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Integrated estimation and control present an ongoing challenge for robotic systems. Because 
controllers depend on data derived from measured states and parameters, which are often subject to 
uncertainties and noise. The suitability of frameworks depends on the complexity of the task and the 
constraints of computational resources. They must strike a balance between computational efficiency 
for rapid responses while maintaining accuracy and robustness for safe and reliable missions. This 
study capitalizes on recent advancements in neuromorphic computing tools, especially spiking neural 
networks (SNNs), and their applications in robotic and dynamical systems. We present a learning-free 
framework featuring a recurrent network of leaky integrate-and-fire (LIF) neurons, designed to mimic 
a linear quadratic regulator (LQR) provided by a robust filtering strategy called extended modified 
sliding innovation filter (EMSIF). Thus, our proposed framework benefits from the robustness of EMSIF 
and the computational efficiency of SNN. The weight matrices of SNN are tailored to match the desired 
system model, eliminating the need for training. Moreover, the network leverages a biologically 
plausible firing rule akin to predictive coding. Furthermore, in the presence of various uncertainties, 
the SNN-LQR-EMSIF compared with non-spiking LQR-EMSIF, and the optimal strategy called linear 
quadratic Gaussian (LQG) based on extended Kalman filter. We evaluate their performance in a 
workbench problem and, next in the satellite rendezvous maneuver implement the Clohessy-Wiltshire 
(CW) model. Results demonstrated that the SNN-LQR-EMSIF achieves acceptable performance in 
terms of computational efficiency, robustness, and accuracy, positioning it as a promising approach for 
addressing the challenges of Integrated estimation and control in dynamic systems.
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As the design and implementation of robotic manipulators/systems undertaking diverse real-world tasks grow 
more ambitious, the importance of computational efficiency, reliability, and accuracy escalates. Currently, many 
of the implemented controllers rely heavily on the provision of accurate information about the system states and 
parameters, which is typically obtained through various types of sensors such as inertial measurement units 
(IMUs), GPS, LIDAR, and vision-based systems1. However, achieving such precision is often elusive due to the 
multifaceted uncertainties inherent to robotic systems. These uncertainties stem from environmental instabilities 
(e.g., lighting variations, terrain irregularities), sensor noise, latency, and hardware limitations. For instance, 
IMUs suffer from integration drift over time, GPS may become unreliable in urban canyons or indoors, and 
vision-based systems can fail under poor lighting or occlusion conditions. Additionally, system dynamics may 
include unmodeled behaviors or disturbances that are not fully captured in the sensing process. In many real-
world scenarios, it is impractical—if not impossible—to obtain full measurements of all state variables at every 
time step. These factors collectively contribute to data degradation, which in turn impacts the reliability and 
performance of the control system. Consequently, to utilize the ability of noise canceling, and estimating the 
unmeasured states/parameters the performing estimation concurrently with control becomes essential to ensure 
safe, robust, and accurate behavior in robotic systems2,3. From the other perspective, considering the constraints 
imposed by computing resources and energy consumption particularly for the complex transportation systems 
utilizing electric vehicles4, the development of concurrent estimation and control frameworks that excel in 
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computational efficiency, robustness, and accuracy becomes significantly important. Nowadays, the linear 
quadratic Gaussian (LQG) which is a popular and optimal framework for simultaneous estimation and control 
of linear dynamical systems, in its traditional algorithmic version which is implementable on traditional 
computers (Von Neumann computer architectures) has found widespread adoption across various domains 
such as robotic manipulators5, robot control6, robot path planning7, and satellite control8. However, in addition 
to the high energy consumption of the traditional computers for extensive problems, the LQG framework is not 
without its inherent limitations. The LQG framework is a linear quadratic regulator (LQR) that works based on 
the state feedback provided by the Kalman filter (KF)9. When confronted with uncertain dynamic models, its 
performance diminishes, and in the presence of external disturbances, it is not robust enough10. In such 
circumstances, the KF employed in conjunction with LQR control falls short of providing accurate information 
about system states/parameters. Consequently, the demonstrated limitations of the LQG underscore the pressing 
need for the development of a framework grounded in robust estimation principles. In addition to conventional 
estimation-control strategies such as LQG and observer-based methods, the literature includes various 
approaches for integrated estimation and control, including model predictive control (MPC)11, and machine 
learning-based strategies12. While these methods offer adaptability and performance benefits in certain contexts, 
they typically demand substantial computational resources and training time. So, benefiting, the advantages of 
neuromorphic computing, like highly parallel computing nature of spiking neural networks (SNN), that work 
with extremely low computational burden, and also they are implementable on neuromorphic computers13, In14, 
Slijkhuis et al., proposed an SNN-based framework for Integrated estimation and control, employing a 
combination of the Luenberger observer and LQR controller. They applied their method to scenarios involving 
a spring-mass-damper (SMD) system and a Cartpole system, evaluating its performance in terms of accuracy 
and similarity to its non-spiking counterpart. They also explored the robustness of their network in handling 
neuron silencing. While their results were promising, their framework had limitations, notably the need to 
design both controller and observer gains for each problem. Additionally, since they used the Luenberger 
observer, their framework inherited the observer limitations related to modeling uncertainties and noise 
canceling, which were not thoroughly assessed for robustness. Thus, based on the mentioned successful 
application of SNNs in the estimation and control and the works done in15–17, to address the mentioned 
limitations with observer-based approaches in previous works, here we propose a SNN-based concurrent 
estimation and control framework utilizing the SNN-based filtering strategies. To this aim, SNN-KF which was 
proposed in18 for optimal estimation of linear dynamical systems and its nonlinear version in19 has been 
considered. In addition to performing the optimal estimation, these filtering approaches eliminated the need for 
observer gain design, simplifying the process. Then, to enhance robustness against modeling uncertainties and 
environmental disturbances, a robust SNN-based estimation framework based on EMSIF was introduced. Thus, 
here we propose a robust framework, LQR-EMSIF, which integrates the LQR controller with the extended 
modified sliding innovation filter (EMSIF), a recently developed robust estimation technique18–20. The LQR-
EMSIF leverages the robustness of the EMSIF filter in processing raw data obtained from measurement systems. 
The EMSIF represents an evolution of the sliding innovation filter (SIF), which belongs to the family of variable 
structure filters (VSF)20, and also it can be considered as a new generation of smooth variable structure filter 
(SVSF)21. Importantly, unlike the KF family, which prioritizes frameworks founded on minimal estimation error, 
the VSF family of algorithms has been developed based on guaranteed stability in the presence of bounded 
modeling uncertainties and external disturbances22. Additionally, considering the recent advancements in 
neuromorphic computing tools, including spiking neural networks (SNN), and their applications in robotics 
control and estimation14,18, as well as the spike coding theories23, we present a pioneering approach. In this study, 
to introduce a framework that comprehensively addresses the aforementioned limitations, we translate the LQR-
EMSIF into a neuromorphic SNN-based framework, in which the firing rule derived from the predicted error of 
the network concerning the estimated state vector, constituting a manifestation of predictive coding23. This 
theory posits that the brain perpetually constructs and enhances a ‘mental model’ of its surrounding environment, 
serving the critical function of anticipating sensory input signals, which are subsequently compared with the 
actual sensory inputs received. As the concept of representation learning gains increasing prominence, predictive 
coding theory has found vibrant application and exploration within the realms of biologically inspired neural 
networks, such as SNN. The adoption of SNNs mitigates the computational efficiency challenges associated with 
this problem24. Owing to their minimal computational burden and inherent scalability, SNNs offer significant 
advantages over traditional non-spiking computing methods13. SNNs represent the third generation of neural 
networks, taking inspiration from the human brain, where neurons communicate using electrical pulses called 
spikes. SNNs leverage neural circuits composed of neurons and synapses, communicating via encoded data 
through spikes in an asynchronous fashion13,25–28. The asynchronous in spiking fashion characterized by event-
driven processing18, stands in contrast to traditional Artificial Neural Networks (ANNs)29–31, which operate 
synchronously or, in other words, are time-driven. Studies32 demonstrate that, for equivalent tasks, SNNs are 6 
to 8 times more energy efficient than ANNs with an acceptable trade-off in accuracy33. Moreover, the inherent 
scalability of SNNs enhances their reliability, particularly under the condition of neuron silencing, where neuron 
loss is compensated for by an increase in the spiking rate of remaining neurons25. Thus, to harness the advantage 
of SNNs for the simultaneous robust estimation and control, here, we integrate the methods proposed in prior 
studies18, and14 to develop the previously mentioned SNN-LQR-EMSIF framework, anticipating substantial 
advantages. Subsequently, we assess the performance of the proposed SNN-LQR-EMSIF framework through a 
series of evaluations. Initially, we apply it to a linear workbench problem, followed by its application to the 
intricate task of satellite rendezvous in circular orbit, a critical maneuver in space robotic applications such as 
on-orbit servicing and refueling34, we then compare the SNN-LQR-EMSIF with its non-spiking counterpart, 
LQR-EMSIF, and the standard LQG under various sources of uncertainty, including modeling uncertainty, 
measurement outliers, and neuron silencing, finally the proposed model has been compared with a learning-
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based neuromorphic model. For the proposed framework, our findings revealed an acceptable performance in 
terms of curacy, and robustness while it outperforms the traditional frameworks in terms of computational 
efficiency. While this study builds upon foundational elements introduced in our earlier works, it presents a 
novel and unified neuromorphic framework for simultaneous estimation and control using spiking neural 
networks (SNNs). Unlike our prior studies, which focused separately on just estimation18,19 or learning-based 
neuromorphic control15, the proposed method integrates a robust estimation strategy (EMSIF) with a linear 
quadratic regulator (LQR) into a unified SNN-based architecture. Notably, we considered a biologically plausible 
firing rule based on predictive coding, enabling spike-efficient behavior and controlled neural activity without 
requiring any training. This integration allows direct decoding of control signals from spike activity, eliminating 
the need for sequential estimation-control logic.

Primarily, the contributions in this study can be pointed as: (1) introduction of a robust SNN-based 
framework for Integrated estimation and control of dynamical systems, named SNN-LQR-EMSIF; (2) 
implementing a biologically plausible firing rule based on the concept of predictive coding concept, enhancing 
the biological relevance of our network and having control over the spike distribution in the network and prevent 
excessive spiking for a part of the network or a neuron; (3) comprehensive investigation on the performance 
of the proposed method in scenarios subjected to modeling uncertainties, measurement outliers, and neuron 
silencing along with analyzes on the sparsity in the spiking patterns to demonstrate computational efficiency; 
(4) application of the SNN-LQR-EMSIF to a real-world scenario involving Integrated estimation and control of 
satellite rendezvous, a novel application for this type of neuromorphic framework. Together, these contributions 
differentiate this work from prior literature and position it as a significant step forward in developing scalable, 
robust, and biologically inspired neuromorphic solutions for real-time robotic control applications.

The structure of this paper is as follows: Sect. “Theory” introduces the preliminaries, theoretical foundations, 
and the proposed framework developed to address the problem of integrated robust estimation and control in 
linear dynamical systems. Section “Numerical simulation” then presents the numerical simulations along with a 
discussion of the obtained results, and Sect. “Conclusion” concludes the study with closing remarks.

Theory
To establish the foundation for the proposed estimation and control strategy, we begin by formally defining the 
class of nonlinear systems under consideration, along with the associated uncertainties and control objectives. 
Thus, in this section, we provide essential preliminaries, followed by an outline of the study’s outcomes. The 
nonlinear dynamical system and measurement package considered in this study are defined by the following 
equations:

	 ẋ = f(x, u) + w� (1)

	 z = h(x) + d� (2)

Here, x ∈ Rnx  refers to the state vector, u ∈ Rnu  is the input vector, z ∈ Rnz  is the measurement vector. f(.) 
and h(.) refer the nonlinear dynamic and measurement model respectively. w and d represent the zero-mean 
Gaussian white noise with covariance matrices Q, and R, respectively. Figure 1 depicts the traditional block 
diagram of a Integrated estimation and control loop in conventional dynamical systems. This diagram reveals 
that both the estimator and controller employ sequential algorithms, resembling the logic of traditional von 
Neumann computer architectures.

Spiking neural network (SNN)
In this section, we present a brief overview of implementing an SNN, including its firing rule. To design a 
network composed of recurrent leaky integrate-and-fire (LIF) neurons capable of approximating the temporal 
variation of a parameter like x as expressed in Eq. (1), we need to implement the following equation14:

	 σ̇ = −λσ + DT (ẋ + λx) − DT Ds� (3)

Here, σ ∈ RN  refers to the neuron membrane potential vector, λ is a decay or leak term considered on the 
membrane potential of the neurons, D ∈ Rnx×N  is the random fixed decoding matrix containing the neurons’ 

Fig. 1.  Conventional block diagram of Integrated estimation and control loop in traditional dynamical 
systems.
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output kernel, and s ∈ RN  is the emitted spike population of the neurons in each time step. Further, according 
to spike coding network theories14,23, the introduced network of LIF neurons can reproduce the temporal 
variation of x under two assumptions. First, we should be able to estimate x from neural activity (filtered spike 
trains) using the following rule:

	 x̂ = Dr� (4)

Here,  x̂ is the estimated state, and r ∈ RN  represents the filtered spike trains, which have slower dynamics 
compared to s ∈ RN . The dynamics of the filtered spike trains are provided by:

	 ṙ = −λr + s� (5)

The second assumption states that the network seeks to minimize the cumulative discrepancy between the true 
state x and its estimated counterpart x̂. This optimization is performed by adjusting the spike timing rather 
than altering the output kernel values D. In other words, the network reduces the overall prediction error while 
managing computational efficiency through the regulation of spike occurrence. To this aim, the following cost 
function is minimized23:

	
J =

ˆ t

0
(∥x (τ) − x̂ (τ) ∥2

2 + ν∥r (τ) ∥1 + µ∥r (τ) ∥2
2)dτ � (6)

Here, ∥.∥2
2 represents the Euclidean norm, and ∥.∥1 indicates L1-norm. This firing rule ensures that each neuron 

emits a spike only when it contributes to reducing the predicted error, resembling a form of predictive coding23. 
Finally, along with obeying the mentioned rules, the neurons will emit spikes when their membrane potential 
reaches their specific thresholds. Thus, to ensure a biologically plausible spiking pattern, we define thresholds 
using the following expression:

	
Ti = DT

i Di + νλ + µλ2

2
� (7)

Here, Di is ith column of the matrix D, which represents ith neuron’s output kernel that reflects the change in 
the error due to a spike of ith neuron. The parameters ν and µ play critical roles in balancing computational 
efficiency and estimation accuracy within the network. The parameter ν acts as a sparsity regularizing agent. By 
reducing ν, the network is encouraged to generate fewer spikes, which in turn reduces the overall computational 
cost due to spike generation, making the system more energy-efficient and suitable for neuromorphic deployment. 
On the other hand, the parameter µ influences a quadratic penalty term that promotes an even distribution of 
spikes among the neurons. This helps prevent over-reliance on a small subset of neurons and supports a more 
robust and balanced network activity. Together, these parameters enable fine-tuning of the network behavior to 
achieve an acceptable trade-off between resource usage and functional performance. It is notable that proper 
tuning of these parameters yields biologically plausible spiking patterns, where neural activity in biological 
brain is distributed approximately evenly among neurons. This is achieved through a firing rule that minimizes 
prediction error by regulating spike occurrences in response to excitation and inhibition. Note that throughout 
this study for all the simulations the parameters ν and µ have been tuned using trial-and-error (e.g.: changing 
one parameter while the other is being kept constant during the tuning) to achieve our desired sets.

SNN-based robust filtering
The SNN-based filtering strategies SNN-KF and the robust method SNN-MSIF for linear systems18, and the 
SNN-EKF and SNN-EMSIF for nonlinear dynamical systems have previously been introduced19. Implementing 
a double linearization approach SNN-EMSIF combines the SNN with the EMSIF, a robust filtering strategy for 
nonlinear dynamical systems17. In this framework, SNN-EMSIF is represented as a recurrent SNN composed 
of leaky integrate-and-fire (LIF) neurons. Its weight matrices can adaptively change to emulate the dynamics of 
EMSIF, combining the computational efficiency and scalability of SNNs with the robustness of the EMSIF in the 
condition of neuron silencing. The equations governing SNN-EMSIF are as follows18:

	 σ̇ = −λσ + F u (t) + Ωsr + Ωf s + Ωkr + Fkz + η� (8)

where:

	 F = DT B� (9)

	 Ωs = DT (A + λI)D� (10)

	 Ωf = −(DT D + µλ2I)� (11)

In the above equations, A = ∂f
∂x

|x=x̂, denotes the Jacobian matrix of the system dynamics, which is recalculated 
at every time step using the most recent state estimate x̂. The synaptic weight matrices Ωs and Ωf  correspond 
to the slow and fast connection pathways within the recurrent spiking network. The slow connections primarily 
encode the target system’s dynamics, thereby realizing the estimator, whereas the fast connections help maintain 
stable network behavior by promoting a balanced distribution of spikes among neurons. The parameter λ 
determines the leakage rate of each neuron’s membrane potential, influencing how rapidly the potential decays 
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over time, while F  transforms the control input into a spike-based signal interpretable by the SNN. Within 
this structure, the second set of three terms in Eq.  (3) mainly contributes to the a priori prediction stage of 
the estimation process. In contrast, the following two terms associated with Ωk , and Fk  adapt continuously 
throughout operation and correspond to the measurement-update (a posteriori) stage. Specifically, Ωk  regulates 
the adaptive correction dynamics, whereas Fk  injects the encoded measurement information into the spiking 
network. The evolution of these weight matrices is expressed through the following update relations:

	 Ωk = −DT
(
C+sat(diag(P zz)/δ)

)
CD� (12)

	 Fk = DT
(
C+sat(diag(P zz)/δ)

)
� (13)

where, C = ∂h
∂x

|x=x̂ is the Jacobian of measurement system that needs to be updated at every time step using 
the most recent estimate of the system state x̂, while P zz  represents the innovation covariance matrix, and δ is 
the sliding boundary layer, a tuning parameter which can be tuned by trial-and-error method. To update P zz , 
the following equations are used:

	 P zz = CP CT + R� (14)

	 Ṗ = AP + P AT + Q − P CT R−1CP � (15)

The final term η in Eq.  (9) accounts for zero-mean Gaussian noise, simulating the stochastic nature of the 
neural activity in biological neural circuits. The weight matrices are analytically designed to capture EMSIF 
dynamics, allowing the estimation of a fully observable nonlinear dynamical system with partially noisy state 
measurements via a network of recurrent LIF neurons.

Utilizing the framework presented in this section for estimation concurrently with the conventional control 
methods results in the system depicted in Fig.  2. The figure illustrates how the conventional non-spiking 
estimator in Fig. 1 has been replaced by an SNN designed to function as an estimator. Instead of employing 
sequential estimation algorithms, this SNN-based approach capitalizes on the advantages of SNNs, including 
computational efficiency, highly parallel computing. However, as shown in Fig. 2, estimation and control tasks 
are still conducted sequentially.

SNN-based integrated estimation and control
This section extends SNN-EMSIF to a network capable of concurrently performing state estimation and control 
of dynamical systems. As introduced in18 and19, for the derivation of the SNN-EMSIF, which implements the 
dynamics of estimator EMSIF, the SNN should be able to mimic the following dynamics which is the fully 
linearized form of EKF through computing the Jacobians:

	 ˙̂x = Ax̂ + Bu + KKF (z − ẑ)� (16)

where B = ∂f
∂u

|x=x̂ is the Jacobian of the dynamic model with respect to input vector. Here, to go further and 
add the control to the above-mentioned dynamics; u = −Kc(x − xD) is considered as the control input, So, 
the network should emulate the following linear system of equations:

	 ˙̂x = Ax̂ − BKc(x̂ − xD) + KKF (z − ẑ)� (17)

where xD  denotes the desired state. To extend the previously introduced network, the control rule u is substituted 
into Eq. (8), resulting in the following network equation:

	 σ̇ = −λσ − F Kc(x̂ − xD) + Ωsr + Ωf s + Ωkr + Fkz + η� (18)

Here, a decoding rule for the xD  is considered as follows:

Fig. 2.  Conventional block diagram of integrated estimation and control loop of dynamical systems using 
SNN-based estimator.
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	 xD = Dr� (19)

where D is a fixed matrix generated from random elements sampled from a zero-mean Gaussian distribution. 
To effectively implement the added dynamics for xD  in the network, referring to Eq. (3), an additional set of 
connections is introduced into the above equation14:

	

σ̇ = −λσ − DT BKc

(
Dr − D̄r

)
+ Ωsr

+ Ωf s + Ωkr + Fkz

+ D̄T
(
ẋD + λxD

)
+ Ω̄f s + η

� (20)

After simplifications, the resulting network equation is as follows:

	 σ̇ = −λσ + Ωcr + Ωr + Ωsr + Ωf s + Ωkr + Fkz + D
T (

ẋD + λxD
)

+ Ωf s + η� (21)

where:

	 Ωc = −DT BKcD� (22)

	 Ω = DT BKcD� (23)

	 Ωf = −(DT
D + µλ2I)� (24)

Here, Ωc somehow represents the slow connections for implementing the control input of the desired system. 
Ω, and Ωf  represent the slow and fast synaptic weights for various connections respectively. parallel with 
other connections, these weights are responsible for implementing the dynamics of the desired state for the 
controller and Eq. (21) represents the membrane potential dynamics of a recurrent SNN of LIF neurons, capable 
of concurrently performing state estimation and control of linearized dynamical systems. While the controller 
gain Kc must be designed for the considered system, this framework operates without requiring any learning by 
the network. Furthermore, although we implemented optimal LQR control in this study, controller gain can be 
independently designed using any arbitrary approach. Finally, to extract the control input vector for the external 
plant from the spike populations, the following equation is employed:

	 u = Dur� (25)

where:

	 Du = −Kc(D − D)� (26)

The above matrix can be used to decode the control input from the filtered spike trains. In summary, the 
proposed framework integrates estimation and control processes simultaneously. It directly generates the control 
input u for the dynamical system using a noisy and partially observed measurement vector z. So, this approach 
eliminates the need for a sequential process where the state x is first estimated and then used to compute the 
control input u, thereby enhancing efficiency and responsiveness. Thus, we don’t even need to extract the 
estimated states for the control task unless in the cases in which we need to monitor the estimated states. Figure 3 
illustrates the block diagram of the framework presented in this section.

Figure  3 demonstrates that for this framework, both the blocks of estimator and controller from Fig.  1 
and Fig.  2 have been replaced by a single SNN. This represents an extension of the framework, leveraging 
the advantages of SNNs. Furthermore, the computations required for state estimation and control input have 
been parallelized. Consequently, implementing this framework can significantly reduce computational costs, 
allowing more complex tasks to be performed even with limited computing resources. Additionally, owing to 

Fig. 3.  Block diagram of SNN-based Integrated estimation and control loop.
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the scalability of SNNs, if the network loses some of its neurons, the process continues by increasing the spiking 
rate of the remaining neurons, as demonstrated in the next section.

Numerical simulation
Here, to assess the performance and robustness of the proposed method, this section presents numerical 
simulations conducted on two representative systems under multiple uncertainty conditions. We first apply the 
proposed framework to a dynamical workbench problem and conduct various performance evaluations in terms 
of robustness, accuracy, and computational efficiency, in comparison with the well-established methods LQG 
and LQR-MSIF. Subsequently, we extend the analysis of the SNN-LQR-MSIF to a practical scenario involving the 
concurrent estimation and control of satellite rendezvous maneuvers. It is notable that, the two selected systems 
were chosen to evaluate both general applicability and real-world relevance of the proposed method. The first 
example—a generic second-order system with additive modeling uncertainties and measurement noise—serves 
as a controlled general benchmark to systematically evaluate the algorithm’s robustness, sparsity, and response 
to artificial perturbations. This abstraction allows direct comparison with traditional methods. The second 
scenario, satellite rendezvous, was selected due to its highly demand for a reliable and accurate estimation and 
control framework, as well as its practical constraints on computational and energy resources. It represents a 
real-world use case where neuromorphic efficiency, real-time responsiveness, and resilience to uncertainty are 
critical.

Case study 1: workbench dynamical system
Here, we initiate our investigation by applying the introduced framework to the following nonlinear dynamical 
system with a linear measurement:

	

[
ẋ1
ẋ2

]
= Ax + Bu + w� (27)

	 z = Cx + v� (28)

where:

	
A =

[ 0 1
0 0

]
; B =

[ 0
1

]
; C = [ 1 0 ]

In general, for the controllable pair of (A, B), the control law for the LQR controller is given by35:

	 u = − KLQRx̂� (29)

Here, the symbol x̂, denotes an estimated parameter. The controller gain KLQR is designed to minimize the 
following cost function:

	
Jc =

ˆ ∞

0
(xT Qcx + uT Rcu)dt� (30)

The weight matrices Qc and Rc are determined through trial and error, with conditions Qc > 0 and Rc ≥ 0 
satisfied. The controller gain KLQR is calculated using the following equation:

	 KLQR = R−1BT S� (31)

where S is the unique positive semidefinite solution of the algebraic Riccati equation:

	 AT S + SA − SBR−1BT S + Q = 0� (32)

It is important to note that due to the linearity and time-invariance of the considered system (LTI), the gain 
matrix KLQR is computed offline and does not require updating during the maneuver. Moreover, based on the 
separation principle of linear systems theory, the obtained gain can be incorporated into our presented network 
without imposing any condition on the estimator. Simulations have been performed over a 10-s period with a 
time step of 0.01, employing the numerical values provided in Table 1.

Initially, we evaluated the applicability of the proposed framework in comparison with its non-spiking 
counterparts, LQG, and LQR-MSIF, by simulating a deterministic system without uncertainties. Next, we 
assessed the performance and effectiveness of the proposed framework by introducing various sources of 
uncertainties and disturbances. In line with real-world scenarios, where exact decoding matrices are typically 
unknown, we defined the decoding matrices D and D using random samples from zero-mean Gaussian 
distributions with covariances of 0.25 and 1/300, respectively. Figure 4 displays time histories of controlled states 
and estimation errors within ±3σ bounds obtained from SNN-LQR-MSIF in comparison with LQG and LQR-
MSIF. Figure 4(a) illustrates that the state x1 converges to zero after t = 5 s, showcasing similar performance 
between the proposed framework and its non-spiking counterparts, LQG and LQR-MSIF. Figure 4(b) indicates 
that the state x2 converges to zero around t = 6 s, again showing consistent performance between the proposed 
framework and non-spiking methods. Figure 4(c) demonstrates that all considered strategies remain stable, with 
errors staying within the prescribed bounds. Notably, the error obtained from KF deviates further from zero 
before converging around t = 3 s, while the errors from SNN-MSIF and MSIF exhibit faster convergence with 
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smaller deviations. Figure 4(d) confirms the stability of all estimation methods, with SNN-LQR-MSIF showing 
nearly identical performance to non-spiking EKF and MSIF. This suggests that the predictive coding rule enables 
more timely correction in SNNs by emitting spikes only when the prediction error justifies it, leading to faster 
convergence with fewer computations.

Further, to gain more intuitive insights into the tuning parameters of the firing rule, namely µ, and ν, 
and their impacts on control accuracy, we conducted a sensitivity analysis. As depicted in Fig. 5, utilizing a 
colored map to show the variations of normalized average error, this analysis reveals that the tuning of firing 
rule parameters of the network directly affects control accuracy, and depending on the specific system, proper 
parameter sets can be identified by trial and error. The preferred parameter set used throughout our simulations 
is µ = 0.005 and ν = 0.005 (marked with a white circle in the figure). The percentage of emitted spikes by the 
neurons compared to all possible spikes is also shown in the figure by the numbers on the figure for each set of 
µ and ν. It can be observed that decreasing ν leads to a higher percentage of spikes compared to possible spikes 
for each µ. This highlights a trade-off between accuracy and computational efficiency that can be an important 
factor in the tuning procedure of the network firing rule and confirms the previously mentioned matter about 
the tuning of ν that controls the number of spikes.

Furthermore, we evaluated the robustness of SNN-LQR-MSIF against modeling uncertainties by introducing 
a 20% error in the dynamic transition matrix Â = 0.9A. Simulation results in the presence of modeling 
uncertainty were compared with LQG and LQR-MSIF, as presented in Fig.  6. Figure  6(a) shows that in the 
presence of uncertainty, the SNN-based framework for the state x1 deviates from non-spiking LQG and LQR-

Fig. 4.  Controlled states and estimation errors within ±3σ bounds (a) controlled state x1, (b) controlled state 
x2, (c) estimation error of x1, (d) estimation error of x2.

 

Parameter Value

x0 [10,1]

x̂0 [10,1]

Kc [1, 1.7321]

Qc I

Rc I

Q I/1000

R I/100

N 250

λ 0.01
µ 0.005
ν 0.005
δMSIF 0.005

Table 1.  Workbench system simulation parameters.
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MSIF. However, SNN-LQR-MSIF exhibits superior performance, converging to zero at approximately t = 4 s 
and completely converging by t = 6 s. In contrast, non-spiking frameworks yield matching results converging 
to zero at t = 7 s. Figure 6(b) demonstrates that state x2 exhibit similar deviation from non-spiking methods, 
particularly with a slightly greater overshoot and error until t = 4 s. However, after t = 4 s, SNN-LQR-MSIF 
displays faster convergence, a minor overshoot, and eventual convergence to zero after t = 8 s. In summary, 
these findings indicate that the proposed SNN-based framework exhibits commendable robustness in handling 
modeling uncertainties or external disturbances compared to non-spiking methods. Figure 6(c) illustrates the 
results for the state x1, showcasing the performance of SNN-LQR-MSIF comparable to that of LQR-MSIF. 
Initially, both methods exhibit an error trend that diverges over time, exceeding the bound around t = 1.5 s but 
returning within the bounds by t = 4 s. Eventually, both methods achieve stable estimation, converging to zero 
around t = 6 s and t = 8 s for SNN-MSIF and MSIF, respectively. Meanwhile, the error from KF deviates entirely 
and its error has returned to the bound in almost t = 8 s and finally, it converged to zero at t = 10 s. Notably, 

Fig. 6.  Controlled states and estimation errors within ±3σ bounds for uncertain model Â = 0.8A, (a) 
controlled state x1, (b) controlled state x2, (c) estimation error of x1, (d) estimation error of x2.

 

Fig. 5.  Colored map analysis of normalized average error obtained from various sets of µ and ν. Additionally, 
compared to all possible spikes for each set of µ and ν the number of emitted spikes in percentage is presented.
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at t = 6 s, KF exhibits an error that is approximately 20 times greater than the error obtained for the proposed 
SNN-LQR-MSIF is almost near zero. In Fig. 6(d), the results for the state x2 show nearly identical performance 
between SNN-MSIF and MSIF, both maintaining stability in their estimations throughout the considered period. 
Conversely, the error from KF deviates similarly to what occurred with the state x1. The obtained error for KF 
has exceeded the bound and has risen continually until almost t = 2.5 s reaches its maximum which is about 
102 times greater than the obtained error for MSIF and SNN-MSIF is also approximately near to zero. Hence, it 
is evident that SNN-MSIF outperforms MSIF by faster convergence to zero in the presence of uncertainty, and 
it outperforms KF in terms of estimation stability. Thus, the results give us two different interpretations. First, 
compared to the standard LQG, the faster convergence of the LQR-MSIF confirms the robustness of the method 
in dealing with bounded modeling uncertainties because it is benefiting from the robust nature of the MSIF filter. 
Then, faster convergence of SNN-based method compared to its algorithmic version suggests that the predictive 
coding rule enables more timely correction in SNNs by emitting spikes only when the prediction error justifies 
it, leading to faster convergence with fewer computations.

An important challenge in robust navigation and control systems is handling measurement outliers, which 
can arise from sensor faults or external disturbances in the working environment. Therefore, to assess the 
framework’s robustness in such scenarios, unmodeled measurement outliers were introduced into the system 
at t = 3 s, t = 5 s, and t = 6 s. To simulate the presence of measurement outliers, the measurement system 
noise was multiplied by a factor of 500 at these time points. Figure  7 presents a comparison of results for 
controlled states and estimation errors within ±3σ bounds obtained from various frameworks in the presence 
of measurement outliers. Figure 7a displays the time history of the state x1. It demonstrates that the presence of 
measurement outliers causes slight deviations in the results obtained from the SNN-based framework between 
t = 3 s, and t = 7 s. However, the framework successfully regulates the error, ultimately converging to results 
obtained from non-spiking methods. Figure 7b demonstrates the same behavior for the state x2. Results from 
the SNN-based framework show minor deviations compared to non-spiking methods between t = 3 s, and 
t = 7 s, indicating that, although more sensitive to measurement outliers, the SNN-based methods continue 
to control the states effectively. Figure 7c presents the obtained errors for the state x1, which exhibit significant 
deviations at the points of outlier injection. However, for all considered filters, these deviations are followed by 
rapid convergence to zero, confirming the filters’ stability. Moreover, the error from SNN-MSIF is considerably 
smaller, especially compared to KF which exceeds the bound on all points. In Fig. 7d, we investigate the error for 
the state x2 which reveals when KF experiences abrupt deviation and its error exceeds the bound at the points 
of outlier injection, whereas SNN-MSIF and MSIF remain stable throughout the simulation. Thus, SNN-MSIF 
exhibits superior robustness in such situations. Furthermore, meanwhile the results here reconfirm the previous 
interpretations, the better performance of the SNN-based method in terms of faster convergence and lower error 
divergence while it is encountering with outliers, shows that the SNN-based method is more adaptable in such 
conditions because it is benefiting a dynamic adjustment of the computation in the SNN (changing the spiking 
rate and neurons activation demonstrated in Fig. 8) based on the incoming error. Thus, the proposed method 
can have an acceptable responsivity in dealing with such situations. Figure 8 illustrates the spiking pattern of the 
network achieved by the SNN-LQR-MSIF approach when confronted with measurement outliers. In Fig. 8a, we 
present the spiking pattern recorded in the presence of measurement outliers. It is evident that just right before 
the points of outlier injections (at time steps 300, 400, and 600), most neurons are in standby mode, emitting 
a few spikes. However, after the injection of outliers, a substantial portion of neurons (around 40%) become 
activated to handle the injected disturbances, that are rejected within just 2–3 time steps. The neural activity then 

Fig. 7.  Controlled states and estimation errors within ±3σ bounds for measurement outlier (a) controlled 
state x1, (b) controlled state x2, (c) estimation error of x1, (d) estimation error of x2.
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decreases, demonstrating that the network effectively overcomes external disturbances or unmodeled dynamics 
by increasing neural activity or computational cost without failing in the assigned task. Moreover, Fig.  8(b) 
reveals the temporal variation of active neurons in percent, emphasizing the sudden change in the population of 
active neurons at the designated time steps. The population rises to nearly 40% to overcome the negative impacts 
of injected outliers on the system.

Finally, to assess the proposed framework’s performance in situations where some neurons may become 
silent, several simulations were conducted with varying numbers of neurons, ranging from N = 50 to N = 400 
in the step of 50 neurons. Figure 9 presents the average overall network error in the controlled states after t = 6 
s (where the errors almost converged to zero) versus the number of neurons. In Region 1, a significant error 
divergence to infinity is observed (the solid line which shows the error variation became almost vertical at the 
edge of Region 1) while this error is abruptly decreased at N = 100. This corresponds to the minimum number 
of neurons that the proposed framework requires to function effectively. Below this threshold, active neurons 
cannot provide sufficient neural activity to perform the necessary computations. An increase in the number 
of neurons within region 2 results in a gentle reduction in error. The minimum error can be observed at the 
optimal number of neurons at N = 250. In contrast, region 3 shows that an increase in the number of neurons 
degrades accuracy due to unstable spiking patterns with excessive neural activity. It is notable that because of 

Fig. 9.  Averaged network error versus number of neurons (because of the huge divergence of error in region 1, 
the solid line became almost vertical at the edge of Region 1).

 

Fig. 8.  Spiking pattern and temporal variation of active neuron population obtained from SNN-LQR-MSIF, (a) 
spiking pattern, (b) temporal variation of active neurons.
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the similarity, to avoid the repetitive figures, in this study, just the spiking pattern of the scenario with outlier 
injection has been investigated.

Furthermore, to have an assessment of the computational burden of the proposed framework by increasing 
the number of neurons (increasing the network size), runtime analysis has been done for the different N  
and the obtained results have been compared in Table 2. To this aim, multiple simulations in MATLAB code 
environment on a computer utilizing M4-Pro chip and 48 GB of memory have been conducted. The obtained 
results demonstrate that increasing the network size has a direct effect on the computational burden.

Overall, the proposed framework exhibits remarkable robustness in handling measurement outliers and 
effectively adapts to situations with varying numbers of neurons, provided a minimum neuron threshold is 
maintained. These findings support the framework’s suitability for robust navigation and control systems in real-
world scenarios. Further studies on spiking patterns are provided in18. On the other hand, the proposed SNN-
LQR-EMSIF achieves O(n2 + pn) complexity compared to O(n2.376 + mn2) for traditional LQG methods36. 
This efficiency stems from event-driven sparse processing inherent to SNNs37, eliminating continuous matrix 
operations.

Case study 2: satellite rendezvous maneuver
This section is initiated by the presentation of the mathematical model for the satellite rendezvous maneuver. 
Subsequently, the design of the LQR controller is expounded upon. Lastly, the simulation results are provided. 
The rendezvous problem involves maneuvering two distinct satellites, the chaser, and the target. As depicted in 
Fig. 10, the chaser satellite approaches the target in orbit.

To derive the equations of relative motion, we consider the following equation in the Earth-centered inertial 
frame (ECI)39.

	 s = rc − rt� (33)

Here, rc and rt represent the position vectors of the chaser and target, respectively. The relative acceleration is 
described by the following expression:

	 s̈ = r̈c − r̈t� (34)

Meanwhile, considering the circular orbit, the gravitational force in ECI is expressed as:

	
fg (r) = − µearth

m

r3 r� (35)

Fig. 10.  Schematic of rendezvous maneuver38.

 

Method SNN-LQR-MSIF

N = 100 0.219ms

N = 150 0.449ms

N = 200 0.789ms

N = 250 3.100ms

N = 300 4.400ms

Table 2.  Obtained runtimes per time-step.
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Here, µearth signifies the Earth’s gravitational parameter, m denotes spacecraft mass, and r, and r represent the 
spacecraft position vector and its magnitude, respectively. Importantly, the absolute motion of both the chaser 
and target in the ECI frame can be separately formulated as follows:

	
fg (rt) = r̈t = −µearth

r3
t

rt� (36)

	
fg (rc) = r̈c = −µearth

r3
c

rc� (37)

The above equations represent normalized forms of Eq.  (32), divided by the spacecraft mass. To formulate 
suitable equations for controller design, it is advantageous to represent relative motion in the target frame, a 
non-inertial reference frame rotating with the angular velocity, ω.

	
d∗2s∗

dt2 + ω × (ω × s) + 2ω × d∗s∗

dt
+ dω

dt
×s∗ + µearth

r3 Ms∗ = f � (38)

Here, s denotes relative distance, M, and f  refer to Earth’s mass and external forces, respectively, and the asterisk 
(*) denotes parameters in the target frame. The linearized form of Eq. (35) in the target frame, known as the 
Clohessy-Wiltshire (CW) equations, is expressed as39:

	 ẍ − 2nż = fx� (39)

	 ÿ + n2ẏ = fy � (40)

	 z̈ + 2nẋ − 2n2ż = fz � (41)

where:

	
n =

√
µearth

R3
o

� (42)

Here, Ro represents the orbital radius of the target spacecraft, and n is the mean motion. To design the LQR 
controller, we begin by defining the state and input vectors as x = [x, y, z, ẋ, ẏ, ż]T , and u = [fx, fy, fz], 
respectively. Subsequently, we derive the state space form of CW equations, expressed as:

	 ẋ = Ax + Bu� (43)

where:

	

A =




0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 2n
0 −n2 0

−2n 0 2n2


 ; B =




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


� (44)

The simulations in this section are conducted using the numerical values provided in Table 3, with a time 
duration of 360 s and a time step of 0.05. Additionally, the decoding matrices D and D are defined using random 
samples from zero-mean Gaussian distributions with covariances of 1/50, and 1/2500, respectively.

Figure  11 presents a comparison between SNN-LQR-MSIF and non-spiking LQG and LQR-MSIF in the 
context of the rendezvous maneuver problem. Each element of the system’s state vector is individually compared. 
The results demonstrate that all considered frameworks successfully control the states, with errors smoothly 
converging to zero. Moreover, it is evident that the proposed SNN-based framework exhibits similar performance 
in controlling the states, aligning with the results obtained from the optimal non-spiking framework LQG. 
Notably, for states z, and vz , some discrepancies are observed. For state z, the SNN-LQR-MSIF exhibits a slightly 
greater overshoot compared to non-spiking LQG and LQR-MSIF, but ultimately successfully controls the state 
error to zero. Furthermore, for state vz  the result from SNN-LQR-MSIF exhibits minor deviation from non-
spiking frameworks between t = 100 s and t = 200 s. To provide quantitative insight into this comparison, 
average errors obtained from different methods after t = 300 s are presented in Table 4. The results reveal 
that non-spiking methods deliver consistent accuracy, and the SNN-based method demonstrates acceptable 
accuracy. In summary, compared to traditional non-spiking frameworks like LQG and LQR-MSIF, the achieved 
results for controlled states affirm the acceptable performance of SNN-LQR-MSIF for the problem of satellite 
rendezvous, a critical maneuver in space robotic applications.

Figure 12 compares the obtained control inputs for different control approaches. Comparisons demonstrated 
that while the control inputs for the non-spiking methods coincide together, the obtained control inputs for the 
SNN-LQR-MSIF for the fx and fz  have tracked the control inputs obtained for LQG and LQR-MSIF, but for fy  
the obtained input from SNN-LQR-MSIF has started with a deviation with respect to the other methods before 
t = 25 s, and then it has almost converged to the inputs obtained from the non-spiking methods. On the other 
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State LQG LQR-EMSIF SNN-LQR-EMSIF

x(m) 0.0223 0.0222 0.3924
y(m) 0.0057 0.0057 0.3626
z(m) 0.0048 0.0048 0.0936
vx(m/s) 0.0012 0.0012 0.0018
vy(m/s) 0.0005 0.0005 0.0002
vz(m/s) 0.0005 0.0005 0.0030

Table 4.  Averaged error for different methods.

 

Fig. 11.  Controlled states for satellite rendezvous obtained from various frameworks in normal condition.

 

Parameter Value

r0 (m) [70,30, −5]T

v0(m/s) [−1.7, −0.9,0.25]T

x0 [r0, v0]T

x̂0 x0

Qc (1e − 6) I6

Rc I3

Q (1e − 12) I6

R (1e − 2) I2

N 350

λ 0.025
µ 1
ν 0.0001
δMSIF 0.005

Table 3.  Parameters for satellite rendezvous.
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hand, from a closer perspective obtained results for the SNN-based method have negligible fluctuations which 
can be the source of the deviations in the controlled states in Fig. 11.

To assess the computational efficiency of the SNN-based framework relative to conventional artificial neural 
networks (ANNs), we delve into the spiking pattern generated by the designed SNN, as showcased in Fig. 13(a). 
This vividly illustrates the network’s efficient execution of its task. Upon closer examination, as depicted in 
Fig. 13(b), during the initial 2000 time-steps (before t = 100 s), when state-vector errors are sizable, the network 
exhibits heightened neural activity, with approximately 20% of neurons being active. Subsequently, the population 
of active neurons gently declines and remains relatively constant, with minor fluctuations hovering around 5% 
for the remainder of the simulation. In essence, the network accomplishes its task while utilizing a mere 2.4% of 
possible spikes over the entire simulation duration, in stark contrast to traditional ANNs that consume 100% of 
potential spikes. This underscores the computational efficiency of SNN-LQR-MSIF in simultaneously handling 
estimation and control for satellite rendezvous.

Moving on to assess the robustness of the SNN-LQR-MSIF against modeling uncertainties, we introduce a 
10% error into the dynamic transition matrix Â = 0.9A used within the framework. Figure 14 demonstrates 
the results for controlled states using the aforementioned strategies in the presence of uncertainty. This figure 
underscores that SNN-LQR-MSIF exhibits higher sensitivity to modeling uncertainties compared to non-
spiking strategies. However, it also presents that SNN-LQR-MSIF effectively controls the system, with all the 

Fig. 13.  Spiking pattern and temporal variation of active neurons population obtained from SNN-LQR-EMSIF 
for satellite rendezvous maneuver, (a) spiking pattern, (b) temporal variation of active neurons.

 

Fig. 12.  Control inputs obtained from different control frameworks.
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errors gracefully converging to zero. Furthermore, Table 5 presents average errors obtained from controlled 
states after t = 300 s, verifying the findings depicted in Fig. 14.

To further evaluate the robustness of SNN-LQR-MSIF against external disturbances, such as instability in 
the working environment, we introduce measurement outliers. This scenario is configured so that unmodeled 
measurement outliers are injected into the system at t = 100 s, t = 150 s, and t = 200 s. Notably, to introduce 
the outliers at these time steps, the measurement system noise is scaled by a factor of 200. Figure 15 illustrates 
the results for various frameworks in this scenario. Similar to modeling uncertainties, it reveals that the SNN-
LQR-MSIF is more sensitive to measurement outliers compared to non-spiking strategies. However, it effectively 
maintains control, with all errors converging to zero.

Figure  16 provides insight into the spiking pattern of SNN-LQR-MSIF in the presence of measurement 
outliers. In Fig. 16(a), the network reacts to disturbances by increasing the number of active neurons, rapidly 
rejecting disturbances in just 2–3 time steps. Figure  16(b) quantifies this by depicting the variation in the 
population of active neurons in percentage terms. The figure highlights a significant increase in the proportion 
of active neurons, rising from approximately 10% to nearly 50%. Figure 17 shows the comparison between the 
obtained control input from the SNN-based strategy and the non-spiking counterpart compared to the standard 
LQG. although the results demonstrate an approximately good coincidence between the obtained results from 
the various methods, the obtained control inputs for the SNN-based strategy have considerable jumps in their 
values on the time steps when the outliers are injected to the system, similar to the increase in the neural activity 
in the network, which shows the increase in the control effort to damp the external disturbances.

Corresponding averaged errors from the controlled states after t = 300 s is presented in Table 6, thus 
reinforcing the insights gleaned from the data depicted in Fig. 15.

Here, results obtained in this section affirm that the framework proposed in this study demonstrates 
computational efficiency for such problems. Compared to traditional computing strategies like LQR-MSIF 
and LQG, it exhibits good and comparable performance in terms of robustness and accuracy. While the 

State LQG LQR-EMSIF SNN-LQR-EMSIF

x(m) 0.0223 0.0222 0.3059
y(m) 0.0058 0.0057 0.4001
z(m) 0.0049 0.0049 0.0082
vx(m/s) 0.0012 0.0012 0.0030
vy(m/s) 0.0005 0.0005 0.0001
vz(m/s) 0.0005 0.0005 0.0035

Table 5.  Averaged error for different methods – uncertain model.

 

Fig. 14.  Controlled states for satellite rendezvous maneuver obtained from various frameworks for uncertain 
model.
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proposed SNN-LQR-MSIF framework demonstrates promising performance in terms of computational 
efficiency, robustness, and accuracy, it is important to acknowledge and discuss the inherent trade-offs among 
these metrics. Specifically, in scenarios involving significant modeling uncertainties or injected measurement 
outliers, the SNN-based method may exhibit slightly higher estimation errors or transient control deviations 
compared to its non-spiking counterparts. This is largely due to the sparsity-driven firing rule, which reduces 
computational burden by limiting spike activity. However, this may lead to under-representation of subtle state 
variations in highly dynamic environments, thus impacting accuracy. On the other hand, robustness is retained 
through the predictive coding mechanism and the use of EMSIF-inspired network dynamics, which stabilize 
performance in the presence of disturbances or neuron silencing. These trade-offs are governed primarily by the 
firing rule parameters ν and µ which must be tuned to balance spike sparsity (efficiency) with responsiveness 
and network activation (accuracy and robustness). A discussion of this trade-off space is illustrated in Fig. 5, 
where an ideal region for parameter selection is identified there by trial-and-error. Furthermore, for having a 
comparison between the proposed method in this study with other learning-based neuromorphic methods, we 

Fig. 16.  Spiking pattern and temporal variation of active neurons population obtained from SNN-LQR-EMSIF 
for satellite rendezvous maneuver subjected to measurement outlier, (a) spiking pattern, (b) temporal variation 
of active neurons.

 

Fig. 15.  Controlled states for satellite rendezvous maneuver obtained from various frameworks subjected to 
measurement outlier.
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compared the obtained results from our first simulation case here (simulation without uncertainties for satellite 
rendezvous reported in Table 4) with the same scenario for the satellite rendezvous introduced in our previous 
works11, that uses a learning-based neuromorphic controller. Table 7 compares the obtained accuracy for the 
different approached implemented.

Comparison of the obtained results shows the acceptable accuracy of the proposed method for the same 
scenario compared to the learning-based approach. Though learning-based methods offer adaptability and 
online learning capabilities but often come with increased complexity, training costs, and reduced interpretability. 
Moreover, many learning-based controllers are heavily relying on their learning frameworks and techniques, 
which may require careful hyperparameter tuning and extensive training time or may cause delay in online 
inference because of computational resource overhead. In contrast, the framework proposed in this study offers 
a learning-free alternative that is analytically derived from the dynamics of robust filtering and control. By 
eliminating the need for training while still leveraging the energy efficiency and scalability of SNNs, our method 
achieves comparable or superior robustness with significantly reduced computational overhead, especially 
in edge or resource-constrained environments. This positions our approach as a viable solution for real-time 

State Learning-based approach11 Proposed approach

x(m) 0.0568 0.3924
y(m) 0.0508 0.3626
z(m) 0.0945 0.0936
vx(m/s) 0.0018 0.0018
vy(m/s) 4.5175e − 04 0.0002
vz(m/s) 4.1582e − 04 0.0030

Table 7.  Averaged error for learning-based and proposed method.

 

State LQG LQR-EMSIF SNN-LQR-EMSIF

x(m) 0.0223 0.0222 0.0001
y(m) 0.0058 0.0057 1.2319
z(m) 0.0049 0.0049 0.2518
vx(m/s) 0.0012 0.0012 0.0050
vy(m/s) 0.0005 0.0005 0.0077
vz(m/s) 0.0005 0.0005 0.0047

Table 6.  Averaged error for different method—measurement outlier.

 

Fig. 17.  Control inputs obtained from different control frameworks.
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control applications where reliability and computational efficiency are critical. Thus, it can be deduced that the 
method proposed in this study can be a good candidate for learning-free neuromorphic approach for integrated 
estimation and control. Finally, it is notable that, while the SNN-LQR-EMSIF framework exhibits slightly 
higher errors in certain state estimates compared to the LQR-MSIF, these differences are both explainable and 
acceptable within the context of real-time neuromorphic processing. The observed deviations can be attributed 
to the discrete, event-driven nature of spiking computation, where state updates occur only when the prediction 
error become considerably large for faster charge of membrane potential of the LIF neurons. In contrast, LQR-
MSIF, operating on continuous signal updates, can react more smoothly but at the cost of higher computational 
burden. Importantly, considering the acceptable accuracy, the SNN-based method maintains stable convergence 
and system behavior, and its robustness under uncertainty and resilience to measurement outliers often exceed 
those of LQR-MSIF. Moreover, the trade-off introduced by SNN’s sparse activity results in significantly reduced 
computational load—favorable for embedded and space applications where resources are limited.

Conclusion
In the presented study, we have dived into the crucial challenges of concurrent estimation and control within 
dynamical systems, underscoring its paramount importance. As the complexity and safety considerations 
associated with mission-critical tasks continue to intensify, the demand for computationally efficient and 
dependable strategies has become increasingly imperative. Moreover, in the real-world application landscape, 
encountering uncertainties such as environmental instability, external disturbances, and unmodeled dynamics, 
the call for robust solutions capable of navigating these challenges is resounding. Thus, we proposed an efficient 
approach grounded in biologically plausible principles. Our framework harnessed the potential of a recurrent 
spiking neural network (SNN), composed of leaky integrate-and-fire neurons, bearing resemblance to a linear 
quadratic regulator (LQR) enriched by the state estimation of a modified sliding innovation filter (MSIF). This 
innovative approach, SNN-LQR-MSIF combines the robustness inherited from the MSIF, while concurrently 
infusing it with computational efficiency and scalability inherent in SNNs. Importantly, the elimination of the 
need for extensive training, owing to spike coding theories, empowered the design of SNN weight matrices 
grounded in the dynamic model of the target system. Further, the SNN-LQR-MSIF approach has been analyzed 
under various uncertainties, such as modeling errors, measurement outliers, and occasional neuron silencing. 
Also, it has been compared with its non-spiking counterpart, LQR-MSIF, and the well-known linear quadratic 
Gaussian (LQG) method. Our evaluation included both standard linear problems and the satellite rendezvous 
maneuver, a critical task in space robotics. The results showed that SNN-LQR-MSIF performed well, offering 
advantages in computational efficiency, reliability, and accuracy. This makes it a promising solution for 
simultaneous estimation and control. Looking ahead, we aim to develop learning-based methods that combine 
SNNs with predictive coding for robust estimation and control. These future advancements could further 
improve control and estimation in dynamical systems.

Future work will focus on validating the proposed method in real-world hardware platforms. Due to its 
sparse firing activity, learning-free structure, and modular design, the SNN-LQR-EMSIF framework is well-
suited for implementation on neuromorphic chips such as BrainChip Akida or Intel Loihi. We plan to conduct 
hardware-in-the-loop (HIL) experiments to assess performance under real-time constraints and sensor 
interface integration. In parallel, future work will aim to adaptively tune the firing rule parameters based on the 
operational environment to dynamically optimize the balance between robustness, accuracy, and computational 
efficiency. These developments are critical steps toward demonstrating the practical viability of the proposed 
neuromorphic estimation and control system in edge computing and onboard robotic platforms.

Data availability
The code and data generated or analyzed during this study are available in the GitHub repository: https:/github.
com/INQUIRELAB/neuromorphic-integrated-control.
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