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Parkinson’s disease (PD) is characterized by progressive motor impairments, including lower limb 
dysfunction, leading to reduced mobility and increased fall risk. To counteract these deficits, 
neurofeedback based on deep brain stimulation (DBS) electrodes has been proposed as a novel 
approach to mitigate motor symptoms via modulation of abnormal beta-oscillations in the 
subthalamic nucleus. However, its potential to improve motor symptoms has yet to be fully 
established. This study examined whether a single session of DBS-based neurofeedback could have 
a short term effect on movement quality, quantified through inertial measurement unit recordings. 
Ten PD patients performed two standardized motor tasks, foot stomping and hand pronation-
supination, from the Unified Parkinson’s Disease Rating Scale. Movement quality metrics from 
inertial measurement units were extracted and compared before and after neurofeedback-induced 
beta-power downregulation. Beta-power was successfully reduced by -12.42% on average, and the 
reduction was associated with significant improvements in lower limb movement quality metrics—
acceleration magnitude (p = 0.037), movement speed (steps per second: p = 0.010; mean peak 
velocity: p = 0.002), and reduced halts (p = 0.020)—with a strong coupling between beta reduction 
and speed gain (Spearman ρ = 0.976, p < 0.001). No significant improvements were observed in upper 
limb movements. These findings indicate that neurofeedback-driven downregulation of beta-power 
produces measurable enhancements in lower limb movement quality, captured through wearable 
sensor metrics. Future work should assess whether these improvements translate into lasting 
functional benefits and validate the clinical relevance of these metrics.
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Parkinson’s disease (PD) is a prevalent neurodegenerative disorder that primarily affects motor function, leading 
to symptoms such as tremor, bradykinesia, rigor, and postural instability1,2. These motor symptoms are linked to 
the degeneration of dopaminergic neurons in the substantia nigra, and disrupted neural activity within the basal 
ganglia-thalamo-cortical circuit. A key consequence of this disruption is excessive synchronization and elevated 
power in the beta frequency band (13–30 Hz) within the subthalamic nucleus (STN), which has been shown to 
correlate with the severity of motor impairments in PD patients3–6.
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To counteract these abnormal neural oscillations, current standard treatments include dopamine replacement 
medication, such as levodopa, and deep brain stimulation (DBS) of the STN. Both therapies aim to modulate 
the abnormal beta-power and improve motor performance7–11. However, these effects are often temporary and 
show significant variability across patients. In particular, gait disturbances and postural instability are frequently 
resistant to treatment and may even worsen over time12–14. In some cases, the interventions may even increase 
specific motor symptoms or lead to adverse effects15,16, underscoring the need for complementary therapeutic 
strategies.

Neurofeedback has been proposed as a novel, non-pharmacological adjunct therapy for PD17. It is a technique 
that trains individuals to self-regulate neural activity by providing real-time feedback on specific brain signals, 
enabling them to modulate abnormal activity at will. This approach has been explored using various modalities, 
including electroencephalography and functional MRI, in both healthy individuals and clinical populations18–20. 
In the context of PD, DBS-based neurofeedback offers direct access to STN local field potentials (LFPs), allowing 
the real-time extraction and visualization of beta-power. Patients can learn to downregulate this beta-power 
through visual neurofeedback, as demonstrated in recent studies21–23. The downregulation of beta-power via 
neurofeedback has been associated with improvements in motor initiation15 and faster forearm movements24.

Despite these promising early results, neurofeedback interventions often use beta-power reduction as an 
indirect proxy for therapeutic success or rely on clinician-administered motor assessments that are inherently 
subjective and prone to inter-rater variability. While these clinical scales such as the Movement Disorder Society 
- Unified Parkinson’s Disease Rating Scale, part III (MDS-UPDRS III)25 remain widely used, they are limited in 
their temporal resolution and objectivity. This presents two critical challenges: first, changes in neural oscillations 
may not directly reflect meaningful motor improvements; second, manual evaluations lack the reproducibility 
required for broader clinical adoption and may be insensitive to the subtle changes in movement quality that 
neurofeedback may induce.

To bridge this gap, sensitive and objective tools are needed to assess whether neurofeedback-induced 
neural changes lead to functional motor improvements. Wearable inertial measurement units (IMUs) provide 
a promising alternative, enabling high-resolution, quantitative tracking of motor performance features such as 
acceleration, velocity, and smoothness. IMUs have been used extensively in PD research26–29, demonstrating 
their ability to capture changes in motor tasks that often remain undetected by human raters. Despite the 
growing use of IMUs and the increasing evidence on DBS-based neurofeedback, their combined application to 
systematically evaluate the effects of neurofeedback on movement quality remains scarce. To our knowledge, only 
one study has directly addressed this question in PD24, highlighting the need for further systematic investigation. 
Moreover, the one-by- one replication of MDS-UPDRS III subitems such as speed and amplitude has only been 
addressed in few studies, which are either not taking the MDS-UPDRS III as a direct template30, are relying on 
non-interpretable methods like machine learning31,32, or are focusing on the general use of wearable sensors to 
measure gait parameters or improve management of symptoms33.

The present study investigates the short-term effects of single-session DBS-based neurofeedback on 
movement quality in individuals with PD. Two standardized MDS-UPDRS III motor tasks - hand pronation-
supination (HPS) and seated foot stomping (FS) - were selected because they can be reliably performed in a 
controlled laboratory setting and are highly sensitive to subtle motor changes. Movement quality was assessed 
using task-specific, computationally derived IMU metrics before and after one minute neurofeedback for beta-
downregulation. We hypothesize that voluntary beta-power downregulation is feasible and associated with 
measurable improvements in movement quality. These findings aim to inform the design of neurofeedback 
protocols and encourage using objective metrics from wearables in movement analysis.

Results
Ten participants with idiopathic PD (mean age ± SD = 60±12 years; four female) completed the study protocol 
without adverse events. All participants underwent a single neurofeedback session to downregulate subthalamic 
beta-power, followed by movement quality assessments based on IMU recordings.

Neurofeedback
Beta-power modulation
Across three one-minute neurofeedback trainings, participants achieved an average reduction in beta-power 
of −12.42%, with a maximum observed reduction of −30.59% by using motor imagery strategies. Most of the 
strategies were related to motor tasks (e.g., imagined hand movements or walking), though some participants 
used non-motor strategies such as music or meditation (see Table 3). Fig.  1a shows baseline-normalized 
median beta-power across neurofeedback training blocks. A significant reduction in median beta-power was 
found between the first and third neurofeedback training block (W = 3.0, p = 0.039). After excluding two non-
responders (P01 and P09), who could not achieve significant downregulation, this effect was more pronounced 
(W = 1.0, p = 0.016; Fig. 1b, N=8). For reference, median beta-power reductions during the three consecutive 
neurofeedback training blocks were +2.31%, –5.42%, and –12.42%, respectively.

Beta-power was also analyzed during the session blocks combining neurofeedback with FS and HPS motor 
tasks. In the FS block (Fig. 1c), the median beta-power change relative to the baseline was –13.75% during the 
pre-neurofeedback motor task, –12.67% during neurofeedback, –3.83% during the post-neurofeedback task, 
and –4.62% during rest. In the HPS block (Fig. 1d), the corresponding changes were smaller: –3.60% during 
the pre-neurofeedback task, –1.38% during neurofeedback, –7.90% during the post-neurofeedback task, and 
–0.76% during rest. No significant suppression of beta-power was observed in either block compared to the 
baseline rest period. In several cases, beta-power returned to baseline or increased, particularly during the HPS 
block. The same was done for responder only, but results remained unchanged (see n Material Fig. S1).
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Spectral analysis
By plotting power spectra during the baseline rest period (Fig. 2), the beta-peak identification in the Medtronic 
BrainSense™software was validated. A slight overestimation of beta-peak frequency was observed (mean offset ± 
standard deviation over all participants in baseline rest condition: 1.37±1.97 Hz). Time-frequency representations 
(TFRs, Fig. 3) illustrate beta-power modulation: compared to baseline (Fig. 3a), participant P02, a responder to 

Fig. 2.  Power frequency spectra of the baseline recording for each of the study participants. To validate the 
accuracy of the selected beta-peak in the Medtronic BrainSense™software, the power-frequency-spectrum was 
plotted for the 60-second baseline rest recording of the first block for each participant. The individual beta-
peak is indicated with the dashed red line, and the red-shaded area indicates the frequency range (beta-peak ± 
2.5 Hz) displayed in the neurofeedback visualization.

 

Fig. 1.  Median beta-power during the recording blocks. For each participant, the beta-power value was 
normalized by the median baseline rest period of each block. (a) Neurofeedback training blocks across all 
participants; (b) Neurofeedback training blocks without non-responders. The p-value and significance star 
on the right (p = 0.016) are indicating the difference of the third neurofeedback training block compared to 
baseline; (c) FS task block; (d) HPS task block. NF: Neurofeedback; FS: Foot Stomping; HPS: Hand pronation-
supination.
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neurofeedback, exhibited a clear reduction in power around the beta-peak during downregulation (Fig. 3b). In 
contrast, the beta-power of participant P09, a non-responder, increased relative to the baseline. These individual 
patterns are consistent with the variability observed in the group-level beta-power statistics.

IMU-derived movement quality metrics
To address potential test-retest effects, comparison of baseline and pre-neurofeedback motor tasks revealed 
significant differences in three variables: FS mean peak velocity (W = 7.0, p = 0.037) and FS acceleration 
magnitude (W = 2.0, p = 0.006), as well as HPS turn intervals (W = 5.0, p = 0.039). All three measures were 
worse at pre-neurofeedback compared to baseline.

Lower Limb (FS): Post-neurofeedback, significant improvements in movement quality were observed in FS 
performance. In the all-participants analysis (N=10), both speed metrics improved (steps per second: +5.7%, W 
= 3.0, p = 0.010; mean peak velocity: +36.1%, W = 0.0, p = 0.002), halts were reduced, as indicated by shorter 
step intervals (–4.5%, W = 5.0, p = 0.020), and acceleration magnitude increased (+14.5%, W = 7.0, p = 0.037).

In the responders-only analysis (N=8), the same four metrics showed changes in the same direction as in 
the all participants analysis. Speed metrics remained significant (steps per second: W = 3.0, p = 0.039; mean 
peak velocity: W = 0.0, p = 0.008), whereas step interval (W = 5.0, p = 0.078) and acceleration magnitude 
(W = 5.0, p = 0.078) no longer reached the significance threshold. Sensitivity analyses excluding each non-
responder individually (P01 or P09, N=9) demonstrated that all four metrics remained significant, confirming 
that the findings were not driven by an individual participant. Only when both P01 and P09 were excluded 
simultaneously (N=8) did two metrics lose statistical significance, though effect directions were unchanged. The 
results are illustrated in Fig. 4, with exact p-values and effect sizes reported in Table 1.

Upper Limb (HPS): No significant changes were detected for HPS metrics when comparing pre-neurofeedback 
to post-neurofeedback executions. Angular velocity and movement timing showed variability, but differences 
between pre- and post-neurofeedback did not reach statistical significance (Table 2). Consistent with the non-
significant Wilcoxon tests for HPS, a paired equivalence test indicated that the HPS mean-peak-velocity change 
was statistically equivalent to no meaningful effect (pmax = 0.006, N = 10).

Correlation between beta-power and movement quality
No significant associations were found when all participants were included in the analysis. However, after 
excluding the two non-responders (P01 and P09), a moderate negative correlation emerged between beta-
power and movement speed (steps per second, Pearson’s ρ = −0.37, p = 0.018). Linear regression confirmed 
that beta-power significantly predicted movement performance (R2 = 0.14, F(1, 38) = 6.11, beta = −0.373, 95% 
CI [−0.686, −0.061], p = 0.018, N=40). Adding the task (baseline, pre-neurofeedback, post-neurofeedback) did 
not significantly improve model fit, and interaction terms between beta-power and task were non-significant. 
The negative association between beta-power and speed remained robust across FS conditions, indicating a 
consistent relationship between elevated beta activity and reduced motor performance (see Fig. 5).

At baseline, beta-power and FS speed showed the expected negative association (Spearman ρ = −0.381, 
95% CI [–0.866, 0.615], p = 0.352, N = 8), consistent in direction with established physiology, although not 
significant in this small sample. A change-score analysis revealed that larger beta reductions (pre–post) predicted 
larger speed gains (post–pre) across participants (Spearman ρ = 0.976, 95% CI [0.795, 1.000], p < 0.001, 
N = 8). The same strong association was observed when restricting the analysis to responders only.

Limb-specific exploratory analyses did not reveal significant associations between baseline impairment and 
the ability to downregulate beta-power. For FS, correlations with MDS-UPDRS item 3.8 (measured side) were 

Fig. 3.  Time-frequency representation of power values. (a & b): example of a responder (P02). Compared to 
the baseline rest (a), the power at the beta-peak (red dashed line) appears decreased during the neurofeedback 
downregulation task (b) indicated by less power (orange coloring) in the area of the beta-peak. (c & d): 
example of a non-responding participant. The beta-power during the neurofeedback task was increased (d) 
compared to baseline (c). NF: Neurofeedback.
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negative but non-significant (OFF: ρ = −0.400, p = 0.251; ON: ρ = −0.342, p = 0.333, n = 10). For HPS, a 
similar non-significant negative trend was observed in the OFF state (ρ = −0.483, p = 0.157), whereas the ON 
state showed no relationship (ρ = 0.105, p = 0.773, n = 10).

Discussion
This study investigated the short-term effects of DBS-based neurofeedback on motor function in individuals 
with PD, focusing on movement quality quantified through IMU recordings. We demonstrated that participants 
could learn to downregulate pathological beta-power in the STN within a single neurofeedback session and that 
this neural modulation was associated with measurable improvements in lower limb motor performance. To our 
knowledge, this is the first study to assess neurofeedback-induced motor changes using MDS-UPDRS-aligned 
IMU metrics in both upper and lower limb tasks.

Eight out of ten participants achieved successful beta-power downregulation during the dedicated 
neurofeedback training blocks, with a group average reduction of −12.42%. This confirms prior findings that 
patients with PD can learn to volitionally suppress subthalamic beta-power with real-time feedback21–23. Two 
participants did not achieve successful downregulation and were classified as non-responders, a common 
occurrence in neurofeedback protocols34,35. Several factors may account for such non-responsiveness, including 
interindividual variability in cognitive strategies, differences in attentional capacity, or underlying neural 
dynamics that are less amenable to short-term modulation. To account for this variability in neurofeedback 

Metric All (N=10) Responders (N=8) Excl. P01 (N=9) Excl. P09 (N=9)

Steps per second +5.71%; W = 3.0, p = 0.010** W = 3.0, p = 0.039* W = 4.0, p = 0.020* W = 4.0, p = 0.020*

Mean peak velocity +36.07%; W = 0.0, p = 0.002** W = 0.0, p = 0.008** W = 1.0, p = 0.004** W = 1.0, p = 0.004**

Step interval –4.54%; W = 5.0, p = 0.020* W = 5.0, p = 0.078 W = 7.0, p = 0.039* W = 7.0, p = 0.039*

Acceleration magnitude +14.51%; W = 7.0, p = 0.037* W = 5.0, p = 0.078 W = 8.0, p = 0.039* W = 10.0, p = 0.074

Table 1.  Sensitivity analyses of foot-stomping metrics pre- vs post-neurofeedback. Wilcoxon signed-rank 
tests were conducted for (i) all participants (N=10), (ii) responders only (N=8), and after excluding non-
responders individually (P01 or P09, N=9). Effect directions were consistent across analyses. All metrics 
remained significant when excluding P01, whereas exclusion of P09 led to a loss of significance for acceleration 
magnitude (p = 0.074). The reduction in significance in smaller subsets reflects decreased statistical power 
rather than reversal of the observed effects.

 

Fig. 4.  Pre- vs post-neurofeedback changes in foot-stomping (FS) performance. (a) All participants (N=10). 
(b) Responders only (N=8). Wilcoxon signed-rank tests indicated significant improvements in steps per 
second, peak velocity, and acceleration magnitude, as well as reduced step intervals in the all-participants 
analysis. In the responder-only analysis, improvements in both speed metrics remained significant, whereas 
step interval and acceleration magnitude showed the same trend but did not reach significance. FS: Foot 
Stomping, NF: Neurofeedback.
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responsiveness, two complementary analysis sets were prespecified: a conservative all-participants analysis 
(N = 10) and a responders-only analysis (N = 8; non-responders P01 and P09 excluded). This dual reporting 
strategy, commonly used in small-sample neurofeedback and neuromodulation studies36,37, allows assessment 
of overall effects while examining outcomes specifically in those who achieved the intended neural modulation. 
In the all-participants analysis, all four FS metrics improved significantly (steps per second, mean peak velocity, 

Fig. 5.  Correlation between beta-power and foot stomping speed (steps per second), across study session, 
excluding two non-responders (P01 and P09, N=8) to neurofeedback. Each participant contributed five 
data points: one during baseline foot stomping (FS), two during pre-neurofeedback FS, and two during 
post-neurofeedback FS. Both beta-power and movement speed were z-scored across all data points to allow 
comparison across participants and to report standardized effect sizes. The black regression line represents a 
linear fit across all trials, with a 95% confidence interval shown in gray.

 

FS Metric (N=10) W p SMD [95% CI] HPS Metric (N=10) W p SMD [95% CI]

General Metrics

Acceleration magnitude 7.0 0.037* 0.57 [–0.15, 1.28] Angular velocity magnitude 26 0.092 0.20 [–0.51, 0.92]

Speed

Steps per second 3.0 0.010** 0.94 [0.22, 1.65] Turns per second 14.0 0.193 0.46 [–0.25, 1.18]

Mean peak velocity 0.0 0.002** 0.85 [0.13, 1.56] Mean peak angular velocity 17.0 0.322 0.41 [–0.30, 1.13]

Amplitude

Mean step amplitude 17.0 0.570 −0.02 [–0.74, 0.70] Mean turn amplitude 24.0 0.770 −0.08 [–0.80, 0.63]

Total distance 27 1.000 0.02 [–0.70, 0.74] Cumulative angular displacement 14 0.193 0.45 [–0.27, 1.16]

Hesitations

Spectral arc length 12.0 0.131 0.41 [–0.30, 1.13] Spectral arc length 23.0 0.695 0.08 [–0.64, 0.79]

Log-jerk velocity 9.0 0.064 0.62 [–0.10, 1.33] Log-jerk velocity 17.0 0.322 −0.38 [–1.10, 0.34]

Halts

Number of halts 0.0 0.059 0.71 [–0.01, 1.42] Number of halts 2.5 0.625 −0.32 [–1.03, 0.40]

Step intervals 5.0 0.020* −0.64 [–1.35, 0.08] Turn intervals 12.0 0.131 −0.58 [–1.29, 0.14]

Decrementing Amplitude

Amplitude change 17.0 0.322 0.04 [–0.68, 0.75] Turn amplitude change 25.0 0.846 0.10 [–0.62, 0.81]

Slope of step height 20.0 0.492 −0.10 [–0.82, 0.61] Slope of turn angle 24.0 0.770 −0.16 [–0.88, 0.55]

Table 2.  Wilcoxon test results and effect sizes (SMD with 95% CI) for pre- vs. post-neurofeedback movement 
metrics. FS: Foot Stomping, HPS: Hand Pronation Supination, SMD: Standardized Mean Difference, W : test 
statistic; *p < 0.05, **p < 0.01.
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acceleration magnitude, and shorter step intervals), whereas in the responders-only analysis, both speed metrics 
remained significant and the other two showed the same direction of change, though with wider confidence 
intervals (Fig. 4). Together, these findings indicate that the behavioral effects are consistent across analyses and 
not driven by any single participant, and that the minor loss of significance with reduced sample size reflects 
the expected limitation of statistical power rather than a reversal of the effect38. Mental strategies varied across 
individuals between motor-related imagery and non-motor approaches. Previous studies have shown that motor 
imagery is particularly effective for engaging sensorimotor circuits and reducing beta synchrony39–41. The success 
of non-motor strategies such as focused attention or relaxation suggests that multiple cognitive approaches may 
support beta downregulation, emphasizing the need for flexible strategies during neurofeedback training42.

While beta-power could be reduced in the neurofeedback training, it was not significantly reduced compared 
to the baseline rest condition in the motor task blocks. This was unexpected, as voluntary movement is 
typically accompanied by beta desynchronization in the STN4. A potential explanation could be that preceding 
neurofeedback blocks may have had lingering effects on baseline beta activity. Moreover, participants were tested 
on medication and under ongoing DBS stimulation, both of which are known to suppress pathological beta 
activity6,8,43. These treatment effects may have led to already reduced beta-power during baseline rest, thereby 
limiting the observable range for further neurofeedback-induced suppression during motor execution. In 
other words, if beta activity was already attenuated at rest, additional downregulation during movement may 
have reached a physiological floor effect. Additionally, beta-power downregulation was less successful when 
participants attempted it between the two motor tasks (pre and post), particularly during the HPS blocks. This 
attenuation may reflect increased cognitive load, motor interference, or fatigue44,45 and highlights the importance 
of decoupling neurofeedback and motor phases in future designs15,17. Notably, Bichsel et al.46 demonstrated 
that externally cued (goal-directed) motor tasks are accompanied by event-related beta desynchronization, 
whereas self-paced (habitual) movements exhibit tonic beta suppression without clear event-locking. These 
distinct patterns suggest that goal-directed tasks require greater cognitive engagement, which may compete 
with the cognitive resources needed for effective self-regulation during neurofeedback. Together, these findings 
underscore that the context and timing of neurofeedback delivery - especially its interaction with ongoing motor 
and cognitive demands - play a critical role in modulating its effectiveness.

Previous work has employed wearable sensors to analyze gait27,28,47 or tremor26,29,48 in PD, and quantitative 
methods for evaluating leg agility (MDS-UPDRS 3.8)30,49 and hand pronation-supination (MDS-UPDRS 3.6)24,50 
have been explored, however, their application in evaluating therapeutic interventions remains limited51. The 
two tasks were selected because they provide controlled, reproducible conditions that are particularly sensitive 
to short-term motor fluctuations. Clinically, impairments of hand function are among the most common deficits 
in PD and show strong correlations with overall motor disability, making improvements in these domains both 
precisely measurable and highly relevant to patient functioning52,53. By contrast, items such as gait and posture, 
although clinically important, are more variable, require larger testing environments, and are less suited for 
precise and reproducible quantification in a single-session IMU-based design27,28,47,51. Furthermore, the selected 
tasks can be performed in seated position and require less cognitive load than, e.g. gait or posture control, 
and are easier to focus on, while the risks of falls is mitigated. For these reasons, the two tasks were included 
as standardized alternatives to capture movement quality. This approach enables objective and reproducible 
analysis of motor improvements, particularly focusing on movement speed and amplitude. It is especially 
relevant for detecting subtle therapeutic effects, which may not always be apparent in conventional clinician-
rated MDS-UPDRS scores, thereby enhancing the standardization of motor evaluations in PD.

After neurofeedback-induced beta-power downregulation, we observed improvements in lower limb 
movement quality. Specifically, FS post-neurofeedback showed significant increases in acceleration magnitude 
and movement speed, along with a reduction in halts. These findings are consistent with prior studies linking 
decreased beta-power to enhanced movement initiation, speed and performance4,54,55. Importantly, IMU-
based metrics allowed for detecting subtle, short-term motor changes that may be missed by standard clinical 
observation. Two effects should be distinguished: (i) beta-power levels tended to correlate negatively with FS 
speed, whereas (ii) neurofeedback-induced beta reductions robustly predicted within-subject speed gains. This 
indicates that it was not merely lower beta-power per se, but specifically its modulation through neurofeedback, 
that was linked to behavioral improvement. Notably, the association between beta reduction and speed gain 
was remarkably strong, indicating that participants who achieved greater neural modulation also showed 
larger behavioral improvements. This close coupling between physiological and behavioral change supports the 
mechanistic link between beta modulation and motor performance.

The effect size analysis further supports these findings: FS metrics such as steps per second and mean peak 
velocity showed large improvements, indicating that the observed changes were not only statistically significant 
but also practically meaningful. In contrast, other measures (e.g., decrementing slope and amplitude) yielded 
small or negligible effects, suggesting limited or inconsistent changes. Importantly, although many confidence 
intervals included zero, the direction and magnitude of the effects suggest clinically relevant improvements, 
particularly in FS motor tasks.

While the present findings suggest that DBS-based neurofeedback contributed to these improvements in 
movement quality, other factors–such as intraindividual variability in motor performance or non-specific effects 
of repeated task execution–may also have played a role. However, the short time interval between pre- and 
post-assessments, the participants’ prior familiarity with the tasks, the generally high test-retest reliability of 
the MDS-UPDRS III assessment56, and the temporal alignment of improvements with beta-power reductions 
support the interpretation that neurofeedback was a key contributor.

The possibility of test–retest (practice) effects was also considered, since tasks were repeated within a short 
time frame. Statistical comparisons between baseline and pre-neurofeedback motor tasks revealed significant 
changes in only three variables of hand and foot motor tasks (FS mean peak velocity, FS acceleration magnitude, 
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and HPS turn intervals), all of which showed worse performance at pre-neurofeedback compared to baseline. 
This indicates that simple repetition did not yield performance improvements, supporting the interpretation 
that the post-neurofeedback effects observed were not driven by test–retest influences but more likely linked to 
neurofeedback-induced beta-power modulation.

lower limb dysfunction in PD is a key contributor to mobility limitations and fall risk57,58. Our findings 
suggest that IMU-based assessments can detect motor improvements following neurofeedback, even when 
changes on conventional clinical scales are not visible. These metrics may serve as early indicators of therapeutic 
efficacy and support personalized rehabilitation. However, the clinical relevance of the observed improvements 
remains to be confirmed. The absence of clinician-rated MDS-UPDRS scores for items 3.8 and 3.6 at pre- and 
post-neurofeedback prevents direct comparison with conventional measures and determination whether 
the observed changes meet the threshold for clinically meaningful improvement. However, the inclusion of 
standardized effect sizes helps to describe the magnitude of change beyond p-values, offering a standardized 
metric for interpreting practical relevance, as large effect sizes observed in foot-stomping speed metrics, suggest 
changes that may approach the range considered meaningful in gait-related PD interventions.

While previous studies have explored neurofeedback in conjunction with hand motor tasks15,22, the HPS 
task in the present study did not show significant post-neurofeedback changes. This discrepancy likely reflects 
a combination of task- and circuit-specific differences in beta modulation. FS is a repetitive, impact-based task 
with more pronounced kinetic features, making it more accessible to IMU-based change detection, whereas HPS 
involves finer, cognitively demanding wrist rotations that may require longer or more targeted neurofeedback 
training to yield measurable effects24. The fixed order of task presentation may have further introduced mental 
fatigue, as HPS was always performed after FS at the end of the session.

Although upper limb movements can show strong dopaminergic and STN-related modulation37,59–61, 
this strongly depends on task characteristics. Complex, goal-directed actions such as reaching or grasping 
typically evoke stronger beta desynchronization than repetitive pronation–supination, which may elicit weaker 
or inconsistent modulation62. Notably, a previous study using a similar pronation–supination task reported 
significant modulation24, suggesting that factors such as the fixed task order, shorter training duration, or fatigue 
toward the end of the session in the present study may have attenuated the observable effect. In contrast, gait and 
foot-stomping tasks reliably engage beta dynamics63, consistent with the present lower limb findings.

Physiological and anatomical factors may further contribute. While leg movements are associated with 
stronger desynchronization in higher beta bands (24–31 Hz) compared to upper limb movements, indicating 
some limb-specific spectral specialization within the STN64, but upper limb modulation has also been shown 
in similar tasks24. The lack of such effects here may instead reflect contextual factors such as task order, shorter 
training duration, or fatigue. Moreover, STN neurons exhibit heterogeneous encoding of limb activity, with 
some units preferentially responsive to lower limb movements65. The fine motor demands, attentional load, 
and biomechanical complexity of the HPS task might further reduce the signal-to-noise ratio of feedback-
driven modulation, consistent with evidence that cortico-kinematic coupling degrades in more complex 
movements66. Heterogeneity within the beta range (e.g., low vs. high beta) may further confine upper limb 
modulation to narrower sub-bands that fall outside the 5 Hz feedback window used67.. In addition, testing in 
the ON-medication state with ongoing DBS–both known to attenuate pathological beta–may have reduced the 
residual capacity for further modulation, particularly in upper limb circuits. Electrode placement variability 
could also have weakened upper limb beta coupling68. The lack of HPS effects, confirmed by equivalence testing, 
therefore most likely reflects limited task sensitivity and physiological ceiling effects rather than a failure of the 
neurofeedback approach itself.

Finally, exploratory correlations between limb-specific MDS-UPDRS III subscores and beta-power 
downregulation strength revealed no significant associations, although moderate negative trends were observed 
in the OFF state, particularly for hand pronation–supination. These findings suggest that baseline limb 
impairment did not systematically influence the ability to volitionally suppress subthalamic beta-power in this 
small cohort.

This study has several limitations. Beta-power downregulation was not statistically significant during the 
neurofeedback phases embedded within the motor task blocks, though a small visible reduction was observed, 
particularly in the FS condition. This may reflect limited attentional capacity during movement preparation or a 
floor effect from prior downregulation. It suggests that neurofeedback may be more effective when delivered in 
separate, focused blocks rather than interleaved with motor tasks.

Furthermore, the small sample size (8 responders out of 10 participants) reduces statistical power and limits 
generalizability. Nonetheless, small cohorts, for example a range of 3 - 19 participants15,18,22 are common in 
Parkinson’s disease neurofeedback research due to the challenges of recruiting patients with implanted DBS 
systems, but still, prior studies with comparable sample sizes have provided valuable insights. Importantly, the 
classification of two participants as non-responders underscores interindividual differences in responsiveness, a 
factor that requires further investigation.

Another limitation of this study is the lack of standardized information on the timing of medication intake 
relative to the neurofeedback session. All participants were tested in the ON-medication state, but fluctuations 
in motor performance and beta activity are strongly influenced by the pharmacodynamics of dopaminergic 
treatment. In particular, levodopa has been reported to exert stronger effects on upper limb function than on 
lower limb function60,69, which may have contributed to a potential ceiling effect in the upper limb and blunted 
the measurable impact of neurofeedback. Because the exact time since last dose was not systematically recorded, 
medication-related variability as a confounding factor cannot be excluded. Future studies should therefore adopt 
standardized ON testing conditions (e.g., consistently 60–90 minutes post-dose) or include OFF-medication 
sessions to better disentangle medication and neurofeedback effects.
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While electrode contacts were clinically selected to target the dorsolateral STN and recordings were taken 
from adjacent bipolar channels, precise localization relative to STN somatotopy was not available. Given the 
medial-lateral organization of leg and arm representations70,71, spatial factors could plausibly influence both 
responsiveness and limb-specific effects. Incorporating imaging-based electrode localization in future studies 
may help clarify the anatomical specificity of neurofeedback effects.

The study was limited to a single session without repeated assessments over time or continuous monitoring. 
This restricts the ability to evaluate the stability and persistence of the observed effects, as well as their relevance 
to everyday motor performance.

Additionally, the fixed task order could have introduced mental fatigue effects, particularly for HPS. Finally, 
while IMU-based metrics detected subtle improvements, their validation in clinical settings remains to be 
established.

Future studies should test longer and repeated neurofeedback sessions, addressing individual variability, to 
learn how much training is needed for lasting benefits and relevance to everyday movement quality. Objective 
metrics for movement quality, as developed in this study, should be refined and validated across larger 
populations and using control mechanisms like motion capture and clinician ratings to investigate accuracy and 
temporal resolution, and to standardize motor task evaluations. Validating these metrics will require a separate 
dataset, which should be addressed in future work. Such a dataset should include clinician-rated MDS-UPDRS 
scores, test–retest assessments, and a sufficiently large sample size.

This study provides evidence that single-session DBS-based neurofeedback can lead to measurable 
improvements in motor performance in individuals with PD, particularly in lower limb function. By employing 
MDS-UPDRS III aligned metrics derived from wearable IMUs, we captured subtle motor changes often 
undetected by conventional clinical assessments, including speed, acceleration, and halts. These findings suggest 
that neurofeedback could evolve into a clinically relevant adjunct therapy, complementing medication and DBS 
programming, especially in domains where these conventional therapies provide limited benefit.

Methods
Participants and ethical considerations
Ten individuals with idiopathic PD were recruited within three weeks after STN-DBS implantation at the 
University Hospital Zurich. The sample size was based on previous power calculations, which has shown that a 
sample size of 6 participants is sufficient for finding a significant difference between baseline and neurofeedback 
regulation, based on a significance level of alpha = 0.05/2, and statistical power of 0.872. The recording time 
window was chosen to allow performing the experiment in the structured clinical environment, and less 
influence of DBS due to the lower stimulation amplitude, which is typically increased over the months following 
implantation. Recordings took place during their rehabilitation at Klinik Lengg. All participants were right-
handed and met inclusion criteria: age ≥18, clinical indication for Percept™ PC neurostimulator implantation, 
and subsequent planned hospitalization of at least three days. Exclusion criteria included reduced life expectancy 
(<1 year), impaired consciousness (GCS <15), communication difficulties, significant comorbidities, inability to 
follow procedures, insufficient language skills, or inability to provide informed consent. All participants provided 
written informed consent and were assigned anonymized identifiers. The study protocol was approved by the 
Cantonal Ethics Commission Zurich (BASEC 2021-00352) and conducted in accordance with the Declaration 
of Helsinki and local regulations. Data were encrypted at the point of acquisition, and only authorized personnel 
under confidentiality agreements had access to identifiable information. Medication and DBS settings remained 
unchanged throughout the study. All participants were tested in their ON-medication state. However, the 
exact timing of the last medication intake prior to the session was not systematically recorded. Participant 
demographics and session-related metadata are summarized in Table 3.

PID Sex
Age 
[y]

LED 
[mg]

Years since 
diagnosis

Post-OP day 
of session

MDS-UPDRS 
III OFF/ON

STN 
recording 
side

Stimulation 
[mA] Beta-peak

NF beta-power 
[Hz] NF strategy

01 F 41 750 3 19 18/9 left 0.9 19.53 17.03–22.03 finger tapping, 
walking

02 M 52 1010 8 13 18/11 right 0.9 27.34 24.84–29.84 woodwork, planing

03 F 71 1095 11 15 36/18 left 1.0 18.55 16.05–21.05 fist flexing, walking

04 M 69 1425 7 6 53/17 right 0.2 18.55 16.05–21.05 playing accordion

05 M 69 1375 13 14 40/28 right 0.8 25.39 22.89–27.89 fist flexing

06 F 62 1200 8 11 55/29 right 0.8 20.51 18.01–23.01 fist flexing

07 M 64 1315 6 19 44/27 right 1.1 25.39 22.89–27.89 fist flexing

08 M 55 865 8 16 78/24 right 0.9 26.37 23.87–28.87 cycling, dancing

09 F 40 705 9 14 59/14 left 0.9 26.37 23.87–28.87 fist flexing, 
breathing

10 M 73 900 5 14 30/17 right 0.7 20.51 18.01–23.01 meditation

Table 3.  Participant metadata. LED: Levodopa Equivalent Dose. IMU: Inertial Measurement Unit. MDS-
UPDRS III: Movement Disorder Society Unified Parkinson’s Disease Rating Scale III. NF: Neurofeedback.
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Study procedure
The study was conducted in a single session which lasted for about an hour comprising four measurement 
blocks (see Fig. 6). The first block served as a baseline, consisting of a 60-second rest period followed by baseline 
execution of the motor tasks (FS and HPS) without prior neurofeedback. A 35-second rest was inserted between 
tasks to minimize carryover effects.

Participants then completed three neurofeedback training blocks, containing a 60-second rest followed by 
a 60-second beta-power downregulation phase. During the downregulation phase, real-time visual feedback 
of subthalamic beta activity, referred to as neurofeedback, was displayed on a tablet. No feedback was shown 
during baseline rest and the motor tasks. To downregulate beta-power, the participants were encouraged to 
apply simple mental strategies (e.g., motor imagery of hand or walking movements) and could adjust their 
approach throughout. Reported strategies are summarized in Table 3.

Following training, FS and HPS were each repeated in dedicated post-training blocks to assess changes 
in movement quality. Overall, each movement block therefore consisted of: (i) a 60-second rest, (ii) a pre-
neurofeedback motor task, (iii) a second rest, (iv) a 60-second neurofeedback session, and (v) a post-
neurofeedback motor task. This sequence was conducted separately and in fixed order for FS (lower limb) and 
HPS (upper limb).

Neurofeedback
The neurofeedback procedure was adapted from a previous study21. LFPs were recorded from the STN contralateral 
to the symptom-dominant side using Medtronic SenSight™DBS leads (B33005) connected to a Percept™PC 
neurostimulator (B35200). Each participant’s beta-peak frequency was determined with BrainSense™Survey 
before starting the protocol, allowing for individualized feedback. All participants were set up with monopolar 
stimulation, so that bipolar LFP recordings were configured with BrainSense™Setup using contacts adjacent to 
the active stimulating electrode. The latter was surgically identified to provide optimal coverage for dorsolateral 
STN. Across participants, the selected contacts for beta-power monitoring were consistently centered around 
contacts 2 and 10 (left/right). Beta-power was computed as the average power within a 5 Hz band centered on 
the beta-peak. Stimulation remained active throughout all recordings as part of routine clinical care.

Visual neurofeedback was delivered via the BrainSense™Streaming function on the Medtronic clinician 
programmer tablet. The interface updated beta-power measurements at a 2 Hz rate, displaying both the most 
recent 6-second window and the entire session. Participants were instructed to concentrate on reducing the 
beta-power in the highlighted 6-second window, which provided immediate performance feedback.

DBS data processing and analysis
LFP data were exported in JSON format from BrainSense™ and analyzed using Python 3.9. Recordings were 
segmented according to task durations (see Fig. 6), and task-specific data from repeated motor blocks (FS and 

Fig. 6.  Study protocol. All participants underwent one session of 4 blocks. The number in brackets shows 
the number of block repetitions. Rest: Participants were instructed to sit quietly. NF: Neurofeedback 
downregulation of beta-power. FS: foot stomping (10x). HPS: Hand pronation-supination (10 cycles).
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HPS) were averaged across both repetitions. To validate beta-peak selection, the power spectra of baseline rest 
data were plotted (Fig. 2).

Changes in beta-power across conditions were assessed using BrainSenseLfp data (i.e., power in a 5 Hz 
window around the beta-peak, sampled at 2 Hz). Each block was normalized to the median of its initial rest 
period. Statistical comparisons were performed using Wilcoxon signed-rank tests, following Shapiro–Wilk 
tests for normality. TFRs of the BrainSenseTimeDomain signal were computed using complex Morlet wavelets 
(cmor0.5–5.0, via PyWavelets73, adapted from54). A Savitzky–Golay filter (length 20, order 3) was applied to 
smooth high-frequency noise and improve visualization. The resulting TFRs enabled a qualitative comparison of 
beta-band modulation across tasks (Fig. 3). Participants were classified as responders or non-responders based 
on their ability to modulate beta-power during neurofeedback: responders showed a reduction in beta-power 
in the third neurofeedback training block, while non-responders displayed increased beta-power after three 
neurofeedback trainings (P01 and P09).

Handling of non-responders
Non-response to neurofeedback is a recognized phenomenon and should be monitored and reported. 
Responders were defined a priori as participants who downregulated STN beta-power during neurofeedback 
(third training block < baseline); while non-responders could not achieve beta downregulation. Two analysis 
sets were prespecified: 1) all participants (N=10): representing a conservative intention-to-treat analysis; and 
2) responders only (N=8), to examine behavioral effects specifically in those who successfully modulated beta-
power. Additionally, the effect of excluding each non-responder (P01, P09) separately, as well as both together 
was tested using paired comparisons with Wilcoxon signed-rank tests. Effect sizes are reported as standardized 
mean differences (SMD) with bootstrapped 95% CIs.

Motor tasks
To assess changes in movement quality, two standardized MDS-UPDRS III tasks were selected, targeting the 
upper and lower limb. FS, based on item 3.8 (Leg Agility), evaluated lower limb function. Participants were 
instructed to perform ten seated, full-foot stomps as quickly and forcefully as possible. HPS, aligned with item 
3.6 (Pronation-Supination Movements of Hands), assessed upper limb function through ten rapid, alternating 
wrist rotations, aiming for maximum range and speed.

Tasks were executed with the limb on the symptom-dominant side, contralateral to the STN recording site 
(see Table 3). To enable objective motor task assessment, inertial measurement units (ZurichMove®) were placed 
on the ankle (FS) and wrist (HPS), capturing triaxial acceleration, angular velocity, and orientation at 200 Hz. 
Sensors were aligned to match the main axis of motion for each task.

Movement quality metrics
Movement quality was defined as a set of quantifiable features reflecting the performance of motor tasks, 
including amplitude, speed, smoothness, and rhythmicity. Task-specific metrics were derived from IMU data, 
aligned with MDS-UPDRS III criteria. IMU signals were manually segmented into task-specific time windows 
by visually identifying periods of active movement. Segmented data were downsampled to 50 Hz prior to further 
analysis.

Foot Stomping (FS): Preprocessing of FS accelerometer data included: (i) transformation from the sensor to 
global frame using ZurichMove® quaternions, (ii) conversion from g to m/s2, (iii) gravity compensation (9.81m/
s2 subtracted from the z-axis), and (iv) high-pass filtering at 0.5Hz to remove low-frequency drift. To derive 
velocity and distance, the processed acceleration data were integrated twice using a zero-update approach to 
limit drift. A peak detection algorithm identified foot strikes, verified visually, to identify movement segments. 
Velocity was computed by integrating within each movement segment, followed by drift correction. A second 
integration yielded displacement estimates.

Hand Pronation-Supination (HPS): Gyroscope data, recorded in ◦/s, were used for HPS as the angular velocity 
directly records the turning motion of the wrist. As the signal was smoother, only quaternion-based frame 
transformation and 0.5 Hz high-pass filtering were applied. Angular displacement (in degrees) was obtained via 
single integration; no zero-update was applied due to sufficient signal stability.

For both tasks, kinematic metrics such as magnitude, speed, amplitude, halts, smoothness, and decrementing 
amplitude were derived from IMU data. Where available, published definitions were applied - particularly for 
smoothness - while custom metrics were developed to align with the scoring logic of the MDS-UPDRS III. 
These features were computed from velocity and displacement (accelerometer data) or angular displacement 
(gyroscope data), based on established kinematic principles. All metrics were stored in a structured data frame 
and compared between pre- and post-neurofeedback using the Wilcoxon signed-rank test, as well as the SMD 
including confidence intervals to measure effect size. The results are reported in Table 2.

To assess potential test–retest effects, baseline motor tasks metrics (obtained before the neurofeedback 
administration) were additionally compared with pre-neurofeedback metrics using the Wilcoxon signed-rank 
test. Detailed definitions and computational approaches are provided below.

General Metrics: The acceleration or angular velocity magnitude was defined as 
√

x2 + y2 + z2, where 
x, y, z are the three IMU axes. This follows the formula described in30.

Speed: Step or turn rates were computed as the number of peaks per second, Rate = Npeaks/T , where 
Npeaks is the number of detected peaks and T  is the segment duration in seconds.

Mean peak velocity (FS) and angular velocity (HPS) were calculated as the average of the mean peak values 
across movements: MeanPeak = (1/N)

∑N

i=1 vpeak,i, where vpeak,i is the peak velocity of movement i.

Scientific Reports |        (2025) 15:44579 11| https://doi.org/10.1038/s41598-025-28378-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Amplitude: Mean amplitude was determined as MeanAmplitude = (1/N)
∑N

i=1 Ai, where Ai is the 
amplitude of movement i.

Total displacement was computed as TotalDisplacement =
∑N

i=2 |xi − xi−1|, with xi denoting the 
displacement at time i.

Hesitations: Hesitations were defined as movement smoothness, quantified using spectral arc length, 
following20.

In addition, the log-dimensionless jerk was estimated from the velocity signal as described by74.
Halts: Step or turn intervals were computed as MeanInterval = (1/(N − 1))

∑N

i=2(ti − ti−1), where ti 
is the timestamp of movement i. Halts were identified as intervals exceeding two standard deviations above the 
mean: Halts =

∑N

i=2 1(ti−ti−1)>µ+2σ , with µ and σ being the mean and standard deviation of all intervals.
Decrementing Amplitude: Change in amplitude over time was defined as ∆A = Āfirst − Āsecond. The 

slope of amplitude across time was estimated via linear regression A(t) = mt + b, where m represents the rate 
of change over time.

Analysis of beta-power and movement quality relationship
LFP and IMU data streams were not directly synchronized in real time; instead, motor task periods were 
retrospectively identified from IMU recordings using algorithmic segmentation and aligned with the fixed 
timing of the study protocol. To explore whether beta-power downregulation was associated with changes 
in motor performance, we computed Pearson’s correlation and linear regression for significantly improved 
FS metrics. Both beta-power and movement metric were z-scored across all trials to standardize effect sizes. 
Each participant contributed five FS trials: one during baseline, two during pre-neurofeedback, and two during 
post-neurofeedback. We further tested whether task phase (baseline, pre-neurofeedback, post-neurofeedback) 
moderated the relationship by including it as a categorical factor in the regression model.

To disentangle level from downregulation effects of beta-power, two complementary correlation analyses 
were performed. First, a baseline-only correlation was computed between z-scored beta-power during the first 
baseline FS and z-scored FS speed (steps per second) across participants. Second, a modulation analysis was 
conducted using change scores: ∆β = βpre−NF − βpost−NF  (larger values reflect greater beta reduction) and 
∆speed = speedpost-NF − speedpre-NF. For each participant, ∆β and ∆speed were computed and correlated 
using Spearman–s ρ with bootstrap confidence intervals (5000 resamples). Analyses were performed for all 
participants and for responders-only.

To further assess the absence of upper limb effects, a paired equivalence test (two one-sided tests with smallest 
effect size of interest ±0.3 SD of the pre value) was performed for the HPS mean peak velocity metric to evaluate 
whether pre–post changes were statistically equivalent to no meaningful effect.

In addition, it was explored whether the ability to downregulate beta-power related to baseline limb-specific 
motor impairment. For each patient, neurofeedback effect strength was defined as the relative reduction in 
normalized LFP beta-power during “down” periods compared to baseline, averaged across blocks, and analyzed 
separately for FS and HPS. Baseline impairment was quantified from preoperative MDS-UPDRS III items 
3.8 (leg agility) and 3.6 (hand pronation-supination), using the score of the limb side measured in the study. 
Spearman correlations were calculated for both OFF and ON medication states.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author upon 
reasonable request.
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