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noise, imbalance, feature reduction
and explainability
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Quantum machine learning (QML) has emerged as a promising paradigm for solving complex
classification problems by leveraging the computational advantages of quantum systems. While most
traditional machine learning models focus on clean, balanced datasets, real-world data is often noisy,
imbalanced and high-dimensional, posing significant challenges for scalability and generalisation.
This paper conducts an extensive experimental evaluation of five supervised classifiers- Decision Tree,
K nearest neighbour, Random Forest, linear regression and support vector machines in comparison
with Quantum machine learning classifiers- quantum Support vector machine, quantum k- nearest
neighbor and variational quantum classifier—across five diverse datasets, including iris, wine quality,
Breast cancer, UCI human activity recognition, and Pima diabetes. To simulate real-world challenges,
we introduce class imbalance using SMOTE and ADASYN Sampling, inject Gaussian noise into the
features, and assess the impact of dimensionality reduction through ANOVA-based feature selection.
Additionally, we utilise explainable Al tools, such as SHAP and LIME, to interpret model decisions. Our
results demonstrate that Logistic Regression consistently performs well under various complexities,
while Quantum Support Vector Machines show resilience to feature noise and class imbalance. The
study also highlights the current capabilities and limitations of QML models, offering valuable insights
into building generalisable and interpretable ML systems for deployment in complex environments.
These insights are crucial for building robust, interpretable, and generalisable ML models for practical
deployment.

Keywo rds Machine learning, Classification, Linear regression, Random forest, Support vector machine, K-
nearest neighbor, Decision tree, Quantum support vector machine

Machine Learning (ML) is employed in various computational domains to enhance performance and accuracy.
However, the morphology of datasets used to learn the machine offers some obstacles in this task. Machine
learning datasets typically consist of many tuples and a limited number of characteristics. Microarray technology,
capable of exhibiting particular distinctions from conventional machine learning datasets, is deployed to
overcome the morphological issues. To handle complex and vast varieties of datasets, various types of machine
learning algorithms, viz. supervised, unsupervised or semi-supervised, are used. Supervised learning algorithms
are the preferred machine learning approaches for classification and regression-related tasks. The Support Vector
Machine (SVM), Random Forest (RF), Neural Network (NN), Linear Regression, Decision Tree, & K-Nearest
Neighbor are some extensively used supervised learning methods found in the literature!.

Machine Learning entails the development of a prediction algorithm based on past experiences, which
necessitates obtaining relevant data in the specific field. Subsequently, the prediction network self-organizes
based on the margin of error? . In the present day, extracting important information from raw data for efficient
decision-making is crucial in business, scientific, medicine, science and engineering applications. Modern
intelligence technologies employ data analysis to examine and transform information into knowledge. Data
Mining (DM) and Machine Learning (ML) are crucial in accurately extracting information from large datasets.
Several machine-learning approaches are available for prediction, including classification, clustering, decision
making and regression, as depicted in Fig. 1 below®.
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Fig. 1. Machine learning techniques.

Machine Learning enables systems to acquire knowledge from insight into datasets and improve their
performance through natural learning processes without requiring explicit programming. Such algorithms are
valuable in domains where it is impractical to implement explicitly written algorithms that can achieve high-
speed performance®.

Classical Machine learning algorithms face limitations in scalability and computational efficiency, especially
when the dataset size grows, resulting in growing complexity. And this is where we introduce Quantum machine
learning, which leverages the principles of Quantum computing, such as superposition, entanglement, and
quantum parallelism, to process information in fundamentally new ways. ie., a Quantum Support Vector
Machine (QSVM) can utilise quantum-enhanced feature maps and kernel estimation to classify data, potentially
achieving speedups over classical SVMs, especially in high-dimensional feature spaces. Similarly, Quantum
Decision Trees and Quantum Neural Networks (QNNs) explore non-classical representations and optimisations
of classical models®.

The objective of quantum machine learning is to surpass the classical limits of problems such as pattern
recognition, probabilistic mapping and optimisation. Although QML algorithms are currently in the early stages
due to the limited availability of qubits and restrictions on quantum hardware, initial results show the potential
of QML in the real world. Figure 2 illustrates the evolution of Quantum machine learning from classical machine
learning.

The goal of the study is to assess the robustness and interpretability of both classical and quantum classifiers
under realistic data challenges. The output of this research will be helpful in selecting a classifier that effectively
evaluates previous data and makes accurate predictions for future decisions. This study makes the following key
contributions:

o Conducts a comprehensive empirical evaluation of five widely used supervised machine learning classifi-
ers-Decision Tree, K-Nearest Neighbor, Random Forest, Logistic Regression, Support Vector Machine and
Quantum Machine Learning classifiers- quantum Support vector machine(QSVM), quantum k-nearest
neighbor (QKNN) and variational quantum classifier (VQC ) across five publicly available datasets, reflecting
varied real-world conditions.

« Introduces class imbalance using both SMOTE and ADASYN and injects Gaussian noise into input features
to simulate noisy high-dimensional environments commonly encountered in practical applications.

« Applies ANOVA-based univariate feature selection to evaluate the effect of dimensionality reduction on mod-
el performance and to prepare inputs for quantum circuits.

o Analyses the performance of all classifiers under varying conditions of data noise, imbalance, and feature
sparsity using standard evaluation metrics.

« Employs explainable Al methods, including SHAP and LIME, to interpret model decisions, and quantum
kernel distribution, enhancing model transparency and trustworthiness, with extensions to quantum classi-
fier interpretability.

« Identifies logistic regression as a consistently high-performing model under noise and imbalance, while
QSVM demonstrates resilience to noisy features; provides insights on the current capabilities of QML clas-
sifiers.
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Fig. 2. Transition from classical ML to quantum ML.

Section "Introduction” explains the concepts of supervised machine learning and Quantum machine
learning. Sect. Related work presents an analysis of existing studies in the fields of machine learning and
quantum computing. Section "Methodology" describes the methodology, followed by the results section, and
Sect.conclusion concludes the paper.

Related work

Several researchers have conducted extensive studies on data analysis through Machine Learning (ML) and
Quantum computing (QC) methodologies. Multiple studies have indicated the importance of these strategies
in predicting future outcomes, particularly in the realm of classification problems. In these investigations, the
authors utilised various methods to address specific issues and achieved high levels of accuracy in categorisation.
For instance, these strategies are employed in the healthcare sector to predict diseases. Ch Anwar ul Hassan et
al. evaluated the effectiveness of machine learning classifiers. Various ML classifiers, including LR, Naive Bayes,
KNN and DT, were used to compare the accuracy, precision, and F-measure of the two datasets. The experimental
results demonstrate that Random Forests outperform alternative classifiers. The model achieves an accuracy
of 83% in heart data sets and 85% accuracy in predicting hepatitis illness®. Arslan Javaid et al. Proposed an
innovative classification methodology and divided skin lesions into benign or malignant categories, employing
image processing techniques with machine learning algorithms. Their work presented an innovative method
for enhancing the contrast of thermoscope images and the OTSU thresholding technique utilised for picture
segmentation. Subsequently, the feature vector undergoes standardisation and scaling. Before classification, a
unique feature selection technique based on the wrapper method is proposed. The Random Forest method is
the most successful and accurate classification algorithm for achieving maximum accuracy®. Vaishnavi Nath et
al. created and implemented an innovative fraud detection technique to analyse streaming transaction data and
study consumers’ past transaction information to identify their behavioural patterns. Cardholders are classified
into separate categories based on their transaction amounts. Next, employing the sliding window approach,
the exchanges performed by cards from several groups are combined to take out the respective behavioural
patterns of each group. Subsequently, distinct classifiers are trained on each group individually’. Rabia Karakaya
et al. examined the operational rationale of the method for recognising handwritten digits and evaluated the
effectiveness of several methods on the identical database. A report was presented by doing a comparative
analysis of the accuracy®. Piyush Vyas et al. proposed a hybrid approach, combining techniques based on lexicon
for examining and labelling tweet sentiment with supervised machine learning approaches for classifying tweets
and assessed the hybrid framework using numerous metrics for evaluation. The findings suggest that a significant
proportion of the attitudes expressed are positive (38.5%) or neutral (34.7%)°. A summary of research in the field
of quantum and classical machine learning is presented in Table 1.
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Feature
Ref | Dataset Techniques Result XAI | Noise | selection | Year
10 RoEduNet-SIMARGL2021, CICIDS-2017 RE ADA, DNN, SVM, KNN, MLP, LIGHT GBM | 99% Yes | No Yes 2024
1 Audio sensor data SVM, RE, LR, GNB, EGB 80.28% Yes | No Yes 2024
12| Case Western Reserve University (CWRU) bearing dataset (C(?]?;%\l/}t)mnal Long Short-Term Memory n/a Yes | No Yes 2024
13 ShipsEar dataset and simulated submarine data RE ADA boost, GBDT, X boost 94.5%,76%,95%,96.7% | No | No Yes 2023
14 Phase classification dataset QSVM, VQC 97.73,96.49 Yes | No Yes 2025
15 MNIST FMNIST, KMNIST, and CIFAR10 Quantum autoencoder + VQC 65% Yes | No No 2025
16 MNIST, Ionosphere, waveform, Madelon, synth_10, QUBO 90,78,87 No |No Yes 2025
synth_100
17 Wisconsin breast cancer data, kaggles’s Club data QUBO 69,62, 72.06 No |No Yes 2023

Table 1. Summary of research in the field of classical and quantum ML.

Literature review gap

An in-depth analysis of the recent literature from 2023 to 2025 on machine learning and quantum machine
learning applications across diverse datasets (e.g., RoEduNet-SIMARGL2021, CICIDS-2017, CWRU bearing,
ShipsEar, MNIST, and others) reveals significant progress in terms of classification accuracy and the integration
of explainable AI (XAI) and feature selection techniques. However, none of the reviewed studies have
simultaneously addressed all three critical components: XAI integration, feature selection, and the inclusion of
realistic quantum or classical noise models. This gap indicates a pressing need for a unified framework that can
incorporate:

« Explainable AI (XAI) for model interpretability,
o Feature selection to reduce dimensionality and enhance performance, and
 Noise models to simulate real-world deployment environments, particularly in quantum machine learning.

Addressing this triad holistically could significantly enhance the reliability, transparency, and deployment ability
of both classical and quantum machine learning models.

Methodology
The goal of this section is to assess the performance and interpretability of five widely used classical ML
algorithms -support vector machine, random forest, logistic regression, decision Tree and k nearest neighbor,
along with three quantum ML algorithms- Quantum SVM, quantum kNN and variational Quantum Classifier,
under various levels of complexity, i.e. noise handling, resampled data. Various steps of the methodology is
illustrated in Fig. 3.

Key Python modules and libraries used include:

o Scikit-learn: For data preprocessing, feature selection, classical model training, and performance evaluation.

 Imbalanced-learn: Specifically, SMOTE and ADASYN were used to address class imbalance in the training
data.

« PennyLane: For constructing and simulating quantum circuits and implementing the Quantum ML Models.

o SHAP and LIME: For model explainability and visualisation, aiding in the interpretation of feature contribu-
tions to model decisions.

« Matplotlib and Seaborn: For plotting ROC curves and explanation visualisations.

o NumPy and Pandas: For efficient numerical computation and data manipulation.

Each step is described in detail below.
Here is the pseudo-code for the methodology, for both the quantum and classical models:

Scientific Reports |

(2025) 15:45714 | https://doi.org/10.1038/s41598-025-28412-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data preprocessing

\ 4

Data Augmentation

Class imbalance
Noise injection
Feature selection

A 4

Model Training and Evaluation

A 4

Explainability (SHAP, LIME)

=

T

=

A 4

Results

Fig. 3. Proposed Methodology.
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START
DEFINE datasets = [Iris, Wine Quality, Breast Cancer, HAR, Pima Diabetes, Credit Card Fraud]

FOR each dataset IN datasets.:
// Data Loading and Preprocessing
LOAD features X and labels y
SPLIT X, y into X _train, X_test (80/20 stratified split)
STANDARDIZE X _train and X_test
// Class Imbalance Handling
APPLY SMOTE — X train_balanced, y_train_balanced
APPLY ADASYN

// Feature Noise Injection

FUNCTION add_gaussian_noise(X, factor):
RETURN X + factor * Gaussian_noise
X train_noisy = add_gaussian_noise(X train_balanced, factor=0.1)
X test noisy = add_gaussian_noise(X_test, factor=0.1)
//Feature Selection (ANOVA)
SELECT top-k features using ANOVA F-test
TRANSFORM X train_balanced, X test — X train_selected, X test selected
//Classical Classifier Evaluation
DEFINE classifiers = {
"Decision Tree": DecisionTreeClassifier(),
"KNN": KNeighborsClassifier(),
"Random Forest": RandomForestClassifier(),
"SVM": SVC(),
"Logistic Regression": LogisticRegression()

/

FOR each classifier_name, model IN classifiers:
FOR scenario IN ["Clean”, "Balanced", "Noisy", "Selected Features"]:
SELECT corresponding X _train and X_test
TRAIN model on X _train
PREDICT on X _test
CALCULATE metrics: accuracy, precision, recall, F1
STORE metrics in results[classifier_name][scenario]
//Quantum Model Evaluation (OSVM/QNN/VQC)
REDUCE input features via PCA/ANOVA (k< 8)
MAP features to quantum space using Angleencoding
COMPUTE quantum kernel (OSVM) OR DEFINE variational circuit (ONN/VQC)
TRAIN quantum model on training data
PREDICT on test data
CALCULATE metrics: accuracy, precision, recall, F1
STORE metrics in results["Quantum Models"]
// Explainability
//Classical Models
SELECT best performing classical model
APPLY SHAP (TreeExplainer / KernelExplainer)
PLOT global feature importance
APPLY LIME on random test instances
DISPLAY local explanations
//Quantum Models
ANALYZE feature contributions via quantum kernel
VISUALIZE kernel heatmaps or fidelity-based importance
//Result Storage
CONVERT results to tabular format
SAVE results for this dataset

END FOR
Algorithm. Data preparation, noise handling, feature selection, and model evaluation

Datasets

The different datasets have been selected to assess the performance of QML and ML classifiers. These datasets
have been retrieved from the UCI and Kaggle repositories, as tabulated in Table 2. The term is used in the dataset
to refer to several instances, features, classes, and their corresponding null values, if present.
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Features used for Quantum
Dataset Name Features | Features used for classical ML Models | ML Models Instances | Class Distribution Purpose
Iris 4 4 4 150 Balanced (3 classes) Classic classification dataset
Wine Quality 13 13 6 178 Imbalanced Chemical analysis of wine
Breast Cancer Wisconsin 30 30 6 569 Imbalanced Medical diagnosis
Human Activity Recognition | 561 561 6 10,299 Balanced (6 activities) | Real-world sensor data
Pima Indian Diabetes 8 6 768 Imbalanced Medical data
Table 2. Structure of the Datasets.
Train
Training | Model
Production
Data
sources
Test  |Evaluate Mode
Data

Fig. 4. Workflow of Su learning.

Data preprocessing
Data preprocessing ensures the datasets are ready for model training and testing. The steps followed are:

Missing values
Missing values (if any) are imputed using the median (for numerical features) and mode (for categorical features).

Feature scaling
Standardization (z-score normalisation) is applied to all continuous variables to ensure uniformity.

Class imbalance simulation
SMOTE (Synthetic Minority Over-sampling Technique): Used for over-sampling the minority class in
imbalanced datasets like Wine Quality, Breast Cancer, and Credit Card Fraud.

ADASYN (adaptive synthetic sampling): Applied over-sampling to the minority class in specific experiments,
especially for highly imbalanced datasets. It generates synthetic samples adaptively, focusing more on minority
class instances that are harder to learn, thereby improving classifiers’ performance.

Noise injection
Gaussian noise is added to the features to simulate sensor or data measurement errors. The noise level is
controlled (e.g., adding 1% noise by randomly sampling from a Gaussian distribution).

Xnoisy = X + N (0,07) 1)
where N (07 02) Represents Gaussian noise with mean zero and standard deviation o .

Feature selection
SelectKBest: A univariate feature selection method based on ANOVA F-test scores is used to reduce the feature
set and evaluate model performance under reduced dimensionality.

Dimensionality Reduction: The top k features (using SelectKBest) are selected to simulate a scenario with
reduced information.

Supervised and quantum machine learning classifiers

Supervised learning in machine learning involves acquiring a function that establishes a relationship between
inputand output data, which can be achieved by utilising provided examples of input—output pairs. The procedure
entails deriving a mathematical function based on training data labelled by assigning certain categories or classes
and comprising a collection of training instances. The input dataset is partitioned into many training and testing
datasets, as illustrated in Fig. 4. The training dataset includes a target variable that necessitates forecasting or
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Fig. 5. Instance of decision tree.

Fig 6: SVM Classification hyperplane

Fig. 6. SVM Classification hyperplane.

categorisation. Algorithms extract patterns from the training dataset and employ them to make predictions or
categorise the test dataset!®.

Currently, Quantum ML has emerged as a promising advancement of classical ML by leveraging the principles
of Quantum Computing to enhance the capacity of learning models. Quantum Models follow the same learning
from labelled data but they encode the classical data to quantum data using feature maps and process it using
quantum circuits. Figure 4 depicts the pipeline of machine learning.

Decision tree (DT)

Constructing a classifier involves utilising a set of internal and leaf nodes. The internal nodes represent decision
criteria, while predictions are represented by the leaf nodes. Let ' N’ Be the quantity of physiological characteristics
and ' M’ Represent the number of diagnosis predictions. Let ' X' Be a set of physiological characteristic vectors
denoted as {X1, Xo........ Xn} . Let "W’ Be the set of "N’ thresholds, denoted as {W1, Wa. ... ... .
Consider 'C” as a set of diagnosis predictions, denoted as as {C1, Ch......... C'n }.. This process commences from
the root node and proceeds towards the last node. Consequently, the classification effect depends on the choices
from the starting node to the finishing node. The classification of a classifier based on decision trees can be
understood as a collection of IF-THEN statements by systematically visiting each decision route. Hence, it is
probable to transform a DT classifier in any rule base consisting of the collections of IF-THEN rules that are
formed from the DT classifier'®. The attribute that each node tests is labelled, and the values that correspond to
those labels are labelled on its branches, as illustrated in Fig. 5.

Support vector machine

SVM, a supervised classification method, begins with a pre-existing training set. During the training process,
a Support Vector Machine (SVM) acquires knowledge regarding the correlation between each data point and
its related label in the given training dataset®. It is specifically designed for binary classification of new testing
vectors and refers to a type of issue characterised by having more equations than unknowns, which is known
as an over-determined system of equations as represented in Fig. 6. The algorithm produces a hyperplane
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defined by the equation —, . —z +b=0. This hyperplane ensures that to obtain a training point — . in the
positive class, = . —z +b2>1, and to obtain a training point — . in the negative class, = . —+b<—1.The
algorithm strives to optimise the distance between the two classes throughout the training process. This is logical
since we wish to create a clear separation between the two classes in order to obtain a more accurate classification
result for new data samples, such as —x.. Mathematically, Support Vector Machines (SVM) find any hyperplane
that maximises the distance between two parallel hyperplanes, subject to the restriction that the product of
the predicted label ( —yi) and the linear combination of the weights (—) and the input vector (—xo)?. The
diagram in Fig. 6 below represents the categorization of classes using a hyperplane.

K-Nearest Neighbor (KNN)

An enduring approach in class reasoning. The decision-making concept is based on a straightforward principle:
the sample that needs to be evaluated is classified in the same category as the closest matching sample. The
outcome of the Nearest Neighbor Rule is definitively established for all occurrences to be evaluated, assuming
that the distance metric and training set remain constant. In set E, for every sample instance, if y is the closest
neighboring instance to x, then the group of y is determined by the nearest neighbor rule. Assume X is a sample
from an unidentified category. The decision process is envisaged in equation (2):

g; (X) =ming; X)i =1,2, ..., (2)

Subsequently, the outcome of the choice is XeW.

In this context, the nearest neighbour rule is presented with a focus on two key aspects: convergence and
generalisation error. The nearest neighbour for a given point z, derived from two training sets with different
samples, varies. Given that the classification outcome is contingent upon the category label of the closest
neighbouring data point, P (e|z, z), is so obtained. x and 2/ factors determine the conditional error rate?!.

Random forest (RF)

This model is a collective learning technique. The algorithm constructs a series of decision trees throughout
the training process and the mode determines the class that has the highest frequency among the trees for
classification tasks, while it calculates the mean prediction for regression tasks. The node splitting criterion was
configured to demand a minimum of two samples, and each leaf node must include at least one sample. The
procedural instructions of the Random Forest algorithm:

« Generate a bootstrap sample using the given data.

« In order to create each bootstrap sample, a regression tree must be constructed with certain modifications:
randomly select a subset of the predictors at each node and determine the optimal split among the variables.

« Calculate the most recent data by summing up the forecasts of the n; trees (taking the average for regression).

Built on a random selection of observations, whether with or without replacement, approximately 36.8% are
not utilized for any one tree. This means that these observations are considered "out of the bag (OOB)" for that
specific tree. The predictive accuracy of a random forest can be assessed using the out-of-bag (OOB) data.

n

_1 = 2
OOB ~ MSE = Z (yi — 1:00B) 3)

i=1

where the average forecast for the 4;, opinion from total trees the observation that is out-of-bag (OOB) is
represented by 4; OO B.

Linear regression (LR)

Regression is a method employed to analyze the association between two variables. The analysis is commonly
employed for the purpose of forecasting and prediction, and it shares significant similarities with the field of
machine learning. Crucially, this method demonstrates the relationships between a dependent variable and a
predetermined set of other variables in a dataset. The equation is represented as y = 50 + S1lz + €. Simple
regression separates the impact of independent factors from the interplay of dependent variables.

Quantum support vector machine
A Quantum Support Vector Machine (QSVM) is a quantum-enhanced version of the classical Support Vector
Machine (SVM) algorithm, designed to perform classification tasks. QSVM leverages quantum computing,
particularly quantum kernel methods, to potentially outperform classical algorithms in certain scenarios,
especially when dealing with high-dimensional data or complex patterns that are difficult to capture classically.
Quantum SVM replaces the classical kernel function with a quantum kernel, which is computed by a quantum
computer. This quantum kernel is based on the inner product of quantum states, which allows encoding classical
data into quantum feature space.

Quantum kernel estimation
The key idea is to map a classical data point xxx to a quantum state | ¢ (z))| and then compute a kernel matrix
K (z,3') = (¢ (z)| ¢ (z'))|* This is usually done by

Encoding data into quantum circuits using a feature map U¢ ().

Measuring the fidelity (overlap) between quantum states

This allows capturing nonlinear patterns efficiently, potentially with exponential speedups.
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Workflow of QSVM
Feature mapping: Encode classical data xxx into a quantum state using a parameterized unitary U¢ ().

Kernel evaluation: Compute K (z,2") = |{¢ (z)| ¢ (z)) I°.

Classical SVM Solver: Use a classical algorithm (e.g., LIBSVM) to find the separating hyperplane using the
quantum kernel matrix

Prediction: New data points are mapped and evaluated using the quantum kernel.

Quantum k nearest neighbor
The Quantum kNN algorithm adapts the classical k nearest neighbor classifier to a quantum computing
paradigm by representing classical vectors as quantum states and using quantum subroutine to estimate inter
sample similarities in superposition. QKNN aims to accelerate distance or similarity estimation and nearest
neighbor search under theoretical models that provide efficient quantum access to data?.

QKNN implementations usually estimate s (x4, z;) using one of the:

« Fidelity / inner product: | (x4 | x;)|?, estimated via a SWAP test or Hadamard test.

« Euclidean distance via inner product identity:

o || zg — i |IP=| 24 || + || 2: ||* —2 (x4, x;) where the inner product is obtained from amplitude overlaps.

« Hamming or other discrete distances when features are binarised; specialised circuits exist for parallel Ham-
ming distance estimation.

Variational quantum classifier

The Quantum Variational Classifier (VQC) is a hybrid quantum-classical supervised learning model that
leverages parameterised quantum circuits (PQCs) optimised via classical algorithms. It belongs to the class of
Variational Quantum Algorithms (VQAs), specifically designed for Noisy Intermediate-Scale Quantum (NISQ)
devices.VQC combine quantum feature encoding and trainable quantum layers to learn complex, nonlinear
decision boundaries, analogous to a neural network but implemented on qubits. Their advantage lies in
exploiting quantum entanglement and superposition to represent data in exponentially large Hilbert spaces,
offering potential expressivity beyond classical models?® . If given a dataset D, then

D = {(zi,y:)}il1, m € RY y; € {—1,+1}, (4)

the goal is to find a variational quantum circuit U (0) parameterised by a vector of tunable parameters 6 such
that the measurement expectation value corresponds to the predicted class label.
This process these steps are included :

« Encoding: map classical data x; into a quantum state |z:;) = Uy (a;) |0)®", where Uy is a data-dependent
unitary transformation.
« Parameterised evolution: Apply a trainable unitary U (6) to form |1 (2:,0)) = U (0) U (2:) |0)®™

Measurement: Measure an observable (e.g., Pauli-Z) to obtain the expectation value:
fo(@i) = (¢ (23, 0)| M [ (24,0))
where M is the measurement operator. The sign of fg(z;) determines the class label.

Optimisation: Minimise a cost function such as binary cross-entropy or hinge loss**:

LO) =+ PIULACHNT 5)

Evaluation parameters
Within the domain of data mining, several evaluation measures, including accuracy, F-measure, precision, and
recall, are commonly employed to assess the system’s performance. In this paper, we will consider these measures
to evaluate performance. TPe is an abbreviation for correctly identified positive, FPe is a false positive, TNe is a
true negative, and FNe is a false negative.

The accuracy rate is the ratio of instances with correct classification to the total cases tried, as stated in
Eq. (1). The equation can be formulated in the following manner:

(T'Po)+ (T'Ne)
(TPo+ (FPo) + (T'Ne) + (FNe)

Accuracy =

(6)

The precision of a model is defined as the proportion of the truly positive instances that are correctly forecasted
to all positive forecasts generated by the model.

(TrP)

P s —
recision —(TTP) n (FlP)

(7)

The recall calculates the percentage of positive scenarios correctly predicted to the total number of positive
scenarios, with the false negative scenarios, and is occasionally called the true positive rate.
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(TrP)

=\
Recall = By T mi)

(8)

The F1 score is a quantitative measure that assesses the relationship between precision and recall. The calculation
involves taking the harmonious average of both. It is a valuable metric for achieving a compromise between high
precision and strong recall. It effectively penalises extreme negative values of either component.

Accuracy quantifies the overall correctness or precision of a measurement or calculation. In the equation
Pr1 stands for precision Rel stands for recall

2 x (Prl x Rel)

F1 -
SOTC= T Prl + Rel)

7)

ROC curve: The Receiver Operating Characteristic (ROC) curve is a standard tool for evaluating binary
classifiers, especially in imbalanced medical datasets. It illustrates the trade-off between a True Positive Rate
(Sensitivity) and a False Positive Rate (1—Specificity).

Confusion matrix: It is a tabular representation of showing the counts of True positives, true negatives, false
positives and false negatives.

Explainability: SHAP, LIME and Quantum kernel distribution
To enhance model transparency, we use two popular Explainable AI (XAI) techniques: SHAP and LIME. These
techniques provide insights into which features are driving the model’s predictions.

SHAP
We use SHAP (SHapley Additive exPlanations) to evaluate feature importance globally. SHAP values indicate the
impact of each feature on the prediction for each instance.

LIME
For local interpretability, we use LIME to explain individual predictions by approximating the model with
simpler interpretable models around each prediction.

Quantum kernel distribution

To analyse quantum-enhanced models like QSVM and QKNN, we examine the distribution of quantum kernel
values. The quantum kernel distribution provides insights into how well different classes are separable in the
high-dimensional feature space, highlighting regions where the quantum embedding improves classification
performance.

Hardware availability and simulation justification

All quantum modes in the study are implemented and executed using the pennylane framework on Google
Colab, leveraging its high-performance cloud runtime for reproducible quantum simulation. This design choice
was guided by the limited public availability of current NISQ devices, where hardware execution remains
constrained by qubit decoherence and hardware noise and is not publicly available or available at a very high
cost. Running on Google Colab ensures platform independence and reproducibility across multiple runs. The
implemented circuits are intentionally designed with shallow depth and fewer qubit requirements. Consequently,
the reported results represent a reproducible and hardware-ready baseline for future near-term deployment.

Experimental results and analysis

Supervised and Quantum Machine Learning classification acquires knowledge from data that is not evaluated
based on its performance; eighty per cent of the dataset was designated for training. while the remaining 20%
of the dataset is designated as the testing set. The model’s performance is assessed on unseen testing sets,
where the model learns from the data without adjusting and optimizing the parameters.

Parameter tuning

Table 3 summarizes key experimental settings, covering dataset handling, preprocessing, model configurations,
and evaluation strategies. Each component-from feature selection and resampling to classical and quantum
classifiers-was tuned or applied with specific parameters to ensure fair, reproducible, and interpretable results.

Performance overview of classical ML models

To evaluate the performance and robustness of classical machine learning models under varying data
conditions, we conducted experiments on five benchmark datasets: Breast Cancer Wisconsin, Iris, Wine
Quality, Pima, HAR human activity Dataset. Each dataset was subjected to four experimental variants: (1)
resampled data using SMOTE (2) ADASYN (3) noisy data with Gaussian noise, and (4) selected features using
ANOVA F-test. Performance was assessed via accuracy, precision, recall, F1-score, confusion matrix and
Area Under the ROC Curve (AUC). The results are reported for both original and resampled datasets using
SMOTE to address class imbalance. Tables 4, 5, 6, 7 and 8 summarize the classification performance across
all datasets and models. For clarity and reproducibility, each table is grouped by ML Models and includes all
four data preprocessing variants.
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Sr.
No | Category Parameter Value/setting Description/purpose
test_size 0.2 80% training, 20% testing split
1 Dataset splitting | random_state 42 Seed for reproducibility across runs
stratify y (class labels) Ensures class proportion balance during split
StandardScaler Mean =0, Std=1 Starlldardlzes each feature to zero mean, unit
variance
2 Preprocessing noise_factor 0.01 ?t?nd? rd deviation for Gaussian noise
injection
add_noise() (X' =X+ N (O, 02) ‘S:lmgla\’fes real-world perturbations (used for
Noise” runs)
SMOTE random_state =42 Synthetic MmorAlty Qversamphng Technique
Imbalance for balancing minority classes
3
handling Adaptive syntheti ling (disabled f
ynthetic sampling (disabled for
ADASYN Supported HAR to avoid instability)
SelectKBest score_func=£_classif, k=6 ANOVA F-test selects top 6 informative
features
4 Feature selection - - oo ’
PCA (for QSVM) n_components=4 Dimensionality re: uc.tlon to 4D latent space
for quantum embedding
Support vector kernel =’ rbf’,C € {0.1,1,10},gamma € {'scale',' auto'} Baseline non-linear classifier; tuned via
machine (SVM) fivefold GridSearchCV
E(K-E;?)rest Neighbors n_neighbors € {3,5,7,9} , weights € {’uniform' ,/ distance’ } Distance-based local voting classifier
Classical ML . denth & . . .
5| Jassifiers Random forest (RF) n_estimators € {50, 100,200} , maz_depth € {None, 5,10} Ensemble of decision trees with bagging
Decision tree (DT) criterion € {/gini' )/ entropy/} ,max_depth € {None, 5,10} Single interpretable tree baseline
Logistic regression € € {0.1,1,10} , solver € {/lbfgs/,/ liblinear/} Jmaz iter = 2000 Linear?asgline classifier with L2-
(LR) - regularization
Quantum device qml.device("default.mixed", wires=8) Slmglated S_QUblt Pennylane backend for
hybrid experiments
Feature embedding qml.templates. AngleEmbedding(x) f:gcl(; Zles normalised features as qubit rotation
Quantum kernel Histogram of (K (x4, E ) Shows the spread of kernel values, used to
distribution visualise class separability
Quantum Quantum kernel Overlap kernel (K (5, x;)) P (z_1))
6
classifier _
. N Uses a quantum kernel matrix instead of a
QSVM SVC(kernel = ‘precomputed’) classical kernel
QKNN KNeighborsClassifier(n_neighbors = 3) z;:zznce metric derived from quantum kernel
VQC (Variational . . . Parameterised circuit trained via gradient
Quantum Classifier) AngleEmbedding + BasicEntanglerLayers, 2 layers, step size 0.2, 10 epochs descent (mean-squared cost)
Optimizer qml.GradientDescentOptimizer(stepsize =0.2) Classical optimizer for variational parameters
Simulation Backend default.mixed (Pennylane) Mlxed-lstate simulator used for realistic noise
emulation
Number of Qubits Depends on features (4-8) Each qubit encodes one selected feature
. Average & standard deviation computed for
Cross-validation | n_runs 5 independent runs cach metric
7 & runtime bl Tl T m
control StratifiedKFold n_splits=3, random_state =42 Ensures balanced splits for small quantum
datasets
Accuracy, Precision,
Mean + Std computed across runs
. Recall, F1 Score
s Evaluation
metrics ROC Curve & AUC roc_curve(), auc() Evaluates probabilistic separability
Confusion Matrix confusion_matrix() Summarizes classification distribution
SHAP shap.TreeExplainer(best_model) Global feature contribution visualization
Explainability LIME LIME.TabularExplainer(mode = ‘classification’) Locall 1x}terpretab111ty for individual
9 (Only for predictions
classical models) . . . Explains the 42-nd test sample decision
Instance Explanation | explain_instance(i=42)
boundary
. Experiments run on CPU; GPU used for
1o | Computational CPU/GPU Intel i7 Pennylane acceleration
environment
Software Stack Python 3.12, Scikit-learn 1.5, Pennylane 0.38, Imbalanced-learn 0.12 Reproducible library versions
11 Elc;:}f)ﬁlrtmance Metrics aggregation Mean + Std over 5 runs Reported in tables and ROC/CM figures
Result files Quantum_Results_Full.xlsx,ml_models_tuned_results.csv Contain complete numerical benchmarks for
all models/datasets

Table 3.

List of parameters used in the Experiment.
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Model | dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA £std) | F1 (meanA +std) | Avg Time (s)
SVM | IRIS SMOTE |0 0.9778 A+0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+0.0158 | 3.15
SVM | IRIS SMOTE | 0.01 |0.9778 A+0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+0.0158 | 0.74
SVM | IRIS ADASYN |0 0.9778 A +0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+0.0158 | 0.6
SVM | IRIS ADASYN | 0.01 | 0.9889 A+0.0157 0.9899 A+0.0143 0.9889 A +0.0157 0.9889 A+0.0158 | 0.4
SVM | WINE SMOTE |0 0.9722 A+0.0227 0.9759 A+0.0189 0.9722 A+0.0227 0.9723 A+0.0225 | 0.54
SVM | WINE SMOTE | 0.01 |0.9722 A+0.0227 0.9759 A+0.0189 0.9722 A+0.0227 0.9723 A+0.0225 | 0.52
SVM | WINE ADASYN | 0 0.9722 A+0.0227 0.9759 A+0.0189 0.9722 A+0.0227 0.9723 A+0.0225 | 0.83
SVM | WINE ADASYN | 0.01 | 0.9722 A+0.0227 0.9759 A+0.0189 0.9722 A+0.0227 0.9723 A+0.0225 | 0.53
SVM | BREAST_CANCER | SMOTE |0 0.9678 A +£0.0109 0.9684 A+0.0112 0.9678 A+0.0109 0.9679 A+0.0110 | 1.38
SVM | BREAST_CANCER | SMOTE | 0.01 | 0.9649 A+0.0000 0.9663 A+0.0012 0.9649 A +0.0000 0.9650 A+0.0002 | 1.77
SVM | BREAST_CANCER | ADASYN | 0 0.9620 A +£0.0041 0.9630 A £0.0035 0.9620 A +0.0041 0.9621 A +0.0040 | 1.69
SVM | BREAST_CANCER | ADASYN | 0.01 | 0.9591 A +0.0041 0.9600 A +0.0042 0.9591 A +0.0041 0.9592 A+0.0042 | 2.07
SVM | PIMA SMOTE |0 0.7251 A+0.0337 0.7278 A+0.0295 0.7251 A+0.0337 0.7256 A+0.0315 | 6.19
SVM | PIMA SMOTE | 0.01 |0.7251 A+0.0245 0.7280 A £0.0208 0.7251 A+0.0245 0.7260 A £0.0228 | 6.72
SVM | PIMA ADASYN |0 0.7381 A +0.0272 0.7435 A £0.0240 0.7381 A+0.0272 0.7399 A +£0.0257 | 6.32
SVM | PIMA ADASYN | 0.01 |0.7381 A+0.0221 0.7424 A+0.0236 0.7381 A+0.0221 0.7394 A +0.0222 | 6.92
SVM | HAR SMOTE |0 0.9567 A +0.0042 0.9568 A +0.0043 0.9567 A +0.0042 0.9566 A £0.0043 | 63.59
SVM | HAR SMOTE | 0.01 | 0.9567 A+0.0042 0.9568 A +0.0043 0.9567 A +0.0042 0.9566 A+0.0043 | 63.52
Table 4. Evaluation results of SVM on all datasets.
Model | Dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA £std) | F1 (meanA +std) | Avg Time (s)
KNN | IRIS SMOTE |0 0.9556 A +0.0157 0.9613 A+0.0119 0.9556 A+0.0157 0.9553 A+0.0160 | 0.3
KNN | IRIS SMOTE | 0.01 |0.9778 A+0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+0.0158 | 0.39
KNN | IRIS ADASYN |0 0.9556 A +£0.0157 0.9613 A+0.0119 0.9556 A+0.0157 0.9553 A+0.0160 | 0.32
KNN | IRIS ADASYN | 0.01 | 0.9667 A +0.0000 0.9697 A +0.0000 0.9667 A +0.0000 0.9666 A+0.0000 | 0.28
KNN | WINE SMOTE |0 0.9444 A £0.0000 0.9506 A +0.0022 0.9444 A +0.0000 0.9440 A £0.0006 | 0.33
KNN | WINE SMOTE | 0.01 |0.9537 A+0.0131 0.9591 A+0.0110 0.9537 A+0.0131 0.9535 A+0.0132 | 0.32
KNN | WINE ADASYN | 0 0.9352 A +0.0346 0.9447 A +0.0265 0.9352 A+0.0346 0.9338 A+0.0361 |0.31
KNN | WINE ADASYN | 0.01 | 0.9352 A+0.0346 0.9447 A +0.0265 0.9352 A+0.0346 0.9338 A+0.0361 | 0.46
KNN | BREAST_CANCER | SMOTE |0 0.9561 A +0.0072 0.9577 A+0.0075 0.9561 A+0.0072 0.9562 A +£0.0073 | 0.38
KNN | BREAST_CANCER | SMOTE | 0.01 |0.9532 A+0.0041 0.9549 A +0.0056 0.9532 A +0.0041 0.9533 A+0.0044 | 0.32
KNN | BREAST_CANCER | ADASYN | 0 0.9094 A +£0.0041 0.9182 A +0.0095 0.9094 A +0.0041 0.9104 A+0.0044 | 0.31
KNN | BREAST_CANCER | ADASYN | 0.01 |0.9152 A+0.0149 0.9220 A+0.0175 0.9152 A+0.0149 0.9161 A+0.0149 |0.32
KNN | PIMA SMOTE |0 0.6753 A +0.0462 0.6904 A+0.0414 0.6753 A+0.0462 0.6803 A+0.0447 | 0.4
KNN | PIMA SMOTE | 0.01 |0.6991 A+0.0372 0.7165 A +0.0334 0.6991 A +0.0372 0.7043 A+0.0361 | 0.61
KNN | PIMA ADASYN |0 0.7056 A +0.0457 0.7304 A+0.0433 0.7056 A +0.0457 0.7115 A +£0.0447 | 0.45
KNN | PIMA ADASYN | 0.01 |0.6753 A+0.0323 0.6951 A +0.0302 0.6753 A+0.0323 0.6812 A+0.0315 | 0.4
KNN | HAR SMOTE |0 0.9233 A +£0.0085 0.9257 A +0.0085 0.9233 A+0.0085 0.9234 A+0.0087 | 1.62
KNN | HAR SMOTE | 0.01 |0.9233 A+0.0120 0.9255 A+0.0117 0.9233 A+0.0120 0.9234 A+£0.0122 | 1.45

Table 5. Evaluation results of KNN on all datasets.

Performance overview of quantum ML models

To assess the effectiveness of quantum machine learning algorithms, we evaluated three quantum models-
Quantum SVM, Quantum kNN, and VQC- on the same dataset applied to classical models. Each dataset was
preprocessed using feature standardisation, Gaussian noise addition, and synthetic oversampling (SMOTE and
ADASYN). Tables 9, 10 and 11 summarizes the results, highlighting the impact of quantum feature mapping,
kernel distributions, and entanglement depth on classification performance. Each tables from 9, 10 and 11
includes metrics averaged over multiple runs, along with standard deviations, to ensure robustness.

Visual analysis and model explainability

To support transparency and interpretability, we applied SHAP (Shapley Additive explanations) and LIME
(Local Interpretable Model-agnostic Explanations) techniques on selected models trained on the provided
datasets. SHAP summary plots revealed that features such as mean radius and worst concavity were dominant
predictors in the breast cancer classification task. LIME explanations illustrated local decision boundaries for
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Model Dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA +std) | F1 (meanA +std) | Avg Time (s)
RandomPForest | IRIS SMOTE |0 0.9667 A +0.0000 0.9697 A +0.0000 0.9667 A +0.0000 0.9666 A +0.0000 8.89
RandomForest | IRIS SMOTE | 0.01 |0.9667 A +0.0000 0.9697 A +0.0000 0.9667 A +0.0000 0.9666 A+0.0000 | 8.84
RandomForest | IRIS ADASYN |0 0.9444 A +0.0314 0.9473 A+0.0317 0.9444 A+0.0314 0.9443 A £0.0315 8.78
RandomForest | RIS ADASYN | 0.01 | 0.9667 A +0.0000 0.9697 A +0.0000 0.9667 A +0.0000 0.9666 A+0.0000 | 8.96
RandomForest | WINE SMOTE |0 0.9907 A +0.0131 0.9916 A+0.0119 0.9907 A+0.0131 0.9908 A+£0.0130 | 9.95
RandomForest | WINE SMOTE | 0.01 |0.9907 A+0.0131 0.9916 A+0.0119 0.9907 A+0.0131 0.9908 A +£0.0130 9.87
RandomForest | WINE ADASYN |0 0.9907 A+0.0131 0.9916 A+0.0119 0.9907 A+0.0131 0.9908 A+£0.0130 | 9.25
RandomForest | WINE ADASYN | 0.01 |0.9907 A+0.0131 0.9916 A+0.0119 0.9907 A+0.0131 0.9908 A+£0.0130 | 9.5
RandomForest | BREAST_CANCER | SMOTE |0 0.9474 A +£0.0215 0.9490 A +0.0223 0.9474 A+0.0215 0.9475 A +0.0216 | 13.94
RandomForest | BREAST_CANCER | SMOTE | 0.01 |0.9532 A+0.0180 0.9544 A+0.0189 0.9532 A+0.0180 0.9532 A+0.0183 | 13.59
RandomForest | BREAST_CANCER | ADASYN | 0 0.9561 A +0.0072 0.9585 A +0.0072 0.9561 A+0.0072 0.9563 A+0.0071 | 14.26
RandomForest | BREAST_CANCER | ADASYN | 0.01 | 0.9444 A +0.0109 0.9471 A+0.0129 0.9444 A+0.0109 0.9447 A+0.0111 | 14.24
RandomForest | PIMA SMOTE |0 0.7424 A+0.0153 0.7474 A +0.0070 0.7424 A+0.0153 0.7436 A+0.0128 | 11.91
RandomForest | PIMA SMOTE |0.01 |0.7468 A+0.0231 0.7482 A +0.0159 0.7468 A +0.0231 0.7463 A+0.0200 | 13.1
RandomForest | PIMA ADASYN |0 0.7662 A +£0.0191 0.7703 A +0.0208 0.7662 A+0.0191 0.7676 A+£0.0197 | 11.94
RandomForest | PIMA ADASYN | 0.01 |0.7662 A+0.0106 0.7758 A +0.0062 0.7662 A+0.0106 0.7687 A+0.0094 | 14.02
RandomForest | HAR SMOTE |0 0.9575 A +£0.0102 0.9582 A+0.0103 0.9575 A+0.0102 0.9574 A+0.0103 | 105.26
RandomForest | HAR SMOTE | 0.01 |0.9458 A+0.0131 0.9468 A+0.0136 0.9458 A+0.0131 0.9457 A+0.0131 | 108.26
Table 6. Evaluation results of random forest.
Model Dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA £std) | F1 (meanA +std) | Avg Time (s)
DecisionTree | IRIS SMOTE |0 0.9556 A £0.0157 0.9576 A+0.0171 0.9556 A+0.0157 0.9555 A+0.0157 | 0.25
DecisionTree | IRIS SMOTE | 0.01 |0.9778 A+0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+£0.0158 | 0.25
DecisionTree | IRIS ADASYN |0 0.9778 A +0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+0.0158 | 0.25
DecisionTree | IRIS ADASYN | 0.01 |0.9333 A+0.0272 0.9388 A+0.0278 0.9333 A+0.0272 0.9330 A+0.0273 | 0.28
DecisionTree | WINE SMOTE |0 0.9537 A£0.0472 0.9556 A +0.0458 0.9537 A+0.0472 0.9539 A+0.0469 | 0.37
DecisionTree | WINE SMOTE | 0.01 |0.9167 A+0.0227 0.9198 A+0.0213 0.9167 A+0.0227 0.9165 A+0.0224 | 0.38
DecisionTree | WINE ADASYN |0 0.9074 A +0.0693 0.9147 A+0.0626 0.9074 A +0.0693 0.9076 A+0.0693 | 0.31
DecisionTree | WINE ADASYN | 0.01 | 0.9537 A +0.0472 0.9556 A +0.0458 0.9537 A+0.0472 0.9539 A£0.0469 | 0.3
DecisionTree | BREAST _CANCER | SMOTE |0 0.9327 A+0.0109 0.9351 A+0.0120 0.9327 A+0.0109 0.9325 A+0.0112 | 0.54
DecisionTree | BREAST_CANCER | SMOTE | 0.01 | 0.9474 A+0.0189 0.9481 A+0.0191 0.9474 A+0.0189 0.9474 A+0.0189 | 0.62
DecisionTree | BREAST_CANCER | ADASYN | 0 0.9415 A +0.0109 0.9448 A +0.0104 0.9415 A+0.0109 0.9419 A+0.0107 | 0.78
DecisionTree | BREAST_CANCER | ADASYN | 0.01 | 0.9415 A +0.0083 0.9446 A +0.0056 0.9415 A +0.0083 0.9417 A+0.0078 | 0.59
DecisionTree | PIMA SMOTE |0 0.6991 A +0.0324 0.6997 A+0.0376 0.6991 A+0.0324 0.6988 A+0.0345 | 0.44
DecisionTree | PIMA SMOTE |0.01 |0.7468 A+0.0191 0.7465 A +0.0150 0.7468 A+0.0191 0.7451 A+0.0160 | 0.46
DecisionTree | PIMA ADASYN |0 0.6710 A+0.0311 0.6824 A+0.0308 0.6710 A+0.0311 0.6751 A+0.0308 | 0.46
DecisionTree | PIMA ADASYN | 0.01 |0.7056 A+0.0110 0.7082 A+0.0120 0.7056 A+0.0110 0.7068 A+0.0114 | 0.66
DecisionTree | HAR SMOTE |0 0.9050 A +£0.0102 0.9062 A +0.0101 0.9050 A +0.0102 0.9049 A+0.0102 | 22.11
DecisionTree | HAR SMOTE | 0.01 | 0.8975 A+0.0054 0.8984 A +0.0060 0.8975 A +0.0054 0.8975 A+0.0054 |22.7

Table 7. Evaluation results of Decision Tree on all datasets.

SVM and LR classifiers, validating the importance of top-ranked features and offering insight into individual
prediction justifications.

From Figs. 7, 8, 9, 10 and 11, we can see SHAP helped identify which features were most important
globally, confirming the model relies on medically significant indicators like mean radius and worst concavity.
Meanwhile, LIME provided local explanations for individual predictions, demonstrating how specific feature
values influence the classification of benign or malignant. Together, these tools enhance trust in the model by
offering global and local interpretability. he SHAP plots typically showed red dots indicating higher feature
values., Blue dots indicate lower values and. Horizontal clustering near zero indicated low interaction or low
impact while the LIME plot breaks down the prediction into positive (supportive) and negative (opposing)
contributions, blue bars push the prediction toward one class (e.g., benign, no disease), and orange bars push it
toward the opposite class (e.g., malignant, disease present). We also analyse the quantum kernel distributions.
Quantum kernels encode classical data into a high-dimensional Hilbert space, enhancing the separability of
complex patterns. The kernel distribution, computed as the squared overlap of quantum states, reveals how
well the feature map differentiates between classes: tightly clustered intra-class distributions and well-separated
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Model Dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA +std) | F1 (meanA +std) | Avg Time (s)
LogisticRegression | IRIS SMOTE |0 0.9889 A £0.0157 0.9899 A +0.0143 0.9889 A+0.0157 0.9889 A+0.0158 | 0.4
LogisticRegression | IRIS SMOTE | 0.01 |0.9778 A+0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+£0.0158 | 0.44
LogisticRegression | IRIS ADASYN |0 0.9889 A +0.0157 0.9899 A+0.0143 0.9889 A+0.0157 0.9889 A+0.0158 | 0.51
LogisticRegression | IRIS ADASYN | 0.01 | 0.9778 A+0.0157 0.9798 A+0.0143 0.9778 A+0.0157 0.9777 A+0.0158 | 0.38
LogisticRegression | WINE SMOTE |0 0.9815 A £0.0262 0.9846 A+0.0218 0.9815 A+0.0262 0.9816 A+0.0260 | 0.37
LogisticRegression | WINE SMOTE | 0.01 |0.9722 A+0.0227 0.9759 A+0.0189 0.9722 A+0.0227 0.9723 A+0.0225 | 0.42
LogisticRegression | WINE ADASYN |0 0.9630 A+0.0131 0.9675 A +0.0098 0.9630 A+0.0131 0.9631 A+0.0129 | 0.43
LogisticRegression | WINE ADASYN | 0.01 | 0.9722 A+0.0227 0.9759 A+0.0189 0.9722 A+0.0227 0.9723 A+0.0225 | 0.51
LogisticRegression | BREAST_CANCER | SMOTE |0 0.9649 A +0.0072 0.9658 A +0.0079 0.9649 A +0.0072 0.9650 A +£0.0073 | 0.54
LogisticRegression | BREAST_CANCER | SMOTE | 0.01 | 0.9678 A +0.0041 0.9688 A +0.0047 0.9678 A +0.0041 0.9679 A+0.0042 | 0.48
LogisticRegression | BREAST_CANCER | ADASYN | 0 0.9503 A +£0.0041 0.9526 A +0.0038 0.9503 A +0.0041 0.9505 A +0.0040 | 0.4
LogisticRegression | BREAST_CANCER | ADASYN | 0.01 | 0.9532 A +0.0041 0.9549 A +0.0056 0.9532 A +0.0041 0.9534 A+0.0043 | 0.49
LogisticRegression | PIMA SMOTE |0 0.7749 A +0.0251 0.7868 A +0.0273 0.7749 A+0.0251 0.7780 A+0.0249 | 0.46
LogisticRegression | PIMA SMOTE |0.01 |0.7771 A+0.0221 0.7895 A +0.0238 0.7771 A+0.0221 0.7803 A+0.0219 | 0.46
LogisticRegression | PIMA ADASYN |0 0.7727 A+0.0140 0.7894 A+0.0144 0.7727 A+0.0140 0.7764 A+0.0134 | 0.37
LogisticRegression | PIMA ADASYN |0.01 |0.7814 A+0.0201 0.7965 A+0.0173 0.7814 A+0.0201 0.7848 A+0.0192 | 0.4
LogisticRegression | HAR SMOTE |0 0.9600 A +0.0071 0.9606 A +0.0067 0.9600 A +0.0071 0.9600 A £0.0070 | 26.67
LogisticRegression | HAR SMOTE | 0.01 | 0.9542 A+0.0096 0.9547 A +0.0092 0.9542 A +0.0096 0.9543 A+0.0095 | 26.44
Table 8. Evaluation results of logistic regression.
Model | Dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA £std) | F1 (meanA +std) | Avg Time (s)
QKNN | Breast Cancer | ADASYN | OFF | 0.870+0.000 0.874+0.000 0.871+0.000 0.870+0.000 0.01
QKNN | Breast Cancer | ADASYN | ON | 0.934+0.000 0.936+0.000 0.935+0.000 0.936+0.000 0.01
QKNN | Breast Cancer | SMOTE | OFF | 0.949+0.000 0.949 +0.000 0.949 +0.000 0.949 +0.000 0.01
QKNN | Breast Cancer | SMOTE | ON | 0.936+0.000 0.938+0.000 0.936+0.000 0.936+0.000 0.01
QKNN | HAR ADASYN | OFF | 0.532+0.000 0.526 +0.000 0.526 £0.000 0.526+0.000 202.10
QKNN | HAR ADASYN [ON | 0.551+0.000 0.553+0.000 0.316+0.000 0.600 +0.000 100.21
QKNN | HAR SMOTE | OFF | 0.343+0.000 0.625+0.000 0468 +0.000 0.641+0.000 304.33
QKNN | HAR SMOTE |ON | 0.584%0.000 0.583+£0.000 0.516+£0.000 0.568 +0.000 230.18
QKNN | IRIS ADASYN | OFF | 0.956+0.000 0.961 +0.000 0.956+0.000 0.955+0.000 22.36
QKNN | IRIS ADASYN | ON | 0.956+0.000 0.961+0.000 0.956+0.000 0.955+0.000 22.15
QKNN | IRIS SMOTE | OFF | 0.956+0.000 0.961 +0.000 0.956+0.000 0.955+0.000 22.12
QKNN | IRIS SMOTE |ON | 0.956+0.000 0.961 +0.000 0.956+0.000 0.955+0.000 21.98
QKNN | PIMA ADASYN | OFF | 0.532+0.000 0.526 +0.000 0.526 +0.000 0.526+0.000 0.01
QKNN | PIMA ADASYN | ON | 0.551%0.000 0.553+£0.000 0.816+£0.000 0.600 +0.000 0.01
QKNN | PIMA SMOTE | OFF | 0.636+0.000 0.625+0.000 0.658 +0.000 0.641+0.000 0.01
QKNN | PIMA SMOTE |ON | 0.584+0.000 0.583+0.000 0.816+0.000 0.568+0.000 0.01
QKNN | WINE ADASYN | OFF | 0.924+0.000 0.927+0.000 0.924+0.000 0.924+0.000 107.83
QKNN | WINE ADASYN [ON | 0.879+0.000 0.883+0.000 0.882+0.000 0.878+£0.000 109.55
QKNN | WINE SMOTE | OFF | 0.9060.000 0.909 +0.000 0.908 +0.000 0.905+0.000 101.3
QKNN | WINE SMOTE | ON | 0.9060.000 0.909 +0.000 0.906 +0.000 0.906 +0.000 102.71

Table 9. Evaluation results of quantum k NN.

inter-class distributions indicate effective encoding. This analysis offers insights into the discriminative power of
various quantum feature maps, guiding the selection of kernels and circuit architectures for optimal quantum-
enhanced classification. Quantum kernel distributions for all datasets are illustrated in Fig. 12a-e.

The histogram in Fig. 12 shows the distribution of quantum kernel values for all five benchmark datasets
used in the study. Each subplot illustrates the frequency of pairwise kernel similarities obtained after encoding
the data using the selected quantum feature map. The distribution highlights how the quantum feature map
transforms each dataset into the quantum Hilbert space, revealing differences in quantum concentration spread
and separability across datasets.

ROC curve and confusion matrix analysis
Accuracy alone can be misleading, especially in imbalanced datasets (e.g., disease detection). ROC curves
provide a threshold-independent performance metric that evaluates the classifier’s ability to separate positive
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Model | Dataset Sampler | Noise | Accuracy (meanA £std) | Precision (meanA +std) | Recall (meanA +std) | F1 (meanA +std) | Avg Time (s)
QSVM | Breast Cancer | ADASYN | OFF | 0.9480.000 0.949+0.000 0.948+0.000 0.948+0.000 145.8
QSVM | Breast Cancer | ADASYN | ON | 0.947+0.000 0.949+0.000 0.947+0.000 0.947+0.000 147.77
QSVM | Breast Cancer | SMOTE | OFF | 0.9620.000 0.964+0.000 0.962+0.000 0.961+0.000 150.27
QSVM | Breast Cancer | SMOTE | ON | 0.987+0.000 0.988+0.000 0.987+0.000 0.987+0.000 147.59
QSVM | HAR ADASYN | OFF | 0.494+0.000 0.493+0.000 0.468+0.000 0.629+0.000 510.03
QSVM | HAR ADASYN | ON | 0.526+0.000 0.515+0.000 0.472+0.000 0.448+0.000 605.37
QSVM | HAR SMOTE | OFF |0.41+0.017 0.521+0.000 0.474+0.000 0.469+0.000 401.06
QSVM | HAR SMOTE |ON | 0.512+0.000 0.514+0.000 0.447+0.000 0.367+0.000 611.46
QSVM | IRIS ADASYN | OFF | 0.9110.000 0.916+0.000 0.911+0.000 0.911+0.000 24.28
QSVM | IRIS ADASYN | ON | 0.911+0.000 0.916+0.000 0.911+0.000 0.911+0.000 25.08
QSVM | IRIS SMOTE | OFF | 0.911+0.000 0.916+0.000 0.911+0.000 0.911+0.000 30.81
QSVM | IRIS SMOTE |ON | 0.933+0.000 0.935+0.000 0.933+0.000 0.933+0.000 25.12
QSVM | PIMA ADASYN | OFF | 0.494+0.000 0.493+0.000 0.868+0.000 0.629+0.000 308.06
QSVM | PIMA ADASYN | ON | 0.526+0.000 0.515+0.000 0.872+0.000 0.648+0.000 303.77
QSVM | PIMA SMOTE | OFF | 0.755+0.000 0.72140.000 0.774+0.000 0.679+0.000 311.06
QSVM | PIMA SMOTE | ON | 0.532+0.000 0.514+0.000 0.947+0.000 0.667%0.000 305.46
QSVM | WINE ADASYN | OFF | 0.924+0.000 0.928+0.000 0.924+0.000 0.924+0.000 119.44
QSVM | WINE ADASYN | ON | 0.848+0.000 0.857+0.000 0.851+0.000 0.850+0.000 119.53
QSVM | WINE SMOTE | OFF | 0.922+0.000 0.925+0.000 0.923+0.000 0.923+0.000 113.94
QSVM | WINE SMOTE |ON | 0.891+0.000 0.898+0.000 0.891+0.000 0.891+0.000 114.44
Table 10. Evaluation results of Quantum SVM.
Model | Dataset Sampler | Noise | Accuracy (meanA tstd) | Precision (meanA +std) | Recall (meanA £std) | F1 (meanA +std) | Avg Time (s)
VQC | Breast Cancer | ADASYN | OFF | 0.429+0.020 0.41640.021 0.431+0.012 0.405+0.023 3441
VQC | Breast Cancer | ADASYN | ON | 0.467+0.086 0.482+0.126 0.475+0.087 0.426+0.077 34.39
VQC | Breast Cancer | SMOTE | OFF | 0.468+0.038 0.453+0.047 0.468+0.032 0.420+0.033 35.42
VQC | Breast Cancer | SMOTE | ON | 0.449+0.038 0.434+0.048 0.449+0.038 0.410+0.033 34.49
VQC | HAR ADASYN | OFF | 0.355+0.000 0.370+0.000 0.316+0.000 0.596+0.000 77.65
VQC | HAR ADASYN | ON | 0.422+0.000 0.41840.000 0.321+0.000 0.604+0.000 85.42
VQC | HAR SMOTE | OFF | 0.321+0.010 0.351+0.003 0.3763%0.000 0.367+0.003 77.25
VQC | HAR SMOTE |ON | 0.533+0.006 0.456+0.003 0.463+0.000 0.571+0.003 55.94
VQC | IRIS ADASYN | OFF | 0.533+0.073 0.608+0.073 0.533+0.073 0.524+0.073 21.59
VQC | IRIS ADASYN | ON | 0.444+0.109 0.417+0.109 0.444+0.109 0.395+0.109 21.18
VQC | IRIS SMOTE | OFF | 0.444+0.018 0.453+0.018 0.502+0.018 0.418+0.018 21.46
VQC | IRIS SMOTE |ON | 0.393+0.046 0.337+0.046 0.449+0.046 0.358+0.046 21.58
VQC | PIMA ADASYN | OFF | 0.455+0.000 0.470+0.000 0.816+0.000 0.596+0.000 57.65
VQC | PIMA ADASYN | ON | 0.462+0.000 0.478+0.000 0.821+0.000 0.604+0.000 55.01
VQC |PIMA SMOTE | OFF | 0.424+0.006 0.451+0.003 0.763+0.000 0.567+0.003 57.25
VQC | PIMA SMOTE |ON | 0.433+0.006 0.456+0.003 0.763+0.000 0.571+0.003 55.63
VQC | WINE ADASYN | OFF | 0.177+0.043 0.172+0.044 0.177+0.043 0.173+0.044 110.63
VQC | WINE ADASYN | ON | 0.141+0.019 0.141+0.022 0.142+0.019 0.140+0.020 109.94
VQC | WINE SMOTE | OFF |0.229+0.019 0.229+0.023 0.228+0.020 0.226+0.022 106.22
VQC | WINE SMOTE |ON | 0.198+0.029 0.195+0.033 0.196+0.030 0.196+0.031 106.92
Table 11. Evaluation results of VQC.
and negative classes across all possible thresholds. We analysed the Receiver Operating Characteristic (ROC)
curves and Confusion metrix for all models against all datasets, and it is not feasible to present the ROC curve
for all cases, so the best ones are presented in Figs. 13, 14, 15, 16 and 17.
Summary of best performing configuration — analysis and interpretation
Table 12 below consolidates the optimal configuration, model type, and data preprocessing technique that
yielded the highest classification performance on each of the five datasets, as measured by both Accuracy and
execution time.
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Fig. 7. SHAP summary plot and LIME local explanation on breast cancer dataset.

The bar chart in Fig. 18 illustrates the performance of the best models for each dataset based on accuracy and
execution time. The Logistic Regression achieved a perfect score on the iris, UCI-HAR, and Pima dataset, while
QSVM performed strongly on the Breast Cancer, and Random Forest did a tremendous job for wine dataset. The
Pima diabetes dataset presented more challenges, with a noticeable drop in the accuracies.

The comparative analysis across multiple benchmark datasets demonstrates a distinct performance pattern
between quantum and classical machine learning models. QSVM got a remarkable accuracy (98.7%) when
using with the Breast cancer dataset(SMOTE + Noise ON), representing the robustness and capacity of QML to
model high-dimensional feature space, but this performance was achieved at significantly higher computational
overhead, i.e. 147.59 s, which reflects the simulation capacity of quantum circuits. When evaluating the wine
dataset, Random Forest achieved the highest accuracy, 99.7%, illustrating its computational efficiency and
superior performance on structured data.

For iris, PIMA and UCI-HAR datasets, Logistic regression consistently performed well with the accuracies
of 98.87, 96.00 and 77.5%. With the minimum execution time, it suggests the reliability and computational
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Fig. 8. SHAP summary plot and LIME local explanation on wine quality dataset.

efficiency for complex problems. With the incorporation of SMOTE and ADASYN, it effectively mitigated the
class imbalance and enhanced the classification performance.

These findings reveal a clear tradeoff between predictive performance and computational efficiency,
highlighting the importance of selecting the right classifier with appropriate methods of preprocessing, i.e.,
resampling and noise handling, to maximise performance across different domains.To benchmark the results,
the study’s findings are now compared with existing results in Table 13.

The comparison of classification accuracies of existing models reported in the literature with our results is
presented in Table 13. For the iris, wine, and Breast cancer datasets, the study’s results are significantly better
than those of existing studies. However, the results of the study are not so good for the PIMA dataset, but still
comparable. There is a lack of work on QkNN with PIMA, UCI HAR, and VQC on UCI HAR datasets, so we fill
this gap by including them in our study. The results of Table 13 are shown in Fig. 19 in graphical form.
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Fig. 9. SHAP summary plot and LIME local explanation on iris dataset.

Insights from the results

The valuable insights of the experiment are presented in Table 14. From the table, it can be reasonably inferred
that the classical models delivered fast and consistent results, while the quantum models, particularly QSVM,
help capture complex patterns. QkNN can be a reliable option where fast execution time is required. And VQC
is very prone to noise with lower stability.

Application relevance and real world impact

The comparative framework developed in this study holds strong relevance for real-world domains characterised
by data imbalance, noisy features, and complex non-linear separability. Applications such as fraud detection,
medical diagnosis, and industrial IoT anomaly detection often exhibit these challenges, where small but critical
minority classes are easily overshadowed by dominant patterns. The demonstrated performance of quantum
classifiers, particularly QSVM and VQC, on imbalanced and noisy datasets highlights their potential to enhance
decision-making in such high-stakes environments. Quantum feature maps effectively embed overlapping
classical data into higher-dimensional Hilbert spaces, allowing improved class separability even with limited
training samples. Consequently, the proposed framework establishes a foundation for quantum-enhanced
analytics that can be extended to practical sectors once stable and accessible quantum hardware becomes
available.

Conclusion and future work

A detailed comparative analysis of classical and quantum machine learning is presented in this study, including
five datasets, a range of data preprocessing techniques, i.e. resampling, noise handling and feature selection. The
results of the experiment suggested that the performance of ML Models is susceptible to the selection of the
preprocessing technique and the type of classifier.

Logistic regression in classical ML Models showcased its performance with the highest accuracy in the Iris,
Pima, and UCI-HAR datasets. Similarly, Random Forest achieved the highest accuracy with wine datasets, both
with and without noise, demonstrating its potential to remain consistent in all cases.

The quantum-enhanced ML Model QSVM outperforms all other classical and quantum models when
implemented using the breast cancer dataset, achieving an accuracy of almost 99%, albeit with the highest
execution time, highlighting the limited availability of quantum simulations.

Interpretability tools, such as SHAP and LIME, further validated the trustworthiness of the models by
identifying both globally and locally essential features, particularly in medical and activity recognition datasets.
Confusion matrix, ROC curve, and analyses complemented traditional metrics, especially under class imbalance,

Scientific Reports |

(2025) 15:45714 | https://doi.org/10.1038/s41598-025-28412-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

-- SHAP Global Explanation ---

<Figure size 640x480 with @ Axes>

. {“é,’""f. .

ORI AR

1o0% I 1000 (009<0000, 566

tBodyAcc...

\*l-\ . B

--- LIME Local Explanation ---
Prediction probabilities NOT SITTING SITTING
-0.99 < fBodyAcclerk-...
STANDING o .
-0.96 < fBodyAccerk-...
SITTING o J

WALKING_UPS... -0.96 < tBodyAcclerk-..

Woos
g 101 < Botyhccce
Other o
0.50 < tGravityAcc-ene...
004
tGravityAcc-max()-X...
0.02
-0.97 < fBodyBodyAcc...
0.02
-0.99 < tBodyAcclerk...
001
0.49 < tGravityAcc-mi.
01
0.50 < tGravityAcc-m... 4
0

Fig. 10. SHAP summary plot and LIME local explanation on UCI HAR dataset.

highlighting the robust behaviour of the classifier across decision thresholds. Quantum kernel distribution is
also analysed to show the similarity values between data points.

When benchmarked against existing literature, the proposed models not only achieved competitive accuracies
but also did so using simpler and more interpretable techniques. This suggests that optimal performance does
not necessarily require complex architectures; instead, it benefits from judicious model selection, balanced
datasets, and effective preprocessing.

In conclusion, this work reinforces the value of hybrid pipelines, which merge classical robustness with
emerging quantum techniques, while promoting transparency through explainability tools. These insights can
inform the development of future quantum-classical models for real-world classification tasks across healthcare,
sensor data, and beyond. Future work will include deploying the optimised quantum circuits on real quantum
backends such as IBMQ and ionQ Aria, subject to public availability. This will enable empirical validation of
noise resilience and circuit fidelity in a hardware-constrained environment.
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Fig. 11. SHAP summary plot and LIME local explanation on Pima Indian diabetes dataset.
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Fig. 13. ROC curve and confusion matrix for QSVM using the breast cancer dataset.
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Fig. 15. ROC curve and confusion matrix for LR using the iris dataset.
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Fig. 16. ROC curve and confusion matrix for LR using the HAR Dataset.
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Fig. 17. ROC curve and confusion matrix for LR using the PIMA Dataset.

Dataset Best- Model Noise Sampler Accuracy | Execution time (s) | Best parameter

Breast Cancer Dataset Quantum Support Vector Machine | ON SMOTE 98.7 147.59 Feature map- Angle encoding, c=1.0
max_depth=None, n_estimators =50

Wine Quality Random Forest On/OFF | SMOTE/ADASYN | 99.7 9.25 max_depth =None, n_estimators =200

. : max_depth =10, n_estimators = 100

max_depth=None, n_estimators =50

Iris Logistic Regression OFF ADASYN 98.87 98.87 C=10, solver =1bfgs

UCI -HAR Dataset Logistic Regression OFF SMOTE 96.00 26.67 C=1, solver =liblinear

Pima Indian Diabetes Dataset | Logistic Regression ON SMOTE 77.5 0.45 C=1, solver =liblinear

Table 12. Summary of best performing model.
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Fig. 18. Graphical representation of the best model performance across datasets.
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Reference | Technique Dataset Existing results | Our results technique (Accuracy)
% SVM Iris 98.7 with GA 98.89
2 Decision Tree | Iris 97 97.78
i KNN Iris 85.71 97.78
28 LR Iris 95.55 98.89
» RF Iris 95.55 95.67
30 QSVM Iris 99 93.3
3 QkNN Iris 95.33 95.6
32 vQC Iris 1.00 53.3
3 SVM ‘Wine 84.56 97.72
3 Decision Tree | Wine 83.54 95.37
» KNN Wine 59.68 95.37
36 LR ‘Wine 76 96.49
36 RF Wine 84 95.37
7 QSVM Wine 93 94.4
3 QNN ‘Wine 67.98 92.4
38 vQC Wine 53 229
3 SVM Breast cancer | 78 96.42
40 DT Breast cancer | 92 94.74
4 KNN Breast cancer | 94.35 95.61
2 LR Breast cancer | 84.15 98.24
¥ RF Breast cancer | 95.64 94.7
37 QSVM Breast cancer | 90 98.7
s QKNN Breast cancer | 98.25 94.9
44 vQC Breast cancer | 78 48.8
4 SVM Pima 74.03 73.4
4 DT Pima 72.9 74.68
4 KNN Pima 72.9 70.56
4 LR Pima 76.2 78.14
45 RF Pima 80.11 74.68
B QSVM Pima 74 75.3

QNN Pima N/A 63.6
46 vQC Pima 1.00 46.2
4 SVM UCI-HAR 96.9 95.6
N/A DT UCI-HAR N/A 90.5
4 KNN UCI-HAR 96.24 92.3
B LR UCI-HAR 98 96.00
48 RF UCI-HAR 98.47 95.75
4 QSVM UCI-HAR 98 51.2

QkNN UCI-HAR N/A 58.4

vQC UCI-HAR N/A 43.3

Table 13. Comparison with existing studies.
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Aspect Classical ML QSVM QKNN vQC
Accuracy High, stable Moderate to high Moderate Low, unstable
Sensitivity to noise Low Low to moderate Low High

Effect of oversampling | Helps ADASYN/SMOTE Helps SMOTE Minor effect Minor effect

Execution time

SVM/RF: medium; KNN: fast Very high (100-300 s) Extremely fast (<1s) | Moderate (~30 s)

Best suited for

Still experimental;
may need deeper
circuits or other
embeddings

Tabular datasets with small/medium
features

Datasets where classical SVM may

struggle with kernel representations Fast prototyping

Table 14. Insights from the results.

Data availability

All the datasets are publicly available at UCI and Kaggle - Breast Cancer Wisconsin Dataset - [https://archive.ic
s.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic] (https:/archive.ics.uci.edu/dataset/17/breast+cancer
+wisconsin+diagnostic) , Iris Dataset- [https://archive.ics.uci.edu/dataset/53/iris] (https:/archive.ics.uci.edu/da
taset/53/iris) , Wine Dataset- [https://archive.ics.uci.edu/dataset/109/wine] (https:/archive.ics.uci.edu/dataset/1
09/wine) , Pima indian diabetes dataset- [https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-datab
ase] (https:/www.kaggle.com/datasets/uciml/pima-indians-diabetes-database) , UCI human activity recognition
dataset- [https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones] (https:/arch
ive.ics.uci.edu/dataset/240/human-+activity+recognition+using+smartphones)
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