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Quantum machine learning (QML) has emerged as a promising paradigm for solving complex 
classification problems by leveraging the computational advantages of quantum systems. While most 
traditional machine learning models focus on clean, balanced datasets, real-world data is often noisy, 
imbalanced and high-dimensional, posing significant challenges for scalability and generalisation. 
This paper conducts an extensive experimental evaluation of five supervised classifiers- Decision Tree, 
K nearest neighbour, Random Forest, linear regression and support vector machines in comparison 
with Quantum machine learning classifiers- quantum Support vector machine, quantum k- nearest 
neighbor and variational quantum classifier—across five diverse datasets, including iris, wine quality, 
Breast cancer, UCI human activity recognition, and Pima diabetes. To simulate real-world challenges, 
we introduce class imbalance using SMOTE and ADASYN Sampling, inject Gaussian noise into the 
features, and assess the impact of dimensionality reduction through ANOVA-based feature selection. 
Additionally, we utilise explainable AI tools, such as SHAP and LIME, to interpret model decisions. Our 
results demonstrate that Logistic Regression consistently performs well under various complexities, 
while Quantum Support Vector Machines show resilience to feature noise and class imbalance. The 
study also highlights the current capabilities and limitations of QML models, offering valuable insights 
into building generalisable and interpretable ML systems for deployment in complex environments. 
These insights are crucial for building robust, interpretable, and generalisable ML models for practical 
deployment.
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Machine Learning (ML) is employed in various computational domains to enhance performance and accuracy. 
However, the morphology of datasets used to learn the machine offers some obstacles in this task. Machine 
learning datasets typically consist of many tuples and a limited number of characteristics. Microarray technology, 
capable of exhibiting particular distinctions from conventional machine learning datasets, is deployed to 
overcome the morphological issues. To handle complex and vast varieties of datasets, various types of machine 
learning algorithms, viz. supervised, unsupervised or semi-supervised, are used. Supervised learning algorithms 
are the preferred machine learning approaches for classification and regression-related tasks. The Support Vector 
Machine (SVM), Random Forest (RF), Neural Network (NN), Linear Regression, Decision Tree, & K-Nearest 
Neighbor are some extensively used supervised learning methods found in the literature1.

Machine Learning entails the development of a prediction algorithm based on past experiences, which 
necessitates obtaining relevant data in the specific field. Subsequently, the prediction network self-organizes 
based on the margin of error2 . In the present day, extracting important information from raw data for efficient 
decision-making is crucial in business, scientific, medicine, science and engineering applications. Modern 
intelligence technologies employ data analysis to examine and transform information into knowledge. Data 
Mining (DM) and Machine Learning (ML) are crucial in accurately extracting information from large datasets. 
Several machine-learning approaches are available for prediction, including classification, clustering, decision 
making and regression, as depicted in Fig. 1 below3.
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Machine Learning enables systems to acquire knowledge from insight into datasets and improve their 
performance through natural learning processes without requiring explicit programming. Such algorithms are 
valuable in domains where it is impractical to implement explicitly written algorithms that can achieve high-
speed performance4.

Classical Machine learning algorithms face limitations in scalability and computational efficiency, especially 
when the dataset size grows, resulting in growing complexity. And this is where we introduce Quantum machine 
learning, which leverages the principles of Quantum computing, such as superposition, entanglement, and 
quantum parallelism, to process information in fundamentally new ways. i.e., a Quantum Support Vector 
Machine (QSVM) can utilise quantum-enhanced feature maps and kernel estimation to classify data, potentially 
achieving speedups over classical SVMs, especially in high-dimensional feature spaces. Similarly, Quantum 
Decision Trees and Quantum Neural Networks (QNNs) explore non-classical representations and optimisations 
of classical models3.

The objective of quantum machine learning is to surpass the classical limits of problems such as pattern 
recognition, probabilistic mapping and optimisation. Although QML algorithms are currently in the early stages 
due to the limited availability of qubits and restrictions on quantum hardware, initial results show the potential 
of QML in the real world. Figure 2 illustrates the evolution of Quantum machine learning from classical machine 
learning.

The goal of the study is to assess the robustness and interpretability of both classical and quantum classifiers 
under realistic data challenges. The output of this research will be helpful in selecting a classifier that effectively 
evaluates previous data and makes accurate predictions for future decisions. This study makes the following key 
contributions:

•	 Conducts a comprehensive empirical evaluation of five widely used supervised machine learning classifi-
ers-Decision Tree, K-Nearest Neighbor, Random Forest, Logistic Regression, Support Vector Machine and 
Quantum Machine Learning classifiers- quantum Support vector machine(QSVM), quantum k-nearest 
neighbor (QKNN) and variational quantum classifier (VQC ) across five publicly available datasets, reflecting 
varied real-world conditions.

•	 Introduces class imbalance using both SMOTE and ADASYN and injects Gaussian noise into input features 
to simulate noisy high-dimensional environments commonly encountered in practical applications.

•	 Applies ANOVA-based univariate feature selection to evaluate the effect of dimensionality reduction on mod-
el performance and to prepare inputs for quantum circuits.

•	 Analyses the performance of all classifiers under varying conditions of data noise, imbalance, and feature 
sparsity using standard evaluation metrics.

•	 Employs explainable AI methods, including SHAP and LIME, to interpret model decisions, and quantum 
kernel distribution, enhancing model transparency and trustworthiness, with extensions to quantum classi-
fier interpretability.

•	 Identifies logistic regression as a consistently high-performing model under noise and imbalance, while 
QSVM demonstrates resilience to noisy features; provides insights on the current capabilities of QML clas-
sifiers.

Fig. 1.  Machine learning techniques.
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Section "Introduction" explains the concepts of supervised machine learning and Quantum machine 
learning. Sect.  Related work presents an analysis of existing studies in the fields of machine learning and 
quantum computing. Section "Methodology" describes the methodology, followed by the results section, and 
Sect.conclusion concludes the paper.

 Related work
Several researchers have conducted extensive studies on data analysis through Machine Learning (ML) and 
Quantum computing (QC) methodologies. Multiple studies have indicated the importance of these strategies 
in predicting future outcomes, particularly in the realm of classification problems. In these investigations, the 
authors utilised various methods to address specific issues and achieved high levels of accuracy in categorisation. 
For instance, these strategies are employed in the healthcare sector to predict diseases. Ch Anwar ul Hassan et 
al. evaluated the effectiveness of machine learning classifiers. Various ML classifiers, including LR, Naive Bayes, 
KNN and DT, were used to compare the accuracy, precision, and F-measure of the two datasets. The experimental 
results demonstrate that Random Forests outperform alternative classifiers. The model achieves an accuracy 
of 83% in heart data sets and 85% accuracy in predicting hepatitis illness5. Arslan Javaid et al. Proposed an 
innovative classification methodology and divided skin lesions into benign or malignant categories, employing 
image processing techniques with machine learning algorithms. Their work presented an innovative method 
for enhancing the contrast of thermoscope images and the OTSU thresholding technique utilised for picture 
segmentation. Subsequently, the feature vector undergoes standardisation and scaling. Before classification, a 
unique feature selection technique based on the wrapper method is proposed. The Random Forest method is 
the most successful and accurate classification algorithm for achieving maximum accuracy6. Vaishnavi Nath et 
al. created and implemented an innovative fraud detection technique to analyse streaming transaction data and 
study consumers’ past transaction information to identify their behavioural patterns. Cardholders are classified 
into separate categories based on their transaction amounts. Next, employing the sliding window approach, 
the exchanges performed by cards from several groups are combined to take out the respective behavioural 
patterns of each group. Subsequently, distinct classifiers are trained on each group individually7. Rabia Karakaya 
et al. examined the operational rationale of the method for recognising handwritten digits and evaluated the 
effectiveness of several methods on the identical database. A report was presented by doing a comparative 
analysis of the accuracy8. Piyush Vyas et al. proposed a hybrid approach, combining techniques based on lexicon 
for examining and labelling tweet sentiment with supervised machine learning approaches for classifying tweets 
and assessed the hybrid framework using numerous metrics for evaluation. The findings suggest that a significant 
proportion of the attitudes expressed are positive (38.5%) or neutral (34.7%)9. A summary of research in the field 
of quantum and classical machine learning is presented in Table 1.

Classical ML

Computational Bottleneck for High 

Dimensional Data

Quantum ML

Quantum SVM

Quantum kernel for feature 

projection

Faster classification in high 

dimensions

Fig. 2.  Transition from classical ML to quantum ML.
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Literature review gap
An in-depth analysis of the recent literature from 2023 to 2025 on machine learning and quantum machine 
learning applications across diverse datasets (e.g., RoEduNet-SIMARGL2021, CICIDS-2017, CWRU bearing, 
ShipsEar, MNIST, and others) reveals significant progress in terms of classification accuracy and the integration 
of explainable AI (XAI) and feature selection techniques. However, none of the reviewed studies have 
simultaneously addressed all three critical components: XAI integration, feature selection, and the inclusion of 
realistic quantum or classical noise models. This gap indicates a pressing need for a unified framework that can 
incorporate:

•	 Explainable AI (XAI) for model interpretability,
•	 Feature selection to reduce dimensionality and enhance performance, and
•	 Noise models to simulate real-world deployment environments, particularly in quantum machine learning.

Addressing this triad holistically could significantly enhance the reliability, transparency, and deployment ability 
of both classical and quantum machine learning models.

Methodology
The goal of this section is to assess the performance and interpretability of five widely used classical ML 
algorithms -support vector machine, random forest, logistic regression, decision Tree and k nearest neighbor, 
along with three quantum ML algorithms- Quantum SVM, quantum kNN and variational Quantum Classifier, 
under various levels of complexity, i.e. noise handling, resampled data. Various steps of the methodology is 
illustrated in Fig. 3.

Key Python modules and libraries used include:

•	 Scikit-learn: For data preprocessing, feature selection, classical model training, and performance evaluation.
•	 Imbalanced-learn: Specifically, SMOTE and ADASYN were used to address class imbalance in the training 

data.
•	 PennyLane: For constructing and simulating quantum circuits and implementing the Quantum ML Models.
•	 SHAP and LIME: For model explainability and visualisation, aiding in the interpretation of feature contribu-

tions to model decisions.
•	 Matplotlib and Seaborn: For plotting ROC curves and explanation visualisations.
•	 NumPy and Pandas: For efficient numerical computation and data manipulation.

Each step is described in detail below.
Here is the pseudo-code for the methodology, for both the quantum and classical models:

Ref Dataset Techniques Result XAI Noise
Feature 
selection Year

10 RoEduNet-SIMARGL2021, CICIDS-2017 RF, ADA, DNN, SVM, KNN, MLP, LIGHT GBM 99% Yes No Yes 2024
11 Audio sensor data SVM, RF, LR, GNB, EGB 80.28% Yes No Yes 2024

12 Case Western Reserve University (CWRU) bearing dataset Convolutional Long Short-Term Memory 
(CLSTM) n/a Yes No Yes 2024

13 ShipsEar dataset and simulated submarine data RF, ADA boost, GBDT, X boost 94.5%,76%,95%,96.7% No No Yes 2023
14 Phase classification dataset QSVM, VQC 97.73,96.49 Yes No Yes 2025
15 MNIST FMNIST, KMNIST, and CIFAR10 Quantum autoencoder + VQC 65% Yes No No 2025

16 MNIST, Ionosphere, waveform, Madelon, synth_10, 
synth_100 QUBO 90, 78,87 No No Yes 2025

17 Wisconsin breast cancer data, kaggles’s Club data QUBO 69,62, 72.06 No No Yes 2023

Table 1.  Summary of research in the field of classical and quantum ML.
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Fig. 3.  Proposed Methodology.

 

Scientific Reports |        (2025) 15:45714 5| https://doi.org/10.1038/s41598-025-28412-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm.  Data preparation, noise handling, feature selection, and model evaluation

Datasets
The different datasets have been selected to assess the performance of QML and ML classifiers. These datasets 
have been retrieved from the UCI and Kaggle repositories, as tabulated in Table 2. The term is used in the dataset 
to refer to several instances, features, classes, and their corresponding null values, if present.
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Data preprocessing
Data preprocessing ensures the datasets are ready for model training and testing. The steps followed are:

Missing values
Missing values (if any) are imputed using the median (for numerical features) and mode (for categorical features).

Feature scaling
Standardization (z-score normalisation) is applied to all continuous variables to ensure uniformity.

Class imbalance simulation
SMOTE (Synthetic Minority Over-sampling Technique): Used for over-sampling the minority class in 
imbalanced datasets like Wine Quality, Breast Cancer, and Credit Card Fraud.

ADASYN (adaptive synthetic sampling): Applied over-sampling to the minority class in specific experiments, 
especially for highly imbalanced datasets. It generates synthetic samples adaptively, focusing more on minority 
class instances that are harder to learn, thereby improving classifiers’ performance.

Noise injection
Gaussian noise is added to the features to simulate sensor or data measurement errors. The noise level is 
controlled (e.g., adding 1% noise by randomly sampling from a Gaussian distribution).

	 Xnoisy = X + N
(
0, σ2)

� (1)

where N
(
0, σ2)

 Represents Gaussian noise with mean zero and standard deviation σ .

Feature selection
SelectKBest: A univariate feature selection method based on ANOVA F-test scores is used to reduce the feature 
set and evaluate model performance under reduced dimensionality.

Dimensionality Reduction: The top k features (using SelectKBest) are selected to simulate a scenario with 
reduced information.

Supervised and quantum machine learning classifiers
Supervised learning in machine learning involves acquiring a function that establishes a relationship between 
input and output data, which can be achieved by utilising provided examples of input–output pairs. The procedure 
entails deriving a mathematical function based on training data labelled by assigning certain categories or classes 
and comprising a collection of training instances. The input dataset is partitioned into many training and testing 
datasets, as illustrated in Fig. 4. The training dataset includes a target variable that necessitates forecasting or 

Fig. 4.  Workflow of Su learning.

 

Dataset Name Features Features used for classical ML Models
Features used for Quantum
ML Models Instances Class Distribution Purpose

Iris 4 4 4 150 Balanced (3 classes) Classic classification dataset

Wine Quality 13 13 6 178 Imbalanced Chemical analysis of wine

Breast Cancer Wisconsin 30 30 6 569 Imbalanced Medical diagnosis

Human Activity Recognition 561 561 6 10,299 Balanced (6 activities) Real-world sensor data

Pima Indian Diabetes 8 8 6 768 Imbalanced Medical data

Table 2.  Structure of the Datasets.
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categorisation. Algorithms extract patterns from the training dataset and employ them to make predictions or 
categorise the test dataset18.

Currently, Quantum ML has emerged as a promising advancement of classical ML by leveraging the principles 
of Quantum Computing to enhance the capacity of learning models. Quantum Models follow the same learning 
from labelled data but they encode the classical data to quantum data using feature maps and process it using 
quantum circuits. Figure 4 depicts the pipeline of machine learning.

Decision tree (DT)
Constructing a classifier involves utilising a set of internal and leaf nodes. The internal nodes represent decision 
criteria, while predictions are represented by the leaf nodes. Let ′N ′ Be the quantity of physiological characteristics 
and ′M ′ Represent the number of diagnosis predictions. Let ′X ′ Be a set of physiological characteristic vectors 
denoted as {X1, X2.........XN } . Let ′W ′ Be the set of ′N ′ thresholds, denoted as {W1, W2....................WN . 
Consider ′C′ as a set of diagnosis predictions, denoted as as {C1, C2.........CN }.. This process commences from 
the root node and proceeds towards the last node. Consequently, the classification effect depends on the choices 
from the starting node to the finishing node. The classification of a classifier based on decision trees can be 
understood as a collection of IF–THEN statements by systematically visiting each decision route. Hence, it is 
probable to transform a DT classifier in any rule base consisting of the collections of IF–THEN rules that are 
formed from the DT classifier19. The attribute that each node tests is labelled, and the values that correspond to 
those labels are labelled on its branches, as illustrated in Fig. 5.

Support vector machine
SVM, a supervised classification method, begins with a pre-existing training set. During the training process, 
a Support Vector Machine (SVM) acquires knowledge regarding the correlation between each data point and 
its related label in the given training dataset8. It is specifically designed for binary classification of new testing 
vectors and refers to a type of issue characterised by having more equations than unknowns, which is known 
as an over-determined system of equations as represented in Fig.  6. The algorithm produces a hyperplane 

Fig. 6.  SVM Classification hyperplane.

 

Fig. 5.  Instance of decision tree.
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defined by the equation →w . →x + b = 0. This hyperplane ensures that to obtain a training point →xn in the 
positive class, →w . →x + b ≥ 1, and to obtain a training point →xn in the negative class, →w . →x + b ≤—1. The 
algorithm strives to optimise the distance between the two classes throughout the training process. This is logical 
since we wish to create a clear separation between the two classes in order to obtain a more accurate classification 
result for new data samples, such as →xo. Mathematically, Support Vector Machines (SVM) find any hyperplane 
that maximises the distance between two parallel hyperplanes, subject to the restriction that the product of 
the predicted label ( →yi) and the linear combination of the weights (→w) and the input vector (→xo)20. The 
diagram in Fig. 6 below represents the categorization of classes using a hyperplane.

K–Nearest Neighbor (KNN)
An enduring approach in class reasoning. The decision-making concept is based on a straightforward principle: 
the sample that needs to be evaluated is classified in the same category as the closest matching sample. The 
outcome of the Nearest Neighbor Rule is definitively established for all occurrences to be evaluated, assuming 
that the distance metric and training set remain constant. In set E, for every sample instance, if y is the closest 
neighboring instance to x, then the group of y is determined by the nearest neighbor rule. Assume X is a sample 
from an unidentified category. The decision process is envisaged in equation (2):

	 gj (X) = mingiX)i = 1, 2, ...,� (2)

Subsequently, the outcome of the choice is XεW i.
In this context, the nearest neighbour rule is presented with a focus on two key aspects: convergence and 

generalisation error. The nearest neighbour for a given point x, derived from two training sets with different 
samples, varies. Given that the classification outcome is contingent upon the category label of the closest 
neighbouring data point, P (e|x, x′), is so obtained. x and x′   factors determine the conditional error rate21.

Random forest (RF)
This model is a collective learning technique. The algorithm constructs a series of decision trees throughout 
the training process and the mode determines the class that has the highest frequency among the trees for 
classification tasks, while it calculates the mean prediction for regression tasks. The node splitting criterion was 
configured to demand a minimum of two samples, and each leaf node must include at least one sample. The 
procedural instructions of the Random Forest algorithm:

•	 Generate a bootstrap sample using the given data.
•	 In order to create each bootstrap sample, a regression tree must be constructed with certain modifications: 

randomly select a subset of the predictors at each node and determine the optimal split among the variables.
•	 Calculate the most recent data by summing up the forecasts of the nt trees (taking the average for regression).

Built on a random selection of observations, whether with or without replacement, approximately 36.8% are 
not utilized for any one tree. This means that these observations are considered "out of the bag (OOB)" for that 
specific tree. The predictive accuracy of a random forest can be assessed using the out-of-bag (OOB) data.

	
OOB − MSE = 1

n

n∑
i=1

(yi − ŷiOOB)2� (3)

where the average forecast for the ith opinion from total trees the observation that is out-of-bag (OOB) is 
represented by ŷiOOB.

Linear regression (LR)
Regression is a method employed to analyze the association between two variables. The analysis is commonly 
employed for the purpose of forecasting and prediction, and it shares significant similarities with the field of 
machine learning. Crucially, this method demonstrates the relationships between a dependent variable and a 
predetermined set of other variables in a dataset. The equation is represented as y = β0 + β1x + ε. Simple 
regression separates the impact of independent factors from the interplay of dependent variables.

Quantum support vector machine
A Quantum Support Vector Machine (QSVM) is a quantum-enhanced version of the classical Support Vector 
Machine (SVM) algorithm, designed to perform classification tasks. QSVM leverages quantum computing, 
particularly quantum kernel methods, to potentially outperform classical algorithms in certain scenarios, 
especially when dealing with high-dimensional data or complex patterns that are difficult to capture classically.

Quantum SVM replaces the classical kernel function with a quantum kernel, which is computed by a quantum 
computer. This quantum kernel is based on the inner product of quantum states, which allows encoding classical 
data into quantum feature space.

Quantum kernel estimation
The key idea is to map a classical data point xxx to a quantum state |ϕ (x)⟩| and then compute a kernel matrix 
K (x, x′) = |⟨ϕ (x) | ϕ (x′)⟩|2 This is usually done by:

Encoding data into quantum circuits using a feature map Uϕ (x).
Measuring the fidelity (overlap) between quantum states
This allows capturing nonlinear patterns efficiently, potentially with exponential speedups.
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Workflow of QSVM
Feature mapping: Encode classical data xxx into a quantum state using a parameterized unitary Uϕ (x).

Kernel evaluation: Compute K (x, x′) = |⟨ϕ (x) | ϕ (x′)⟩|2.
Classical SVM Solver: Use a classical algorithm (e.g., LIBSVM) to find the separating hyperplane using the 

quantum kernel matrix
Prediction: New data points are mapped and evaluated using the quantum kernel.

Quantum k nearest neighbor
The Quantum kNN algorithm adapts the classical k nearest neighbor classifier to a quantum computing 
paradigm by representing classical vectors as quantum states and using quantum subroutine to estimate inter 
sample similarities in superposition. QkNN aims to accelerate distance or similarity estimation and nearest 
neighbor search under theoretical models that provide efficient quantum access to data22.

QkNN implementations usually estimate s (xq, xi) using one of the:

•	 Fidelity / inner product: |⟨xq | xi⟩|2, estimated via a SWAP test or Hadamard test.
•	 Euclidean distance via inner product identity:
•	 ∥ xq − xi ∥2=∥ xq ∥2 + ∥ xi ∥2 −2 ⟨xq, xi⟩ where the inner product is obtained from amplitude overlaps.
•	 Hamming or other discrete distances when features are binarised; specialised circuits exist for parallel Ham-

ming distance estimation.

Variational quantum classifier
The Quantum Variational Classifier (VQC) is a hybrid quantum–classical supervised learning model that 
leverages parameterised quantum circuits (PQCs) optimised via classical algorithms. It belongs to the class of 
Variational Quantum Algorithms (VQAs), specifically designed for Noisy Intermediate-Scale Quantum (NISQ) 
devices.VQC combine quantum feature encoding and trainable quantum layers to learn complex, nonlinear 
decision boundaries, analogous to a neural network but implemented on qubits. Their advantage lies in 
exploiting quantum entanglement and superposition to represent data in exponentially large Hilbert spaces, 
offering potential expressivity beyond classical models23 . If given a dataset D, then

	 D = {(xi, yi)}N
i=1, xi ∈ Rd, yi ∈ {−1, +1} ,� (4)

the goal is to find a variational quantum circuit U (θ) parameterised by a vector of tunable parameters θ such 
that the measurement expectation value corresponds to the predicted class label.

This process these steps are included :

•	 Encoding: map classical data xi into a quantum state |xi⟩ = Uϕ (xi) |0⟩⊗n, where Uϕ is a data-dependent 
unitary transformation.

•	 Parameterised evolution: Apply a trainable unitary U (θ) to form |ψ (xi, θ)⟩ = U (θ) Uϕ (xi) |0⟩⊗n

Measurement: Measure an observable (e.g., Pauli-Z) to obtain the expectation value:

	 fθ (xi) = ⟨ψ (xi, θ)| M |ψ (xi, θ)⟩ ,

where M  is the measurement operator. The sign of fθ(xi) determines the class label.

Optimisation: Minimise a cost function such as binary cross-entropy or hinge loss24:

	
L (θ) = 1

N

∑
i

ℓ (fθ (xi) , yi)� (5)

Evaluation parameters
Within the domain of data mining, several evaluation measures, including accuracy, F-measure, precision, and 
recall, are commonly employed to assess the system’s performance. In this paper, we will consider these measures 
to evaluate performance. TPe is an abbreviation for correctly identified positive, FPe is a false positive, TNe is a 
true negative, and FNe is a false negative.

The accuracy rate is the ratio of instances with correct classification to the total cases tried, as stated in 
Eq. (1). The equation can be formulated in the following manner:

	
Accuracy = (T P o) + (T Ne)

(T P o + (F P o) + (T Ne) + (F Ne) � (6)

The precision of a model is defined as the proportion of the truly positive instances that are correctly forecasted 
to all positive forecasts generated by the model.

	
Precision = (T rP )

(T rP ) + (F lP ) � (7)

The recall calculates the percentage of positive scenarios correctly predicted to the total number of positive 
scenarios, with the false negative scenarios, and is occasionally called the true positive rate.
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Recall = (T rP )

(T rP ) + (F lN) � (8)

The F1 score is a quantitative measure that assesses the relationship between precision and recall. The calculation 
involves taking the harmonious average of both. It is a valuable metric for achieving a compromise between high 
precision and strong recall. It effectively penalises extreme negative values of either component.

Accuracy quantifies the overall correctness or precision of a measurement or calculation. In the equation 
P r1 stands for precision Re1 stands for recall

	
F1 score = 2 × (Pr1 × Re1)

(Pr1 + Re1) � (7)

ROC curve: The Receiver Operating Characteristic (ROC) curve is a standard tool for evaluating binary 
classifiers, especially in imbalanced medical datasets. It illustrates the trade-off between a True Positive Rate 
(Sensitivity) and a False Positive Rate (1—Specificity).

Confusion matrix: It is a tabular representation of showing the counts of True positives, true negatives, false 
positives and false negatives.

Explainability: SHAP, LIME and Quantum kernel distribution
To enhance model transparency, we use two popular Explainable AI (XAI) techniques: SHAP and LIME. These 
techniques provide insights into which features are driving the model’s predictions.

SHAP
We use SHAP (SHapley Additive exPlanations) to evaluate feature importance globally. SHAP values indicate the 
impact of each feature on the prediction for each instance.

LIME
For local interpretability, we use LIME to explain individual predictions by approximating the model with 
simpler interpretable models around each prediction.

Quantum kernel distribution
To analyse quantum-enhanced models like QSVM and QKNN, we examine the distribution of quantum kernel 
values. The quantum kernel distribution provides insights into how well different classes are separable in the 
high-dimensional feature space, highlighting regions where the quantum embedding improves classification 
performance.

Hardware availability and simulation justification
All quantum modes in the study are implemented and executed using the pennylane framework on Google 
Colab, leveraging its high-performance cloud runtime for reproducible quantum simulation. This design choice 
was guided by the limited public availability of current NISQ devices, where hardware execution remains 
constrained by qubit decoherence and hardware noise and is not publicly available or available at a very high 
cost. Running on Google Colab ensures platform independence and reproducibility across multiple runs. The 
implemented circuits are intentionally designed with shallow depth and fewer qubit requirements. Consequently, 
the reported results represent a reproducible and hardware-ready baseline for future near-term deployment.

Experimental results and analysis
Supervised and Quantum Machine Learning classification acquires knowledge from data that is not evaluated 
based on its performance; eighty per cent of the dataset was designated for training. while the remaining 20% 
of the dataset is designated as the testing set. The model’s performance is assessed on unseen testing sets, 
where the model learns from the data without adjusting and optimizing the parameters.

Parameter tuning
Table 3 summarizes key experimental settings, covering dataset handling, preprocessing,  model configurations, 
and evaluation strategies. Each component-from feature selection and resampling to classical and quantum 
classifiers-was tuned or applied with specific parameters to ensure fair, reproducible, and interpretable results.

Performance overview of classical ML models
To evaluate the performance and robustness of classical machine learning models under varying data 
conditions, we conducted experiments on five benchmark datasets: Breast Cancer Wisconsin, Iris, Wine 
Quality, Pima, HAR human activity Dataset. Each dataset was subjected to four experimental variants: (1) 
resampled data using SMOTE (2) ADASYN (3) noisy data with Gaussian noise, and (4) selected features using 
ANOVA F-test. Performance was assessed via accuracy, precision, recall, F1-score, confusion matrix and 
Area Under the ROC Curve (AUC). The results are reported for both original and resampled datasets using 
SMOTE to address class imbalance. Tables 4, 5, 6, 7 and 8 summarize the classification performance across 
all datasets and models. For clarity and reproducibility, each table is grouped by ML Models and includes all 
four data preprocessing variants.
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Sr. 
No Category Parameter Value/setting Description/purpose

1 Dataset splitting

test_size 0.2 80% training, 20% testing split

random_state 42 Seed for reproducibility across runs

stratify y (class labels) Ensures class proportion balance during split

2 Preprocessing

StandardScaler Mean = 0, Std = 1 Standardizes each feature to zero mean, unit 
variance

noise_factor 0.01 Standard deviation for Gaussian noise 
injection

add_noise() (X′ = X + N
(

0, σ2
) Simulates real-world perturbations (used for 

“Noise” runs)

3 Imbalance 
handling

SMOTE random_state = 42 Synthetic Minority Oversampling Technique 
for balancing minority classes

ADASYN Supported Adaptive synthetic sampling (disabled for 
HAR to avoid instability)

4 Feature selection
SelectKBest score_func = f_classif, k = 6 ANOVA F-test selects top 6 informative 

features

PCA (for QSVM) n_components = 4 Dimensionality reduction to 4D latent space 
for quantum embedding

5 Classical ML 
classifiers

Support vector 
machine (SVM)

kernel =′ rbf ′ , C ∈ {0.1, 1, 10},gamma ∈
{

′scale′,′ auto′
}

Baseline non-linear classifier; tuned via 
fivefold GridSearchCV

K-Nearest Neighbors 
(KNN)

n_neighbors ∈ {3, 5, 7, 9} , weights ∈
{

′uniform′,′ distance′
}

Distance-based local voting classifier

Random forest (RF) n_estimators ∈ {50, 100, 200} , max_depth ∈ {None, 5, 10} Ensemble of decision trees with bagging

Decision tree (DT) criterion ∈
{

′gini′,′ entropy′
}

, max_depth ∈ {None, 5, 10} Single interpretable tree baseline

Logistic regression 
(LR)

C ∈ {0.1, 1, 10} , solver ∈
{

′lbfgs′,′ liblinear′
}

, max_iter = 2000 Linear baseline classifier with L2-
regularization

6 Quantum 
classifier

Quantum device qml.device("default.mixed", wires = 8) Simulated 8-qubit Pennylane backend for 
hybrid experiments

Feature embedding qml.templates.AngleEmbedding(x) Encodes normalised features as qubit rotation 
angles

Quantum kernel 
distribution

Histogram of (K (xi, xj)) Shows the spread of kernel values, used to 
visualise class separability

Quantum kernel Overlap kernel (K (xi, xj)) ψ (x_i)⟩

QSVM SVC(kernel = ‘precomputed’) Uses a quantum kernel matrix instead of a 
classical kernel

QKNN KNeighborsClassifier(n_neighbors = 3) Distance metric derived from quantum kernel 
space

VQC (Variational 
Quantum Classifier) AngleEmbedding + BasicEntanglerLayers, 2 layers, step size 0.2, 10 epochs Parameterised circuit trained via gradient 

descent (mean-squared cost)

Optimizer qml.GradientDescentOptimizer(stepsize = 0.2) Classical optimizer for variational parameters

Simulation Backend default.mixed (Pennylane) Mixed-state simulator used for realistic noise 
emulation

Number of Qubits Depends on features (4–8) Each qubit encodes one selected feature

7
Cross-validation 
& runtime 
control

n_runs 5 independent runs Average & standard deviation computed for 
each metric

StratifiedKFold n_splits = 3, random_state = 42 Ensures balanced splits for small quantum 
datasets

8 Evaluation 
metrics

Accuracy, Precision, 
Recall, F1 Score Mean ± Std computed across runs

ROC Curve & AUC roc_curve(), auc() Evaluates probabilistic separability

Confusion Matrix confusion_matrix() Summarizes classification distribution

9
Explainability 
(Only for 
classical models)

SHAP shap.TreeExplainer(best_model) Global feature contribution visualization

LIME LIME.TabularExplainer(mode = ‘classification’) Local interpretability for individual 
predictions

Instance Explanation explain_instance(i = 42) Explains the 42-nd test sample decision 
boundary

10 Computational 
environment

CPU/GPU Intel i7 Experiments run on CPU; GPU used for 
Pennylane acceleration

Software Stack Python 3.12, Scikit-learn 1.5, Pennylane 0.38, Imbalanced-learn 0.12 Reproducible library versions

11 Performance 
output Metrics aggregation Mean ± Std over 5 runs Reported in tables and ROC/CM figures

Result files Quantum_Results_Full.xlsx,ml_models_tuned_results.csv Contain complete numerical benchmarks for 
all models/datasets

Table 3.  List of parameters used in the Experiment.
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Performance overview of quantum ML models
To assess the effectiveness of quantum machine learning algorithms, we evaluated three quantum models- 
Quantum SVM, Quantum kNN, and VQC- on the same dataset applied to classical models. Each dataset was 
preprocessed using feature standardisation, Gaussian noise addition, and synthetic oversampling (SMOTE and 
ADASYN). Tables 9, 10 and 11 summarizes the results, highlighting the impact of quantum feature mapping, 
kernel distributions, and entanglement depth on classification performance. Each tables from 9, 10 and 11 
includes metrics averaged over multiple runs, along with standard deviations, to ensure robustness.

Visual analysis and model explainability
To support transparency and interpretability, we applied SHAP (Shapley Additive explanations) and LIME 
(Local Interpretable Model-agnostic Explanations) techniques on selected models trained on the provided 
datasets. SHAP summary plots revealed that features such as mean radius and worst concavity were dominant 
predictors in the breast cancer classification task. LIME explanations illustrated local decision boundaries for 

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

KNN IRIS SMOTE 0 0.9556 Â ± 0.0157 0.9613 Â ± 0.0119 0.9556 Â ± 0.0157 0.9553 Â ± 0.0160 0.3

KNN IRIS SMOTE 0.01 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.39

KNN IRIS ADASYN 0 0.9556 Â ± 0.0157 0.9613 Â ± 0.0119 0.9556 Â ± 0.0157 0.9553 Â ± 0.0160 0.32

KNN IRIS ADASYN 0.01 0.9667 Â ± 0.0000 0.9697 Â ± 0.0000 0.9667 Â ± 0.0000 0.9666 Â ± 0.0000 0.28

KNN WINE SMOTE 0 0.9444 Â ± 0.0000 0.9506 Â ± 0.0022 0.9444 Â ± 0.0000 0.9440 Â ± 0.0006 0.33

KNN WINE SMOTE 0.01 0.9537 Â ± 0.0131 0.9591 Â ± 0.0110 0.9537 Â ± 0.0131 0.9535 Â ± 0.0132 0.32

KNN WINE ADASYN 0 0.9352 Â ± 0.0346 0.9447 Â ± 0.0265 0.9352 Â ± 0.0346 0.9338 Â ± 0.0361 0.31

KNN WINE ADASYN 0.01 0.9352 Â ± 0.0346 0.9447 Â ± 0.0265 0.9352 Â ± 0.0346 0.9338 Â ± 0.0361 0.46

KNN BREAST_CANCER SMOTE 0 0.9561 Â ± 0.0072 0.9577 Â ± 0.0075 0.9561 Â ± 0.0072 0.9562 Â ± 0.0073 0.38

KNN BREAST_CANCER SMOTE 0.01 0.9532 Â ± 0.0041 0.9549 Â ± 0.0056 0.9532 Â ± 0.0041 0.9533 Â ± 0.0044 0.32

KNN BREAST_CANCER ADASYN 0 0.9094 Â ± 0.0041 0.9182 Â ± 0.0095 0.9094 Â ± 0.0041 0.9104 Â ± 0.0044 0.31

KNN BREAST_CANCER ADASYN 0.01 0.9152 Â ± 0.0149 0.9220 Â ± 0.0175 0.9152 Â ± 0.0149 0.9161 Â ± 0.0149 0.32

KNN PIMA SMOTE 0 0.6753 Â ± 0.0462 0.6904 Â ± 0.0414 0.6753 Â ± 0.0462 0.6803 Â ± 0.0447 0.4

KNN PIMA SMOTE 0.01 0.6991 Â ± 0.0372 0.7165 Â ± 0.0334 0.6991 Â ± 0.0372 0.7043 Â ± 0.0361 0.61

KNN PIMA ADASYN 0 0.7056 Â ± 0.0457 0.7304 Â ± 0.0433 0.7056 Â ± 0.0457 0.7115 Â ± 0.0447 0.45

KNN PIMA ADASYN 0.01 0.6753 Â ± 0.0323 0.6951 Â ± 0.0302 0.6753 Â ± 0.0323 0.6812 Â ± 0.0315 0.4

KNN HAR SMOTE 0 0.9233 Â ± 0.0085 0.9257 Â ± 0.0085 0.9233 Â ± 0.0085 0.9234 Â ± 0.0087 1.62

KNN HAR SMOTE 0.01 0.9233 Â ± 0.0120 0.9255 Â ± 0.0117 0.9233 Â ± 0.0120 0.9234 Â ± 0.0122 1.45

Table 5.  Evaluation results of KNN on all datasets.

 

Model dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

SVM IRIS SMOTE 0 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 3.15

SVM IRIS SMOTE 0.01 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.74

SVM IRIS ADASYN 0 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.6

SVM IRIS ADASYN 0.01 0.9889 Â ± 0.0157 0.9899 Â ± 0.0143 0.9889 Â ± 0.0157 0.9889 Â ± 0.0158 0.4

SVM WINE SMOTE 0 0.9722 Â ± 0.0227 0.9759 Â ± 0.0189 0.9722 Â ± 0.0227 0.9723 Â ± 0.0225 0.54

SVM WINE SMOTE 0.01 0.9722 Â ± 0.0227 0.9759 Â ± 0.0189 0.9722 Â ± 0.0227 0.9723 Â ± 0.0225 0.52

SVM WINE ADASYN 0 0.9722 Â ± 0.0227 0.9759 Â ± 0.0189 0.9722 Â ± 0.0227 0.9723 Â ± 0.0225 0.83

SVM WINE ADASYN 0.01 0.9722 Â ± 0.0227 0.9759 Â ± 0.0189 0.9722 Â ± 0.0227 0.9723 Â ± 0.0225 0.53

SVM BREAST_CANCER SMOTE 0 0.9678 Â ± 0.0109 0.9684 Â ± 0.0112 0.9678 Â ± 0.0109 0.9679 Â ± 0.0110 1.38

SVM BREAST_CANCER SMOTE 0.01 0.9649 Â ± 0.0000 0.9663 Â ± 0.0012 0.9649 Â ± 0.0000 0.9650 Â ± 0.0002 1.77

SVM BREAST_CANCER ADASYN 0 0.9620 Â ± 0.0041 0.9630 Â ± 0.0035 0.9620 Â ± 0.0041 0.9621 Â ± 0.0040 1.69

SVM BREAST_CANCER ADASYN 0.01 0.9591 Â ± 0.0041 0.9600 Â ± 0.0042 0.9591 Â ± 0.0041 0.9592 Â ± 0.0042 2.07

SVM PIMA SMOTE 0 0.7251 Â ± 0.0337 0.7278 Â ± 0.0295 0.7251 Â ± 0.0337 0.7256 Â ± 0.0315 6.19

SVM PIMA SMOTE 0.01 0.7251 Â ± 0.0245 0.7280 Â ± 0.0208 0.7251 Â ± 0.0245 0.7260 Â ± 0.0228 6.72

SVM PIMA ADASYN 0 0.7381 Â ± 0.0272 0.7435 Â ± 0.0240 0.7381 Â ± 0.0272 0.7399 Â ± 0.0257 6.32

SVM PIMA ADASYN 0.01 0.7381 Â ± 0.0221 0.7424 Â ± 0.0236 0.7381 Â ± 0.0221 0.7394 Â ± 0.0222 6.92

SVM HAR SMOTE 0 0.9567 Â ± 0.0042 0.9568 Â ± 0.0043 0.9567 Â ± 0.0042 0.9566 Â ± 0.0043 63.59

SVM HAR SMOTE 0.01 0.9567 Â ± 0.0042 0.9568 Â ± 0.0043 0.9567 Â ± 0.0042 0.9566 Â ± 0.0043 63.52

Table 4.  Evaluation results of SVM on all datasets.
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SVM and LR classifiers, validating the importance of top-ranked features and offering insight into individual 
prediction justifications.

From Figs.  7, 8, 9, 10 and 11, we can see SHAP helped identify which features were most important 
globally, confirming the model relies on medically significant indicators like mean radius and worst concavity. 
Meanwhile, LIME provided local explanations for individual predictions, demonstrating how specific feature 
values influence the classification of benign or malignant. Together, these tools enhance trust in the model by 
offering global and local interpretability. he SHAP plots typically showed red dots indicating higher feature 
values., Blue dots indicate lower values and. Horizontal clustering near zero indicated low interaction or low 
impact while the LIME plot breaks down the prediction into positive (supportive) and negative (opposing) 
contributions, blue bars push the prediction toward one class (e.g., benign, no disease), and orange bars push it 
toward the opposite class (e.g., malignant, disease present). We also analyse the quantum kernel distributions. 
Quantum kernels encode classical data into a high-dimensional Hilbert space, enhancing the separability of 
complex patterns. The kernel distribution, computed as the squared overlap of quantum states, reveals how 
well the feature map differentiates between classes: tightly clustered intra-class distributions and well-separated 

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

DecisionTree IRIS SMOTE 0 0.9556 Â ± 0.0157 0.9576 Â ± 0.0171 0.9556 Â ± 0.0157 0.9555 Â ± 0.0157 0.25

DecisionTree IRIS SMOTE 0.01 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.25

DecisionTree IRIS ADASYN 0 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.25

DecisionTree IRIS ADASYN 0.01 0.9333 Â ± 0.0272 0.9388 Â ± 0.0278 0.9333 Â ± 0.0272 0.9330 Â ± 0.0273 0.28

DecisionTree WINE SMOTE 0 0.9537 Â ± 0.0472 0.9556 Â ± 0.0458 0.9537 Â ± 0.0472 0.9539 Â ± 0.0469 0.37

DecisionTree WINE SMOTE 0.01 0.9167 Â ± 0.0227 0.9198 Â ± 0.0213 0.9167 Â ± 0.0227 0.9165 Â ± 0.0224 0.38

DecisionTree WINE ADASYN 0 0.9074 Â ± 0.0693 0.9147 Â ± 0.0626 0.9074 Â ± 0.0693 0.9076 Â ± 0.0693 0.31

DecisionTree WINE ADASYN 0.01 0.9537 Â ± 0.0472 0.9556 Â ± 0.0458 0.9537 Â ± 0.0472 0.9539 Â ± 0.0469 0.3

DecisionTree BREAST_CANCER SMOTE 0 0.9327 Â ± 0.0109 0.9351 Â ± 0.0120 0.9327 Â ± 0.0109 0.9325 Â ± 0.0112 0.54

DecisionTree BREAST_CANCER SMOTE 0.01 0.9474 Â ± 0.0189 0.9481 Â ± 0.0191 0.9474 Â ± 0.0189 0.9474 Â ± 0.0189 0.62

DecisionTree BREAST_CANCER ADASYN 0 0.9415 Â ± 0.0109 0.9448 Â ± 0.0104 0.9415 Â ± 0.0109 0.9419 Â ± 0.0107 0.78

DecisionTree BREAST_CANCER ADASYN 0.01 0.9415 Â ± 0.0083 0.9446 Â ± 0.0056 0.9415 Â ± 0.0083 0.9417 Â ± 0.0078 0.59

DecisionTree PIMA SMOTE 0 0.6991 Â ± 0.0324 0.6997 Â ± 0.0376 0.6991 Â ± 0.0324 0.6988 Â ± 0.0345 0.44

DecisionTree PIMA SMOTE 0.01 0.7468 Â ± 0.0191 0.7465 Â ± 0.0150 0.7468 Â ± 0.0191 0.7451 Â ± 0.0160 0.46

DecisionTree PIMA ADASYN 0 0.6710 Â ± 0.0311 0.6824 Â ± 0.0308 0.6710 Â ± 0.0311 0.6751 Â ± 0.0308 0.46

DecisionTree PIMA ADASYN 0.01 0.7056 Â ± 0.0110 0.7082 Â ± 0.0120 0.7056 Â ± 0.0110 0.7068 Â ± 0.0114 0.66

DecisionTree HAR SMOTE 0 0.9050 Â ± 0.0102 0.9062 Â ± 0.0101 0.9050 Â ± 0.0102 0.9049 Â ± 0.0102 22.11

DecisionTree HAR SMOTE 0.01 0.8975 Â ± 0.0054 0.8984 Â ± 0.0060 0.8975 Â ± 0.0054 0.8975 Â ± 0.0054 22.7

Table 7.  Evaluation results of Decision Tree on all datasets.

 

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

RandomForest IRIS SMOTE 0 0.9667 Â ± 0.0000 0.9697 Â ± 0.0000 0.9667 Â ± 0.0000 0.9666 Â ± 0.0000 8.89

RandomForest IRIS SMOTE 0.01 0.9667 Â ± 0.0000 0.9697 Â ± 0.0000 0.9667 Â ± 0.0000 0.9666 Â ± 0.0000 8.84

RandomForest IRIS ADASYN 0 0.9444 Â ± 0.0314 0.9473 Â ± 0.0317 0.9444 Â ± 0.0314 0.9443 Â ± 0.0315 8.78

RandomForest IRIS ADASYN 0.01 0.9667 Â ± 0.0000 0.9697 Â ± 0.0000 0.9667 Â ± 0.0000 0.9666 Â ± 0.0000 8.96

RandomForest WINE SMOTE 0 0.9907 Â ± 0.0131 0.9916 Â ± 0.0119 0.9907 Â ± 0.0131 0.9908 Â ± 0.0130 9.95

RandomForest WINE SMOTE 0.01 0.9907 Â ± 0.0131 0.9916 Â ± 0.0119 0.9907 Â ± 0.0131 0.9908 Â ± 0.0130 9.87

RandomForest WINE ADASYN 0 0.9907 Â ± 0.0131 0.9916 Â ± 0.0119 0.9907 Â ± 0.0131 0.9908 Â ± 0.0130 9.25

RandomForest WINE ADASYN 0.01 0.9907 Â ± 0.0131 0.9916 Â ± 0.0119 0.9907 Â ± 0.0131 0.9908 Â ± 0.0130 9.5

RandomForest BREAST_CANCER SMOTE 0 0.9474 Â ± 0.0215 0.9490 Â ± 0.0223 0.9474 Â ± 0.0215 0.9475 Â ± 0.0216 13.94

RandomForest BREAST_CANCER SMOTE 0.01 0.9532 Â ± 0.0180 0.9544 Â ± 0.0189 0.9532 Â ± 0.0180 0.9532 Â ± 0.0183 13.59

RandomForest BREAST_CANCER ADASYN 0 0.9561 Â ± 0.0072 0.9585 Â ± 0.0072 0.9561 Â ± 0.0072 0.9563 Â ± 0.0071 14.26

RandomForest BREAST_CANCER ADASYN 0.01 0.9444 Â ± 0.0109 0.9471 Â ± 0.0129 0.9444 Â ± 0.0109 0.9447 Â ± 0.0111 14.24

RandomForest PIMA SMOTE 0 0.7424 Â ± 0.0153 0.7474 Â ± 0.0070 0.7424 Â ± 0.0153 0.7436 Â ± 0.0128 11.91

RandomForest PIMA SMOTE 0.01 0.7468 Â ± 0.0231 0.7482 Â ± 0.0159 0.7468 Â ± 0.0231 0.7463 Â ± 0.0200 13.1

RandomForest PIMA ADASYN 0 0.7662 Â ± 0.0191 0.7703 Â ± 0.0208 0.7662 Â ± 0.0191 0.7676 Â ± 0.0197 11.94

RandomForest PIMA ADASYN 0.01 0.7662 Â ± 0.0106 0.7758 Â ± 0.0062 0.7662 Â ± 0.0106 0.7687 Â ± 0.0094 14.02

RandomForest HAR SMOTE 0 0.9575 Â ± 0.0102 0.9582 Â ± 0.0103 0.9575 Â ± 0.0102 0.9574 Â ± 0.0103 105.26

RandomForest HAR SMOTE 0.01 0.9458 Â ± 0.0131 0.9468 Â ± 0.0136 0.9458 Â ± 0.0131 0.9457 Â ± 0.0131 108.26

Table 6.  Evaluation results of random forest.

 

Scientific Reports |        (2025) 15:45714 14| https://doi.org/10.1038/s41598-025-28412-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


inter-class distributions indicate effective encoding. This analysis offers insights into the discriminative power of 
various quantum feature maps, guiding the selection of kernels and circuit architectures for optimal quantum-
enhanced classification. Quantum kernel distributions for all datasets are illustrated in Fig. 12a–e.

The histogram in Fig. 12 shows the distribution of quantum kernel values for all five benchmark datasets 
used in the study. Each subplot illustrates the frequency of pairwise kernel similarities obtained after encoding 
the data using the selected quantum feature map. The distribution highlights how the quantum feature map 
transforms each dataset into the quantum Hilbert space, revealing differences in quantum concentration spread 
and separability across datasets.

ROC curve and confusion matrix analysis
Accuracy alone can be misleading, especially in imbalanced datasets (e.g., disease detection). ROC curves 
provide a threshold-independent performance metric that evaluates the classifier’s ability to separate positive 

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

QKNN Breast Cancer ADASYN OFF 0.870 ± 0.000 0.874 ± 0.000 0.871 ± 0.000 0.870 ± 0.000 0.01

QKNN Breast Cancer ADASYN ON 0.934 ± 0.000 0.936 ± 0.000 0.935 ± 0.000 0.936 ± 0.000 0.01

QKNN Breast Cancer SMOTE OFF 0.949 ± 0.000 0.949 ± 0.000 0.949 ± 0.000 0.949 ± 0.000 0.01

QKNN Breast Cancer SMOTE ON 0.936 ± 0.000 0.938 ± 0.000 0.936 ± 0.000 0.936 ± 0.000 0.01

QKNN HAR ADASYN OFF 0.532 ± 0.000 0.526 ± 0.000 0.526 ± 0.000 0.526 ± 0.000 202.10

QKNN HAR ADASYN ON 0.551 ± 0.000 0.553 ± 0.000 0.316 ± 0.000 0.600 ± 0.000 100.21

QKNN HAR SMOTE OFF 0.343 ± 0.000 0.625 ± 0.000 0468 ± 0.000 0.641 ± 0.000 304.33

QKNN HAR SMOTE ON 0.584 ± 0.000 0.583 ± 0.000 0.516 ± 0.000 0.568 ± 0.000 230.18

QKNN IRIS ADASYN OFF 0.956 ± 0.000 0.961 ± 0.000 0.956 ± 0.000 0.955 ± 0.000 22.36

QKNN IRIS ADASYN ON 0.956 ± 0.000 0.961 ± 0.000 0.956 ± 0.000 0.955 ± 0.000 22.15

QKNN IRIS SMOTE OFF 0.956 ± 0.000 0.961 ± 0.000 0.956 ± 0.000 0.955 ± 0.000 22.12

QKNN IRIS SMOTE ON 0.956 ± 0.000 0.961 ± 0.000 0.956 ± 0.000 0.955 ± 0.000 21.98

QKNN PIMA ADASYN OFF 0.532 ± 0.000 0.526 ± 0.000 0.526 ± 0.000 0.526 ± 0.000 0.01

QKNN PIMA ADASYN ON 0.551 ± 0.000 0.553 ± 0.000 0.816 ± 0.000 0.600 ± 0.000 0.01

QKNN PIMA SMOTE OFF 0.636 ± 0.000 0.625 ± 0.000 0.658 ± 0.000 0.641 ± 0.000 0.01

QKNN PIMA SMOTE ON 0.584 ± 0.000 0.583 ± 0.000 0.816 ± 0.000 0.568 ± 0.000 0.01

QKNN WINE ADASYN OFF 0.924 ± 0.000 0.927 ± 0.000 0.924 ± 0.000 0.924 ± 0.000 107.83

QKNN WINE ADASYN ON 0.879 ± 0.000 0.883 ± 0.000 0.882 ± 0.000 0.878 ± 0.000 109.55

QKNN WINE SMOTE OFF 0.906 ± 0.000 0.909 ± 0.000 0.908 ± 0.000 0.905 ± 0.000 101.3

QKNN WINE SMOTE ON 0.906 ± 0.000 0.909 ± 0.000 0.906 ± 0.000 0.906 ± 0.000 102.71

Table 9.  Evaluation results of quantum k NN.

 

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

LogisticRegression IRIS SMOTE 0 0.9889 Â ± 0.0157 0.9899 Â ± 0.0143 0.9889 Â ± 0.0157 0.9889 Â ± 0.0158 0.4

LogisticRegression IRIS SMOTE 0.01 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.44

LogisticRegression IRIS ADASYN 0 0.9889 Â ± 0.0157 0.9899 Â ± 0.0143 0.9889 Â ± 0.0157 0.9889 Â ± 0.0158 0.51

LogisticRegression IRIS ADASYN 0.01 0.9778 Â ± 0.0157 0.9798 Â ± 0.0143 0.9778 Â ± 0.0157 0.9777 Â ± 0.0158 0.38

LogisticRegression WINE SMOTE 0 0.9815 Â ± 0.0262 0.9846 Â ± 0.0218 0.9815 Â ± 0.0262 0.9816 Â ± 0.0260 0.37

LogisticRegression WINE SMOTE 0.01 0.9722 Â ± 0.0227 0.9759 Â ± 0.0189 0.9722 Â ± 0.0227 0.9723 Â ± 0.0225 0.42

LogisticRegression WINE ADASYN 0 0.9630 Â ± 0.0131 0.9675 Â ± 0.0098 0.9630 Â ± 0.0131 0.9631 Â ± 0.0129 0.43

LogisticRegression WINE ADASYN 0.01 0.9722 Â ± 0.0227 0.9759 Â ± 0.0189 0.9722 Â ± 0.0227 0.9723 Â ± 0.0225 0.51

LogisticRegression BREAST_CANCER SMOTE 0 0.9649 Â ± 0.0072 0.9658 Â ± 0.0079 0.9649 Â ± 0.0072 0.9650 Â ± 0.0073 0.54

LogisticRegression BREAST_CANCER SMOTE 0.01 0.9678 Â ± 0.0041 0.9688 Â ± 0.0047 0.9678 Â ± 0.0041 0.9679 Â ± 0.0042 0.48

LogisticRegression BREAST_CANCER ADASYN 0 0.9503 Â ± 0.0041 0.9526 Â ± 0.0038 0.9503 Â ± 0.0041 0.9505 Â ± 0.0040 0.4

LogisticRegression BREAST_CANCER ADASYN 0.01 0.9532 Â ± 0.0041 0.9549 Â ± 0.0056 0.9532 Â ± 0.0041 0.9534 Â ± 0.0043 0.49

LogisticRegression PIMA SMOTE 0 0.7749 Â ± 0.0251 0.7868 Â ± 0.0273 0.7749 Â ± 0.0251 0.7780 Â ± 0.0249 0.46

LogisticRegression PIMA SMOTE 0.01 0.7771 Â ± 0.0221 0.7895 Â ± 0.0238 0.7771 Â ± 0.0221 0.7803 Â ± 0.0219 0.46

LogisticRegression PIMA ADASYN 0 0.7727 Â ± 0.0140 0.7894 Â ± 0.0144 0.7727 Â ± 0.0140 0.7764 Â ± 0.0134 0.37

LogisticRegression PIMA ADASYN 0.01 0.7814 Â ± 0.0201 0.7965 Â ± 0.0173 0.7814 Â ± 0.0201 0.7848 Â ± 0.0192 0.4

LogisticRegression HAR SMOTE 0 0.9600 Â ± 0.0071 0.9606 Â ± 0.0067 0.9600 Â ± 0.0071 0.9600 Â ± 0.0070 26.67

LogisticRegression HAR SMOTE 0.01 0.9542 Â ± 0.0096 0.9547 Â ± 0.0092 0.9542 Â ± 0.0096 0.9543 Â ± 0.0095 26.44

Table 8.  Evaluation results of logistic regression.
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and negative classes across all possible thresholds. We analysed the Receiver Operating Characteristic (ROC) 
curves and Confusion metrix for all models against all datasets, and it is not feasible to present the ROC curve 
for all cases, so the best ones are presented in Figs. 13, 14, 15, 16 and 17.

Summary of best performing configuration – analysis and interpretation
Table  12 below consolidates the optimal configuration, model type, and data preprocessing technique that 
yielded the highest classification performance on each of the five datasets, as measured by both Accuracy and 
execution time.

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

VQC Breast Cancer ADASYN OFF 0.429 ± 0.020 0.416 ± 0.021 0.431 ± 0.012 0.405 ± 0.023 34.41

VQC Breast Cancer ADASYN ON 0.467 ± 0.086 0.482 ± 0.126 0.475 ± 0.087 0.426 ± 0.077 34.39

VQC Breast Cancer SMOTE OFF 0.468 ± 0.038 0.453 ± 0.047 0.468 ± 0.032 0.420 ± 0.033 35.42

VQC Breast Cancer SMOTE ON 0.449 ± 0.038 0.434 ± 0.048 0.449 ± 0.038 0.410 ± 0.033 34.49

VQC HAR ADASYN OFF 0.355 ± 0.000 0.370 ± 0.000 0.316 ± 0.000 0.596 ± 0.000 77.65

VQC HAR ADASYN ON 0.422 ± 0.000 0.418 ± 0.000 0.321 ± 0.000 0.604 ± 0.000 85.42

VQC HAR SMOTE OFF 0.321 ± 0.010 0.351 ± 0.003 0.3763 ± 0.000 0.367 ± 0.003 77.25

VQC HAR SMOTE ON 0.533 ± 0.006 0.456 ± 0.003 0.463 ± 0.000 0.571 ± 0.003 55.94

VQC IRIS ADASYN OFF 0.533 ± 0.073 0.608 ± 0.073 0.533 ± 0.073 0.524 ± 0.073 21.59

VQC IRIS ADASYN ON 0.444 ± 0.109 0.417 ± 0.109 0.444 ± 0.109 0.395 ± 0.109 21.18

VQC IRIS SMOTE OFF 0.444 ± 0.018 0.453 ± 0.018 0.502 ± 0.018 0.418 ± 0.018 21.46

VQC IRIS SMOTE ON 0.393 ± 0.046 0.337 ± 0.046 0.449 ± 0.046 0.358 ± 0.046 21.58

VQC PIMA ADASYN OFF 0.455 ± 0.000 0.470 ± 0.000 0.816 ± 0.000 0.596 ± 0.000 57.65

VQC PIMA ADASYN ON 0.462 ± 0.000 0.478 ± 0.000 0.821 ± 0.000 0.604 ± 0.000 55.01

VQC PIMA SMOTE OFF 0.424 ± 0.006 0.451 ± 0.003 0.763 ± 0.000 0.567 ± 0.003 57.25

VQC PIMA SMOTE ON 0.433 ± 0.006 0.456 ± 0.003 0.763 ± 0.000 0.571 ± 0.003 55.63

VQC WINE ADASYN OFF 0.177 ± 0.043 0.172 ± 0.044 0.177 ± 0.043 0.173 ± 0.044 110.63

VQC WINE ADASYN ON 0.141 ± 0.019 0.141 ± 0.022 0.142 ± 0.019 0.140 ± 0.020 109.94

VQC WINE SMOTE OFF 0.229 ± 0.019 0.229 ± 0.023 0.228 ± 0.020 0.226 ± 0.022 106.22

VQC WINE SMOTE ON 0.198 ± 0.029 0.195 ± 0.033 0.196 ± 0.030 0.196 ± 0.031 106.92

Table 11.  Evaluation results of VQC.

 

Model Dataset Sampler Noise Accuracy (meanÂ ± std) Precision (meanÂ ± std) Recall (meanÂ ± std) F1 (meanÂ ± std) Avg Time (s)

QSVM Breast Cancer ADASYN OFF 0.948 ± 0.000 0.949 ± 0.000 0.948 ± 0.000 0.948 ± 0.000 145.8

QSVM Breast Cancer ADASYN ON 0.947 ± 0.000 0.949 ± 0.000 0.947 ± 0.000 0.947 ± 0.000 147.77

QSVM Breast Cancer SMOTE OFF 0.962 ± 0.000 0.964 ± 0.000 0.962 ± 0.000 0.961 ± 0.000 150.27

QSVM Breast Cancer SMOTE ON 0.987 ± 0.000 0.988 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 147.59

QSVM HAR ADASYN OFF 0.494 ± 0.000 0.493 ± 0.000 0.468 ± 0.000 0.629 ± 0.000 510.03

QSVM HAR ADASYN ON 0.526 ± 0.000 0.515 ± 0.000 0.472 ± 0.000 0.448 ± 0.000 605.37

QSVM HAR SMOTE OFF 0.41 ± 0.017 0.521 ± 0.000 0.474 ± 0.000 0.469 ± 0.000 401.06

QSVM HAR SMOTE ON 0.512 ± 0.000 0.514 ± 0.000 0.447 ± 0.000 0.367 ± 0.000 611.46

QSVM IRIS ADASYN OFF 0.911 ± 0.000 0.916 ± 0.000 0.911 ± 0.000 0.911 ± 0.000 24.28

QSVM IRIS ADASYN ON 0.911 ± 0.000 0.916 ± 0.000 0.911 ± 0.000 0.911 ± 0.000 25.08

QSVM IRIS SMOTE OFF 0.911 ± 0.000 0.916 ± 0.000 0.911 ± 0.000 0.911 ± 0.000 30.81

QSVM IRIS SMOTE ON 0.933 ± 0.000 0.935 ± 0.000 0.933 ± 0.000 0.933 ± 0.000 25.12

QSVM PIMA ADASYN OFF 0.494 ± 0.000 0.493 ± 0.000 0.868 ± 0.000 0.629 ± 0.000 308.06

QSVM PIMA ADASYN ON 0.526 ± 0.000 0.515 ± 0.000 0.872 ± 0.000 0.648 ± 0.000 303.77

QSVM PIMA SMOTE OFF 0.755 ± 0.000 0.721 ± 0.000 0.774 ± 0.000 0.679 ± 0.000 311.06

QSVM PIMA SMOTE ON 0.532 ± 0.000 0.514 ± 0.000 0.947 ± 0.000 0.667 ± 0.000 305.46

QSVM WINE ADASYN OFF 0.924 ± 0.000 0.928 ± 0.000 0.924 ± 0.000 0.924 ± 0.000 119.44

QSVM WINE ADASYN ON 0.848 ± 0.000 0.857 ± 0.000 0.851 ± 0.000 0.850 ± 0.000 119.53

QSVM WINE SMOTE OFF 0.922 ± 0.000 0.925 ± 0.000 0.923 ± 0.000 0.923 ± 0.000 113.94

QSVM WINE SMOTE ON 0.891 ± 0.000 0.898 ± 0.000 0.891 ± 0.000 0.891 ± 0.000 114.44

Table 10.  Evaluation results of Quantum SVM.
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The bar chart in Fig. 18 illustrates the performance of the best models for each dataset based on accuracy and 
execution time. The Logistic Regression achieved a perfect score on the iris, UCI-HAR, and Pima dataset, while 
QSVM performed strongly on the Breast Cancer, and Random Forest did a tremendous job for wine dataset. The 
Pima diabetes dataset presented more challenges, with a noticeable drop in the accuracies.

The comparative analysis across multiple benchmark datasets demonstrates a distinct performance pattern 
between quantum and classical machine learning models. QSVM got a remarkable accuracy (98.7%) when 
using with the Breast cancer dataset(SMOTE + Noise ON), representing the robustness and capacity of QML to 
model high-dimensional feature space, but this performance was achieved at significantly higher computational 
overhead, i.e. 147.59 s, which reflects the simulation capacity of quantum circuits. When evaluating the wine 
dataset, Random Forest achieved the highest accuracy, 99.7%, illustrating its computational efficiency and 
superior performance on structured data.

For iris, PIMA and UCI-HAR datasets, Logistic regression consistently performed well with the accuracies 
of 98.87, 96.00 and 77.5%. With the minimum execution time, it suggests the reliability and computational 

Fig. 7.  SHAP summary plot and LIME local explanation on breast cancer dataset.
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efficiency for complex problems. With the incorporation of SMOTE and ADASYN, it effectively mitigated the 
class imbalance and enhanced the classification performance.

These findings reveal a clear tradeoff between predictive performance and computational efficiency, 
highlighting the importance of selecting the right classifier with appropriate methods of preprocessing, i.e., 
resampling and noise handling, to maximise performance across different domains.To benchmark the results, 
the study’s findings are now compared with existing results in Table 13.

.
The comparison of classification accuracies of existing models reported in the literature with our results is 
presented in Table 13. For the iris, wine, and Breast cancer datasets, the study’s results are significantly better 
than those of existing studies. However, the results of the study are not so good for the PIMA dataset, but still 
comparable. There is a lack of work on QkNN with PIMA, UCI HAR, and VQC on UCI HAR datasets, so we fill 
this gap by including them in our study. The results of Table 13 are shown in Fig. 19 in graphical form.

Fig. 8.  SHAP summary plot and LIME local explanation on wine quality dataset.
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Insights from the results
The valuable insights of the experiment are presented in Table 14. From the table, it can be reasonably inferred 
that the classical models delivered fast and consistent results, while the quantum models, particularly QSVM, 
help capture complex patterns. QkNN can be a reliable option where fast execution time is required. And VQC 
is very prone to noise with lower stability.

Application relevance and real world impact
The comparative framework developed in this study holds strong relevance for real-world domains characterised 
by data imbalance, noisy features, and complex non-linear separability. Applications such as fraud detection, 
medical diagnosis, and industrial IoT anomaly detection often exhibit these challenges, where small but critical 
minority classes are easily overshadowed by dominant patterns. The demonstrated performance of quantum 
classifiers, particularly QSVM and VQC, on imbalanced and noisy datasets highlights their potential to enhance 
decision-making in such high-stakes environments. Quantum feature maps effectively embed overlapping 
classical data into higher-dimensional Hilbert spaces, allowing improved class separability even with limited 
training samples. Consequently, the proposed framework establishes a foundation for quantum-enhanced 
analytics that can be extended to practical sectors once stable and accessible quantum hardware becomes 
available.

Conclusion and future work
A detailed comparative analysis of classical and quantum machine learning is presented in this study, including 
five datasets, a range of data preprocessing techniques, i.e. resampling, noise handling and feature selection. The 
results of the experiment suggested that the performance of ML Models is susceptible to the selection of the 
preprocessing technique and the type of classifier.

Logistic regression in classical ML Models showcased its performance with the highest accuracy in the Iris, 
Pima, and UCI-HAR datasets. Similarly, Random Forest achieved the highest accuracy with wine datasets, both 
with and without noise, demonstrating its potential to remain consistent in all cases.

The quantum-enhanced ML Model QSVM outperforms all other classical and quantum models when 
implemented using the breast cancer dataset, achieving an accuracy of almost 99%, albeit with the highest 
execution time, highlighting the limited availability of quantum simulations.

Interpretability tools, such as SHAP and LIME, further validated the trustworthiness of the models by 
identifying both globally and locally essential features, particularly in medical and activity recognition datasets. 
Confusion matrix, ROC curve, and analyses complemented traditional metrics, especially under class imbalance, 

Fig. 9.  SHAP summary plot and LIME local explanation on iris dataset.
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highlighting the robust behaviour of the classifier across decision thresholds. Quantum kernel distribution is 
also analysed to show the similarity values between data points.

When benchmarked against existing literature, the proposed models not only achieved competitive accuracies 
but also did so using simpler and more interpretable techniques. This suggests that optimal performance does 
not necessarily require complex architectures; instead, it benefits from judicious model selection, balanced 
datasets, and effective preprocessing.

In conclusion, this work reinforces the value of hybrid pipelines, which merge classical robustness with 
emerging quantum techniques, while promoting transparency through explainability tools. These insights can 
inform the development of future quantum–classical models for real-world classification tasks across healthcare, 
sensor data, and beyond. Future work will include deploying the optimised quantum circuits on real quantum 
backends such as IBMQ and ionQ Aria, subject to public availability. This will enable empirical validation of 
noise resilience and circuit fidelity in a hardware-constrained environment.

Fig. 10.  SHAP summary plot and LIME local explanation on UCI HAR dataset.
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Fig. 11.  SHAP summary plot and LIME local explanation on Pima Indian diabetes dataset.
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Fig. 12.  Quantum kernel value distributions across datasets.
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Fig. 15.  ROC curve and confusion matrix for LR using the iris dataset.

 

Fig. 14.  ROC curve and confusion matrix for RF using the wine dataset.

 

Fig. 13.  ROC curve and confusion matrix for QSVM using the breast cancer dataset.
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Dataset Best- Model Noise Sampler Accuracy Execution time (s) Best parameter

Breast Cancer Dataset Quantum Support Vector Machine ON SMOTE 98.7 147.59 Feature map- Angle encoding, c = 1.0

Wine Quality Random Forest On/OFF SMOTE/ADASYN 99.7 9.25
max_depth = None, n_estimators = 50
max_depth = None, n_estimators = 200
max_depth = 10, n_estimators = 100
max_depth = None, n_estimators = 50

Iris Logistic Regression OFF ADASYN 98.87 98.87 C = 10, solver = lbfgs

UCI -HAR Dataset Logistic Regression OFF SMOTE 96.00 26.67 C = 1, solver = liblinear

Pima Indian Diabetes Dataset Logistic Regression ON SMOTE 77.5 0.45 C = 1, solver = liblinear

Table 12.  Summary of best performing model.

 

Fig. 17.  ROC curve and confusion matrix for LR using the PIMA Dataset.

 

Fig. 16.  ROC curve and confusion matrix for LR using the HAR Dataset.
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Fig. 18.  Graphical representation of the best model performance across datasets.
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Reference Technique Dataset Existing results Our results technique (Accuracy)
25 SVM Iris 98.7 with GA 98.89
26 Decision Tree Iris 97 97.78
27 KNN Iris 85.71 97.78
28 LR Iris 95.55 98.89
29 RF Iris 95.55 95.67
30 QSVM Iris 99 93.3
31 QkNN Iris 95.33 95.6
32 VQC Iris 1.00 53.3
33 SVM Wine 84.56 97.72
34 Decision Tree Wine 83.54 95.37
35 KNN Wine 59.68 95.37
36 LR Wine 76 96.49
36 RF Wine 84 95.37
37 QSVM Wine 93 94.4
31 QkNN Wine 67.98 92.4
38 VQC Wine 53 22.9
39 SVM Breast cancer 78 96.42
40 DT Breast cancer 92 94.74
41 KNN Breast cancer 94.35 95.61
42 LR Breast cancer 84.15 98.24
39 RF Breast cancer 95.64 94.7
37 QSVM Breast cancer 90 98.7
43 QkNN Breast cancer 98.25 94.9
44 VQC Breast cancer 78 48.8
45 SVM Pima 74.03 73.4
45 DT Pima 72.9 74.68
45 KNN Pima 72.9 70.56
45 LR Pima 76.2 78.14
45 RF Pima 80.11 74.68
23 QSVM Pima 74 75.3

QkNN Pima N/A 63.6
46 VQC Pima 1.00 46.2
47 SVM UCI-HAR 96.9 95.6

N/A DT UCI-HAR N/A 90.5
47 KNN UCI-HAR 96.24 92.3
48 LR UCI-HAR 98 96.00
48 RF UCI-HAR 98.47 95.75
49 QSVM UCI-HAR 98 51.2

QkNN UCI-HAR N/A 58.4

VQC UCI-HAR N/A 43.3

Table 13.  Comparison with existing studies.
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Fig. 19.  Comparison of existing vs our techniques results across datasets.
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Data availability
All the datasets are publicly available at UCI and Kaggle - Breast Cancer Wisconsin Dataset - ​[​h​t​t​p​s​:​/​/​a​r​c​h​i​v​e​.​i​c​
s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​1​7​/​b​r​e​a​s​t​+​c​a​n​c​e​r​+​w​i​s​c​o​n​s​i​n​+​d​i​a​g​n​o​s​t​i​c​]​(​h​t​t​p​s​:​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​1​7​/​b​r​e​a​s​t​+​c​a​n​c​e​r​
+​w​i​s​c​o​n​s​i​n​+​d​i​a​g​n​o​s​t​i​c​) , Iris Dataset- ​[​h​t​t​p​s​:​/​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​5​3​/​i​r​i​s​]​(​h​t​t​p​s​:​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​
t​a​s​e​t​/​5​3​/​i​r​i​s​) , Wine Dataset- ​[​h​t​t​p​s​:​/​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​1​0​9​/​w​i​n​e​]​(​h​t​t​p​s​:​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​1​
0​9​/​w​i​n​e​) , Pima indian diabetes dataset- ​[​h​t​t​p​s​​:​/​/​w​w​w​​.​k​a​g​g​l​​e​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​u​c​i​m​l​/​p​i​m​a​-​i​n​d​i​a​n​s​-​d​i​a​b​e​t​e​s​-​d​a​t​a​b​
a​s​e​]​(​h​t​t​p​s​:​/​w​w​w​.​k​a​g​g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​u​c​i​m​l​/​p​i​m​a​-​i​n​d​i​a​n​s​-​d​i​a​b​e​t​e​s​-​d​a​t​a​b​a​s​e​) , UCI human activity recognition 
dataset- ​[​h​t​t​p​s​:​/​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​2​4​0​/​h​u​m​a​n​+​a​c​t​i​v​i​t​y​+​r​e​c​o​g​n​i​t​i​o​n​+​u​s​i​n​g​+​s​m​a​r​t​p​h​o​n​e​s​]​(​h​t​t​p​s​:​/​a​r​c​h​
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Aspect Classical ML QSVM QKNN VQC
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Sensitivity to noise Low Low to moderate Low High

Effect of oversampling Helps ADASYN/SMOTE Helps SMOTE Minor effect Minor effect
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Table 14.  Insights from the results.
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