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Neural network for predicting ship
magnetic signatures at arbitrary
depths and courses: a comparison
with the multi-dipole model

Kajetan Zielonacki®"“, Jarostaw Tarnawski® & Miroslaw Woloszyn

This paper presents a neural network model for predicting a ship’s magnetic field distribution at
arbitrary depths and courses using inverse modeling. Trained on synthetic FEM-generated data, the
model addresses limitations of the multi-dipole approach, which is sensitive to positional errors and
computationally demanding. The data preparation process and Bayesian optimization of network
architecture and hyperparameters are described. Model accuracy is assessed using various metrics
and dataset sizes, with comparisons to the multi-dipole model in terms of prediction accuracy,
computational cost, and robustness. When ship positioning data were disturbed, the relative
deterioration of selected quality indices was six to seven times lower than for the multi-dipole model.
Although requiring more data for high accuracy, the neural model is faster, more robust, and well-
suited for degaussing and risk-assessment applications.
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Nowadays, ships are most often built of steel, which is a ferromagnetic material. This causes the occurrence of
magnetization, which can be described by two components: permanent and induced!. Permanent magnetization
is largely due to the ships construction process, including welding. Compasses, sensors, motors, or electric
generators are also sources of permanent magnetization. Over time, this component changes through exposure
to magnetic fields or temperature change, but these changes occur at a very slow rate. Induced magnetization
results from the effect of the Earth’s magnetic field on the vessel and varies depending on its position and
orientation. Altogether, magnetization manifests itself by perturbing the Earth’s magnetic field, which can be
described using a mathematical apparatus based on Maxwell’s equations, using magnetic fields characteristic to
each ship, called magnetic signatures.

In the maritime industry, magnetic signatures of ships are used for tasks such as classification, tracking,
or identification®. A ship’s magnetic signature can be used to determine its type or size’. They are also a very
important part of the safety issue, since magnetic mines are activated precisely on their basis*, and for this reason
a highly important issue from the point of view of ship design is their minimization. To address this, degaussing
systems are employed to counteract the ship’s natural signature through the use of coils installed onboard the
vessel, generating a magnetic field of opposite polarity®.

A highly effective approach to designing degaussing systems is to develop an appropriate model to study the
effects of various factors on the magnetic fields generated by the vessel. Commonly used methods are numerical
modeling methods such as the finite element method (FEM) and the boundary element method (BEM)°®.

Equally important from the point of view of magnetic signatures is their prediction at the selected course
and measurement depth. Using either measured or synthetic data obtained by the aforementioned methods, it is
possible to develop a regression model, such as the multi-dipole model”. This model consists of a predetermined
number of permanent and induced dipoles, describing the permanent and induced magnetization of the ship,
respectively. Each dipole is described by six parameters: three coordinates in a three-dimensional Cartesian
system and three components of the magnetic moment vector in each orthogonal direction. These parameters are
obtained through an optimization process described in%, which fits the model to the data. The model developed
in this way makes it possible to predict the magnetic signature in any other direction and at any depth, but
greater than that at which it was fitted to the data®. However, as shown in'®!!, the multi-dipole model’s accuracy
is highly sensitive to ship positioning errors, with GPS inaccuracies causing shifts and distortions in magnetic
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flux density measurements. These errors particularly affect the B, and B, components, sometimes inverting
the signature, while B, remains more stable. Monte Carlo simulations revealed deviations exceeding 3000 nT,
confirming that errors along the ship’s motion direction (N-S, E-W) had the greatest impact. This motivates the
search for an alternative modeling technique.

In this article, the authors continue a previously started attempt to model the magnetic signature using a
neural network presented in'?, where the magnetic field generated by the ship was modeled only as a function
of depth, on a northerly course and under its keel. Also, only B, and B. components were modeled. The goal is
to generalize the model to predict all three magnetic field density components at any Cartesian coordinates and
ship course, giving it functionality equivalent to a multi-dipole model in that regard (the multi-dipole model also
allows to decompose the signature into a permanent and induced part’, but it's beyond the scope of this study).
An important factor in evaluating the model is determining how much training data is needed for accurate
predictions, specifically how many directions and measurement depths they must come from. The process of
selecting an appropriate network structure and optimizing hyperparameters will be presented. The motivation
for addressing this topic lies in the high precision in data analysis and modeling offered by machine learning
algorithms, with the goal of improving modeling precision. The use of ANNs improves the scalability of analyses
and makes it possible to deal with complex patterns in the data.

The main contributions of this paper are:

« Development and optimization of a neural network model capable of predicting a full distribution of a ship’s
magnetic field at an arbitrary depth and course,

« Extensive computer simulations determining the impact of the number of data samples on the prediction
quality by determining six different quality indicators allowing for a comprehensive assessment,

» Comparative analysis of the developed method with the multi-dipole model in terms of both the prediction
quality using aforementioned indicators and robustness in terms of ability to refute noise in data and posi-
tion-related errors.

Numerous simulations have been carried out during the writing of this article, all of which were carried out
using the computers of Centre of Informatics Tricity Academic Supercomputer & Network.

Related works

Ferromagnetic signature modeling of ships has its origins in World War II and was aimed at determining their
vulnerability to magnetically triggered mines. The same models were also used to evaluate and optimize the
performance of signature reduction systems during their design phase, as well as in the development of both
offensive and defensive military systems'. Due to the limited computational capabilities of the time, detailed
physical-scale models were often used, with signatures measured in laboratories specially made for this purpose,
and remained the main method for their prediction until the 1980s°. The development of computers and
numerical modeling techniques allowed accurate simulations of magnetic fields using FEM and BEM, making
it possible to determine the so-called forward model, a model arising from the structure of an object using
analytical methods. Due to the small ratio of sheet thickness to vessel size, numerical modeling requires a dense
mesh with a huge number of finite elements. In addition, the presence of permanent magnetization complicates
the modeling process and significantly increases the computation time; moreover, when changing course, the
model must be recalculated'®. Hence, a common simplification of the model is the use of an ellipsoid, which is a
widely accepted representation of the ship’s hull'.

Given the above-mentioned limitations, the inverse models, also called semi-empirical or equivalent-source
models, are very popular. They are used to reconstruct input parameters based on observed output data either
from measurements or from the numerical environment!®. Several solutions to the inverse modeling problem
can be found in the literature, the most widely used of which are two:

o The multi-dipole model - approximates the magnetic field using a set of magnetic dipoles. By selecting the
moments and positions of the dipoles, it is matched to the observed datal®,

« Prolate Spheroidal Harmonic (PSH) model—a method of representing a vessel's magnetic field by means of
expansion into a series of harmonic functions described by elliptical coordinates!”.

These models, using appropriate regression techniques, are able to predict a vessel's magnetic signature from
observed data. In addition, recent analytical and semi-analytical methods have also been developed for magnetic
signature modeling. Extended dipole formulations have been proposed in which the ship is represented as a hollow
cylinder, allowing analytical determination of the induced magnetic field under local geomagnetic conditions!.
Other works address decomposition of the magnetic signature into permanent and induced components using
inverse problem regularization based on multiple passages over magnetic ranges'®. Composite field models
have also been proposed by combining ellipsoidal representations with magnetic dipole arrays, improving
conditioning of the problem and computational efficiency without compromising modeling accuracy®. In
parallel to these modeling developments, metamaterial structures have been investigated as a means of reducing
magnetic signatures, exploring materials and geometries that inherently suppress magnetic response, potentially
providing a complementary engineering pathway to signature reduction rather than predictive modeling?'.
These analytical and material-based approaches provide strong physical interpretability and can achieve high
accuracy when well parameterized, but typically still require tailored modeling or experimental characterization
for each vessel case.

An alternative modeling technique that has revolutionized the ability to map complex relationships
over the past few decades is deep learning based on neural networks, which, thanks to their ability to learn
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Fig. 1. FEM model of a corvette-type ship.

Length | 70 m
Width | 8m
Height | 8 m
Lo 200

d 0.01 m

Table 1. Ship model’s parameters.

Fig. 2. Coils inside the ship.

high-abstraction data representations, enable accurate modeling and forecasting in various fields of science,
technology, and data analysis.

With the development of artificial intelligence, its applications in the maritime industry are increasingly
found in the literature. A comprehensive review of these was done in 202322, where 69 works done in this area in
the last ten years were analyzed. It listed works on image-based ship classification using convolutional networks,
such as AlexNet*, YOLOv4%** and Grid CNN%. Convolutional networks were also used to classify ships based
on images from Synthetic Aperture Radar (SAR)**% and infrared?®. Applications in course optimization using
unidirectional networks?*? and recurrent networks®!> were also presented. Other applications included issues
of ship condition monitoring and maintenance®*-3, ship autopilot implementation®*-%%, and safety improvement
in navigation®-*.,

In the case of ship magnetic signatures, an example of the use of neural networks is*?, where the authors
studied the accurate prediction of magnetic signatures in the context of active degaussing, looking at the effect
of changes in hull thickness, relative permeability, and object radius. Their work proposed a machine learning
method based on multiple linear regression as a more effective alternative to traditional methods. The accuracy,
speed, and precision of this method were demonstrated. In*?, the authors proposed a method for detecting
magnetic anomalies using a multi-objective transfer learning algorithm that simultaneously removes noise
and detects magnetic anomalies in data with a limited number of samples. The model simultaneously uses a
convolutional autoencoder network and a unidirectional network for adaptive background noise modeling and
pattern learning, as well as noise filtering and anomaly detection. The developed model achieved significantly
better results compared to traditional methods and showed better performance. Ref.** presents the use of a
hybrid artificial neural network with a genetic algorithm to predict the induced magnetic signature with high
efficiency. Magnetic signatures have also been used to classify ships using one-way networks**-¥. Acoustic
signals were also used for’® and?’.

To the authors’ knowledge, it is a novelty to employ neural networks to model all three components of a ship’s
magnetic signature directly at once for an arbitrary position relative to the hull and also for any course.

Synthetic FEM data

A numerical model of a corvette-type ship was developed in the Simulia Opera* computational environment,
as shown in Fig. 1. The model was created from plates modeling the ship’s hull and reflecting its geometry
and structural properties. The boundary condition for the magnetic potential was taken to be Hezt = =V,
where Hez¢ is the intensity of the Earth’s magnetic field and v, is the magnetic scalar potential.

A thin plate boundary condition method was used to introduce the thickness of the plates'®*’, which allows
the use of fewer nodes connecting the finite elements while maintaining the accuracy of the calculation by taking
into account that one of the three dimensions of the plates is significantly smaller than the others. In the end, the
model consists of 906,792 nodes and 4,319,341 linear elements. Selected parameters of the model are listed in
table 1, where 1, is the relative magnetic permeability and d is the hull’s plates’ width.

In order to account for the vessel's permanent magnetization, 13 coils with constant currents were added
to the model, as shown in Fig. 2. The inserted set consists of three coils placed flat in the XY plane, three each
placed on both sides of the hull in the XZ plane, and four placed flat in the YZ plane. The current flow in the
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Fig. 3. Orientation of geographic directions in modeling.
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Fig. 4. Visualization of example sensor arrays for training data extraction.

coils generates a magnetic field that models the permanent magnetization in the ship’s structural elements. The
current densities in the coils were chosen arbitrarily to noticeably increase the magnetic field generated by the
ship.

In order to simulate the magnetic field produced by the ship, it is necessary to determine its position on the
Earth, since it is not uniform on its surface. This position was set as (55°N, 2°E), that is, in the North Sea, where
the modulus of the Earth’s magnetic field density Beo: is approximately 50nT. The magnetic inclination ¢ at this
location is approximately 70°. From here, the magnetic field strength H necessary for the simulation can be

determined, specifically its horizontal component H, and its vertical component H, as described by the Egs.
(1) and (2).

H,, = %005(5) (1)
o

H, = —ﬁsin(é) (2)
110

For a complete representation of the spatial distribution of the magnetic field with respect to the movement
of the ship, its course ¢ should be taken into account, determined as 0° for the north direction and calculated
counterclockwise (Fig. 3).

In order to train the neural network, a large dataset is required, so magnetic fields were generated for courses
0, 30, 45, 60, 75, 90, 120, 135, 150, 165, 180, 210, 225, 240, 255, 270, 300, 315, 330, and 345 degrees. The generated
B., By, and B, components were evaluated on a grid ranging from -300 to 300 m in the X and Y directions and
-50 to -10 m in the Z direction, all with 1 m steps.

Training data
The “cubes” of magnetic flux density values generated in Simulia Opera do not reflect the actual measurement of
the ship’s magnetic signature, which is usually performed with a magnetometer array placed at some depth>*°!.
Given this fact, training data for the neural network was created based on three variables: step of the ship’s course
(how many passages over the magnetometers were considered), number of sensors in the Y-axis, and number of
sensors in the Z-axis. All the data in the X-axis from -300 to 300 m with 1 m steps were acquired, while the other
axes were collected as shown in Fig. 4 (with 30 m steps for better visualization, actually 1 m steps were used),
where example sensor arrays were depicted.

The spacing between the sensors in the Y coordinate is assumed to be 10 m, and in the Z coordinate to be 4
m. This allowed for a simulation of the ship passing over an array of magnetometers.
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The calculated vectors of positions are then rotated according to the current ship’s course angle using a 2D

rotation matrix, as described in Eq. (3).
2'] _ [cos ¢ —sin @] [z
Y] [sind coso| |y

This rotation accounts for changes in ship orientation during data collection. When considering the influence of
the dataset size on the network’s performance, a term “course step” will be used, meaning the difference between
subsequent paths in degrees for extracting training data, as visualized in Fig. 5. The lower the course step, the
more data will be used.

When considering the total number of samples N in the training set based on the number of sensors in Y, the
number of sensors in Z, and the course step marked as Ny, Nz, and A¢ respectively, it can be calculated using
the formula (4).

3)

360°
N =601 Ny - Ny 222
60 y - Nz Ao

(4)
Here, 601 refers to the number of samples in the range from —300 to 300 m (single path), with 1 m step.

The dataset, which contains measurements of magnetic field components, is filtered to select data points
that match the calculated sensor positions and orientations. For each valid data point, the coordinates (x, y, z)
and the sine and cosine of the ship’s heading are paired with the corresponding magnetic field values. Using
the sine and cosine here instead of a single 0-360° or 0-27 angle as inputs to the neural network ensures a
more effective representation of directional information. The multi-dipole model also uses this information.
This approach addresses the circular nature of the course, where 0° and 360° are equivalent, by providing a
continuous and unambiguous representation that avoids discontinuities. Sine and cosine also maintain the
geometric relationships between headings, providing the network with more meaningful information about
orientation. Additionally, these values are being normalized to the range [—1, 1], which is typical for neural
network input preprocessing. While adding an extra input dimension, the sine and cosine representation
improves the network’s performance and enhances generalization, particularly for physical phenomena like
magnetic fields that depend on orientation. This way, a labeled training dataset is produced where the input
consists of measurement positions and orientation, and the output consists of the magnetic flux density values.

Discussion on the network’s type and optimization of the networks’its structure and
hyperparameters
The model proposed in this paper consists of five inputs (three spatial coordinates relative to the ship and
sine and cosine of its course) and three outputs corresponding to three components of the magnetic flux
density. For accurate signature reproduction, the types of layers between inputs and outputs and the networks’
hyperparameters should be optimized. The selection of the appropriate type of neural network for modeling
a ship’s magnetic signature is a difficult task, since there are so many to choose from. The choice depends on
the problem’s nature, the data characteristics, and the specific goals of the model. In the case of this study,
a strongly nonlinear relation between the Cartesian coordinates and the ships course and the magnetic flux
density generated by that ship is attempted to be mapped. Three main candidates were considered for this task:
a multilayer perceptron (MLP), a recurrent neural network (RNN), and a convolutional neural network (CNN).
Since the data is magnetostatic and spatial data will not be considered, the MLP is the architecture that was
chosen.

For the time of optimization of the networK’s structure and hyperparameters, the training set was chosen to
be for A¢p = 60°, Ny = 9, Nz = 5. The validation data came from the 143.5° course with Ny = 9 with 15 m
spacing and Nz = 4 with 4 m spacing. The test data was a set of paths from the 320.5° course with Ny = 9 with
12 m spacing and Nz = 4 sensors with 6 m spacing.

In previous works, the authors used grid search and random search for hyperparameter optimization. This
time, it was decided to use the Bayesian optimization procedure, which is a probabilistic model-based approach
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Fig. 5. Paths extracted from the data for different course steps.
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for optimizing hyperparameters of machine learning models. The decision variables in this case were number of
neurons, activation functions, learning rate, batch size, and maximum number of epochs. The number of neurons
in each layer was limited to 10 times the number of the network’s outputs, 300. The activation function in each
layer was selected from ReLU, Leaky ReLU, ELU, GELU, Swish, and Tanh. Lower boundaries for learning rate,
batch size, and number of epochs were selected as (1077, 107 1), (16, 512), and (10, 50), respectively. The Adam
optimizer was chosen for the network training algorithm. The objective function was the network’s performance
on the test set calculated via the root mean squared error (RMSE) given by (5) for N samples.

where y; is the actual value of the ith sample and §; is the modeled value of the i-th sample. For each function
evaluation, the network was trained on the training set, and the one achieving the best validation performance
was selected. Since each network depth corresponds to a different number of decision variables, the optimization
was conducted separately for each case from 1 to 12 layers, searching for the optimal number of neurons and
activation function in each layer. Additionally, since the results are non-deterministic, the procedure was
repeated ten times for each layer. Then, for every best-performing network from each optimization procedure,
the training process was repeated once again ten times, and the results were averaged. In the end, the selected
model was the one that, on average, performed the best on the test set. Figure 6 shows the distribution of RMSE
values for neural networks with 1 to 12 layers. Each box represents 10 training runs for a given number of layers.
The RMSE is measured in nT. The network with one hidden layer had big RMSE values, rendering the plot
unreadable. Therefore, it was not depicted here.

It can be seen that for 7, 8, and 12 layers, the mean RMSE values were the lowest, with the best-performing
network being a 7-layered one, a diagram of which is shown in Fig. 7. Its hyperparameters are a learning rate of
2.23 x 104, a batch size of 403, and 30 maximum training epochs. This seven-layer neural network structure
was used in all subsequent analyses to evaluate the influence of the training set size on the prediction accuracy
of the ship’s magnetic signature.

Figure 8 shows the network’s prediction of a magnetic signature for one of the paths in the test set (y = 12 m,
z = —32 m, and ¢ = 320.5°). The training dataset in this case was the same as during the hyperparameters’
optimization. The model fits the data well, as shown by the close alignment between the predicted values and the
observed data points on the graph. It took 190 seconds to complete the network’s training.

Influence of the training dataset size on magnetic signature prediction

Determining the number of data samples necessary for the networK’s satisfactory prediction of a ship’s magnetic
signature requires assessing the fidelity of the model’s outputs via qualitative measures, such as previously
used RMSE. It was decided to also include other indices in order to make the evaluation more comprehensive.
These include Mean Absolute Error (MAE) given by (6), Median Absolute Error (MdAE) given by (7), Median
Absolute Percentage Error (MdAPE) given by (8), R?, given by (9), and Inter-quartile Range in Levels (IQLev),
given by (10).
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Fig. 6. Box plots of RMSE (nT) across 10 training runs for neural networks with varying depth (2-12 layers).
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where |y — ¥|.- and |y — J|,5 denote the 75th and 25th percentiles of absolute errors, respectively. The use of
the aforementioned indicators allows for a comprehensive assessment of the quality of the model by providing
information on every aspect of the error distribution, including central tendency (RMSE, MAE, MdAE), relative
error (MdAPE), goodness of fit (R?), and the variability of the prediction errors (IQLev).
The network developed in previous section was trained for different cases of A¢ and the number of sensors
in the Y and Z directions. Then, for each training, it was evaluated on a test set of data for courses 75, 165, 255,
and 345 degrees, for Ny = 10 and Nz = 4, also with different spacing between the sensors, 12 m and 5 m for
Y and Z, respectively. The results were visualized using heatmaps in Figs. 9 and 10 for the case of A¢ = 30°.
Looking at the heatmaps, it can be determined that, unsurprisingly, more than one sensor in each direction
is necessary for accurate signature prediction. Also, in every quality indicator, a poor performance can also be
seen for two sensors in Y. Then the errors rapidly decrease with increasing the number of Y sensors from 3 to
7. A pattern starts to emerge where the lowest error values depending on the number of Z sensors, are between
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Fig. 9. Neural network’s RMSE, MAE and MdAE heatmaps for A¢ = 30°, across different sensor
configurations.

3 and 8. After that, there is no significant improvement in any of the indices. An area of minimal errors can be
identified for NY > 13A4 < NZ < 7.

Presenting heatmaps for every A¢ would be an exaggeration. Therefore, only RMSE is shown for the other
course steps in Fig. 11. Deterioration can be seen in the values of the indices as A¢ increases, while their
distributions according to NY and NZ remain consistent. Other indices showed similar worsening.

It is clear that A¢ has a significant influence on the prediction quality. This has been visualized in Figure 12,
depicting the signatures predicted for y = 7 m, z = —23 mand ¢ = 255° by models that were trained with
Ny = 4 and Nz = 6, but with different A¢.
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Fig. 10. Neural network’s error MAAPE, R? and IQLev heatmaps for A¢ = 30°, across different sensor
configurations.

Comparison with the multi-dipole model
The multi-dipole model is an abstract structure consisting of m permanent and n induced dipoles, described by
six parameters: the three components of the magnetic moment vector (m_, m , and m, ) and three coordinates in
a Cartesian coordinate system. It is created on the principle of inverse modeling, that is, on the basis of regression
using data. The detailed description of the model can be found in%°.

The vector of magnetic field induction B at position (x,y,z) produced by the i-th dipole at position (x,,y,,z))
is described by the relations (11)-(12)°2 With the help of such a model, the signature can be reproduced at any
depth (provided that it is lower than the one at which the model was trained®) and in any direction.
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Fig. 11. Neural network’s error RMSE for A¢ € {45°,60°,90°}, across different sensor configurations.

where:

B, =

B.(M,,Ri) = 22 (R?MiRi :

Bz,i
By,

z,1

3 M;
R R> (an
My i (z — )
M = [myq| Ry = (?J - yl) R = |R7«| (12)
Mz (z — z)

Scientific Reports|  (2025) 15:44758

| https://doi.org/10.1038/s41598-025-28425-4

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

60 50
40
0
20
= =
£ 0 £ 50
o o
\ 20
v \ -100
v -40
-60 -150 J
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
x[m] X [m] x[m]

Fig. 12. Magnetic signatures predicted by neural networks trained with different angle step A¢ for Ny = 4
and Nz = 6.

The total magnetic field Br produced by the model is described by the relation (13) for m permanent and n
induced dipoles.

m—+n

Br = ) Bi(M;,R)) (13)

=1

The number of dipoles in the model for the current state of knowledge is chosen arbitrarily®? and is a compromise

between accuracy and computational complexity. A multi-dipole model is a regression model determined by

optimization through the use of the nonlinear least squares method. The goal is to minimize the squares of the
model

difference between the source data B;Zf (4, k) and the model-derived data B} (4, k), depending on the
parameters 2 (dipole positions and moments), as described by Eqs. (14) and (18).

Ny Nz 360°—A¢ 300

e 7 =20 20 2 2 X (Bi Ui ~BIZ G @) (9

ny=ln,=1 ¢=0° j=—300

subject to
Qrin < Q, < Qe
i€(1,m+n) - - (15)
where
v Qi € {mazi, Myi, Mzi, Ti, Yi, Zi },

A {Ma,iy My, Mzi, Tiy Yiy Zi } (16)
le {1‘7y72}7 (17)
b =0% Ad,2A0,...,360° — Ad. (18)

The model is fit to data using the Isqnonlin function available in MATLAB for m = 25 and n = 25. The
maximum number of iterations is set to 10°. Also, a validation function was implemented which halted the
optimization process if for 500 iterations no improvement was made.

Prediction accuracy and training time

To compare models directly, the same approach was used as previously, where the multi-dipole model was
trained with different dataset sizes. The training time, however, is significantly longer than when it comes to
training a neural network, therefore the tests were performed only for A¢ = 90°. The RMSE heatmap for the
model is shown in Fig. 13.

It can be seen that while both models are able to achieve low error prediction values, the multi-dipole model
needs significantly less training data. Above 5 sensors in the Y plane there was not much improvement gained
from increasing the dataset size. The direct impact of dataset size on both models’ training efficiency has been
visualized in Fig. 14, where all six considered quality indices are shown in relation to the number of training
data samples for both models. While the black-box nature of artificial neural networks makes them require
more data to train, it is clear that compared to the multi-dipole model they need less time for this training (by
approximately an order of magnitude).

Robustness

Another aspect of the model, known as robustness, was also tested to evaluate its usefulness in simulated real-
world conditions. Three scenarios were assumed here. First scenario was a gaussian white noise of varying power
Px (0, 1,2, 5and 10 nT) added to the training outputs. Second scenario was the errors in positions implemented
using a Monte Carlo Markov Chain (MCMC), namely the Metropolis-Hastings (MH) algorithm, where samples
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Fig. 13. Multi-dipole model's RMSE heatmap in nT for A¢ = 90°.
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Fig. 14. Relations between number of training data samples and prediction errors and computing time for
both models.

from N (0, §) were drawn using a proposal distribution ¢/(—1, 1), where § was varied (0, 1, 2, 5 and 10 m). The
starting point of the sequence was also drawn from A/ (0, ¢). This method allows to approximate any distribution
using samples from a proposal one, as described in!! The influence of this method on the paths in the training
inputs (x and y coordinates) was illustrated in Fig. 15 for A¢ = 90°. The third method combined the previous
two, adding errors to both outputs and positions.

The reconstruction quality indices described earlier were evaluated for each disturbance case for the training
data scenario Ny = 6, Nz = 4, but A¢ = 90° for the multi-dipole model and A¢ = 30° to provide a more
equal contest. This was repeated ten times for each disturbance case, and the results were averaged. Table 2 shows
how all indices” values were distributed across different disturbance cases for both models, while Tables 3 and
4 present the average (across all indices) percentage increase (or decrease in case of R?) of these indices due to
perturbations, relative to the undisturbed prediction errors, for the neural network and multi-dipole model,
respectively. This was calculated according to the formula (19).
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20

Ds.py =

[ =

Z Qi = Qrerk 1009 (19)
cs Qref k

k=1

where Dj p,, is the average deterioration for a given § and noise power Py, S is the given disturbance case, ||
is the number of occurrences of the disturbance case, @), » represents the k-th quality index for data point j, and
Qref,k is the k-th quality index for the baseline case (§ = 0, Py = 0). Using these three tables, one can see both
the absolute and relative impact of the disturbances on the models.

It can be inferred from the tables that while both models experience some level of performance deterioration,
the neural network generally demonstrates greater robustness, showing smaller average increases in error indices
under perturbation. In contrast, the multi-dipole model exhibits higher sensitivity to disturbances, with larger
relative error increases observed in most cases. This indicates that the neural network maintains more consistent
performance and is less affected by external disturbances compared to the physics-based multi-dipole model.

Figure 16 showsamagneticsignaturepredictedbybothmodelsfory = —11m, z = —37m, ¢ = 345°,6 = 0.5
and Py = 2, while Fig. 17 shows the same signature predicted for 6 = 5 and P, = 5, with RMSE values for
each component in the title of the corresponding plot. It can be seen that while with lower values of disturbance
the performance of the neural network keeps being poorer than that of the multi-dipole model, it exceeds the
latter with higher noise and position error values. It needs to be noted, however, that the magnetic field can
be decomposed into the permanent and induced part using the multi-dipole model®, the possibility which the
neural network does not offer in this state, as it predicts the whole magnetic field density distribution, which is
a superposition of the permanent and induced part.

Conclusions & future research

In this article, the case of using a neural network for modeling a ship’s magnetic signature was presented. By
utilizing a FEM environment for the generation of synthetic data of a corvette-type ship’s magnetic field density
distribution, a labeled training dataset was created, with position relative to the hull and the ships course as
the inputs and with three components of the magnetic flux density vector as the outputs. The network’s
hyperparameters and structure were optimized using Bayesian optimization and the number of necessary data
samples for accurate signature prediction was determined using extensive computer simulations. The results
show that the neural network should be trained with data coming from more than just the cardinal directions
in order to obtain a good prediction quality. Using these findings, a compromise between the number of data
samples and prediction accuracy can be found.

The neural network model presented in this study demonstrates strong potential for predicting a ship’s
magnetic signature at arbitrary depths and courses. In comparison to the state-of-the-art multi-dipole model,
proposed approach has greater robustness against position-related errors. The results showcased that by
disturbing the input data related to the ship’s positioning, the relative deterioration of chosen quality indices was
six to seven times lower than in the case of the multi-dipole model. Along with lower computational costs, the
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Fig. 15. Visualization of position perturbations using MH algorithm.
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Table 2. Absolute quality indicators’ values for different disturbance cases (legend: light blue: NN RMSE (nT),
dark blue: MD RMSE (nT), light orange: NN MAE (nT), dark orange: MD MAE (nT), light green: NN MdAE
(nT), dark green: MD MdAE (nT), light yellow: NN MdAPE (%), dark yellow: MD MdAPE (%), light purple:
NN R?, dark purple: MD R?, light brown: NN IQLev (nT), dark brown: MD IQLev (nT)).
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Table 3. Mean relative disturbance influence on neural network training expressed as a percentage of

deterioration of quality indicators.

Scientific Reports |

(2025) 15:44758

| https://doi.org/10.1038/s41598-025-28425-4

nature portfolio



http://www.nature.com/scientificreports

www.nature.com/scientificreports/
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0 |- 378.38 | 881.56 | 2570.10 | 5206.89 | 6810.09 | 8206.31

1 4992 |378.30 |873.90 | 2528.45 | 5157.56 | 6692.53 | 8245.29
2 |56.73 | 382.66 | 885.77 | 2513.18 | 5259.05 | 6784.54 | 8166.20
5 [9543 |394.42 | 883.82 | 2539.96 | 5194.83 | 6988.78 | 8236.82
10 | 161.08 | 421.91 | 920.74 | 2496.57 | 5198.28 | 6856.11 | 8284.15

Table 4. Mean relative disturbance influence on multi-dipole model training expressed as a percentage of
deterioration of quality indicators.
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Fig. 17. Models’ prediction comparison for § = 10 and Py = 10.

neural network’s prediction ability could make it well-suited for real-time signature estimation, that can be used
for active degaussing and/or mine activation risk assessment.

When it comes to limitations of the model, one has to name the need for high amount of training data,
much larger when compared to the multi-dipole model. Furthermore, the network in this state does not allow
for separation of the permanent and induced magnetization, thus when the ambient background field changes
significantly, the model needs to be retrained.

For future research, the use of Integral Equation-based solvers such as BEM or Method of Moments (MoM)
may offer an efficient alternative to FEM for synthetic data generation. The authors also plan to incorporate real-
world data, treating synthetic data as a starting point. Actual measurement data could introduce complexities
that cannot be fully captured in simulations, and would be a great source of training data. While on-board
measurements, which have been previously conducted with ship Zodiak, provided valuable data, a possibility of
using a rotating platform with a scale ship model, which would be a source of what is really an unlimited amount
of magnetic field distribution data. Aside from the uncertainty in the track of the vessel along the sensor, the
sensor position uncertainty could also be addressed in future work. Additionally, a hybrid approach combining
the multi-dipole model with the neural network model could be considered.

Data availability
The data that support the findings of this study are available from the corresponding author, K. Z., upon reason-
able request.
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