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Integrated estimation and control present an ongoing challenge for robotic systems. Because
controllers depend on data derived from measured states and parameters, which are often subject to
uncertainties and noise. The suitability of frameworks depends on the complexity of the task and the
constraints of computational resources. They must strike a balance between computational efficiency
for rapid responses while maintaining accuracy and robustness for safe and reliable missions. This
study capitalizes on recent advancements in neuromorphic computing tools, especially spiking neural
networks (SNNs), and their applications in robotic and dynamical systems. We present a learning-free
framework featuring a recurrent network of leaky integrate-and-fire (LIF) neurons, designed to mimic
a linear quadratic regulator (LQR) provided by a robust filtering strategy called extended modified
sliding innovation filter (EMSIF). Thus, our proposed framework benefits from the robustness of EMSIF
and the computational efficiency of SNN. The weight matrices of SNN are tailored to match the desired
system model, eliminating the need for training. Moreover, the network leverages a biologically
plausible firing rule akin to predictive coding. Furthermore, in the presence of various uncertainties,
the SNN-LQR-EMSIF compared with non-spiking LOR-EMSIF, and the optimal strategy called linear
quadratic Gaussian (LQG) based on extended Kalman filter. We evaluate their performance in a
workbench problem and, next in the satellite rendezvous maneuver implement the Clohessy-Wiltshire
(CW) model. Results demonstrated that the SNN-LQR-EMSIF achieves acceptable performance in
terms of computational efficiency, robustness, and accuracy, positioning it as a promising approach for
addressing the challenges of Integrated estimation and control in dynamic systems.

Keywords Neuromorphic computing, Spiking neural network, Sliding innovation filter, Linear quadratic
Gaussian, Satellite rendezvous maneuver, Kalman filter

As the design and implementation of robotic manipulators/systems undertaking diverse real-world tasks grow
more ambitious, the importance of computational efficiency, reliability, and accuracy escalates. Currently, many
of the implemented controllers rely heavily on the provision of accurate information about the system states and
parameters, which is typically obtained through various types of sensors such as inertial measurement units
(IMUs), GPS, LIDAR, and vision-based systems'. However, achieving such precision is often elusive due to the
multifaceted uncertainties inherent to robotic systems. These uncertainties stem from environmental instabilities
(e.g., lighting variations, terrain irregularities), sensor noise, latency, and hardware limitations. For instance,
IMUs suffer from integration drift over time, GPS may become unreliable in urban canyons or indoors, and
vision-based systems can fail under poor lighting or occlusion conditions. Additionally, system dynamics may
include unmodeled behaviors or disturbances that are not fully captured in the sensing process. In many real-
world scenarios, it is impractical—if not impossible—to obtain full measurements of all state variables at every
time step. These factors collectively contribute to data degradation, which in turn impacts the reliability and
performance of the control system. Consequently, to utilize the ability of noise canceling, and estimating the
unmeasured states/parameters the performing estimation concurrently with control becomes essential to ensure
safe, robust, and accurate behavior in robotic systems®*. From the other perspective, considering the constraints
imposed by computing resources and energy consumption particularly for the complex transportation systems
utilizing electric vehicles®, the development of concurrent estimation and control frameworks that excel in
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computational efficiency, robustness, and accuracy becomes significantly important. Nowadays, the linear
quadratic Gaussian (LQG) which is a popular and optimal framework for simultaneous estimation and control
of linear dynamical systems, in its traditional algorithmic version which is implementable on traditional
computers (Von Neumann computer architectures) has found widespread adoption across various domains
such as robotic manipulators®, robot control’, robot path planning’, and satellite control®. However, in addition
to the high energy consumption of the traditional computers for extensive problems, the LQG framework is not
without its inherent limitations. The LQG framework is a linear quadratic regulator (LQR) that works based on
the state feedback provided by the Kalman filter (KF)°. When confronted with uncertain dynamic models, its
performance diminishes, and in the presence of external disturbances, it is not robust enoughlo. In such
circumstances, the KF employed in conjunction with LQR control falls short of providing accurate information
about system states/parameters. Consequently, the demonstrated limitations of the LQG underscore the pressing
need for the development of a framework grounded in robust estimation principles. In addition to conventional
estimation-control strategies such as LQG and observer-based methods, the literature includes various
approaches for integrated estimation and control, including model predictive control (MPC)!!, and machine
learning-based strategies'?. While these methods offer adaptability and performance benefits in certain contexts,
they typically demand substantial computational resources and training time. So, benefiting, the advantages of
neuromorphic computing, like highly parallel computing nature of spiking neural networks (SNN), that work
with extremely low computational burden, and also they are implementable on neuromorphic computers'?, In'*,
Slijkhuis et al., proposed an SNN-based framework for Integrated estimation and control, employing a
combination of the Luenberger observer and LQR controller. They applied their method to scenarios involving
a spring-mass-damper (SMD) system and a Cartpole system, evaluating its performance in terms of accuracy
and similarity to its non-spiking counterpart. They also explored the robustness of their network in handling
neuron silencing. While their results were promising, their framework had limitations, notably the need to
design both controller and observer gains for each problem. Additionally, since they used the Luenberger
observer, their framework inherited the observer limitations related to modeling uncertainties and noise
canceling, which were not thoroughly assessed for robustness. Thus, based on the mentioned successful
application of SNNs in the estimation and control and the works done in'>"'7, to address the mentioned
limitations with observer-based approaches in previous works, here we propose a SNN-based concurrent
estimation and control framework utilizing the SNN-based filtering strategies. To this aim, SNN-KF which was
proposed in'® for optimal estimation of linear dynamical systems and its nonlinear version in!® has been
considered. In addition to performing the optimal estimation, these filtering approaches eliminated the need for
observer gain design, simplifying the process. Then, to enhance robustness against modeling uncertainties and
environmental disturbances, a robust SNN-based estimation framework based on EMSIF was introduced. Thus,
here we propose a robust framework, LQR-EMSIF, which integrates the LQR controller with the extended
modified sliding innovation filter (EMSIF), a recently developed robust estimation technique!®-2°. The LQR-
EMSIF leverages the robustness of the EMSIF filter in processing raw data obtained from measurement systems.
The EMSIF represents an evolution of the sliding innovation filter (SIF), which belongs to the family of variable
structure filters (VSF)?’, and also it can be considered as a new generation of smooth variable structure filter
(SVSF)2L. Importantly, unlike the KF family, which prioritizes frameworks founded on minimal estimation error,
the VSF family of algorithms has been developed based on guaranteed stability in the presence of bounded
modeling uncertainties and external disturbances?’. Additionally, considering the recent advancements in
neuromorphic computing tools, including spiking neural networks (SNN), and their applications in robotics
control and estimation!*8, as well as the spike coding theories??, we present a pioneering approach. In this study,
to introduce a framework that comprehensively addresses the aforementioned limitations, we translate the LQR-
EMSIF into a neuromorphic SNN-based framework, in which the firing rule derived from the predicted error of
the network concerning the estimated state vector, constituting a manifestation of predictive coding?. This
theory posits that the brain perpetually constructs and enhances a ‘mental model’ of its surrounding environment,
serving the critical function of anticipating sensory input signals, which are subsequently compared with the
actual sensory inputs received. As the concept of representation learning gains increasing prominence, predictive
coding theory has found vibrant application and exploration within the realms of biologically inspired neural
networks, such as SNN. The adoption of SNNs mitigates the computational efficiency challenges associated with
this problem?%. Owing to their minimal computational burden and inherent scalability, SNNs offer significant
advantages over traditional non-spiking computing methods'>. SNNs represent the third generation of neural
networks, taking inspiration from the human brain, where neurons communicate using electrical pulses called
spikes. SNNs leverage neural circuits composed of neurons and synapses, communicating via encoded data
through spikes in an asynchronous fashion!*?>-28. The asynchronous in spiking fashion characterized by event-
driven processing'®, stands in contrast to traditional Artificial Neural Networks (ANNs)?*-3!, which operate
synchronously or, in other words, are time-driven. Studies®? demonstrate that, for equivalent tasks, SNNs are 6
to 8 times more energy efficient than ANNs with an acceptable trade-off in accuracy®’. Moreover, the inherent
scalability of SNNs enhances their reliability, particularly under the condition of neuron silencing, where neuron
loss is compensated for by an increase in the spiking rate of remaining neurons?. Thus, to harness the advantage
of SNNs for the simultaneous robust estimation and control, here, we integrate the methods proposed in prior
studies'®, and!* to develop the previously mentioned SNN-LQR-EMSIF framework, anticipating substantial
advantages. Subsequently, we assess the performance of the proposed SNN-LQR-EMSIF framework through a
series of evaluations. Initially, we apply it to a linear workbench problem, followed by its application to the
intricate task of satellite rendezvous in circular orbit, a critical maneuver in space robotic applications such as
on-orbit servicing and refueling*, we then compare the SNN-LQR-EMSIF with its non-spiking counterpart,
LQR-EMSIEF, and the standard LQG under various sources of uncertainty, including modeling uncertainty,
measurement outliers, and neuron silencing, finally the proposed model has been compared with a learning-
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based neuromorphic model. For the proposed framework, our findings revealed an acceptable performance in
terms of curacy, and robustness while it outperforms the traditional frameworks in terms of computational
efficiency. While this study builds upon foundational elements introduced in our earlier works, it presents a
novel and unified neuromorphic framework for simultaneous estimation and control using spiking neural
networks (SNNs). Unlike our prior studies, which focused separately on just estimation'®!” or learning-based
neuromorphic control's, the proposed method integrates a robust estimation strategy (EMSIF) with a linear
quadratic regulator (LQR) into a unified SNN-based architecture. Notably, we considered a biologically plausible
firing rule based on predictive coding, enabling spike-efficient behavior and controlled neural activity without
requiring any training. This integration allows direct decoding of control signals from spike activity, eliminating
the need for sequential estimation-control logic.

Primarily, the contributions in this study can be pointed as: (1) introduction of a robust SNN-based
framework for Integrated estimation and control of dynamical systems, named SNN-LQR-EMSIF; (2)
implementing a biologically plausible firing rule based on the concept of predictive coding concept, enhancing
the biological relevance of our network and having control over the spike distribution in the network and prevent
excessive spiking for a part of the network or a neuron; (3) comprehensive investigation on the performance
of the proposed method in scenarios subjected to modeling uncertainties, measurement outliers, and neuron
silencing along with analyzes on the sparsity in the spiking patterns to demonstrate computational efficiency;
(4) application of the SNN-LQR-EMSIF to a real-world scenario involving Integrated estimation and control of
satellite rendezvous, a novel application for this type of neuromorphic framework. Together, these contributions
differentiate this work from prior literature and position it as a significant step forward in developing scalable,
robust, and biologically inspired neuromorphic solutions for real-time robotic control applications.

The structure of this paper is as follows: Sect. “Theory” introduces the preliminaries, theoretical foundations,
and the proposed framework developed to address the problem of integrated robust estimation and control in
linear dynamical systems. Section “Numerical simulation” then presents the numerical simulations along with a
discussion of the obtained results, and Sect. “Conclusion” concludes the study with closing remarks.

Theor

To estab)llish the foundation for the proposed estimation and control strategy, we begin by formally defining the
class of nonlinear systems under consideration, along with the associated uncertainties and control objectives.
Thus, in this section, we provide essential preliminaries, followed by an outline of the study’s outcomes. The
nonlinear dynamical system and measurement package considered in this study are defined by the following
equations:

= f(z,u) +w (1)
z=h(z)+d (2)

Here, z € R"* refers to the state vector, u € R™ is the input vector, z € R"* is the measurement vector. f(.)
and h(.) refer the nonlinear dynamic and measurement model respectively. w and d represent the zero-mean
Gaussian white noise with covariance matrices (), and R, respectively. Figure 1 depicts the traditional block
diagram of a Integrated estimation and control loop in conventional dynamical systems. This diagram reveals
that both the estimator and controller employ sequential algorithms, resembling the logic of traditional von
Neumann computer architectures.

Spiking neural network (SNN)

In this section, we present a brief overview of implementing an SNN, including its firing rule. To design a
network composed of recurrent leaky integrate-and-fire (LIF) neurons capable of approximating the temporal
variation of a parameter like x as expressed in Eq. (1), we need to implement the following equation':

6=-Xo+D" (&4 \x) — D' Ds 3)

Here, 0 € R refers to the neuron membrane potential vector, A is a decay or leak term considered on the
membrane potential of the neurons, D € R"®

%™ is the random fixed decoding matrix containing the neurons’

Dynamics
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Measurement

Controller Estimator

Fig. 1. Conventional block diagram of Integrated estimation and control loop in traditional dynamical
systems.
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output kernel, and s € RY is the emitted spike population of the neurons in each time step. Further, according
to spike coding network theories!*?*, the introduced network of LIF neurons can reproduce the temporal
variation of & under two assumptions. First, we should be able to estimate & from neural activity (filtered spike
trains) using the following rule:

T = Dr (4)

Here, 7 is the estimated state, and r € RN represents the filtered spike trains, which have slower dynamics
compared to s € RY . The dynamics of the filtered spike trains are provided by:

F=—-Ar+s (5)

The second assumption states that the network seeks to minimize the cumulative discrepancy between the true
state & and its estimated counterpart . This optimization is performed by adjusting the spike timing rather
than altering the output kernel values D. In other words, the network reduces the overall prediction error while
managing computational efficiency through the regulation of spike occurrence. To this aim, the following cost
function is minimized®*:

J = /O(IIw (1) =2 (1) 5 +vlr () I, + plir (7) [13)dr (6)

Here, ||.||3 represents the Euclidean norm, and ||. |, indicates L1-norm. This firing rule ensures that each neuron
emits a spike only when it contributes to reducing the predicted error, resembling a form of predictive coding®.
Finally, along with obeying the mentioned rules, the neurons will emit spikes when their membrane potential
reaches their specific thresholds. Thus, to ensure a biologically plausible spiking pattern, we define thresholds
using the following expression:

_ DI'Di + v+ puN?
B 2

T; (7)

Here, D; is it" column of the matrix D, which represents it? neuron’s output kernel that reflects the change in
the error due to a spike of i*" neuron. The parameters v and p play critical roles in balancing computational
efficiency and estimation accuracy within the network. The parameter v acts as a sparsity regularizing agent. By
reducing v, the network is encouraged to generate fewer spikes, which in turn reduces the overall computational
cost due to spike generation, making the system more energy-efficient and suitable for neuromorphic deployment.
On the other hand, the parameter p influences a quadratic penalty term that promotes an even distribution of
spikes among the neurons. This helps prevent over-reliance on a small subset of neurons and supports a more
robust and balanced network activity. Together, these parameters enable fine-tuning of the network behavior to
achieve an acceptable trade-oft between resource usage and functional performance. It is notable that proper
tuning of these parameters yields biologically plausible spiking patterns, where neural activity in biological
brain is distributed approximately evenly among neurons. This is achieved through a firing rule that minimizes
prediction error by regulating spike occurrences in response to excitation and inhibition. Note that throughout
this study for all the simulations the parameters v and p have been tuned using trial-and-error (e.g.: changing
one parameter while the other is being kept constant during the tuning) to achieve our desired sets.

SNN-based robust filtering

The SNN-based filtering strategies SNN-KF and the robust method SNN-MSIF for linear systems'8, and the
SNN-EKF and SNN-EMSIF for nonlinear dynamical systems have previously been introduced!®. Implementing
a double linearization approach SNN-EMSIF combines the SNN with the EMSIF, a robust filtering strategy for
nonlinear dynamical systems!”. In this framework, SNN-EMSIF is represented as a recurrent SNN composed
of leaky integrate-and-fire (LIF) neurons. Its weight matrices can adaptively change to emulate the dynamics of
EMSIFE combining the computational efficiency and scalability of SNNs with the robustness of the EMSIF in the
condition of neuron silencing. The equations governing SNN-EMSIF are as follows'®:

6=—-Xo+Fu(t)+ Qsr+ Qs+ Qr+ Frz+n (8)
where:
F=D"B )
Qs =D"(A+ XD (10)
Qf = —(D"D + puX*I) (11)

In the above equations, A = % | +—4» denotes the Jacobian matrix of the system dynamics, which is recalculated
at every time step using the most recent state estimate Z. The synaptic weight matrices Q25 and 27 correspond
to the slow and fast connection pathways within the recurrent spiking network. The slow connections primarily
encode the target system’s dynamics, thereby realizing the estimator, whereas the fast connections help maintain
stable network behavior by promoting a balanced distribution of spikes among neurons. The parameter X
determines the leakage rate of each neuron’s membrane potential, influencing how rapidly the potential decays
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over time, while F' transforms the control input into a spike-based signal interpretable by the SNN. Within
this structure, the second set of three terms in Eq. (3) mainly contributes to the a priori prediction stage of
the estimation process. In contrast, the following two terms associated with Q, and Fj adapt continuously
throughout operation and correspond to the measurement-update (a posteriori) stage. Specifically, {2 regulates
the adaptive correction dynamics, whereas F}y injects the encoded measurement information into the spiking
network. The evolution of these weight matrices is expressed through the following update relations:

Qi = —D" (C"sat(diag(P**)/5)) CD (12)
F, = D (C" sat(diag(P**)/6)) (13)
where, C = gz +—¢ 18 the Jacobian of measurement system that needs to be updated at every time step using

the most recent estimate of the system state &, while P** represents the innovation covariance matrix, and § is
the sliding boundary layer, a tuning parameter which can be tuned by trial-and-error method. To update P*%,
the following equations are used:

P =CPC" +R (14)
P=AP+PAT + Q- PCTR'CP (15)

The final term 7 in Eq. (9) accounts for zero-mean Gaussian noise, simulating the stochastic nature of the
neural activity in biological neural circuits. The weight matrices are analytically designed to capture EMSIF
dynamics, allowing the estimation of a fully observable nonlinear dynamical system with partially noisy state
measurements via a network of recurrent LIF neurons.

Utilizing the framework presented in this section for estimation concurrently with the conventional control
methods results in the system depicted in Fig. 2. The figure illustrates how the conventional non-spiking
estimator in Fig. 1 has been replaced by an SNN designed to function as an estimator. Instead of employing
sequential estimation algorithms, this SNN-based approach capitalizes on the advantages of SNNs, including
computational efficiency, highly parallel computing. However, as shown in Fig. 2, estimation and control tasks
are still conducted sequentially.

SNN-based integrated estimation and control

This section extends SNN-EMSIF to a network capable of concurrently performing state estimation and control
of dynamical systems. As introduced in!® and!?, for the derivation of the SNN-EMSIFE, which implements the
dynamics of estimator EMSIE, the SNN should be able to mimic the following dynamics which is the fully
linearized form of EKF through computing the Jacobians:

gZA/:f—O—BU—FKKF(Z—/Z\) (16)

where B = % |, is the Jacobian of the dynamic model with respect to input vector. Here, to go further and

add the control to the above-mentioned dynamics; u = —K.(x — zP ) is considered as the control input, So,
the network should emulate the following linear system of equations:
Z=AZ — BK. (& — 2°) + Kxr(z — %) (17)

where 2 denotes the desired state. To extend the previously introduced network, the control rule w is substituted
into Eq. (8), resulting in the following network equation:

6=-X o —FK.(Z—2")+Qr+ Qs+ Ur+ Frz+n (18)

Here, a decoding rule for the 2P is considered as follows:

X Dynamics X
S Measurement
Plant

ﬂglx
yif2
)

xD i
Controller — SNN-based
[ Estimator

Fig. 2. Conventional block diagram of integrated estimation and control loop of dynamical systems using
SNN-based estimator.
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z? =Dr (19)

where D is a fixed matrix generated from random elements sampled from a zero-mean Gaussian distribution.
To effectively implement the added dynamics for 2" in the network, referring to Eq. (3), an additional set of
connections is introduced into the above equation'*:

&= —Xo—D'BK.(Dr — Dr)+Q,r
—I—Qfs—‘erT‘-i-sz (20)
+ D" (a'cD —|—)\JJD) +Qss +7

After simplifications, the resulting network equation is as follows:

&= Ao+ Qor + O + Qur + Qs + Qe + Foz + D' (7 +22”) + Qs +1 (21)
where:
Q.=-D"BK.D (22)
Q=D"BK.D (23)
Q; = (D' D+ prD) (24)

Here, Q2. somehow represents the slow connections for implementing the control input of the desired system.
Q, and €2 represent the slow and fast synaptic weights for various connections respectively. parallel with
other connections, these weights are responsible for implementing the dynamics of the desired state for the
controller and Eq. (21) represents the membrane potential dynamics of a recurrent SNN of LIF neurons, capable
of concurrently performing state estimation and control of linearized dynamical systems. While the controller
gain K. must be designed for the considered system, this framework operates without requiring any learning by
the network. Furthermore, although we implemented optimal LQR control in this study, controller gain can be
independently designed using any arbitrary approach. Finally, to extract the control input vector for the external
plant from the spike populations, the following equation is employed:

u = Dyr (25)
where:

D,=-K.D-D) (26)

The above matrix can be used to decode the control input from the filtered spike trains. In summary, the
proposed framework integrates estimation and control processes simultaneously. It directly generates the control
input u for the dynamical system using a noisy and partially observed measurement vector z. So, this approach
eliminates the need for a sequential process where the state x is first estimated and then used to compute the
control input u, thereby enhancing efficiency and responsiveness. Thus, we don’t even need to extract the
estimated states for the control task unless in the cases in which we need to monitor the estimated states. Figure 3
illustrates the block diagram of the framework presented in this section.

Figure 3 demonstrates that for this framework, both the blocks of estimator and controller from Fig. 1
and Fig. 2 have been replaced by a single SNN. This represents an extension of the framework, leveraging
the advantages of SNNs. Furthermore, the computations required for state estimation and control input have
been parallelized. Consequently, implementing this framework can significantly reduce computational costs,
allowing more complex tasks to be performed even with limited computing resources. Additionally, owing to

X Dynamics
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Fig. 3. Block diagram of SNN-based Integrated estimation and control loop.
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the scalability of SNN, if the network loses some of its neurons, the process continues by increasing the spiking
rate of the remaining neurons, as demonstrated in the next section.

Numerical simulation

Here, to assess the performance and robustness of the proposed method, this section presents numerical
simulations conducted on two representative systems under multiple uncertainty conditions. We first apply the
proposed framework to a dynamical workbench problem and conduct various performance evaluations in terms
of robustness, accuracy, and computational efficiency, in comparison with the well-established methods LQG
and LQR-MSIE Subsequently, we extend the analysis of the SNN-LQR-MSIF to a practical scenario involving the
concurrent estimation and control of satellite rendezvous maneuvers. It is notable that, the two selected systems
were chosen to evaluate both general applicability and real-world relevance of the proposed method. The first
example—a generic second-order system with additive modeling uncertainties and measurement noise—serves
as a controlled general benchmark to systematically evaluate the algorithm’s robustness, sparsity, and response
to artificial perturbations. This abstraction allows direct comparison with traditional methods. The second
scenario, satellite rendezvous, was selected due to its highly demand for a reliable and accurate estimation and
control framework, as well as its practical constraints on computational and energy resources. It represents a
real-world use case where neuromorphic efficiency, real-time responsiveness, and resilience to uncertainty are
critical.

Case study 1: workbench dynamical system
Here, we initiate our investigation by applying the introduced framework to the following nonlinear dynamical
system with a linear measurement:

1 ]
[¢2}—Aw+Bu+w (27)

z=Cx+wv (28)

where:
0 1 0
A:[O 0};3:[1};0:[1 0]

In general, for the controllable pair of (A, B), the control law for the LQR controller is given by>*:

u = — KLQwa\ (29)

Here, the symbol , denotes an estimated parameter. The controller gain K1gr is designed to minimize the
following cost function:

Je = / (:cTchc +uTRou)dt (30)
J o

The weight matrices (). and R. are determined through trial and error, with conditions . > 0 and R. > 0
satisfled. The controller gain K 1R is calculated using the following equation:

Kior=R 'B"S (31)
where S is the unique positive semidefinite solution of the algebraic Riccati equation:
ATS+SA-SBR'B'S+Q=0 (32)

It is important to note that due to the linearity and time-invariance of the considered system (LTI), the gain
matrix Krqr is computed offline and does not require updating during the maneuver. Moreover, based on the
separation principle of linear systems theory, the obtained gain can be incorporated into our presented network
without imposing any condition on the estimator. Simulations have been performed over a 10-s period with a
time step of 0.01, employing the numerical values provided in Table 1.

Initially, we evaluated the applicability of the proposed framework in comparison with its non-spiking
counterparts, LQG, and LQR-MSIE, by simulating a deterministic system without uncertainties. Next, we
assessed the performance and effectiveness of the proposed framework by introducing various sources of
uncertainties and disturbances. In line with real-world scenarios, where exact decoding matrices are typically
unknown, we defined the decoding matrices D and D using random samples from zero-mean Gaussian
distributions with covariances of 0.25 and 1/300, respectively. Figure 4 displays time histories of controlled states
and estimation errors within 30 bounds obtained from SNN-LQR-MSIF in comparison with LQG and LQR-
MSIFE. Figure 4(a) illustrates that the state x; converges to zero after ¢ = 5 s, showcasing similar performance
between the proposed framework and its non-spiking counterparts, LQG and LQR-MSIF. Figure 4(b) indicates
that the state 22 converges to zero around ¢ = 6 s, again showing consistent performance between the proposed
framework and non-spiking methods. Figure 4(c) demonstrates that all considered strategies remain stable, with
errors staying within the prescribed bounds. Notably, the error obtained from KF deviates further from zero
before converging around ¢ = 3 s, while the errors from SNN-MSIF and MSIF exhibit faster convergence with
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Parameter | Value
0 [10,1]
Zo [10,1]
K. [1,1.7321]
Qe I

R I

Q 1/1000
R 1/100
N 250

A 0.01

1% 0.005
v 0.005
dmsiF | 0.005

Table 1. Workbench system simulation parameters.
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Fig. 4. Controlled states and estimation errors within 30 bounds (a) controlled state 1, (b) controlled state
T2, (c) estimation error of 1, (d) estimation error of zs.

smaller deviations. Figure 4(d) confirms the stability of all estimation methods, with SNN-LQR-MSIF showing
nearly identical performance to non-spiking EKF and MSIE. This suggests that the predictive coding rule enables
more timely correction in SNNs by emitting spikes only when the prediction error justifies it, leading to faster
convergence with fewer computations.

Further, to gain more intuitive insights into the tuning parameters of the firing rule, namely y, and v,
and their impacts on control accuracy, we conducted a sensitivity analysis. As depicted in Fig. 5, utilizing a
colored map to show the variations of normalized average error, this analysis reveals that the tuning of firing
rule parameters of the network directly affects control accuracy, and depending on the specific system, proper
parameter sets can be identified by trial and error. The preferred parameter set used throughout our simulations
is ¢ = 0.005 and v = 0.005 (marked with a white circle in the figure). The percentage of emitted spikes by the
neurons compared to all possible spikes is also shown in the figure by the numbers on the figure for each set of
pand v. It can be observed that decreasing v leads to a higher percentage of spikes compared to possible spikes
for each p. This highlights a trade-off between accuracy and computational efficiency that can be an important
factor in the tuning procedure of the network firing rule and confirms the previously mentioned matter about
the tuning of v that controls the number of spikes.

Furthermore, we evaluated the robustness of SNN-LQR-MSIF against modeling uncertainties by introducing
a 20% error in the dynamic transition matrix A = 0.9A. Simulation results in the presence of modeling
uncertainty were compared with LQG and LQR-MSIEF, as presented in Fig. 6. Figure 6(a) shows that in the
presence of uncertainty, the SNN-based framework for the state 21 deviates from non-spiking LQG and LQR-
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MSIE However, SNN-LQR-MSIF exhibits superior performance, converging to zero at approximately t = 4 s
and completely converging by ¢t = 6 s. In contrast, non-spiking frameworks yield matching results converging
to zero at t = 7 s. Figure 6(b) demonstrates that state x> exhibit similar deviation from non-spiking methods,
particularly with a slightly greater overshoot and error until ¢ = 4 s. However, after t = 4 s, SNN-LQR-MSIF
displays faster convergence, a minor overshoot, and eventual convergence to zero after t = 8 s. In summary,
these findings indicate that the proposed SNN-based framework exhibits commendable robustness in handling
modeling uncertainties or external disturbances compared to non-spiking methods. Figure 6(c) illustrates the
results for the state x1, showcasing the performance of SNN-LQR-MSIF comparable to that of LQR-MSIE
Initially, both methods exhibit an error trend that diverges over time, exceeding the bound around ¢ = 1.5 s but
returning within the bounds by ¢ = 4 s. Eventually, both methods achieve stable estimation, converging to zero
around ¢ = 6sand ¢t = 8 s for SNN-MSIF and MSIF, respectively. Meanwhile, the error from KF deviates entirely
and its error has returned to the bound in almost ¢ = 8 s and finally, it converged to zero at ¢ = 10 s. Notably,
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at t = 6 s, KF exhibits an error that is approximately 20 times greater than the error obtained for the proposed
SNN-LQR-MSIF is almost near zero. In Fig. 6(d), the results for the state 22 show nearly identical performance
between SNN-MSIF and MSIF, both maintaining stability in their estimations throughout the considered period.
Conversely, the error from KF deviates similarly to what occurred with the state 1. The obtained error for KF
has exceeded the bound and has risen continually until almost ¢ = 2.5 s reaches its maximum which is about
102 times greater than the obtained error for MSIF and SNN-MSIF is also approximately near to zero. Hence, it
is evident that SNN-MSIF outperforms MSIF by faster convergence to zero in the presence of uncertainty, and
it outperforms KF in terms of estimation stability. Thus, the results give us two different interpretations. First,
compared to the standard LQG, the faster convergence of the LQR-MSIF confirms the robustness of the method
in dealing with bounded modeling uncertainties because it is benefiting from the robust nature of the MSIF filter.
Then, faster convergence of SNN-based method compared to its algorithmic version suggests that the predictive
coding rule enables more timely correction in SNNs by emitting spikes only when the prediction error justifies
it, leading to faster convergence with fewer computations.

An important challenge in robust navigation and control systems is handling measurement outliers, which
can arise from sensor faults or external disturbances in the working environment. Therefore, to assess the
frameworK’s robustness in such scenarios, unmodeled measurement outliers were introduced into the system
att =3s,t=>5s, and t = 6 s. To simulate the presence of measurement outliers, the measurement system
noise was multiplied by a factor of 500 at these time points. Figure 7 presents a comparison of results for
controlled states and estimation errors within 3¢ bounds obtained from various frameworks in the presence
of measurement outliers. Figure 7a displays the time history of the state 1. It demonstrates that the presence of
measurement outliers causes slight deviations in the results obtained from the SNN-based framework between
t = 3s,and t = 7 s. However, the framework successfully regulates the error, ultimately converging to results
obtained from non-spiking methods. Figure 7b demonstrates the same behavior for the state z2. Results from
the SNN-based framework show minor deviations compared to non-spiking methods between ¢ = 3 s, and
t = 7 s, indicating that, although more sensitive to measurement outliers, the SNN-based methods continue
to control the states effectively. Figure 7c presents the obtained errors for the state x1, which exhibit significant
deviations at the points of outlier injection. However, for all considered filters, these deviations are followed by
rapid convergence to zero, confirming the filters’ stability. Moreover, the error from SNN-MSIF is considerably
smaller, especially compared to KF which exceeds the bound on all points. In Fig. 7d, we investigate the error for
the state 22 which reveals when KF experiences abrupt deviation and its error exceeds the bound at the points
of outlier injection, whereas SNN-MSIF and MSIF remain stable throughout the simulation. Thus, SNN-MSIF
exhibits superior robustness in such situations. Furthermore, meanwhile the results here reconfirm the previous
interpretations, the better performance of the SNN-based method in terms of faster convergence and lower error
divergence while it is encountering with outliers, shows that the SNN-based method is more adaptable in such
conditions because it is benefiting a dynamic adjustment of the computation in the SNN (changing the spiking
rate and neurons activation demonstrated in Fig. 8) based on the incoming error. Thus, the proposed method
can have an acceptable responsivity in dealing with such situations. Figure 8 illustrates the spiking pattern of the
network achieved by the SNN-LQR-MSIF approach when confronted with measurement outliers. In Fig. 8a, we
present the spiking pattern recorded in the presence of measurement outliers. It is evident that just right before
the points of outlier injections (at time steps 300, 400, and 600), most neurons are in standby mode, emitting
a few spikes. However, after the injection of outliers, a substantial portion of neurons (around 40%) become
activated to handle the injected disturbances, that are rejected within just 2-3 time steps. The neural activity then
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Fig. 7. Controlled states and estimation errors within 30 bounds for measurement outlier (a) controlled
state x1, (b) controlled state x2, (¢) estimation error of 1, (d) estimation error of x2.
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decreases, demonstrating that the network effectively overcomes external disturbances or unmodeled dynamics
by increasing neural activity or computational cost without failing in the assigned task. Moreover, Fig. 8(b)
reveals the temporal variation of active neurons in percent, emphasizing the sudden change in the population of
active neurons at the designated time steps. The population rises to nearly 40% to overcome the negative impacts
of injected outliers on the system.

Finally, to assess the proposed framework’s performance in situations where some neurons may become
silent, several simulations were conducted with varying numbers of neurons, ranging from N = 50 to N = 400
in the step of 50 neurons. Figure 9 presents the average overall network error in the controlled states after ¢ = 6
s (where the errors almost converged to zero) versus the number of neurons. In Region 1, a significant error
divergence to infinity is observed (the solid line which shows the error variation became almost vertical at the
edge of Region 1) while this error is abruptly decreased at N = 100. This corresponds to the minimum number
of neurons that the proposed framework requires to function effectively. Below this threshold, active neurons
cannot provide sufficient neural activity to perform the necessary computations. An increase in the number
of neurons within region 2 results in a gentle reduction in error. The minimum error can be observed at the
optimal number of neurons at N = 250. In contrast, region 3 shows that an increase in the number of neurons
degrades accuracy due to unstable spiking patterns with excessive neural activity. It is notable that because of
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Method SNN-LQR-MSIF

N =100 | 0.219ms
N = 150 | 0.449ms
N =200 | 0.789ms
N = 250 | 3.100ms
N = 300 | 4.400ms

Table 2. Obtained runtimes per time-step.

Rendezvous point

Fig. 10. Schematic of rendezvous maneuver?®.

the similarity, to avoid the repetitive figures, in this study, just the spiking pattern of the scenario with outlier
injection has been investigated.

Furthermore, to have an assessment of the computational burden of the proposed framework by increasing
the number of neurons (increasing the network size), runtime analysis has been done for the different N
and the obtained results have been compared in Table 2. To this aim, multiple simulations in MATLAB code
environment on a computer utilizing M4-Pro chip and 48 GB of memory have been conducted. The obtained
results demonstrate that increasing the network size has a direct effect on the computational burden.

Overall, the proposed framework exhibits remarkable robustness in handling measurement outliers and
effectively adapts to situations with varying numbers of neurons, provided a minimum neuron threshold is
maintained. These findings support the framework’s suitability for robust navigation and control systems in real-
world scenarios. Further studies on spiking patterns are provided in'. On the other hand, the proposed SNN-
LQR-EMSIF achieves O(n? + pn) complexity compared to O(n**7® 4+ mn?) for traditional LQG methods™.
This efficiency stems from event-driven sparse processing inherent to SNNs*’, eliminating continuous matrix
operations.

Case study 2: satellite rendezvous maneuver
This section is initiated by the presentation of the mathematical model for the satellite rendezvous maneuver.
Subsequently, the design of the LQR controller is expounded upon. Lastly, the simulation results are provided.
The rendezvous problem involves maneuvering two distinct satellites, the chaser, and the target. As depicted in
Fig. 10, the chaser satellite approaches the target in orbit.

To derive the equations of relative motion, we consider the following equation in the Earth-centered inertial
frame (ECI)™.

S=7.—T¢ (33)

Here, r. and r; represent the position vectors of the chaser and target, respectively. The relative acceleration is
described by the following expression:

5= i — i (34)
Meanwhile, considering the circular orbit, the gravitational force in ECI is expressed as:

fg (T) = - "l'earthg,r (35)
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Here, ftearth signifies the Earth’s gravitational parameter, m denotes spacecraft mass, and r, and r represent the
spacecraft position vector and its magnitude, respectively. Importantly, the absolute motion of both the chaser
and target in the ECI frame can be separately formulated as follows:

~ I'l/e(l"'

fo(re) =iy = —=eapthp, (36)
T

.fg (rc) =Te= _%TC (37)

The above equations represent normalized forms of Eq. (32), divided by the spacecraft mass. To formulate
suitable equations for controller design, it is advantageous to represent relative motion in the target frame, a
non-inertial reference frame rotating with the angular velocity, (,,.

d*’s* d*s*  dw

F+w><(w><s)+2w>< Tt +Exs*+%Ms*:f (38)

Here, s denotes relative distance, M, and f refer to Earth’s mass and external forces, respectively, and the asterisk
(*) denotes parameters in the target frame. The linearized form of Eq. (35) in the target frame, known as the
Clohessy-Wiltshire (CW) equations, is expressed as*:

&—2nz=f, (39)
g+ny=f, (40)
(41)

242ne—2n’z=f

z

n= R (42)

Here, R, represents the orbital radius of the target spacecraft, and n is the mean motion. To design the LQR
controller, we begin by defining the state and input vectors as @ = [z, v, z, &, ¥, 2]", and w = [fu, fy, f2]>
respectively. Subsequently, we derive the state space form of CW equations, expressed as:

where:

= Az + Bu (43)
where:
0 0 O 1 0 O 0 0 0
0 0 0 010 00 0
0 0 O 0 0 1 0O 0 0
A=1 9 0 0 0o 0 2n [|3B=| 1 0 0 (44)
0 0 0 0 -n®> 0 01 0
0 0 O —9n 0 2n? 0 0 1

The simulations in this section are conducted using the numerical values provided in Table 3, with a time
duration of 360 s and a time step of 0.05. Additionally, the decoding matrices D and D are defined using random
samples from zero-mean Gaussian distributions with covariances of 1/50, and 1/2500, respectively.

Figure 11 presents a comparison between SNN-LQR-MSIF and non-spiking LQG and LQR-MSIF in the
context of the rendezvous maneuver problem. Each element of the system’s state vector is individually compared.
The results demonstrate that all considered frameworks successfully control the states, with errors smoothly
converging to zero. Moreover, it is evident that the proposed SNN-based framework exhibits similar performance
in controlling the states, aligning with the results obtained from the optimal non-spiking framework LQG.
Notably, for states z, and v.., some discrepancies are observed. For state z, the SNN-LQR-MSIF exhibits a slightly
greater overshoot compared to non-spiking LQG and LQR-MSIF, but ultimately successfully controls the state
error to zero. Furthermore, for state v, the result from SNN-LQR-MSIF exhibits minor deviation from non-
spiking frameworks between ¢ = 100 s and ¢ = 200 s. To provide quantitative insight into this comparison,
average errors obtained from different methods after ¢ = 300 s are presented in Table 4. The results reveal
that non-spiking methods deliver consistent accuracy, and the SNN-based method demonstrates acceptable
accuracy. In summary, compared to traditional non-spiking frameworks like LQG and LQR-MSIE, the achieved
results for controlled states affirm the acceptable performance of SNN-LQR-MSIF for the problem of satellite
rendezvous, a critical maneuver in space robotic applications.

Figure 12 compares the obtained control inputs for different control approaches. Comparisons demonstrated
that while the control inputs for the non-spiking methods coincide together, the obtained control inputs for the
SNN-LQR-MSIF for the f, and f. have tracked the control inputs obtained for LQG and LQR-MSIE, but for f,
the obtained input from SNN-LQR-MSIF has started with a deviation with respect to the other methods before
t = 25 s, and then it has almost converged to the inputs obtained from the non-spiking methods. On the other
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Parameter | Value

o (m) |[70,30, —5]7
vo(m/s) | [-1.7,-0.9,0.25]"
xo [7‘0, ‘UO]T

/:;0 o

QC (18 — 6) 16
R, I3

Q (le —12) Is
R (le —2) I
N 350

A 0.025

Iz 1

v 0.0001
SMsIF | 0.005

Table 3. Parameters for satellite rendezvous.
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Fig. 11. Controlled states for satellite rendezvous obtained from various frameworks in normal condition.

State LQG | LQREMSIF | SNN-LQR-EMSIF
z(m) 0.0223 0.0222 0.3924
y(m) 0.0057 0.0057 0.3626
z(m) 0.0048 0.0048 0.0936
vz(m/s) | 0.0012 0.0012 0.0018
vy(m/s) | 0.0005 0.0005 0.0002
v=(m/s) | 0.0005 0.0005 0.0030

Table 4. Averaged error for different methods.
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Fig. 12. Control inputs obtained from different control frameworks.
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Fig. 13. Spiking pattern and temporal variation of active neurons population obtained from SNN-LQR-EMSIF
for satellite rendezvous maneuver, (a) spiking pattern, (b) temporal variation of active neurons.

hand, from a closer perspective obtained results for the SNN-based method have negligible fluctuations which
can be the source of the deviations in the controlled states in Fig. 11.

To assess the computational efficiency of the SNN-based framework relative to conventional artificial neural
networks (ANNs), we delve into the spiking pattern generated by the designed SNN, as showcased in Fig. 13(a).
This vividly illustrates the network’s efficient execution of its task. Upon closer examination, as depicted in
Fig. 13(b), during the initial 2000 time-steps (before ¢ = 100 s), when state-vector errors are sizable, the network
exhibits heightened neural activity, with approximately 20% of neurons being active. Subsequently, the population
of active neurons gently declines and remains relatively constant, with minor fluctuations hovering around 5%
for the remainder of the simulation. In essence, the network accomplishes its task while utilizing a mere 2.4% of
possible spikes over the entire simulation duration, in stark contrast to traditional ANNSs that consume 100% of
potential spikes. This underscores the computational efficiency of SNN-LQR-MSIF in simultaneously handling
estimation and control for satellite rendezvous.

Moving on to assess the robustness of the SNN-LQR-MSIF against modeling uncertainties, we introduce a
10% error into the dynamic transition matrix A = 0.9 A used within the framework. Figure 14 demonstrates
the results for controlled states using the aforementioned strategies in the presence of uncertainty. This figure
underscores that SNN-LQR-MSIF exhibits higher sensitivity to modeling uncertainties compared to non-
spiking strategies. However, it also presents that SNN-LQR-MSIF effectively controls the system, with all the
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Fig. 14. Controlled states for satellite rendezvous maneuver obtained from various frameworks for uncertain
model.

State LQG | LQREMSIF | SNN-LQR-EMSIF
z(m) 0.0223 0.0222 0.3059
y(m) 0.0058 0.0057 0.4001
z(m) 0.0049 0.0049 0.0082
vz(m/s) | 0.0012 0.0012 0.0030
vy(m/s) | 0.0005 0.0005 0.0001
v=(m/s) | 0.0005 0.0005 0.0035

Table 5. Averaged error for different methods — uncertain model.

errors gracefully converging to zero. Furthermore, Table 5 presents average errors obtained from controlled
states after t = 300 s, verifying the findings depicted in Fig. 14.

To further evaluate the robustness of SNN-LQR-MSIF against external disturbances, such as instability in
the working environment, we introduce measurement outliers. This scenario is configured so that unmodeled
measurement outliers are injected into the system at ¢t = 100's, ¢ = 150 s, and ¢t = 200 s. Notably, to introduce
the outliers at these time steps, the measurement system noise is scaled by a factor of 200. Figure 15 illustrates
the results for various frameworks in this scenario. Similar to modeling uncertainties, it reveals that the SNN-
LQR-MSIF is more sensitive to measurement outliers compared to non-spiking strategies. However, it effectively
maintains control, with all errors converging to zero.

Figure 16 provides insight into the spiking pattern of SNN-LQR-MSIF in the presence of measurement
outliers. In Fig. 16(a), the network reacts to disturbances by increasing the number of active neurons, rapidly
rejecting disturbances in just 2-3 time steps. Figure 16(b) quantifies this by depicting the variation in the
population of active neurons in percentage terms. The figure highlights a significant increase in the proportion
of active neurons, rising from approximately 10% to nearly 50%. Figure 17 shows the comparison between the
obtained control input from the SNN-based strategy and the non-spiking counterpart compared to the standard
LQG. although the results demonstrate an approximately good coincidence between the obtained results from
the various methods, the obtained control inputs for the SNN-based strategy have considerable jumps in their
values on the time steps when the outliers are injected to the system, similar to the increase in the neural activity
in the network, which shows the increase in the control effort to damp the external disturbances.

Corresponding averaged errors from the controlled states after ¢ = 300 s is presented in Table 6, thus
reinforcing the insights gleaned from the data depicted in Fig. 15.

Here, results obtained in this section affirm that the framework proposed in this study demonstrates
computational efficiency for such problems. Compared to traditional computing strategies like LQR-MSIF
and LQG, it exhibits good and comparable performance in terms of robustness and accuracy. While the
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Fig. 15. Controlled states for satellite rendezvous maneuver obtained from various frameworks subjected to
measurement outlier.
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Fig. 16. Spiking pattern and temporal variation of active neurons population obtained from SNN-LQR-EMSIF
for satellite rendezvous maneuver subjected to measurement outlier, (a) spiking pattern, (b) temporal variation
of active neurons.

proposed SNN-LQR-MSIF framework demonstrates promising performance in terms of computational
efficiency, robustness, and accuracy, it is important to acknowledge and discuss the inherent trade-offs among
these metrics. Specifically, in scenarios involving significant modeling uncertainties or injected measurement
outliers, the SNN-based method may exhibit slightly higher estimation errors or transient control deviations
compared to its non-spiking counterparts. This is largely due to the sparsity-driven firing rule, which reduces
computational burden by limiting spike activity. However, this may lead to under-representation of subtle state
variations in highly dynamic environments, thus impacting accuracy. On the other hand, robustness is retained
through the predictive coding mechanism and the use of EMSIF-inspired network dynamics, which stabilize
performance in the presence of disturbances or neuron silencing. These trade-offs are governed primarily by the
firing rule parameters v and p which must be tuned to balance spike sparsity (efficiency) with responsiveness
and network activation (accuracy and robustness). A discussion of this trade-off space is illustrated in Fig. 5,
where an ideal region for parameter selection is identified there by trial-and-error. Furthermore, for having a
comparison between the proposed method in this study with other learning-based neuromorphic methods, we
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Fig. 17. Control inputs obtained from different control frameworks.

State LQG | LQR-EMSIF | SNN-LQR-EMSIF
x(m) 0.0223 0.0222 0.0001
y(m) 0.0058 0.0057 1.2319
z(m) 0.0049 0.0049 0.2518
vz (m/s) | 0.0012 0.0012 0.0050
vy(m/s) | 0.0005 0.0005 0.0077
v=(m/$) | 0.0005 0.0005 0.0047

Table 6. Averaged error for different method—measurement outlier.

State Learning-based approach!! | Proposed approach
x(m) 0.0568 0.3924
y(m) 0.0508 0.3626
z(m) 0.0945 0.0936
vz (m/s) 0.0018 0.0018
vy (m/s) 4.5175¢ — 04 0.0002
vz (m/s) 4.1582¢ — 04 0.0030

Table 7. Averaged error for learning-based and proposed method.

compared the obtained results from our first simulation case here (simulation without uncertainties for satellite
rendezvous reported in Table 4) with the same scenario for the satellite rendezvous introduced in our previous
works!!, that uses a learning-based neuromorphic controller. Table 7 compares the obtained accuracy for the
different approached implemented.

Comparison of the obtained results shows the acceptable accuracy of the proposed method for the same
scenario compared to the learning-based approach. Though learning-based methods offer adaptability and
online learning capabilities but often come with increased complexity, training costs, and reduced interpretability.
Moreover, many learning-based controllers are heavily relying on their learning frameworks and techniques,
which may require careful hyperparameter tuning and extensive training time or may cause delay in online
inference because of computational resource overhead. In contrast, the framework proposed in this study offers
a learning-free alternative that is analytically derived from the dynamics of robust filtering and control. By
eliminating the need for training while still leveraging the energy efficiency and scalability of SNNs, our method
achieves comparable or superior robustness with significantly reduced computational overhead, especially
in edge or resource-constrained environments. This positions our approach as a viable solution for real-time
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control applications where reliability and computational efficiency are critical. Thus, it can be deduced that the
method proposed in this study can be a good candidate for learning-free neuromorphic approach for integrated
estimation and control. Finally, it is notable that, while the SNN-LQR-EMSIF framework exhibits slightly
higher errors in certain state estimates compared to the LQR-MSIF, these differences are both explainable and
acceptable within the context of real-time neuromorphic processing. The observed deviations can be attributed
to the discrete, event-driven nature of spiking computation, where state updates occur only when the prediction
error become considerably large for faster charge of membrane potential of the LIF neurons. In contrast, LQR-
MSIF, operating on continuous signal updates, can react more smoothly but at the cost of higher computational
burden. Importantly, considering the acceptable accuracy, the SNN-based method maintains stable convergence
and system behavior, and its robustness under uncertainty and resilience to measurement outliers often exceed
those of LQR-MSIE Moreover, the trade-off introduced by SNN’s sparse activity results in significantly reduced
computational load—favorable for embedded and space applications where resources are limited.

Conclusion

In the presented study, we have dived into the crucial challenges of concurrent estimation and control within
dynamical systems, underscoring its paramount importance. As the complexity and safety considerations
associated with mission-critical tasks continue to intensify, the demand for computationally efficient and
dependable strategies has become increasingly imperative. Moreover, in the real-world application landscape,
encountering uncertainties such as environmental instability, external disturbances, and unmodeled dynamics,
the call for robust solutions capable of navigating these challenges is resounding. Thus, we proposed an efficient
approach grounded in biologically plausible principles. Our framework harnessed the potential of a recurrent
spiking neural network (SNN), composed of leaky integrate-and-fire neurons, bearing resemblance to a linear
quadratic regulator (LQR) enriched by the state estimation of a modified sliding innovation filter (MSIF). This
innovative approach, SNN-LQR-MSIF combines the robustness inherited from the MSIE while concurrently
infusing it with computational efficiency and scalability inherent in SNNs. Importantly, the elimination of the
need for extensive training, owing to spike coding theories, empowered the design of SNN weight matrices
grounded in the dynamic model of the target system. Further, the SNN-LQR-MSIF approach has been analyzed
under various uncertainties, such as modeling errors, measurement outliers, and occasional neuron silencing.
Also, it has been compared with its non-spiking counterpart, LQR-MSIF, and the well-known linear quadratic
Gaussian (LQG) method. Our evaluation included both standard linear problems and the satellite rendezvous
maneuver, a critical task in space robotics. The results showed that SNN-LQR-MSIF performed well, offering
advantages in computational efficiency, reliability, and accuracy. This makes it a promising solution for
simultaneous estimation and control. Looking ahead, we aim to develop learning-based methods that combine
SNNs with predictive coding for robust estimation and control. These future advancements could further
improve control and estimation in dynamical systems.

Future work will focus on validating the proposed method in real-world hardware platforms. Due to its
sparse firing activity, learning-free structure, and modular design, the SNN-LQR-EMSIF framework is well-
suited for implementation on neuromorphic chips such as BrainChip Akida or Intel Loihi. We plan to conduct
hardware-in-the-loop (HIL) experiments to assess performance under real-time constraints and sensor
interface integration. In parallel, future work will aim to adaptively tune the firing rule parameters based on the
operational environment to dynamically optimize the balance between robustness, accuracy, and computational
efficiency. These developments are critical steps toward demonstrating the practical viability of the proposed
neuromorphic estimation and control system in edge computing and onboard robotic platforms.

Data availability
The code and data generated or analyzed during this study are available in the GitHub repository: https:/github.
com/INQUIRELAB/neuromorphic-integrated-control.
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