ϕ), and specific heat capacity. To 
ensure its suitability for modeling, the dataset underwent rigorous preprocessing to clean and standardize the 
data. Furthermore, advanced techniques such as Polynomial and Fourier inspired expansions4 and autoencoder-
based data augmentation5 were applied to enrich feature representation, ensuring the preservation of critical 
physical relationships within the data.

The study employed a comprehensive evaluation framework incorporating twelve machine learning9 
and deep learning models, assessed through an extensive set of performance metrics. To further advance 
predictive accuracy, this work uniquely integrates two state-of-the-art metaheuristic algorithms Particle Swarm 
Optimization (PSO) and Grey Wolf Optimization (GWO) for systematic hyperparameter optimization of the 
machine learning models11–14. This comparative optimization strategy, applied exclusively to machine learning 
architectures, enables identification of optimal parameter configurations across complex, high-dimensional 
search spaces, representing a methodological advancement in nanofluid property prediction.

The methodological framework developed in this study focuses on advancing the prediction of thermophysical 
properties, particularly the specific heat capacity of nanofluids, which is a critical parameter for optimizing 
performance in various engineering and industrial applications. A detailed overview of the methodology is 
illustrated in Fig. 1, showcasing the systematic workflow from data collection to model deployment.

Dataset description
The dataset utilized in this study integrates two distinct sources: the nanofluids dataset, which consists of 285 
samples, and the hybrid nanofluids dataset, derived from peer-reviewed literature38 comprising 984 samples. 
This combined dataset results in a total of 1,269 samples. The input features include the Nanofluids, Temperature 
(°C), and Volume Concentration (ϕ), while the output feature is the experimentally measured Specific Heat 
Capacity of the nanofluids.

The integration of these datasets enhances the diversity and representativeness of the data, covering a wide 
range of nanofluid types and operating conditions. Supplementary Table 1 in Appendix outlines the nanofluid 
dataset along with its sources, and Supplementary Table 2 in Appendix provides a summary of the hybrid 
nanofluid dataset.

The relationship for the specific heat capacity of the nanofluid ( CP hnf ) is given by Eq. 1a:

	
CP hnf = CP bf

(
1 + ∅ v

(
CP np

CP bf
− 1

))
� (1a)

Where, CP hnf  represents the specific heat capacity of the nanofluid, CP bf  is the specific heat capacity of 
the base fluid, CP np is the specific heat capacity of the nanoparticle, ∅ v  represents the volume fraction of 
nanoparticles in the nanofluid.

This relation highlights the influence of nanoparticles on the overall specific heat capacity of the nanofluid, 

depending on the relative thermal properties of the nanoparticle and the base fluid. The term 
(

CP np

CP bf
− 1

)
 

reflects the contribution of the nanoparticle’s specific heat in modifying the thermal behavior of the nanofluid.
Colak et al. (2020) established a temperature-dependent correlation for the specific heat capacity ( Cp) 

as a function of temperature ( T ) using four empirical constants coefficient A, B, C and D for the Cu-Al2O3/
water nanofluid, the corresponding coefficient values are A = 0.0002322, B = 4.168, C = − 0.01175 and D = 
0.6207 as defined in Eq. (1b)1. This correlation has been incorporated into the present study to account for the 
temperature-dependent variation of Cp in the thermal analysis.

	 Cp = (AT + B)(1 + C ∅ D)� (1b)

The compiled dataset encompasses a wide array of nanofluids and hybrid nanofluids, incorporating various 
nanoparticle combinations, as outlined in Tables 1 and 2.These combinations include Fe₃O₄, AlN, Si₃N₄, TiN, 
and Al₂O₃ (Table 1), as well as MgO-TiO₂, MWCNT-CuO, MWCNT-MgO, MWCNT-SnO₂, Al₂O₃-Cu, Al₂O₃-
GO, CuO-MgO-TiO₂, CuO-MWCNT, MgO-MWCNT, Al₂O₃-MWCNT, CeO₂-MWCNT, TiO₂-MWCNT, ZnO-
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MWCNT, MWCNT + Fe₃O₄, and SiO₂+TiO₂ (Table 2).The base fluids employed include ND, EG, Water, DW, 
and Green BG, showcasing a broad spectrum of fluid mediums. Overall, this study features twenty-one distinct 
nanoparticle and base fluid pairings, highlighting the versatility and adaptability of nanofluid applications.

Nanofluids and hybrid nanofluids display exceptional thermal properties, such as improved heat transfer 
and enhanced thermal conductivity, making them indispensable in fields like electronics cooling, automotive 

Feature Range

Temperature (°C) 14.94–70.20

Volume Concentration (ϕ) 0.000–9.300

Specific Heat 2054.00–8960.00

Table 2.  Range of the features in Dataset.

 

Statistical Property Temperature °C Volume Concentration (∅ ) Specific Heat (CP hnf )

Minimum 14.94 0 2054

Maximum 70.20 9.3 8960

Mean 39.38103 1.47902 3816.19804

Median 39.92215 0.75000 3897.44526

Standard Deviation 11.43809 2.02224 789.73872

Skewness 0.26716 2.30058 2.40576

Kurtosis -0.51626 4.79062 16.69692

Table 1.  Overview and quantitative summary of the Dataset.

 

Fig. 1.  Workflow of the methodology implemented.
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thermal management, heat exchangers, and biomedical technologies, including drug delivery systems and 
targeted therapies. Their application potential also extends to solar concentration systems, emphasizing their 
broad adaptability in renewable energy solutions39.

The statistical properties summarized in Tables 1 and 2 offer key insights into the characteristics of the input 
and output variables in this study: Temperature (°C), Volume Concentration (ϕ), and Specific Heat ( Cphnf ). 
Statistical analysis reflects a dataset characterized by considerable complexity and the presence of extreme values. 
These distributional characteristics highlight the importance of accounting for a broad range of conditions when 
investigating the thermal properties of nanofluids.

Dataset preprocessing
Data preprocessing is a fundamental step in ensuring the dataset’s quality and compatibility with predictive 
models. The combined dataset, integrating the hybrid nanofluids dataset and the nanofluids dataset, resulted in 
1,269 samples. This integration captured a wide variety of nanofluid types and operating conditions, enhancing 
data diversity. Special care was taken to handle missing values and ensure data consistency. Any inconsistencies 
or anomalies, such as duplicate entries or incorrect formats, were resolved to maintain the dataset’s integrity.

Categorical features, such as the nanofluids, were processed using one-hot encoding, converting categorical 
variables into binary vectors. Then, the numerical features, including temperature and volume concentration, 
were standardized to zero mean and unit variance to ensure uniform contribution during model training and 
prevent dominance by features with larger ranges40]– [41. Statistical analysis provided valuable insights into the 
dataset’s variability and helped confirm the adequacy of feature distributions for model training.

The dataset was then split into training and testing sets in an 80:20 ratio, allocating 80% of the data for model 
training and 20% for evaluation. This split ensured unbiased testing and robust model assessment on unseen 
data.

Augmentation
In machine learning and deep learning, model performance is closely tied to both the quality and quantity 
of the data used. In this study, the dataset exhibited variability and included regions with underrepresented 
samples. To address these issues and improve the generalization ability of the models, data augmentation was 
applied by generating new data points from existing ones—while preserving key statistical properties and 
physical relationships. This approach enhances model robustness and helps reduce overfitting, without altering 
the imbalance ratio or introducing bias42.

For this study, two augmentation techniques were utilized: Polynomial and Fourier Expansions Inspired and 
Autoencoders-based. Each method contributed differently to enhancing the dataset, and their effects on the final 
model performance were carefully evaluated.

Polynomial and fourier expansion inspired augmentation
This augmentation method enhances numerical features by applying polynomial and Fourier-inspired 
transformations to generate higher-order features. These expansions allow the model to capture complex, non-
linear relationships and periodic patterns, thereby improving model robustness and its ability to generalize 
across diverse data43.

Polynomial feature expansion  Polynomial expansion introduces higher-order terms, allowing the model to 
represent non-linear dependencies more effectively. For a feature xi, the polynomial expansion of degree d is 
expressed as Eq. 2:

	 x
(d)
i =

[
xi, x2

i , x3
i , . . . , xd

i

]
� (2)

This transformation introduces interaction terms and higher powers of features, which enables the model to 
account for intricate relationships within the data44.

Fourier-Inspired expansion  The Fourier-inspired expansion applies sine and cosine transformations at various 
frequencies, allowing the model to capture periodic patterns in the data. While this approach is inspired by the 
Fourier series, it does not follow the Fourier transformation in its strict mathematical form. For a numerical 
feature xi, the Fourier-inspired transformation with n terms is given by Eq. 345:

	
F ourier

(
x

(n)
i

)
= [sin (n.xi) , cos (n.xi)] for n = 1,2, . . . , N � (3)

Here, N  denotes the number of frequencies used. This introduces cyclic behavior, helping the model detect 
periodic signals.

Combining both expansions  The final augmented feature set is created by combining both the polynomial and 
Fourier-inspired transformations. The expanded dataset Xexpanded is represented as Eq. 4:

	 Xexpanded = [Xpoly, Xfourier]� (4)

This step is depicted in Fig. 2, where the polynomial features Xpoly  and the Fourier-inspired features Xfourier  
are concatenated to form a richer feature set. The augmented dataset is then created by combining the expanded 
features with the original categorical ‘Nanofluid’ columns as shown in Eq. 5.

Scientific Reports |        (2025) 15:45705 5| https://doi.org/10.1038/s41598-025-28268-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 Xaugmented = [X, Xpoly, Xfourier]� (5)

Figure 2 illustrates this complete augmentation pipeline, where original features are enriched with polynomial 
and Fourier-inspired components to produce a more expressive dataset.

Autoencoder based augmentation
Autoencoders are employed for augmentation to enrich the dataset by generating new, slightly noisy versions of 
the original data. The process involves learning a compact representation of the input data through the encoder 
and then reconstructing it with small perturbations during the decoding stage. This approach helps the model 
generalize better by introducing variations, especially when dealing with noisy or incomplete data46.

The Autoencoder architecture consists of two primary components: the encoder and the decoder. The 
encoder maps the input data x into a lower-dimensional latent space z, the decoder reconstructs the input data 
x̂ from this compressed representation. This is visualized in Fig. 3.

Encoder Function,

	 z = fencoder (x)� (6)

Decoder Function,

	 x̂ = fdecoder (z)� (7)

The autoencoder is trained to minimize the Mean Squared Error (MSE) loss between the original data x and the 
reconstructed data x̂, given by Eq. 8.

	
L = 1

N

∑
N
i=1(xi − x̂i)2� (8)

where N is the number of samples in the dataset, and xi and x̂i represent the original and reconstructed data 
points, respectively.

Data augmentation with autoencoder  Once the autoencoder is trained, the decoder is used to generate noisy 
version of the original data by reconstructing it. The noisy data xnoisy  can be expressed as Eq. 9.

Fig. 2.  Architecture of Polynomial and Fourier Inspired Expansion Augmentation Technique.
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	 xnoisy = fdecoder (fencoder (x)) + ϵ� (9)

Where, ϵ denotes the reconstruction noise. By repeating this process iteratively, multiple noisy variants are 
produced. The final augmented dataset Xaugmented is formed by concatenating the original dataset X  with the 
generated noisy data Xnoisy  as shown in Eq. 10.

	 Xaugmented = [X, Xnoisy] � (10)

This process, as shown in Fig. 3, results in an augmented dataset containing both the original and noisy data, 
improving the model’s ability to generalize.

Optimization
Optimization algorithms play a critical role in enhancing machine learning models by fine-tuning their 
hyperparameters. They explore the hyperparameter space to identify configurations that improve model accuracy 
and computational efficiency. In this study, optimization was applied after data preparation and augmentation to 
effectively address the complexity of nanofluid-specific heat capacity prediction.

In this study, two nature-inspired optimization algorithms, Particle Swarm Optimization (PSO) and Grey 
Wolf Optimization (GWO), were utilized. These algorithms were selected due to their proven ability to efficiently 
explore complex, high-dimensional search spaces. Both approaches are adept at navigating a wide range of 
hyperparameter combinations and converging toward a global optimum, making them particularly well-suited 
for optimizing machine learning models47.

Particle swarm optimization
Particle Swarm Optimization (PSO) is a population-based optimization algorithm48 inspired by the social 
behaviours of flocking birds and schooling fish. It optimizes a problem by iteratively adjusting a population 
of particles, where each particle represents a potential solution in the search space. At each iteration, particles 
update their positions based on both their own experience and the best solution found by the swarm.

The velocity update49 mechanism is governed by Eq. 11.

	
v

(t+1)
i = ω · v

(t)
i + c1 · r1 ·

(
pbesti − x

(t)
i

)
+ c2 · r2 ·

(
gbest − x

(t)
i

)
� (11)

where, v
(t)
i  is the particle’s velocity, x

(t)
i  is its position in the search space. pbesti represents the best-known 

position of the particle, and gbest is the best global position found by the swarm. The coefficients c1 and c2 
control the cognitive and social influences, while r1 and r2 are random variables, and ω  is the inertia weight 
that balances exploration and exploitation.

The position of each particle is updated as shown in Eq. 12.

	 x
(t+1)
i = x

(t)
i + v

(t+1)
i

� (12)

This process continues until a stopping criterion such as convergence or maximum iterations is met.
PSO is well-suited for complex, non-differentiable optimization tasks, making it ideal for hyperparameter 

tuning. In this study, PSO significantly improved model performance, as visualized in Fig. 4, which outlines the 
algorithm’s workflow.

Grey Wolf optimization
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm based on the social structure and 
hunting behavior of grey wolves. The population is divided into four roles: Alpha (α), Beta (β), Delta (δ), and 
Omega (ω). The Alpha represents the best solution and leads the search, supported by Beta and Delta wolves, 
which refine and communicate decisions. Omega wolves act as exploratory agents, preserving population 

Fig. 3.  Architecture of Autoencoder Augmentation.
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diversity and avoiding premature convergence50. This structured hierarchy ensures an effective balance between 
exploration and exploitation.

The wolves’ positions are updated using Eq. 13.

	 Xi (t + 1) = Xα (t) − A.Dα + C1. (Xα (t) − Xi (t))� (13)

where, A and C1 are coefficient vectors, and Dα  is the distance to the Alpha. The distance is computed using 
Eq. 14.

	 D = |C. (Xp − Xi)| � (14)

The coefficient vectors are defined as:

	 A = 2α .r1 − a ,

	 C = 2.r2� (15)

where, α  decreases linearly from 2 to 0 over iterations, and r1 and r2 are random vectors in the range [0,1].
The algorithm iteratively updates solutions until convergence, or a stopping criterion is met. As illustrated 

in Fig.  5, GWO was selected for its strong exploration–exploitation balance, making it highly effective for 
hyperparameter optimization in machine learning.

Models
Accurate estimation of nanofluid specific heat capacity requires predictive models capable of capturing both 
linear and complex non-linear patterns. The study employed twelve models, combining machine learning and 
deep learning approaches. Machine learning models extracted structured relationships from input features, 
while deep learning models integrated feature extraction and regression within a unified framework using 
backpropagation51 for parameter adjustment based on error gradients.

A key methodological innovation is the implementation of a stacking ensemble approach with Linear 
Regression as the meta-learner, which synergistically combines all twelve models to harness their complementary 
predictive capabilities while mitigating individual limitations. To optimize performance, this study employs a 
dual-optimization strategy: machine learning models underwent hyperparameter tuning using both Particle 
Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) for comparative analysis, while deep learning 
models relied on backpropagation for optimization. This hybrid approach maximizes each model class’s 
predictive capability according to its computational characteristics.

Figures 6 and 7 illustrate the workflows for machine learning and deep learning pipelines, including model 
training, tuning, evaluation, and ensemble integration.

Decision tree
The Decision Tree is a widely used algorithm that divides data into subsets based on feature values to generate 
predictions. The model is represented by a tree structure, where each internal node corresponds to a decision rule 
based on a feature, each branch represents the outcome of that decision, and each leaf node holds the prediction. 

Fig. 4.  Workflow of Particle Swarm Optimization (PSO) Algorithm.
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The algorithm splits the dataset iteratively by selecting features and thresholds that minimize a chosen impurity 
metric, such as Gini Impurity or Entropy52.

For regression tasks, Decision Trees aim to minimize the variance within subsets53. The split criterion is 
based on minimizing the Mean Squared Error (MSE) at each node, calculated as given by Eq. 16.

	
MSEnode = 1

n

∑
n
i=1

(
yi−

−
y
)2

� (16)

Fig. 7.  Generalized Workflow of Deep Learning Models Implementation.

 

Fig. 6.  Generalized Workflow of Machine Learning Models Implementation.

 

Fig. 5.  Workflow of the Grey Wolf Optimization (GWO) Algorithm.
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Where n is the number of samples at the node, yi is the actual value, and 
−
y  is the mean of the target values at the 

node. Key hyperparameters include maximum tree depth, minimum samples for splits, and minimum samples 
at leaves, which control complexity and generalization ability.

Random forest
Random Forest aggregates multiple decision trees to improve predictive accuracy. Each tree trains on a random 
data subset, with final predictions made by averaging all individual tree outputs54. This ensemble approach 
reduces variance and improves generalization compared to single decision trees, effectively capturing complex, 
non-linear relationships in nanofluid specific heat capacity data. The performance of the random forest model is 
influenced by the aggregation of individual tree predictions. Mathematically, the final prediction of the random 
forest can be expressed as the average of the predictions made by each individual tree in the ensemble, as given 
in Eq. 17.

	
ŷRF = 1

n

∑
n
i=1Ti (x)� (17)

where Ti (x) is the prediction of the i-th tree and n is the number of trees in the forest.

K-Nearest neighbor (kNN)
K-Nearest Neighbors (kNN) predicts target values by averaging the values of the k closest neighbors using 
distance metrics, typically Euclidean distance55. The distance between two data points xi and xj  in d-
dimensional space is computed as given in Eq. 18.

	
d (xi, xj) =

√∑
d
k=1(xi,k − xj,k)2 � (18)

where xi,k  and xj,k  represent the feature values of the i-th and j-th data points, respectively, and d is the 
number of features. For regression tasks, the predicted target value ŷi for a data point xi is given by Eq. 19.

	
ŷi = 1

k

∑
k
j=1yi� (19)

where yj  is the target value for the j-th neighbor and k is the number of nearest neighbors.

LightGBM
Light Gradient Boosting Machine (LightGBM) is an optimized gradient boosting framework that builds tree 
leaf-wise for improved performance with computational efficiency56. This approach effectively captures complex 
patterns in large nanofluid datasets. The objective function for training LightGBM can be written as given in 
Eq. 20.

	
L (θ ) =

∑
n
i=1l(yi, ŷi) +

∑
K
k=1Ω (fk)� (20)

where l(yi, ŷi) is the loss function (commonly squared error), Ω (fk) is the regularization term, n is the 
number of data points, and K  is the number of trees57. The regularization term is given by Eq. 21.

	
Ω (fk) = γ T + 1

2λ ||w||2� (21)

where T is the number of leaves, γ is the complexity parameter, λ  is the regularization parameter, and w 
represents the tree’s weights.

Gradient boosting
Gradient Boosting builds decision trees sequentially, with each tree addressing errors made by previous ones. 
This approach excels at capturing complex patterns in nanofluid specific heat capacity prediction by progressively 
improving model performance through focus on residual errors. For Gradient Boosting Regression (GBR)58, the 
objective function seeks to minimize the loss, typically expressed as given in Eq. 22.

	
L (θ ) =

∑
n
i=1

[
(yi − ŷi)2]

+
∑

K
k=1Ω (fk) � (22)

where L (θ ) is the loss function, yi and ŷi are the true and predicted values, and fk  represents individua trees.

AdaBoost
AdaBoost (Adaptive Boosting) combines multiple weak learners, typically decision trees, by training models 
sequentially with emphasis on previously misclassified data points59. The objective function for AdaBoost aims 
to minimize the weighted error of the weak learners over iterations and is given by Eq. 23.

	
L (θ ) =

∑
m
i=1wi • exp(−yi • H (xi))� (23)
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where wi are the weights assigned to the data points in each iteration. yi is the true class label of the sample xi. 
H (xi) is the prediction made by the weak learner for sample xi. The sum is over all m data points.

XGBoost
Extreme Gradient Boosting (XGBoost) enhances traditional gradient boosting through improved regularization 
techniques and parallel processing optimization60. It builds decision trees sequentially to correct previous errors 
while balancing accuracy and model complexity. The objective function for each tree k in XGBoost can be 
expressed as given in Eq. 24.

	
L (∅ ) =

∑
n
i=1l (yi, ŷi) +

∑
K
k=1Ω (fk) , � (24)

where l (yi, ŷi) is the loss function that measure prediction errors, and Ω (fk) is the regularization term. The 
regularization term is given by Eq. 25.

	
Ω (fk) = γ T + 1

2λ ||w||2,� (25)

Where γ  and λ  control tree complexity, T  is the number of leaves and w represents the tree’s weight vector. 
This regularization helps mitigate overfitting by constraining the complexity of individual trees in the ensemble.

CatBoost
CatBoost is a gradient boosting algorithm optimized for categorical features. It employs ordered boosting 
to prevent overfitting and data leakage by ensuring predictions are based only on prior observations61. The 
objective function of CatBoost is a combination of a loss function L(yi, f (xi)) and a regularization term to 
control model complexity. The general form of the objective function is given by Eq. 26.

	
L =

∑ n

i=1
loss (yi, f (xi)) + λ · Ω (f)� (26)

Where yi represents the true value, f (xi) the model’s prediction for the i-th sample, λ .Ω (f) is the 
regularization term that prevents overfitting. CatBoost’s ability to efficiently handle categorical data, coupled 
with its innovative boosting framework, makes it a reliable choice for regression tasks involving diverse datasets, 
such as those encountered in nanofluid property prediction.

Multi-Layer perceptron (MLP)
The Multi-Layer Perceptron (MLP) is a neural network architecture designed to capture complex, non-linear 
relationships in data. Comprising of an input layer, hidden layers, and an output layer, the MLP uses activation 
functions such as ReLU or Tanh to introduce non-linearity, enabling it to model intricate patterns effectively62. 
MLP is particularly suitable for tasks that require learning complex data representations and capturing non-
linear dependencies.

The MLP training process minimizes the loss function as given by Eq. 27.

	
L (θ ) =

∑
n
i=1(yi − ŷi)2 + α ||w||2,� (27)

where yi and ŷi are the actual and predicted values, w represents the weights, and α  controls regularization.
In the ensemble framework, MLP serves as a feature extractor, with outputs from its penultimate layer 

feeding into a Linear Regression model to combine deep learning’s representational power with linear model 
interpretability.

Long Short-Term memory (LSTM)
Long Short-Term Memory (LSTM) is a recurrent neural network designed to capture long-term dependencies 
in sequential data. Using memory cells, it overcomes the vanishing gradient problem faced by traditional RNNs. 
The core of the LSTM model consists of three gates: the forget gate, the input gate, and the output gate. The forget 
gate determines what information should be discarded from the previous cell state and is given by Eq. 2863.

	 ft = σ (Wf xt + Uf ht−1 + bf )� (28)

The input gate decides what new information will be added to the cell state, represented by Eq. 29.

	 it = σ (Wixt + Uiht−1 + bi)� (29)

The cell state is then updated by combining the previous cell state and the new candidate memory, as shown in 
Eq. 30.

	 Ct = ft ⊙ Ct−1 + it ⊙
∼
Ct

� (30)

Finally, the hidden state is calculated using the output gate, which determines the part of the cell state to output 
given as Eq. 31.
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	 ht = ot ⊙ tanh (Ct)� (31)

In this work, an additional configuration was implemented where LSTM served as a feature extractor. The 
resulting representations captured underlying temporal dependencies and were used as inputs to a linear 
regression model for predicting specific heat capacity.

Gated recurrent unit (GRU)
The Gated Recurrent Unit (GRU) is a recurrent neural network (RNN) designed to capture long-term 
dependencies in sequential data while addressing the vanishing gradient issue. Compared to LSTM, GRU offers 
similar performance with simpler and more computationally efficient architecture63]– [64.

The GRU consists of two main gates: the update gate zt​ and the reset gate rt​. The update gate determines how 
much of the previous hidden state is carried forward, while the reset gate controls how much past information 
should be forgotten. The candidate hidden state 

∼
ht and the final hidden state ht​ are computed as given by 

Eqs32–35. :

	 zt = σ (Wzxt + Uzht−1)� (32)

	 rt = σ (Wrxt + Urht−1)� (33)

	
∼
ht= tanh (Whxt + Uh (rt ⊙ ht − 1))� (34)

	 ht = (1 − zt) ⊙ ht−1 + zt⊙
∼
ht

� (35)

These mechanisms allow GRU to retain relevant temporal features while discarding noise.
In the stacked variant, GRU extracts latent temporal features for a Linear Regression model, combining 

representational strength with linear model simplicity.

Autoencoder
An Autoencoder is a neural network used for unsupervised learning, often applied to dimensionality reduction 
and feature extraction. It comprises an encoder that maps input x to a latent space h via a nonlinear activation 
function f , as shown in Eq. 36.

	 h = f (Wex + be)� (36)

where We and be are the encoder’s weights and biases. The decoder reconstructs the input x̂ from the latent 
representation h using another nonlinear function g, as shown in Eq. 37.

	 x̂ = g (Wdh + bd)� (37)

where Wd and bd are the decoder’s weights and biases, and g is the activation function in the decoder. The 
model is trained by minimizing the reconstruction error between the original input x and the reconstructed 
output x̂. The objective function for training the Autoencoder is given by the following Mean Squared Error 
(MSE) loss as given by Eq. 38.

	
L (θ ) =

∑
n
i=1||xi − x̂i||2� (38)

where xi is the input data, x̂i is the reconstructed data, and n is the number of data points.
In the stacked variant, the Autoencoder extracts latent features from the dataset, which are then input to 

a Linear Regression model to predict the specific heat capacity of nanofluids. Training is performed using the 
Adam optimizer with MSE as the loss function.

Performance metrics
In machine learning regression tasks, performance metrics are essential for evaluating a model’s accuracy and 
ability to generalize. These metrics help compare different models and guide optimization efforts. In this study, 
several performance metrics were used to assess the quality of the predictions, including the R² Score, Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Explained Variance Score, 
Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE) and Max Error. 
These metrics provide a comprehensive evaluation of prediction quality, capturing various aspects such as error 
magnitude and model fit65,66.

Results and discussion
This section presents the outcomes of the experiments conducted in this study. The performance of the models 
was evaluated using the metrics described in methodology, providing insights into their accuracy, robustness, and 
generalization ability. Results are discussed in terms of overall prediction quality, the impact of hyperparameter 
optimization, and the effectiveness of stacking and augmentation techniques.
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Dataset analysis
The dataset utilized in this study, as detailed in methodology, integrates nanofluid and hybrid nanofluid data, 
resulting in a total of 1,269 samples. These samples cover diverse combinations of nanoparticles, base fluids, 
and operational conditions, providing a robust foundation for predictive modeling. Input features include 
Nanofluid, Temperature (°C), and Volume Concentration (ϕ) with the target variable being the experimentally 
measured Specific Heat capacity. The dataset’s diversity and representativeness were further improved through 
comprehensive preprocessing, which included one-hot encoding for categorical features and standardization for 
numerical features.

Figure 8 illustrates the distribution of nanofluid samples in the dataset, showing the count for each nanofluid 
type. The figure provides a clear overview of the relative frequency of different nanoparticles and base fluid 
combinations, reflecting the dataset’s overall composition.

Feature distribution
The distribution of the key features in the dataset, as shown in Fig. 9, reveals valuable insights into the underlying 
data patterns. The histograms for Temperature (°C), Volume Concentration (ϕ), and Specific Heat capacity 
highlight the variability and representativeness of the dataset.

The temperature distribution shows a uniform spread between 20  °C and 50  °C with multiple plateaus, 
featuring a secondary peak around 50 °C before tapering off at 70 °C. This range encompasses typical operational 
conditions for nanofluid applications in both industrial and experimental settings. Volume concentration (ϕ) 
exhibits a right-skewed distribution, with most samples concentrated below 2% and peak frequency under 1%, 
while including sparse but valuable data points up to 9%. This distribution aligns with practical applications 
where lower concentrations are preferred for optimal thermal performance and stability. The specific heat 
capacity demonstrates a unimodal distribution centered at 3500–4000 J/kg·K, with a secondary cluster in the 
2000–3000 J/kg·K range, and extends from 2000 to 9000 J/kg·K. This wide range effectively captures the diverse 
thermal behaviors across different nanofluid compositions and operating conditions, providing a comprehensive 
foundation for predictive modeling.

The correlation analysis between the primary features reveals valuable insights into their interdependencies 
(Fig. 10). The correlation matrix shows that volume concentration (ϕ) exhibits a moderate negative correlation 
(r = -0.43) with specific heat capacity, indicating that as particle concentration increases, the specific heat 
capacity tends to decrease. This aligns with the fundamental behavior of nanofluids, where higher particle 

Fig. 9.  Histograms of Feature Distributions.

 

Fig. 8.  Distribution of Nanofluid Sample in the Dataset.
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concentration generally67 results in a decrease in specific heat capacity. In contrast, temperature shows negligible 
correlations with both specific heat capacity (r = 0.02) and volume concentration (r = 0.12), suggesting that 
temperature variations within the studied range have minimal impact on these other parameters. Notably, the 
weak to moderate correlation coefficients across features indicate non-straightforward relationships, revealing 
the presence of complex, non-linear interactions in nanofluid behavior that conventional correlation-based 
approaches cannot adequately capture. This critical observation justifies the adoption of advanced machine 
learning and deep learning modeling techniques capable of capturing these intricate multi-dimensional patterns.

Analyzing specific heat capacity trends across nanofluid compositions
To better understand the relationship between specific heat capacity and key input parameters, a series of visual 
analyses were conducted for all twenty-one nanofluid compositions in the dataset. Figure 11, which visualizes 
these relationships in a 3D feature space, immediately reveals the diverse and complex nature of the data. This 
visualization highlights several distinct patterns across the compositions. For instance, compositions such as 
AiN/EG and TiN/EG are exceptionally sparse, representing nanofluids with very few available experimental 
data points. This sparsity poses a significant modeling challenge, requiring a model capable of generalizing 
from limited information. In contrast, fluids like Al2O3/EG and Al2O3/Water exhibit a highly structured, dense, 
grid-like distribution. This visual pattern suggests a stable, systematic, and more readily predictable relationship 
between the variables.

Finally, many of the hybrid nanofluids, including MWCNT-CuO/Water and Al2O3-MWCNT/Water, 
demonstrate a high data volume but with significant vertical scatter in the specific heat capacity values. This 
high variance indicates a much more complex and non-linear relationship, where Cp is highly sensitive to input 
parameter variations. This observed diversity in data patterns, ranging from sparse to highly structured and 
complex, confirms that a single, simple analytical model (like the mixing model in Eq. 1) would be insufficient 
to capture these varied behaviors. It validates the necessity for the sophisticated machine learning framework 
developed in this study, which is designed to learn these unique patterns for each composition. A more granular 
breakdown of these relationships is available in the Appendix (Supplementary Figs. 1, 2, and 3).

Baseline model performance analysis
Table 3 presents the baseline performance of twelve machine learning and deep learning models in predicting 
the specific heat capacity of nanofluids. Each model was evaluated in both standalone form and in a stacked 
configuration using Linear Regression as a meta-learner. The best-performing version of each model was selected 
for comparison. Performance was assessed using standard metrics, while detailed architectural configurations 
are available in Appendix Supplementary Table 3.

Among all configurations, the Autoencoder stacked with Linear Regression delivered the highest predictive 
accuracy, achieving an R² score of 0.99921, the lowest MSE (509.21), and an RMSE of 22.56. Gradient boosting 
models such as XGBoost and CatBoost also performed exceptionally well in their direct implementations, 
achieving R² values of 0.99893 and 0.99876, respectively, and maintaining low error values.

Recurrent models, including GRU and LSTM when stacked with Linear Regression, also yielded strong 
results, with R² values exceeding 0.998. Other stacked configurations, such as MLP + LR and Gradient Boosting 
stacked with Linear Regression, demonstrated competitive performance but were marginally outperformed 
by the top models. In contrast, traditional models like Decision Tree and Random Forest achieved high R² 
scores (0.99699 and 0.99729) but showed relatively higher error metrics, indicating more limited performance 
in capturing nuanced patterns within the data.

Fig. 10.  Showing Correlation Among Specific Heat Capacity, Volume Concentration, and Temperature.
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Overall, the Autoencoder stacked with Linear Regeression model stands out as the most effective baseline 
configuration, followed closely by XGBoost and CatBoost.

Augmentation
Two augmentation techniques were applied: one inspired by Polynomial and Fourier expansions and the 
other leveraging Autoencoder-based reconstruction. Specifically, the dataset was expanded to 6084 and 5064 
additional samples, respectively, as detailed in Appendix Supplementary Table 4. The impact of each method 

Fig. 11.  Showing the Relationship for Each Nanofluid Composition in 3D.
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was evaluated across multiple predictive models, with best performance results summarized in Tables 4 and 5. A 
detailed breakdown of the augmentation process is available in Appendix (Supplementary Tables 5–7).

Polynomial and fourier expansion inspired augmentation
This augmentation approach applied higher-order polynomial and periodic transformations to numerical 
features, expanding the dataset sixfold and improving its structural complexity. As presented in Table 6, the 
Gated Recurrent Unit (GRU) model exhibited the best performance, achieving an R² score of 0.99901, MSE of 
631.57, and RMSE of 25.13, reflecting strong generalization on the augmented data. CatBoost also performed 
well, with an R² of 0.99896, MSE of 665.76, and RMSE of 25.80.

Stacked models, particularly Multilayer Perceptron (MLP) stacked with Linear Regression and LSTM stacked 
with Linear Regression, also responded positively to this augmentation. The MLP model achieved an R² score of 
0.99860 with an RMSE of 29.91, while the LSTM model reached an R² of 0.99884 and RMSE of 27.21. Similarly, 
the Random Forest stacked with Linear Regression and k-Nearest Neighbors (kNN) stacked with Linear 
Regression models showed notable gains.

On the other hand, AdaBoost stacked with Linear Regression struggled to benefit from the added complexity, 
recording an R² of only 0.92916 and a notably high MSE of 45403.06. In contrast, the LightGBM model 
improved significantly with this augmentation, reaching an R² score of 0.98318 and MSE of 10781.18. Overall, 
while the performance boost varied by architecture, models capable of leveraging high-dimensional, non-linear 
transformations such as GRU, CatBoost, and LightGBM demonstrated the most pronounced improvements.

Final Models R2  Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree 0.99746 1625.80801 40.32130 26.07216 0.99748 0.00700 0.69795 178.0

Random Forest + LR 0.99739 1672.00258 40.89012 26.92892 0.99742 0.00709 0.70782 148.81463

kNN + LR 0.99845 990.88814 31.47837 19.85222 0.99845 0.00527 0.52737 114.21565

LightGBM 0.98954 6698.8749 81.84665 29.00447 0.98955 0.00865 0.83479 1093.34806

Gradient Boosting + LR 0.99905 606.98975 24.63716 14.75201 0.99905 0.00393 0.39259 165.37062

AdaBoost + LR 0.95093 31450.402 177.34261 143.74684 0.95112 0.03815 3.80505 518.75648

CatBoost 0.99923 487.71781 22.08433 13.33275 0.99924 0.00351 0.35084 93.33715

XGBoost 0.99893 683.73962 26.14841 15.95368 0.99893 0.00421 0.42050 123.48608

MLP + LR 0.99926 472.80095 21.74398 12.58413 0.99926 0.00340 0.34005 128.30288

Table 5.  Particle swarm optimization results on machine learning Models.

 

Final DL models A R2Score MSE RMSE MAE EVS MAPE SMAPE Max Error

MLP + LR 1 0.99860 894.58980 29.90969 20.14475 0.99860 0.00527 0.52620 109.22297

GRU 1 0.99901 631.57643 25.13118 16.58329 0.99915 0.00443 0.44334 114.03687

LSTM + LR 1 0.99884 740.51274 27.21236 17.0143 0.99885 0.00456 0.456 177.3122

Autoencoders + LR 1 0.99853 940.02177 30.65977 18.22995 0.99853 0.00508 0.5083 198.1172

Table 4.  Best deep learning model augmentation Results.

 

Final Models R2  Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree 0.99699 1926.219 43.88872 27.33363 0.99701 0.00733 0.73071 178

Random Forest + LR 0.99729 1734.260 41.64445 23.72606 0.9973 0.00661 0.65524 311.23768

kNN + LR 0.99252 4792.8369 69.23032 30.4877 0.99252 0.00924 0.89398 691.48382

LightGBM 0.95415 29386.438 171.42473 79.29507 0.95420 0.02117 2.05022 1008.3917

Gradient Boosting + LR 0.99471 3389.8957 58.22281 42.34641 0.99471 0.01175 1.17329 340.01416

AdaBoost + LR 0.94458 35517.396 188.46059 148.06786 0.94485 0.03955 3.93416 626.4249

CatBoost 0.99876 791.07331 28.12602 16.99067 0.99876 0.00458 0.45613 182.87230

XGBoost 0.99893 681.92540 26.11370 16.95128 0.99893 0.00455 0.45442 121.06347

MLP + LR 0.99786 1370.7032 37.02300 21.20976 0.99786 0.00569 0.57347 331.81693

GRU 0.99826 1113.1856 33.36444 22.83463 0.99842 0.00596 0.59937 174.52637

LSTM + LR 0.99857 917.79771 30.29518 22.05073 0.99857 0.00596 0.59515 104.54755

Autoencoders + LR 0.99921 509.21466 22.56579 13.29329 0.99921 0.00356 0.35602 114.69256

Table 3.  Results of direct implementation of predictive Models.
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Autoencoder-Based augmentation
The Autoencoder-based augmentation technique used deep learning autoencoders to extract latent features and 
generate 5064 additional samples, enriching the dataset with structurally diverse yet consistent data points. The 
model performance results are presented in Table 7.

Model responses to this augmentation varied. GRU achieved an R² of 0.99614, slightly lower than with 
Polynomial and Fourier-based augmentation. XGBoost also declined to an R² of 0.99677 and MSE of 2,071.99. 
CatBoost dropped more noticeably to an R² of 0.97975 and MSE of 12,978.48, suggesting misalignment with the 
generated data.

In contrast, LightGBM and Random Forest stacked with Linear Regression improved, with R² scores of 
0.95879 and 0.99748, respectively, indicating that some tree-based models benefitted from the added variability. 
However, others struggled. k-Nearest Neighbours and Multilayer Perceptron, both stacked with Linear 
Regression, declined, with kNN showing an R² of 0.95981 and MSE of 25,761.55. AdaBoost and LSTM stacks 
also dropped significantly, with R² scores of 0.91043 and 0.92570.

The largest performance drop occurred in the Autoencoders stacked with Linear Regression model, which 
recorded an R² of 0.82454 and MSE of 112,464.75. This indicates a poor fit between the generated data and the 
model’s internal representations.

In summary, Autoencoder-based augmentation had mixed effects. It improved results for some models but 
hindered others, depending on how well the new feature space aligned with each model’s learning approach.

Comparative analysis of deep learning models with optimal augmentation
This subsection compares the performance of deep learning models with Polynomial and Fourier Expansion 
inspired augmentation (A1 or 1) against Autoencoder-based augmentation (A2 or 2). The results in Table  4 
show that A1 consistently enhanced model performance across key metrics, particularly for the GRU, LSTM, 
and Autoencoders + LR.

Among the models, the GRU achieved the highest performance, closely followed by the LSTM stacked with 
Linear Regression. The Autoencoders stacked with Linear Regression and MLP stacked with Linear Regression 
also delivered excellent results with Polynomial and Fourier Expansion inspired augmentation (A1), though 
their performance was slightly behind the recurrent models.

Final Models R2  Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree 0.99664 2156.6546 46.43980 28.23981 0.99667 0.00767 0.76361 226.00000

Random Forest + LR 0.99748 1615.4743 40.19296 22.84916 0.99750 0.00630 0.62391 304.31282

kNN + LR 0.95981 25761.553 160.50406 36.26153 0.96007 0.01228 1.58156 1834.3083

LightGBM 0.95879 26416.620 162.53190 69.74554 0.95879 0.01784 1.73823 1116.8087

Gradient Boosting + LR 0.95641 27938.005 167.14666 84.51290 0.95658 0.02251 2.16719 1524.4830

AdaBoost + LR 0.91043 57414.546 239.61333 155.56579 0.91086 0.04430 4.23366 1663.0491

CatBoost 0.97975 12978.483 113.92315 29.90608 0.97976 0.00971 1.00092 1196.0857

XGBoost 0.99677 2071.9906 45.51912 20.11639 0.99678 0.00576 0.56553 564.13477

MLP + LR 0.95730 27368.642 165.43471 50.25978 0.95783 0.01574 1.92467 1816.3771

GRU 0.99614 2471.9683 49.71889 32.29885 0.99636 0.00837 0.83858 325.73474

LSTM + LR 0.92570 47627.534 218.23734 113.82230 0.92653 0.03459 3.85559 2079.4233

Autoencoders + LR 0.82454 112464.75 335.35766 203.74262 0.82455 0.05807 6.12088 2028.1938

Table 7.  Autoencoder-based augmentation results on all the predictive Models.

 

Final Models R2  Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree 0.99699 1931.3746 43.94741 27.46238 0.99699 0.00736 0.7344 178

Random Forest + LR 0.9977 1469.6999 38.33666 23.45429 0.99771 0.00619 0.61692 177.99946

kNN + LR 0.99785 1372.5477 37.04791 23.55665 0.99786 0.00617 0.61853 122

LightGBM 0.98318 10781.187 103.83249 28.65942 0.9832 0.00878 0.81655 1521.0977

Gradient Boosting + LR 0.99472 3380.0522 58.13821 42.25681 0.99472 0.01171 1.16962 340.01416

AdaBoost + LR 0.92916 45403.068 213.07995 147.83869 0.92933 0.04052 3.94398 1370.6301

CatBoost 0.99896 665.76746 25.80247 14.65029 0.99896 0.004 0.40035 128.18601

XGBoost 0.99844 998.57142 31.60018 18.35327 0.99845 0.00485 0.48388 171.73657

MLP + LR 0.99860 894.58980 29.90969 20.14475 0.99860 0.00527 0.52620 109.22297

GRU 0.99901 631.57643 25.13118 16.58329 0.99915 0.00443 0.44334 114.03687

LSTM + LR 0.99884 740.51274 27.21236 17.0143 0.99885 0.00456 0.456 177.3122

Autoencoders + LR 0.99853 940.02177 30.65977 18.22995 0.99853 0.00508 0.5083 198.1172

Table 6.  Polynomial and fourier expansion inspired augmentation results on all the predictive Models.
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Overall, Polynomial and Fourier Expansion inspired augmentation (A1) emerged as the most effective 
strategy, offering notable improvements in accuracy and error reduction compared to Autoencoder-based 
augmentation (A2).

Optimization
Following augmentation, optimization was conducted using Particle Swarm Optimization (PSO) and Grey 
Wolf Optimization (GWO), with the Polynomial and Fourier Expansion-inspired augmentation selected due to 
superior performance over autoencoder-based methods. This section presents the impact of these optimization 
algorithms on model performance, with detailed results in Tables 5, 8 and 9 and Appendix Supplementary Tables 
8–10.

PSO and GWO led to consistent improvements across error metrics (MSE, RMSE) and R² scores, particularly 
benefiting ensemble and tree-based models. Due to the high computational cost, only the Multi-Layer Perceptron 
(MLP) stacked with Linear Regression was optimized among deep learning models, focusing on hidden layer 
neurons, activation functions, and regularization parameters.

Particle swarm optimization analysis
Particle Swarm Optimization (PSO) demonstrated its effectiveness in significantly improving the predictive 
accuracy of the models, as evident in Table 5 and further detailed in Supplementary Table 8 of Appendix. The 
Decision Tree model’s MSE was reduced from 1926.21 in the baseline to 1625.8, while the RMSE decreased 
from 43.88 to 40.32. These improvements, though modest, indicate better handling of outliers and increased 
prediction stability.

The K-Nearest Neighbour (kNN) model stacked with Linear Regression showcased the most dramatic 
improvement under PSO. Its MSE decreased from 4792.83 to 990.88, and RMSE dropped from 69.23 to 31.47. 
This significant enhancement reflects PSO’s ability to refine hyperparameters effectively, improving the model’s 
sensitivity to underlying data patterns.

Among the advanced models, CatBoost and Gradient Boosting stacked with Linear Regression excelled with 
PSO optimization. CatBoost achieved an R² Score of 0.99923 and an MSE of 487.71, while Gradient Boosting 
stacked with Linear Regression reached an R² Score of 0.99905 and an MSE of 606.98. These results highlight the 
ability of PSO to complement ensemble models by fine-tuning their complex parameter spaces.

Grey Wolf optimization analysis
Grey Wolf Optimization (GWO) also proved to be an effective optimization technique, yielding comparable and, 
in some cases, slightly better results than PSO, as evident in Table 8 and further detailed in Supplementary Table 
9 of Appendix. The Decision Tree model maintained a similar level of improvement, with an MSE of 1625.8 and 
RMSE of 40.32, reflecting the stability of the optimization method.

ML Model OPT R2Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree O1 0.99746 1625.80801 40.32130 26.07216 0.99748 0.00700 0.69795 178.0

Random Forest + LR O1 0.99739 1672.00258 40.89012 26.92892 0.99742 0.00709 0.70782 148.81463

kNN + LR O1 0.99845 990.88814 31.47837 19.85222 0.99845 0.00527 0.52737 114.21565

LightGBM O2 0.98978 6549.0062 80.92593 28.11171 0.98978 0.00843 0.81587 1068.38786

Gradient Boosting + LR O1 0.99905 606.98975 24.63716 14.75201 0.99905 0.00393 0.39259 165.37062

AdaBoost + LR O1 0.95093 31450.402 177.34261 143.74684 0.95112 0.03815 3.80505 518.75648

CatBoost O1 0.99923 487.71781 22.08433 13.33275 0.99924 0.00351 0.35084 93.33715

XGBoost O2 0.99893 682.15078 26.11801 15.35519 0.99894 0.00404 0.40454 124.02148

MLP + LR O2 0.99927 466.06792 21.58860 13.14148 0.99927 0.00355 0.35490 104.24291

Table 9.  Final optimization result on all the predictive Models.

 

Final Models R2  Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree 0.99746 1625.80801 40.32130 26.07216 0.99748 0.00700 0.69795 178.00000

Random Forest + LR 0.99739 1672.00258 40.89012 26.92892 0.99742 0.00709 0.70782 148.81463

kNN + LR 0.99845 990.88814 31.47837 19.85222 0.99845 0.00527 0.52737 114.21565

LightGBM 0.98978 6549.0062 80.92593 28.11171 0.98978 0.00843 0.81587 1068.38786

Gradient Boosting + LR 0.99902 626.21541 25.02429 15.06049 0.99902 0.00400 0.39935 159.74076

AdaBoost + LR 0.95092 31455.399 177.35670 143.39257 0.95112 0.03798 3.78873 535.84895

CatBoost 0.99920 509.40400 22.56998 13.59114 0.99920 0.00358 0.35762 101.05405

XGBoost 0.99893 682.15078 26.11801 15.35519 0.99894 0.00404 0.40454 124.02148

MLP + LR 0.99927 466.06792 21.58860 13.14148 0.99927 0.00355 0.35490 104.24291

Table 8.  Grey Wolf optimization results on machine learning Models.
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The LightGBM model demonstrated notable gains under GWO, with its MSE reduced from 29386.43 in 
the baseline to 6549.0062. However, while the improvement in error metrics was substantial, the Max Error 
remained relatively high, suggesting limitations in addressing extreme outliers.

GWO also showcased its strengths with neural network-based models such as Multilayer Perceptron (MLP) 
stacked with Linear Regression. The R² Score of this model reached 0.99927 with an MSE of 466.06, representing 
slight but meaningful improvements over PSO. These results affirm GWO’s ability to explore hyperparameter 
configurations effectively, particularly in high-dimensional parameter spaces.

Overall, both optimization techniques improved the models’ predictive capabilities, with GWO slightly 
outperforming PSO in certain instances. The choice between these methods depends on the specific requirements 
of the task, such as computational efficiency and the complexity of the model’s parameter space.

Comparative analysis of predictive models with optimal optimization techniques
A comparative analysis of Particle Swarm Optimization (O1) and Grey Wolf Optimization (O2) across models 
is presented in Table  9, with further details in Appendix Supplementary Table 10. Both methods enhanced 
predictive accuracy, though their effectiveness varied with model complexity.

O1 performed well with traditional and ensemble models. The Decision Tree model achieved an MSE of 
1625.81 with an R² of 0.99746, and Random Forest with Linear Regression also showed consistent improvement. 
CatBoost, optimized with O1, recorded one of the best results with an MSE of 487.71 and the lowest Max Error 
of 93.33, demonstrating O1’s efficiency in tuning simpler architectures.

In contrast, O2 was more effective for complex models. The MLP stacked with Linear Regression achieved 
the highest R² of 0.99927 and the lowest RMSE of 21.59. LightGBM showed a substantial MSE reduction 
from 29386.43 to 6549.01 under O2, though the Max Error remained high. XGBoost also benefited from O2, 
reinforcing its suitability for models with extensive parameter spaces.

In summary, O1 is more effective for traditional and ensemble models, while O2 offers better results for deep 
or complex architectures.

Overall results analysis
This section provides a comprehensive discussion of the overall results, including a detailed analysis of the 
performance of machine learning and deep learning models with enhanced configurations. The two subsections, 
4.5.1 and 4.5.2, examine the performance improvements resulting from augmentation and optimization 
techniques and compare the baseline implementation to enhanced configurations.

Performance analysis of machine learning and deep learning models with enhanced configurations
The application of augmentation and optimization techniques, as summarized above, significantly improved the 
predictive performance of the models. Table 10 presents the results of the machine learning and deep learning 
models after incorporating these enhancements. A detailed study of this is provided in Supplementary Table 11 
of the Appendix.

Notably, the models demonstrated substantial improvements in predictive accuracy and error minimization. 
For example, Gradient Boosting stacked with Linear Regression, CatBoost, and MLP stacked with Linear 
Regression achieved near-perfect R² Scores, reflecting their ability to effectively capture complex relationships 
in the dataset. Among the deep learning models, GRU and LSTM (stacked with LR) also performed well, 
demonstrating their suitability for handling temporal and sequential data.

Comparative analysis of baseline implementation versus enhanced configurations of Top-Performing models
The performance analysis in Table 10 identified the five best-performing models from the final implementation 
with enhanced configurations. These models include Gradient Boosting stacked with Linear Regression, CatBoost, 
XGBoost, MLP stacked with Linear Regression, and GRU. To further assess the impact of augmentation and 
optimization techniques, Table 11 presents the baseline results of these models in their direct implementation 
(without augmentation or optimization), while Table 12 provides their enhanced implementation results.

Final Models R2  Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Decision Tree 0.99746 1625.80801 40.32130 26.07216 0.99748 0.00700 0.69795 178.0

Random Forest + LR 0.99739 1672.00258 40.89012 26.92892 0.99742 0.00709 0.70782 148.81463

kNN + LR 0.99845 990.88814 31.47837 19.85222 0.99845 0.00527 0.52737 114.21565

LightGBM 0.98978 6549.0062 80.92593 28.11171 0.98978 0.00843 0.81587 1068.38786

Gradient Boosting + LR 0.99905 606.98975 24.63716 14.75201 0.99905 0.00393 0.39259 165.37062

AdaBoost + LR 0.95093 31450.402 177.34261 143.74684 0.95112 0.03815 3.80505 518.75648

CatBoost 0.99923 487.71781 22.08433 13.33275 0.99924 0.00351 0.35084 93.33715

XGBoost 0.99893 682.15078 26.11801 15.35519 0.99894 0.00404 0.40454 124.02148

MLP + LR 0.99927 466.06792 21.58860 13.14148 0.99927 0.00355 0.35490 104.24291

GRU 0.99901 631.57643 25.13118 16.58329 0.99915 0.00443 0.44334 114.03687

LSTM + LR 0.99884 740.51274 27.21236 17.0143 0.99885 0.00456 0.456 177.3122

Autoencoders + LR 0.99853 940.02177 30.65977 18.22995 0.99853 0.00508 0.5083 198.1172

Table 10.  Performance results of machine learning and deep learning models with enhanced Configurations.
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In their baseline configurations (Table 11), these models displayed strong predictive capabilities. For instance, 
CatBoost and XGBoost achieved high R² Scores of 0.99876 and 0.99893, respectively, while Gradient Boosting 
stacked with Linear Regression exhibited competitive performance with an RMSE of 58.22. However, due to the 
absence of augmentation and optimization techniques, error metric such as MSE were relatively higher.

In contrast, the enhanced implementations (Table  12) demonstrated substantial improvements across all 
metrics. Gradient Boosting stacked with Linear Regression saw its RMSE drop from 58.22 in the baseline to 
24.63 in the enhanced configuration, coupled with a near-perfect R² Score of 0.99905. Similarly, CatBoost 
showed minor gains, achieving an RMSE reduction from 28.12 to 22.08 and an R² Score increase from 0.99876 
to 0.99923. MLP stacked with Linear Regression also benefitted, with its RMSE decreasing from 37.02 to 21.58 
and MAE reducing from 21.2 to 13.14. The GRU model, also exhibited an improvement, achieving a higher R² 
Score and lower error metrics in its enhanced configuration.

While the baseline configurations of the selected models already demonstrated robust performance, the 
enhancements achieved through augmentation and optimization resulted in significantly better accuracy, 
lower error metrics, and greater generalization. These findings reaffirm the value of incorporating advanced 
methodologies to optimize machine learning and deep learning models for real-world applications.

Visual insights into the performance of enhanced models for specific heat capacity prediction
The visual evaluation of the optimally enhanced top 5 models offers critical insights into their predictive 
performance for specific heat capacity under diverse input conditions. Figure  12 presents the Actual versus 
Predicted plots, where a close alignment of data points along the 45-degree diagonal line is evident for all five 
models. This strong adherence confirms high predictive accuracy. Notably, this alignment is consistent across 
the entire range of specific heat capacity values, from the lowest to the highest, demonstrating that the models 
are robust and generalize well rather than just modeling the mean. Figure 13 compares the distribution of actual 
and predicted values. The plots demonstrate that the enhanced models closely replicate the actual multimodal 
distribution curves of the dataset, which includes a primary peak as well as a distinct secondary cluster at lower 
specific heat values. This indicates a strong generalization capability, as the models have successfully captured the 
underlying data’s complex structure, not just its central tendency. The residual analysis in Fig. 14 provides further 
validation of model reliability. For all top models, residuals are predominantly centred around zero and appear 

Fig. 12.  Actual vs. Predicted Specific Heat Prediction Line Graph for the Top Five Enhanced Models.

 

Final Models R2 Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Gradient Boosting + LR 0.99905 606.98975 24.63716 14.75201 0.99905 0.00393 0.39259 165.37062

CatBoost 0.99923 487.71781 22.08433 13.33275 0.99924 0.00351 0.35084 93.33715

XGBoost 0.99893 682.15078 26.11801 15.35519 0.99894 0.00404 0.40454 124.02148

MLP + LR 0.99927 466.06792 21.58860 13.14148 0.99927 0.00355 0.35490 104.24291

GRU 0.99901 631.57643 25.13118 16.58329 0.99915 0.00443 0.44334 114.03687

Table 12.  Performance results of the top 5 directly enhanced predictive Models.

 

Final Models R2 Score MSE RMSE MAE EVS MAPE SMAPE Max Error

Gradient Boosting + LR 0.99471 3389.89577 58.22281 42.34641 0.99471 0.01175 1.17329 340.01416

CatBoost 0.99876 791.07331 28.12602 16.99067 0.99876 0.00458 0.45613 182.87230

XGBoost 0.99893 681.92540 26.11370 16.95128 0.99893 0.00455 0.45442 121.06347

MLP + LR 0.99786 1370.70324 37.02300 21.20976 0.99786 0.00569 0.57347 331.81693

GRU 0.99826 1113.18563 33.36444 22.83463 0.99842 0.00596 0.59937 174.52637

Table 11.  Performance results of the top 5 directly implemented predictive Models.
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randomly scattered, which suggests low bias and a uniform error distribution (homoscedasticity). The original 
observation of occasional outliers, particularly for CatBoost and MLP stacked with Linear Regression at higher 
specific heat capacity values, is also confirmed. These non-systematic errors likely correspond to more complex 
or rare data points within the dataset that are inherently more difficult to predict. Additional evaluation metrics 
are visualized in Figs. 15 and 16, and 17. The R² scores in Fig. 15 visually highlight the near-perfect fit for all the 
best-performing models, reinforcing the qualitative assessment from Fig. 12. Figures 16 and 17, which plot the 
various error metrics, allow for a more granular comparison. They visually illustrate the consistently low errors 
(both percentage and absolute) across the models. While all models perform well, these plots also reveal the 
subtle but consistent advantages of certain models, such as CatBoost and MLP stacked with Linear Regression, 
which show visibly lower error bars. Collectively, these visual and quantitative analyses confirm the effectiveness 
of the proposed enhancements in improving model performance, high fidelity, and robustness.

Computational performance analysis of top enhanced models
Table  13 summarizes the computational performance of the top five models based on prediction accuracy, 
including key metrics such as training time, testing time, average inference time, and model size.

Among the top models, Gradient Boosting stacked with Linear Regression demonstrates efficient training 
(1.23 s) but has the largest model size (1,123.798 KB). CatBoost is fast to train (0.528 s) and has a relatively small 
model size (482.009 KB). XGBoost has the fastest training time (0.2 s), though it has a slightly larger model 
size (638.161 KB). In comparison, MLP stacked with Linear Regression requires longer training time (20.44 s) 
but has a moderate model size (482.428 KB). GRU, while having the longest training time (1643.39 s), has the 
smallest model size (317.670 KB) but higher testing time (0.62 s).

Overall, CatBoost and XGBoost are the most computationally efficient due to their smaller training times 
and moderate sizes, while MLP stacked with Linear Regression and GRU show higher computational demands.

Comprehensive analysis of specific heat predictions
The top five enhanced models—XGBoost, CatBoost, Gradient Boosting stacked with Linear Regression, MLP 
stacked with Linear Regression, and GRU—exhibit high accuracy in predicting specific heat capacity values 
across various nanofluids. Figure 18 presents the overall Actual versus Predicted plot, where data points closely 
align with the 45-degree line, indicating minimal deviation and high predictive fidelity. Supplementary Fig. 4 
in the Appendix further compares the predicted and experimental values for each nanofluid, offering a detailed 
model-wise performance view and analysis.

Supplementary Fig. 5 in the Appendix illustrates the effect of temperature on predicted specific heat capacity 
across different nanofluids. While the Supplementary Fig.  6 in Appendix illustrates the effect of volume 
concentration on predicted specific heat capacity across different nanofluids.

Fig. 14.  Residual vs. Fitted Prediction Analysis for the Top Five Enhanced Models.

 

Fig. 13.  Showing Specific Heat Distribution for the Top Five Enhanced Models.
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Fig. 16.  MAPE and SMAPE Metrics for the Top Five Enhanced Models.

 

Fig. 15.  R2 Scores for the Top Five Enhanced Models.
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Fig. 18.  Actual vs. Predicted Specific Heat for the Top 5 Enhanced Models.

 

Final Models Training Time Testing Time Avg. Inference Model Size (KB)

Gradient Boosting + LR 1.23520 0.00001 0.00001 1,123.798

CatBoost 0.52800 0.00099 0.00001 482.009

XGBoost 0.20593 0.00199 0.00001 638.161

MLP + LR 20.44244 0.00099 0.00001 482.428

GRU 1643.39918 0.62728 0.00247 317.670

Table 13.  Computational performance metrics of top 5 Models.

 

Fig. 17.  RMSE and MAE for the Top Five Enhanced Models.
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Although a direct numerical comparison with existing literature would be desirable, it was not feasible in this 
study due to the use of a distinct dataset with different experimental parameters, nanoparticle concentrations, 
and operating conditions. The studies reported in the literature vary significantly in terms of data sources, 
preprocessing methods, and model input variables, which makes one-to-one metric comparison unreliable. 
However, a qualitative assessment indicates that the present model exhibits consistent trends with previous 
findings—specifically, the predicted thermal behavior and sensitivity patterns align with the general relationships 
reported in earlier works. This confirms that the developed framework produces physically consistent and robust 
predictions, even under differing dataset conditions.

Conclusion
This study successfully demonstrated the application of machine learning and deep learning models for accurately 
predicting the specific heat capacity of nanofluids. By leveraging twelve ML and DL models, along with stacking 
approaches and advanced optimization techniques, the study achieved highly precise predictions, with the 
MLP + Linear Regression model emerging as the top performer (R² = 0.99927, MSE = 406.06, RMSE = 21.58). 
Among standalone models, XGBoost and CatBoost exhibited strong performance, highlighting the effectiveness 
of gradient boosting techniques in capturing nonlinear relationships within nanofluid datasets. The integration 
of data augmentation techniques, specifically Polynomial and Fourier Expansions inspired and Autoencoders-
based, provided mixed results. While Polynomial and Fourier Expansion inspired augmentation significantly 
improved model accuracy, Autoencoder-based augmentation showed mixed results, with certain models 
experiencing performance degradation. This suggests that augmentation strategies should be carefully selected 
based on the specific characteristics of the model architecture and dataset. Furthermore, the use of Particle 
Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) for hyperparameter tuning significantly 
enhanced model performance. PSO optimization improved the CatBoost model to an R² of 0.99923 with an 
MSE of 487.71, while GWO further optimized the MLP + LR model to achieve an R² of 0.99927 with an MSE 
of 466.06. The LightGBM model saw one of the most dramatic improvements under GWO, reducing its MSE 
from 29386.43 to 6549.006 and RMSE from 171.42 to 80.92. These results underscore the effectiveness of nature-
inspired metaheuristic algorithms in fine-tuning complex models. Overall, the findings of this study highlight 
the potential of advanced ML and DL techniques in modeling the thermophysical properties of nanofluids 
with high precision. The hybrid approach combining stacking, augmentation, and metaheuristic optimization 
proved highly effective in refining predictive capabilities. Future research can explore the incorporation of 
more sophisticated deep learning architectures, alternative augmentation strategies, and hybrid optimization 
frameworks to further enhance predictive accuracy. Additionally, applying this methodology to other 
thermophysical properties of nanofluids, such as thermal conductivity and viscosity, could broaden its industrial 
and engineering applications.

Data availability
The dataset generated and analyzed during this study is publicly available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​A​I​4​A​-​​l​a​b​/​N​​a​n​o​f​
l​u​​i​d​-​S​p​e​​c​i​f​i​c​-​​H​e​a​t​-​P​r​e​d​i​c​t​i​o​n​-​D​a​t​a​s​e​t. The code is publicly available on GitHub by accessing the following link: ​
h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​A​I​4​A​-​​l​a​b​/​A​​d​v​a​n​c​e​​d​-​N​a​n​o​​f​l​u​i​d​-​​H​e​a​t​-​​C​a​p​a​c​i​​t​y​-​P​r​e​​d​i​c​t​i​o​​n​_​H​y​b​r​i​d​-​M​L​-​D​L.

Received: 12 February 2025; Accepted: 10 November 2025

References
	 1.	 Çolak, A. B., Yıldız, O., Bayrak, M. & Tezekici, B. S. Experimental study for predicting the specific heat of water- based Cu-Al2O3 

hybrid nanofluid using artificial neural network and proposing new correlation. Int. J. Energy Res. 44 (9), 7198–7215 (2020).
	 2.	 Wei, H., Zhao, S., Rong, Q. & Bao, H. Predicting the effective thermal conductivities of composite materials and porous media by 

machine learning methods. Int. J. Heat Mass Transf. 127, 908–916 (2018).
	 3.	 Mohanraj, M., Jayaraj, S. & Muraleedharan, C. Applications of artificial neural networks for thermal analysis of heat exchangers–a 

review. Int. J. Therm. Sci. 90, 150–172 (2015).
	 4.	 Chen, K., Hu, J., Zhang, Y., Yu, Z. & He, J. Fault location in power distribution systems via deep graph convolutional networks. 

IEEE J. Sel. Areas Commun. 38 (1), 119–131 (2019).
	 5.	 Khan, M. F. I. et al. High-Fidelity Reconstruction of 3D Temperature Fields Using Attention-Augmented CNN Autoencoders with 

Optimized Latent Space (IEEE Access, 2024).
	 6.	 Jamei, M. & Said, Z. Recent Advances in the Prediction of Thermophysical Properties of Nanofluids Using Artificial Intelligence 203–

232 (Hybrid Nanofluids, 2022).
	 7.	 Basu, A., Saha, A., Banerjee, S., Roy, P. C. & Kundu, B. A review of artificial intelligence methods in predicting thermophysical 

properties of nanofluids for heat transfer applications. Energies 17 (6), 1351 (2024).
	 8.	 Maleki, A., Haghighi, A. & Mahariq, I. Machine learning-based approaches for modeling thermophysical properties of hybrid 

nanofluids: A comprehensive review. J. Mol. Liq. 322, 114843 (2021).
	 9.	 Montgomery, D. C., Peck, E. A. & Vining, G. G. Introduction To Linear Regression Analysis (Wiley, 2021).
	10.	 Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349 (6245), 255–260 (2015).
	11.	 Alarifi, I. M., Nguyen, H. M., Bakhtiyari, N., Asadi, A. & A., & Feasibility of ANFIS-PSO and ANFIS-GA models in predicting 

thermophysical properties of Al2O3-MWCNT/oil hybrid nanofluid. Materials 12 (21), 3628 (2019).
	12.	 Zhou, H. et al. Combination of group method of data handling neural network with multi-objective Gray Wolf optimizer to predict 

the viscosity of MWCNT-TiO2-oil SAE50 nanofluid. Case Stud. Therm. Eng. 64, 105541 (2024).
	13.	 Yang, X. S. Metaheuristic Optim. Scholarpedia, 6(8), 11472. (2011).
	14.	 Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 

295–316 (2020).
	15.	 Said, Z., Sharma, P., Elavarasan, R. M., Tiwari, A. K. & Rathod, M. K. Exploring the specific heat capacity of water-based hybrid 

nanofluids for solar energy applications: A comparative evaluation of modern ensemble machine learning techniques. J. Energy 
Storage. 54, 105230 (2022).

Scientific Reports |        (2025) 15:45705 24| https://doi.org/10.1038/s41598-025-28268-z

www.nature.com/scientificreports/

https://github.com/AI4A-lab/Nanofluid-Specific-Heat-Prediction-Dataset
https://github.com/AI4A-lab/Nanofluid-Specific-Heat-Prediction-Dataset
https://github.com/AI4A-lab/Advanced-Nanofluid-Heat-Capacity-Prediction_Hybrid-ML-DL
https://github.com/AI4A-lab/Advanced-Nanofluid-Heat-Capacity-Prediction_Hybrid-ML-DL
http://www.nature.com/scientificreports


	16.	 Alade, I. O., Abd Rahman, M. A. & Saleh, T. A. Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using 
support vector regression model optimized with bayesian algorithm. Sol. Energy. 183, 74–82 (2019).

	17.	 Oh, Y. & Guo, Z. Applicability of machine learning techniques in predicting specific heat capacity of complex nanofluids. Heat. 
Transf. Res., 55(3), 39–60 (2024).

	18.	 Deymi, O. et al. Employing ensemble learning techniques for modeling nanofluids’ specific heat capacity. Int. Commun. Heat Mass 
Transfer. 143, 106684 (2023).

	19.	 Deymi, O. et al. Toward empirical correlations for estimating the specific heat capacity of nanofluids utilizing GRG, GP, GEP, and 
GMDH. Sci. Rep. 13 (1), 20763 (2023).

	20.	 Deymi, O. et al. On the evaluation of mono-nanofluids’ density using a radial basis function neural network optimized by 
evolutionary algorithms. Therm. Sci. Eng. Progress. 53, 102750 (2024).

	21.	 Deymi, O. et al. Innovative mathematical correlations for estimating mono-nanofluids’ density: insights from white-box machine 
learning. Results Phys. 73, 108248 (2025).

	22.	 Esfe, M. H., Motallebi, S. M. & Toghraie, D. Investigation the effects of different nanoparticles on density and specific heat: 
prediction using MLP artificial neural network and response surface methodology. Colloids Surf., A. 645, 128808 (2022).

	23.	 Çolak, A. B. Developing optimal artificial neural network (ANN) to predict the specific heat of water-based yttrium oxide (Y 2 O 
3) nanofluid according to the experimental data and proposing new correlation. Heat. Transf. Res., 51(17), 1565–1586  (2020).

	24.	 Çolak, A. B. Experimental analysis with specific heat of water-based zirconium oxide nanofluid on the effect of training algorithm 
on predictive performance of artificial neural network. Heat. Transf. Res., 52(7), 67–93 (2021).

	25.	 Gupta, A. K. & Mathur, P. Predicting Specific Heat Capacity of Nanofluids Using Artificial Neural Network for Al2O3 particle 
with EG/Water based solution. In 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics 
(EECSI) pp. 295–299 (IEEE, 2023).

	26.	 Mishra, S. R., Pattnaik, P. K., Baithalu, R., Ratha, P. K. & Panda, S. Predicting heat transfer performance in transient flow of 
CNT nanomaterials with thermal radiation past a heated spinning sphere using an artificial neural network: A machine learning 
approach. Partial Differ. Equations Appl. Math. 12, 100936 (2024).

	27.	 Boldoo, T., Lee, M., Kang, Y. T. & Cho, H. Development of artificial neural network model for predicting dynamic viscosity and 
specific heat of MWCNT nanoparticle-enhanced ionic liquids with different [HMIM]-cation base agents. J. Mol. Liq. 341, 117356 
(2021).

	28.	 Chaudhary, L. et al. Machine learning based prediction of specific heat capacity for half-Heusler compounds. AIP Adv., 15(1), 
015306 https://doi.org/10.1063/5.0239714 (2025).

	29.	 Liu, X., Gao, J., Chen, Y., Fu, Y. & Lei, Y. Machine learning-assisted modeling study on the density and heat capacity of ionic liquid-
organic solvent binary systems. J. Mol. Liq. 390, 122972 (2023).

	30.	 Sajjad, U. et al. A deep learning method for estimating the boiling heat transfer coefficient of porous surfaces. J. Therm. Anal. 
Calorim. 145, 1911–1923 (2021).

	31.	 Albdour, S. A., Addad, Y., Rabbani, S. & Afgan, I. Machine learning-driven approach for predicting the condensation heat transfer 
coefficient (HTC) in the presence of non-condensable gases. Int. J. Heat Fluid Flow. 106, 109330 (2024).

	32.	 Elshehabey, H. M., Aly, A. M., Lee, S. W. & Çolak, A. B. Integrating artificial intelligence with numerical simulations of Cattaneo-
Christov heat flux on thermosolutal convection of nano-enhanced phase change materials in Bézier-annulus. J. Energy Storage. 82, 
110496 (2024).

	33.	 Knoerzer, K. Leveraging Artificial Intelligence for Simplified Adiabatic Compression Heating Prediction: Comparing the Use 
of Artificial Neural Networks with Conventional Numerical Approach Vol. 91, 103546 (Innovative Food Science & Emerging 
Technologies, 2024).

	34.	 Adun, H., Wole-Osho, I., Okonkwo, E. C., Kavaz, D. & Dagbasi, M. A critical review of specific heat capacity of hybrid nanofluids 
for thermal energy applications. J. Mol. Liq. 340, 116890 (2021).

	35.	 Çolak, A. B., Yildiz, O., Bayrak, M., Celen, A. & Wongwises, S. Experimental study on the specific heat capacity measurement of 
water-based al2o3-cu hybrid nanofluid by using differential thermal analysis method. Curr. Nanosci. 16 (6), 912–928 (2020).

	36.	 Alade, I. O., Abd Rahman, M. A. & Saleh, T. A. Modeling and Prediction of the Specific Heat Capacity of Al2 O3/water Nanofluids 
Using Hybrid Genetic algorithm/support Vector Regression Model Vol. 17, 103–111 (Nano-Structures & Nano-Objects, 2019).

	37.	 Alade, I. O., Oyehan, T. A., Popoola, I. K., Olatunji, S. O. & Bagudu, A. Modeling thermal conductivity enhancement of metal and 
metallic oxide nanofluids using support vector regression. Adv. Powder Technol. 29 (1), 157–167 (2018).

	38.	 Mathur, P., Gupta, A. K., Panwar, D. & Sharma, T. K. Soft computing approaches for prediction of specific heat capacity of hybrid 
nanofluids. Expert Syst., 41(1), e13471 https://doi.org/10.1111/exsy.13471 (2024).

	39.	 Sheikhpour, M., Arabi, M., Kasaeian, A., Rokn Rabei, A. & Taherian, Z. Role of nanofluids in drug delivery and biomedical 
technology: Methods and applications. Nanotechnol. Sci. Appl. 47–59 (2020).

	40.	 Rodríguez, P., Bautista, M. A., Gonzalez, J. & Escalera, S. Beyond one-hot encoding: lower dimensional target embedding. Image 
Vis. Comput. 75, 21–31 (2018).

	41.	 Ali, P. J. M., Faraj, R. H., Koya, E., Ali, P. J. M. & Faraj, R. H. Data normalization and standardization: a technical report. Mach. 
Learn. Tech. Rep. 1 (1), 1–6 (2014).

	42.	 Ying, X. An overview of overfitting and its solutions. In Journal of physics: Conference series Vol. 1168, p. 022022 (IOP Publishing, 
2019), February.

	43.	 Xu, Q. et al. Fourier-based augmentation with applications to domain generalization. Pattern Recogn. 139, 109474 (2023).
	44.	 Farnebäck, G. Polynomial expansion for orientation and motion estimation (Doctoral dissertation, Linköping University 

Electronic Press, 2002).
	45.	 Shu, C. & Chew, Y. T. Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems. 

Commun. Numer. Methods Eng. 13 (8), 643–653 (1997).
	46.	 Bakiskan, C., Cekic, M., Sezer, A. D. & Madhow, U. A Neuro-Inspired Autoencoding Defense Against Adversarial Perturbations. 

arXiv preprint arXiv:2011.10867 (2020).
	47.	 Fister, I. Jr, Yang, X. S., Fister, I., Brest, J. & Fister, D. A brief review of nature-inspired algorithms for optimization. ArXiv Preprint 

arXiv :13074186 arXiv:1307.4186 (2013).
	48.	 Babalola, A. E., Ojokoh, B. A. & Odili, J. B. A review of population-based optimization algorithms. In 2020 International Conference 

in Mathematics, Computer Engineering and Computer Science (ICMCECS) pp. 1–7 (IEEE, 2020).
	49.	 Bonyadi, M. R., Michalewicz, Z. & Li, X. An analysis of the velocity updating rule of the particle swarm optimization algorithm. J. 

Heuristics. 20, 417–452 (2014).
	50.	 Faris, H., Aljarah, I., Al-Betar, M. A. & Mirjalili, S. Grey Wolf optimizer: a review of recent variants and applications. Neural 

Comput. Appl. 30, 413–435 (2018).
	51.	 Rojas, R. & Rojas, R. The backpropagation algorithm. Neural networks: a systematic introduction. 149–182. (1996).
	52.	 De Ville, B. Decision trees. Wiley Interdisciplinary Reviews: Comput. Stat. 5 (6), 448–455 (2013).
	53.	 Bertsimas, D., Dunn, J. & Paschalidis, A. Regression and classification using optimal decision trees. In 2017 IEEE MIT undergraduate 

research technology conference (URTC) pp. 1–4 (IEEE, 2017).
	54.	 Rigatti, S. J. Random forest. J. Insur. Med. 47 (1), 31–39 (2017).
	55.	 Song, Y., Liang, J., Lu, J. & Zhao, X. An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 

251, 26–34 (2017).

Scientific Reports |        (2025) 15:45705 25| https://doi.org/10.1038/s41598-025-28268-z

www.nature.com/scientificreports/

https://doi.org/10.1063/5.0239714
https://doi.org/10.1111/exsy.13471
https://arxiv.org/abs/2011.10867
https://arxiv.org/abs/1307.4186
http://www.nature.com/scientificreports


	56.	 Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 
1937–1967 (2021).

	57.	 Sugiyama, M. & Ogawa, H. Optimal design of regularization term and regularization parameter by subspace information criterion. 
Neural Netw. 15 (3), 349–361 (2002).

	58.	 Prettenhofer, P. & Louppe, G. Gradient boosted regression trees in scikit-learn. In PyData 2014 (2014).
	59.	 Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased boosting with categorical features. 

Adv. Neural. Inf. Process. Syst., 31. ​h​t​t​p​s​:​​​/​​/​p​r​o​c​e​e​d​i​n​g​​s​.​n​e​u​​r​i​p​​s​.​​​c​c​/​p​a​p​​​e​r​_​f​i​​​l​e​s​/​p​​a​​p​e​r​/​​​2​0​1​8​/​​​f​i​l​e​/​1​​4​4​9​1​b​7​​5​6​b​3​a​​5​1​d​a​a​c​​4​1​c​2​4​8​​6​3​2​​8​5​​5​
4​9​-​​P​a​p​e​r​.​p​d​f eds. (Bengio, S. and Wallach, H. and Larochelle, H. and Grauman K. and Cesa-Bianchi, N. and Garnett, R.) (2018).

	60.	 Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference 
on knowledge discovery and data mining pp. 785–794 (2016).

	61.	 Hancock, J. T. & Khoshgoftaar, T. M. CatBoost for big data: an interdisciplinary review. J. Big Data. 7 (1), 94 (2020).
	62.	 Dubey, S. R., Singh, S. K. & Chaudhuri, B. B. Activation functions in deep learning: A comprehensive survey and benchmark. 

Neurocomputing 503, 92–108 (2022).
	63.	 Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D: 

Nonlinear Phenom. 404, 132306 (2020).
	64.	 Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Gated feedback recurrent neural networks. In International conference on machine 

learning pp. 2067–2075 (PMLR, 2015).
	65.	 Das, K., Jiang, J. & Rao J. N. K. Mean squared error of empirical predictor. (2004).
	66.	 Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific model. Dev. Discuss. 7 (1), 

1525–1534 (2014).
	67.	 Angayarkanni, S. A., Sunny, V. & Philip, J. Effect of nanoparticle size, morphology and concentration on specific heat capacity and 

thermal conductivity of nanofluids. J. Nanofluids. 4 (3), 302–309 (2015).

Author contributions
All authors contributed equally to the research project and manuscript preparation. Priya Mathur: Data Cura-
tion, Supervision, Methodology, Investigation, Writing - Review & Editing. Amit Kumar Gupta: Conceptual-
ization, Methodology, Investigation, Visualization, Writing - Original Draft. Farhan Sheth: Conceptualization, 
Methodology, Investigation, Visualization, Writing - Original Draft. Hammad Shaikh: Methodology, Investiga-
tion, Writing - Review & Editing, Writing - Original Draft. Dheeraj Kumar: Methodology, Investigation, Writing 
- Review & Editing, Writing - Original Draft.

Funding
Open access funding provided by Manipal University Jaipur.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​2​8​2​6​8​-​z​​​​​.​​

Correspondence and requests for materials should be addressed to A.K.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:45705 26| https://doi.org/10.1038/s41598-025-28268-z

www.nature.com/scientificreports/

https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://doi.org/10.1038/s41598-025-28268-z
https://doi.org/10.1038/s41598-025-28268-z
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Comprehensive framework of machine learning and deep learning architectures with metaheuristic optimization for high-fidelity prediction of nanofluid specific heat capacity
	﻿﻿Methodology
	﻿Dataset description
	﻿Dataset preprocessing
	﻿Augmentation
	﻿Polynomial and fourier expansion inspired augmentation
	﻿Polynomial feature expansion
	﻿Fourier-Inspired expansion
	﻿Combining both expansions



	﻿Autoencoder based augmentation
	﻿Data augmentation with autoencoder

	﻿Optimization
	﻿Particle swarm optimization
	﻿Grey Wolf optimization

	﻿Models
	﻿Decision tree
	﻿Random forest
	﻿K-Nearest neighbor (kNN)
	﻿LightGBM
	﻿Gradient boosting
	﻿AdaBoost
	﻿XGBoost
	﻿CatBoost
	﻿Multi-Layer perceptron (MLP)
	﻿Long Short-Term memory (LSTM)
	﻿Gated recurrent unit (GRU)
	﻿Autoencoder

	﻿Performance metrics
	﻿﻿Results and discussion
	﻿Dataset analysis
	﻿Feature distribution
	﻿Analyzing specific heat capacity trends across nanofluid compositions


	﻿Baseline model performance analysis


