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This paper presents a neural network model for predicting a ship’s magnetic field distribution at 
arbitrary depths and courses using inverse modeling. Trained on synthetic FEM-generated data, the 
model addresses limitations of the multi-dipole approach, which is sensitive to positional errors and 
computationally demanding. The data preparation process and Bayesian optimization of network 
architecture and hyperparameters are described. Model accuracy is assessed using various metrics 
and dataset sizes, with comparisons to the multi-dipole model in terms of prediction accuracy, 
computational cost, and robustness. When ship positioning data were disturbed, the relative 
deterioration of selected quality indices was six to seven times lower than for the multi-dipole model. 
Although requiring more data for high accuracy, the neural model is faster, more robust, and well-
suited for degaussing and risk-assessment applications.
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Nowadays, ships are most often built of steel, which is a ferromagnetic material. This causes the occurrence of 
magnetization, which can be described by two components: permanent and induced1. Permanent magnetization 
is largely due to the ship’s construction process, including welding. Compasses, sensors, motors, or electric 
generators are also sources of permanent magnetization. Over time, this component changes through exposure 
to magnetic fields or temperature change, but these changes occur at a very slow rate. Induced magnetization 
results from the effect of the Earth’s magnetic field on the vessel and varies depending on its position and 
orientation. Altogether, magnetization manifests itself by perturbing the Earth’s magnetic field, which can be 
described using a mathematical apparatus based on Maxwell’s equations, using magnetic fields characteristic to 
each ship, called magnetic signatures.

In the maritime industry, magnetic signatures of ships are used for tasks such as classification, tracking, 
or identification2. A ship’s magnetic signature can be used to determine its type or size3. They are also a very 
important part of the safety issue, since magnetic mines are activated precisely on their basis4, and for this reason 
a highly important issue from the point of view of ship design is their minimization. To address this, degaussing 
systems are employed to counteract the ship’s natural signature through the use of coils installed onboard the 
vessel, generating a magnetic field of opposite polarity5.

A highly effective approach to designing degaussing systems is to develop an appropriate model to study the 
effects of various factors on the magnetic fields generated by the vessel. Commonly used methods are numerical 
modeling methods such as the finite element method (FEM) and the boundary element method (BEM)6.

Equally important from the point of view of magnetic signatures is their prediction at the selected course 
and measurement depth. Using either measured or synthetic data obtained by the aforementioned methods, it is 
possible to develop a regression model, such as the multi-dipole model7. This model consists of a predetermined 
number of permanent and induced dipoles, describing the permanent and induced magnetization of the ship, 
respectively. Each dipole is described by six parameters: three coordinates in a three-dimensional Cartesian 
system and three components of the magnetic moment vector in each orthogonal direction. These parameters are 
obtained through an optimization process described in8, which fits the model to the data. The model developed 
in this way makes it possible to predict the magnetic signature in any other direction and at any depth, but 
greater than that at which it was fitted to the data9. However, as shown in10,11, the multi-dipole model’s accuracy 
is highly sensitive to ship positioning errors, with GPS inaccuracies causing shifts and distortions in magnetic 
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flux density measurements. These errors particularly affect the Bx and By  components, sometimes inverting 
the signature, while Bz  remains more stable. Monte Carlo simulations revealed deviations exceeding 3000 nT, 
confirming that errors along the ship’s motion direction (N-S, E-W) had the greatest impact. This motivates the 
search for an alternative modeling technique.

In this article, the authors continue a previously started attempt to model the magnetic signature using a 
neural network presented in12, where the magnetic field generated by the ship was modeled only as a function 
of depth, on a northerly course and under its keel. Also, only Bx and Bz  components were modeled. The goal is 
to generalize the model to predict all three magnetic field density components at any Cartesian coordinates and 
ship course, giving it functionality equivalent to a multi-dipole model in that regard (the multi-dipole model also 
allows to decompose the signature into a permanent and induced part9, but it’s beyond the scope of this study). 
An important factor in evaluating the model is determining how much training data is needed for accurate 
predictions, specifically how many directions and measurement depths they must come from. The process of 
selecting an appropriate network structure and optimizing hyperparameters will be presented. The motivation 
for addressing this topic lies in the high precision in data analysis and modeling offered by machine learning 
algorithms, with the goal of improving modeling precision. The use of ANNs improves the scalability of analyses 
and makes it possible to deal with complex patterns in the data.

The main contributions of this paper are:

•	 Development and optimization of a neural network model capable of predicting a full distribution of a ship’s 
magnetic field at an arbitrary depth and course,

•	 Extensive computer simulations determining the impact of the number of data samples on the prediction 
quality by determining six different quality indicators allowing for a comprehensive assessment,

•	 Comparative analysis of the developed method with the multi-dipole model in terms of both the prediction 
quality using aforementioned indicators and robustness in terms of ability to refute noise in data and posi-
tion-related errors.

Numerous simulations have been carried out during the writing of this article, all of which were carried out 
using the computers of Centre of Informatics Tricity Academic Supercomputer & Network.

Related works
Ferromagnetic signature modeling of ships has its origins in World War II and was aimed at determining their 
vulnerability to magnetically triggered mines. The same models were also used to evaluate and optimize the 
performance of signature reduction systems during their design phase, as well as in the development of both 
offensive and defensive military systems1. Due to the limited computational capabilities of the time, detailed 
physical-scale models were often used, with signatures measured in laboratories specially made for this purpose, 
and remained the main method for their prediction until the 1980s6. The development of computers and 
numerical modeling techniques allowed accurate simulations of magnetic fields using FEM and BEM, making 
it possible to determine the so-called forward model, a model arising from the structure of an object using 
analytical methods. Due to the small ratio of sheet thickness to vessel size, numerical modeling requires a dense 
mesh with a huge number of finite elements. In addition, the presence of permanent magnetization complicates 
the modeling process and significantly increases the computation time; moreover, when changing course, the 
model must be recalculated13. Hence, a common simplification of the model is the use of an ellipsoid, which is a 
widely accepted representation of the ship’s hull14.

Given the above-mentioned limitations, the inverse models, also called semi-empirical or equivalent-source 
models, are very popular. They are used to reconstruct input parameters based on observed output data either 
from measurements or from the numerical environment15. Several solutions to the inverse modeling problem 
can be found in the literature, the most widely used of which are two:

•	 The multi-dipole model - approximates the magnetic field using a set of magnetic dipoles. By selecting the 
moments and positions of the dipoles, it is matched to the observed data16,

•	 Prolate Spheroidal Harmonic (PSH) model—a method of representing a vessel’s magnetic field by means of 
expansion into a series of harmonic functions described by elliptical coordinates17.

These models, using appropriate regression techniques, are able to predict a vessel’s magnetic signature from 
observed data. In addition, recent analytical and semi-analytical methods have also been developed for magnetic 
signature modeling. Extended dipole formulations have been proposed in which the ship is represented as a hollow 
cylinder, allowing analytical determination of the induced magnetic field under local geomagnetic conditions18. 
Other works address decomposition of the magnetic signature into permanent and induced components using 
inverse problem regularization based on multiple passages over magnetic ranges19. Composite field models 
have also been proposed by combining ellipsoidal representations with magnetic dipole arrays, improving 
conditioning of the problem and computational efficiency without compromising modeling accuracy20. In 
parallel to these modeling developments, metamaterial structures have been investigated as a means of reducing 
magnetic signatures, exploring materials and geometries that inherently suppress magnetic response, potentially 
providing a complementary engineering pathway to signature reduction rather than predictive modeling21. 
These analytical and material-based approaches provide strong physical interpretability and can achieve high 
accuracy when well parameterized, but typically still require tailored modeling or experimental characterization 
for each vessel case.

An alternative modeling technique that has revolutionized the ability to map complex relationships 
over the past few decades is deep learning based on neural networks, which, thanks to their ability to learn 
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high-abstraction data representations, enable accurate modeling and forecasting in various fields of science, 
technology, and data analysis.

With the development of artificial intelligence, its applications in the maritime industry are increasingly 
found in the literature. A comprehensive review of these was done in 202322, where 69 works done in this area in 
the last ten years were analyzed. It listed works on image-based ship classification using convolutional networks, 
such as AlexNet23, YOLOv424 and Grid CNN25. Convolutional networks were also used to classify ships based 
on images from Synthetic Aperture Radar (SAR)26,27 and infrared28. Applications in course optimization using 
unidirectional networks29,30 and recurrent networks31,32 were also presented. Other applications included issues 
of ship condition monitoring and maintenance33–35, ship autopilot implementation36–38, and safety improvement 
in navigation39–41.

In the case of ship magnetic signatures, an example of the use of neural networks is42, where the authors 
studied the accurate prediction of magnetic signatures in the context of active degaussing, looking at the effect 
of changes in hull thickness, relative permeability, and object radius. Their work proposed a machine learning 
method based on multiple linear regression as a more effective alternative to traditional methods. The accuracy, 
speed, and precision of this method were demonstrated. In43, the authors proposed a method for detecting 
magnetic anomalies using a multi-objective transfer learning algorithm that simultaneously removes noise 
and detects magnetic anomalies in data with a limited number of samples. The model simultaneously uses a 
convolutional autoencoder network and a unidirectional network for adaptive background noise modeling and 
pattern learning, as well as noise filtering and anomaly detection. The developed model achieved significantly 
better results compared to traditional methods and showed better performance. Ref.44 presents the use of a 
hybrid artificial neural network with a genetic algorithm to predict the induced magnetic signature with high 
efficiency. Magnetic signatures have also been used to classify ships using one-way networks45–47. Acoustic 
signals were also used for46 and47.

To the authors’ knowledge, it is a novelty to employ neural networks to model all three components of a ship’s 
magnetic signature directly at once for an arbitrary position relative to the hull and also for any course.

Synthetic FEM data
A numerical model of a corvette-type ship was developed in the Simulia Opera48 computational environment, 
as shown in Fig. 1. The model was created from plates modeling the ship’s hull and reflecting its geometry 
and structural properties. The boundary condition for the magnetic potential was taken to be Hext = −∇ψm, 
where Hext is the intensity of the Earth’s magnetic field and ψm is the magnetic scalar potential.

A thin plate boundary condition method was used to introduce the thickness of the plates10,49, which allows 
the use of fewer nodes connecting the finite elements while maintaining the accuracy of the calculation by taking 
into account that one of the three dimensions of the plates is significantly smaller than the others. In the end, the 
model consists of 906,792 nodes and 4,319,341 linear elements. Selected parameters of the model are listed in 
table 1, where µr  is the relative magnetic permeability and d is the hull’s plates’ width.

In order to account for the vessel’s permanent magnetization, 13 coils with constant currents were added 
to the model, as shown in Fig. 2. The inserted set consists of three coils placed flat in the XY plane, three each 
placed on both sides of the hull in the XZ plane, and four placed flat in the YZ plane. The current flow in the 

Fig. 2.  Coils inside the ship.

 

Length 70 m

Width 8 m

Height 8 m

µr 200

d 0.01 m

Table 1.  Ship model’s parameters.

 

Fig. 1.  FEM model of a corvette-type ship.
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coils generates a magnetic field that models the permanent magnetization in the ship’s structural elements. The 
current densities in the coils were chosen arbitrarily to noticeably increase the magnetic field generated by the 
ship.

In order to simulate the magnetic field produced by the ship, it is necessary to determine its position on the 
Earth, since it is not uniform on its surface. This position was set as (55◦N, 2◦E), that is, in the North Sea, where 
the modulus of the Earth’s magnetic field density Bext is approximately 50nT. The magnetic inclination δ at this 
location is approximately 70◦. From here, the magnetic field strength H necessary for the simulation can be 
determined, specifically its horizontal component Hxy  and its vertical component Hz , as described by the Eqs. 
(1) and (2).

	
Hxy = Bext

µ0
cos(δ)� (1)

	
Hz = −Bext

µ0
sin(δ)� (2)

For a complete representation of the spatial distribution of the magnetic field with respect to the movement 
of the ship, its course ϕ should be taken into account, determined as 0◦ for the north direction and calculated 
counterclockwise (Fig. 3).

In order to train the neural network, a large dataset is required, so magnetic fields were generated for courses 
0, 30, 45, 60, 75, 90, 120, 135, 150, 165, 180, 210, 225, 240, 255, 270, 300, 315, 330, and 345 degrees. The generated 
Bx, By , and Bz  components were evaluated on a grid ranging from -300 to 300 m in the X and Y directions and 
-50 to -10 m in the Z direction, all with 1 m steps.

Training data
The “cubes” of magnetic flux density values generated in Simulia Opera do not reflect the actual measurement of 
the ship’s magnetic signature, which is usually performed with a magnetometer array placed at some depth50,51. 
Given this fact, training data for the neural network was created based on three variables: step of the ship’s course 
(how many passages over the magnetometers were considered), number of sensors in the Y-axis, and number of 
sensors in the Z-axis. All the data in the X-axis from -300 to 300 m with 1 m steps were acquired, while the other 
axes were collected as shown in Fig. 4 (with 30 m steps for better visualization, actually 1 m steps were used), 
where example sensor arrays were depicted.

The spacing between the sensors in the Y coordinate is assumed to be 10 m, and in the Z coordinate to be 4 
m. This allowed for a simulation of the ship passing over an array of magnetometers.

Fig. 4.  Visualization of example sensor arrays for training data extraction.

 

Fig. 3.  Orientation of geographic directions in modeling.
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The calculated vectors of positions are then rotated according to the current ship’s course angle using a 2D 
rotation matrix, as described in Eq. (3).

	

[
x′

y′

]
=

[
cos ϕ −sin ϕ
sin ϕ cos ϕ

] [
x
y

]
� (3)

This rotation accounts for changes in ship orientation during data collection. When considering the influence of 
the dataset size on the network’s performance, a term “course step” will be used, meaning the difference between 
subsequent paths in degrees for extracting training data, as visualized in Fig. 5. The lower the course step, the 
more data will be used.

When considering the total number of samples N in the training set based on the number of sensors in Y, the 
number of sensors in Z, and the course step marked as NY , NZ , and ∆ϕ respectively, it can be calculated using 
the formula (4).

	
N = 601 · NY · NZ · 360◦

∆ϕ
� (4)

Here, 601 refers to the number of samples in the range from −300 to 300 m (single path), with 1 m step.
The dataset, which contains measurements of magnetic field components, is filtered to select data points 

that match the calculated sensor positions and orientations. For each valid data point, the coordinates (x, y, z) 
and the sine and cosine of the ship’s heading are paired with the corresponding magnetic field values. Using 
the sine and cosine here instead of a single 0-360◦ or 0-2π angle as inputs to the neural network ensures a 
more effective representation of directional information. The multi-dipole model also uses this information. 
This approach addresses the circular nature of the course, where 0◦ and 360◦ are equivalent, by providing a 
continuous and unambiguous representation that avoids discontinuities. Sine and cosine also maintain the 
geometric relationships between headings, providing the network with more meaningful information about 
orientation. Additionally, these values are being normalized to the range [−1, 1], which is typical for neural 
network input preprocessing. While adding an extra input dimension, the sine and cosine representation 
improves the network’s performance and enhances generalization, particularly for physical phenomena like 
magnetic fields that depend on orientation. This way, a labeled training dataset is produced where the input 
consists of measurement positions and orientation, and the output consists of the magnetic flux density values.

Discussion on the network’s type and optimization of the networks’its structure and 
hyperparameters
The model proposed in this paper consists of five inputs (three spatial coordinates relative to the ship and 
sine and cosine of its course) and three outputs corresponding to three components of the magnetic flux 
density. For accurate signature reproduction, the types of layers between inputs and outputs and the networks’ 
hyperparameters should be optimized. The selection of the appropriate type of neural network for modeling 
a ship’s magnetic signature is a difficult task, since there are so many to choose from. The choice depends on 
the problem’s nature, the data characteristics, and the specific goals of the model. In the case of this study, 
a strongly nonlinear relation between the Cartesian coordinates and the ship’s course and the magnetic flux 
density generated by that ship is attempted to be mapped. Three main candidates were considered for this task: 
a multilayer perceptron (MLP), a recurrent neural network (RNN), and a convolutional neural network (CNN). 
Since the data is magnetostatic and spatial data will not be considered, the MLP is the architecture that was 
chosen.

For the time of optimization of the network’s structure and hyperparameters, the training set was chosen to 
be for ∆ϕ = 60◦, NY = 9, NZ = 5. The validation data came from the 143.5◦ course with NY = 9 with 15 m 
spacing and NZ = 4 with 4 m spacing. The test data was a set of paths from the 320.5◦ course with NY = 9 with 
12 m spacing and NZ = 4 sensors with 6 m spacing.

In previous works, the authors used grid search and random search for hyperparameter optimization. This 
time, it was decided to use the Bayesian optimization procedure, which is a probabilistic model-based approach 

Fig. 5.  Paths extracted from the data for different course steps.
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for optimizing hyperparameters of machine learning models. The decision variables in this case were number of 
neurons, activation functions, learning rate, batch size, and maximum number of epochs. The number of neurons 
in each layer was limited to 10 times the number of the network’s outputs, 300. The activation function in each 
layer was selected from ReLU, Leaky ReLU, ELU, GELU, Swish, and Tanh. Lower boundaries for learning rate, 
batch size, and number of epochs were selected as (10−5, 10−1), (16, 512), and (10, 50), respectively. The Adam 
optimizer was chosen for the network training algorithm. The objective function was the network’s performance 
on the test set calculated via the root mean squared error (RMSE) given by (5) for N samples.

	

RMSE (y, ŷ) =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2� (5)

where yi is the actual value of the ith sample and ŷi is the modeled value of the i-th sample. For each function 
evaluation, the network was trained on the training set, and the one achieving the best validation performance 
was selected. Since each network depth corresponds to a different number of decision variables, the optimization 
was conducted separately for each case from 1 to 12 layers, searching for the optimal number of neurons and 
activation function in each layer. Additionally, since the results are non-deterministic, the procedure was 
repeated ten times for each layer. Then, for every best-performing network from each optimization procedure, 
the training process was repeated once again ten times, and the results were averaged. In the end, the selected 
model was the one that, on average, performed the best on the test set. Figure 6 shows the distribution of RMSE 
values for neural networks with 1 to 12 layers. Each box represents 10 training runs for a given number of layers. 
The RMSE is measured in nT. The network with one hidden layer had big RMSE values, rendering the plot 
unreadable. Therefore, it was not depicted here.

It can be seen that for 7, 8, and 12 layers, the mean RMSE values were the lowest, with the best-performing 
network being a 7-layered one, a diagram of which is shown in Fig. 7. Its hyperparameters are a learning rate of 
2.23 × 10−4, a batch size of 403, and 30 maximum training epochs. This seven-layer neural network structure 
was used in all subsequent analyses to evaluate the influence of the training set size on the prediction accuracy 
of the ship’s magnetic signature.

Figure 8 shows the network’s prediction of a magnetic signature for one of the paths in the test set (y = 12 m, 
z = −32 m, and ϕ = 320.5◦). The training dataset in this case was the same as during the hyperparameters’ 
optimization. The model fits the data well, as shown by the close alignment between the predicted values and the 
observed data points on the graph. It took 190 seconds to complete the network’s training.

Influence of the training dataset size on magnetic signature prediction
Determining the number of data samples necessary for the network’s satisfactory prediction of a ship’s magnetic 
signature requires assessing the fidelity of the model’s outputs via qualitative measures, such as previously 
used RMSE. It was decided to also include other indices in order to make the evaluation more comprehensive. 
These include Mean Absolute Error (MAE) given by (6), Median Absolute Error (MdAE) given by (7), Median 
Absolute Percentage Error (MdAPE) given by (8), R2, given by (9), and Inter-quartile Range in Levels (IQLev), 
given by (10).

	
MAE (y, ŷ) = 1

N

N∑
i=1

|yi − ŷi|� (6)

Fig. 6.  Box plots of RMSE (nT) across 10 training runs for neural networks with varying depth (2–12 layers).
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	 MdAE (y, ŷ) = med (|y − ŷ|)� (7)

	
MdAP E (y, ŷ) = 100% · med

(
|y − ŷ|

|y|

)
� (8)

	
R2 (y, ŷ) = 1 −

∑N

i=1 (yi − ŷi)2

∑N

i=1 (yi − ȳ)
� (9)

where ȳ denotes the average value of the vector y.

	 IQLev (y, ŷ) = |y − ŷ|75 − |y − ŷ|25� (10)

where |y − ŷ|75 and |y − ŷ|25 denote the 75th and 25th percentiles of absolute errors, respectively. The use of 
the aforementioned indicators allows for a comprehensive assessment of the quality of the model by providing 
information on every aspect of the error distribution, including central tendency (RMSE, MAE, MdAE), relative 
error (MdAPE), goodness of fit (R2), and the variability of the prediction errors (IQLev).

The network developed in previous section was trained for different cases of ∆ϕ and the number of sensors 
in the Y and Z directions. Then, for each training, it was evaluated on a test set of data for courses 75, 165, 255, 
and 345 degrees, for NY = 10 and NZ = 4, also with different spacing between the sensors, 12 m and 5 m for 
Y and Z, respectively. The results were visualized using heatmaps in Figs. 9 and 10 for the case of ∆ϕ = 30◦.

Looking at the heatmaps, it can be determined that, unsurprisingly, more than one sensor in each direction 
is necessary for accurate signature prediction. Also, in every quality indicator, a poor performance can also be 
seen for two sensors in Y. Then the errors rapidly decrease with increasing the number of Y sensors from 3 to 
7. A pattern starts to emerge where the lowest error values depending on the number of Z sensors, are between 

Fig. 8.  Prediction of the magnetic signature with the developed neural network model for y = 15 m, 
z = −20 m and ϕ = 165◦.

 

Fig. 7.  Schematic of a neural network modeling a magnetic signature.
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3 and 8. After that, there is no significant improvement in any of the indices. An area of minimal errors can be 
identified for NY ≥ 13 ∧ 4 ≤ NZ ≤ 7.

Presenting heatmaps for every ∆ϕ would be an exaggeration. Therefore, only RMSE is shown for the other 
course steps in Fig. 11. Deterioration can be seen in the values of the indices as ∆ϕ increases, while their 
distributions according to NY and NZ remain consistent. Other indices showed similar worsening.

It is clear that ∆ϕ has a significant influence on the prediction quality. This has been visualized in Figure 12, 
depicting the signatures predicted for y = 7 m, z = −23 mand ϕ = 255◦ by models that were trained with 
NY = 4 and NZ = 6, but with different ∆ϕ.

Fig. 9.  Neural network’s RMSE, MAE and MdAE heatmaps for ∆ϕ = 30◦, across different sensor 
configurations.
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Comparison with the multi-dipole model
The multi-dipole model is an abstract structure consisting of m permanent and n induced dipoles, described by 
six parameters: the three components of the magnetic moment vector (mx, my, and mz) and three coordinates in 
a Cartesian coordinate system. It is created on the principle of inverse modeling, that is, on the basis of regression 
using data. The detailed description of the model can be found in8,9.

The vector of magnetic field induction B at position (x,y,z) produced by the i-th dipole at position (xi,yi,zi) 
is described by the relations (11)-(12)52. With the help of such a model, the signature can be reproduced at any 
depth (provided that it is lower than the one at which the model was trained9) and in any direction.

Fig. 10.  Neural network’s error MdAPE, R2 and IQLev heatmaps for ∆ϕ = 30◦, across different sensor 
configurations.
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Bi(Mi, Ri) = µ0

4π
·
(

RT
i MiRi · 3

R5
i

− Mi

R2
i

)
� (11)

where:

	
Bi =

[
Bx,i

By,i

Bz,i

]
, Mi =

[
mx,i

my,i

mz,i

]
, Ri =

[
(x − xi)
(y − yi)
(z − zi)

]
, Ri = |Ri|� (12)

Fig. 11.  Neural network’s error RMSE for ∆ϕ ∈ {45◦, 60◦, 90◦}, across different sensor configurations.
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The total magnetic field BT  produced by the model is described by the relation (13) for m permanent and n 
induced dipoles.

	
BT =

m+n∑
i=1

Bi(Mi, Ri)� (13)

The number of dipoles in the model for the current state of knowledge is chosen arbitrarily52 and is a compromise 
between accuracy and computational complexity. A multi-dipole model is a regression model determined by 
optimization through the use of the nonlinear least squares method. The goal is to minimize the squares of the 
difference between the source data Bref

l,d (j, k) and the model-derived data Bmodel
l,d,Ω (j, k), depending on the 

parameters Ω (dipole positions and moments), as described by Eqs. (14) and (18).

	

min
Ω∈{Ω1,...,Ωn+m}

J =
∑

l

NY∑
ny=1

NZ∑
nz=1

360◦−∆ϕ∑
ϕ=0◦

300∑
j=−300

(
Bref

l,ϕ (j, ny, nz) − Bmodel
l,ϕ (j, ny, nz, Ω)

)2
� (14)

subject to

	
∀

i∈(1,m+n)
Ωmin

i ≤ Ωi ≤ Ωmax
i � (15)

where

	
∀

i∈(1,m+n)
Ωi ∈ {mx,i, my,i, mz,i, xi, yi, zi},� (16)

	 l ∈ {x, y, z},� (17)

	 ϕ = 0◦, ∆ϕ, 2∆ϕ, . . . , 360◦ − ∆ϕ.� (18)

The model is fit to data using the lsqnonlin function available in MATLAB for m = 25 and n = 25. The 
maximum number of iterations is set to 106. Also, a validation function was implemented which halted the 
optimization process if for 500 iterations no improvement was made.

Prediction accuracy and training time
To compare models directly, the same approach was used as previously, where the multi-dipole model was 
trained with different dataset sizes. The training time, however, is significantly longer than when it comes to 
training a neural network, therefore the tests were performed only for ∆ϕ = 90◦. The RMSE heatmap for the 
model is shown in Fig. 13.

It can be seen that while both models are able to achieve low error prediction values, the multi-dipole model 
needs significantly less training data. Above 5 sensors in the Y plane there was not much improvement gained 
from increasing the dataset size. The direct impact of dataset size on both models’ training efficiency has been 
visualized in Fig. 14, where all six considered quality indices are shown in relation to the number of training 
data samples for both models. While the black-box nature of artificial neural networks makes them require 
more data to train, it is clear that compared to the multi-dipole model they need less time for this training (by 
approximately an order of magnitude).

Robustness
Another aspect of the model, known as robustness, was also tested to evaluate its usefulness in simulated real-
world conditions. Three scenarios were assumed here. First scenario was a gaussian white noise of varying power 
PN  (0, 1, 2, 5 and 10 nT) added to the training outputs. Second scenario was the errors in positions implemented 
using a Monte Carlo Markov Chain (MCMC), namely the Metropolis-Hastings (MH) algorithm, where samples 

Fig. 12.  Magnetic signatures predicted by neural networks trained with different angle step ∆ϕ for NY = 4 
and NZ = 6.
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from N (0, δ) were drawn using a proposal distribution U(−1, 1), where δ was varied (0, 1, 2, 5 and 10 m). The 
starting point of the sequence was also drawn from N (0, δ). This method allows to approximate any distribution 
using samples from a proposal one, as described in11 The influence of this method on the paths in the training 
inputs (x and y coordinates) was illustrated in Fig. 15 for ∆ϕ = 90◦. The third method combined the previous 
two, adding errors to both outputs and positions.

The reconstruction quality indices described earlier were evaluated for each disturbance case for the training 
data scenario NY = 6, NZ = 4, but ∆ϕ = 90◦ for the multi-dipole model and ∆ϕ = 30◦ to provide a more 
equal contest. This was repeated ten times for each disturbance case, and the results were averaged. Table 2 shows 
how all indices’ values were distributed across different disturbance cases for both models, while Tables 3 and 
4 present the average (across all indices) percentage increase (or decrease in case of R2) of these indices due to 
perturbations, relative to the undisturbed prediction errors, for the neural network and multi-dipole model, 
respectively. This was calculated according to the formula (19).

Fig. 14.  Relations between number of training data samples and prediction errors and computing time for 
both models.

 

Fig. 13.  Multi-dipole model’s RMSE heatmap in nT for ∆ϕ = 90◦.
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Dδ,PN = 1

6

6∑
k=1

1
|S|

∑
j∈S

Qj,k − Qref,k

Qref,k
· 100%� (19)

where Dδ,PN  is the average deterioration for a given δ and noise power PN , S is the given disturbance case, |S| 
is the number of occurrences of the disturbance case, Qj,k  represents the k-th quality index for data point j, and 
Qref,k  is the k-th quality index for the baseline case (δ = 0, PN = 0). Using these three tables, one can see both 
the absolute and relative impact of the disturbances on the models.

It can be inferred from the tables that while both models experience some level of performance deterioration, 
the neural network generally demonstrates greater robustness, showing smaller average increases in error indices 
under perturbation. In contrast, the multi-dipole model exhibits higher sensitivity to disturbances, with larger 
relative error increases observed in most cases. This indicates that the neural network maintains more consistent 
performance and is less affected by external disturbances compared to the physics-based multi-dipole model.

Figure 16 shows a magnetic signature predicted by both models for y = −11m, z = −37m, ϕ = 345◦, δ = 0.5 
and PN = 2, while Fig. 17 shows the same signature predicted for δ = 5 and Pn = 5, with RMSE values for 
each component in the title of the corresponding plot. It can be seen that while with lower values of disturbance 
the performance of the neural network keeps being poorer than that of the multi-dipole model, it exceeds the 
latter with higher noise and position error values. It needs to be noted, however, that the magnetic field can 
be decomposed into the permanent and induced part using the multi-dipole model9, the possibility which the 
neural network does not offer in this state, as it predicts the whole magnetic field density distribution, which is 
a superposition of the permanent and induced part.

Conclusions & future research
In this article, the case of using a neural network for modeling a ship’s magnetic signature was presented. By 
utilizing a FEM environment for the generation of synthetic data of a corvette-type ship’s magnetic field density 
distribution, a labeled training dataset was created, with position relative to the hull and the ship’s course as 
the inputs and with three components of the magnetic flux density vector as the outputs. The network’s 
hyperparameters and structure were optimized using Bayesian optimization and the number of necessary data 
samples for accurate signature prediction was determined using extensive computer simulations. The results 
show that the neural network should be trained with data coming from more than just the cardinal directions 
in order to obtain a good prediction quality. Using these findings, a compromise between the number of data 
samples and prediction accuracy can be found.

The neural network model presented in this study demonstrates strong potential for predicting a ship’s 
magnetic signature at arbitrary depths and courses. In comparison to the state-of-the-art multi-dipole model, 
proposed approach has greater robustness against position-related errors. The results showcased that by 
disturbing the input data related to the ship’s positioning, the relative deterioration of chosen quality indices was 
six to seven times lower than in the case of the multi-dipole model. Along with lower computational costs, the 

Fig. 15.  Visualization of position perturbations using MH algorithm.
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δ 0 1 2 5 10 15 20

PN

0 – 33.23 95.23 311.15 493.32 592.48 677.45

1 4.59 33.66 102.64 302.35 494.84 573.36 666.21

2 18.16 44.89 102.69 293.07 491.80 578.84 664.16

5 51.55 62.33 115.04 315.65 498.28 587.614 674.43

10 100.38 105.46 143.16 323.26 501.58 610.42 675.86

Table 3.  Mean relative disturbance influence on neural network training expressed as a percentage of 
deterioration of quality indicators.

 

Table 2.  Absolute quality indicators’ values for different disturbance cases (legend: light blue: NN RMSE (nT), 
dark blue: MD RMSE (nT), light orange: NN MAE (nT), dark orange: MD MAE (nT), light green: NN MdAE 
(nT), dark green: MD MdAE (nT), light yellow: NN MdAPE (%), dark yellow: MD MdAPE (%), light purple: 
NN R2, dark purple: MD R2, light brown: NN IQLev (nT), dark brown: MD IQLev (nT)).
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neural network’s prediction ability could make it well-suited for real-time signature estimation, that can be used 
for active degaussing and/or mine activation risk assessment.

When it comes to limitations of the model, one has to name the need for high amount of training data, 
much larger when compared to the multi-dipole model. Furthermore, the network in this state does not allow 
for separation of the permanent and induced magnetization, thus when the ambient background field changes 
significantly, the model needs to be retrained.

For future research, the use of Integral Equation–based solvers such as BEM or Method of Moments (MoM) 
may offer an efficient alternative to FEM for synthetic data generation. The authors also plan to incorporate real-
world data, treating synthetic data as a starting point. Actual measurement data could introduce complexities 
that cannot be fully captured in simulations, and would be a great source of training data. While on-board 
measurements, which have been previously conducted with ship Zodiak, provided valuable data, a possibility of 
using a rotating platform with a scale ship model, which would be a source of what is really an unlimited amount 
of magnetic field distribution data. Aside from the uncertainty in the track of the vessel along the sensor, the 
sensor position uncertainty could also be addressed in future work. Additionally, a hybrid approach combining 
the multi-dipole model with the neural network model could be considered.

Data availability
The data that support the findings of this study are available from the corresponding author, K. Z., upon reason-
able request.
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Fig. 17.  Models’ prediction comparison for δ = 10 and PN = 10.

 

Fig. 16.  Models’ prediction comparison for δ = 1 and PN = 2.

 

δ 0 1 2 5 10 15 20

PN

0 – 378.38 881.56 2570.10 5206.89 6810.09 8206.31

1 49.92 378.30 873.90 2528.45 5157.56 6692.53 8245.29

2 56.73 382.66 885.77 2513.18 5259.05 6784.54 8166.20

5 95.43 394.42 883.82 2539.96 5194.83 6988.78 8236.82

10 161.08 421.91 920.74 2496.57 5198.28 6856.11 8284.15

Table 4.  Mean relative disturbance influence on multi-dipole model training expressed as a percentage of 
deterioration of quality indicators.

 

Scientific Reports |        (2025) 15:44758 15| https://doi.org/10.1038/s41598-025-28425-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


References
	 1.	 Holmes, J. J. Exploitation of a Ship’s Magnetic Field Signatures (Morgan & Claypool Publishers, 2006).
	 2.	 Zielonacki, K., Tarnawski, J. & Woloszyn, M. Ship magnetic signature classification using GRU-based recurrent neural networks. 

IEEE Access 13, 59514–59530. https://doi.org/10.1109/ACCESS.2025.3557331 (2025).
	 3.	 Baltag, O. & ROŞU, G. Analytical and physical modeling of the naval magnetic signature. FIZICĂ 35 (2016).
	 4.	 Isa, C. et al. An overview of ship magnetic signature and silencing technologies. https://doi.org/10.13140/RG.2.2.14643.58401 

(2019).
	 5.	 Holmes, J. J. Reduction of a Ship’s Magnetic Field Signatures (Morgan & Claypool Publishers, 2008).
	 6.	 Holmes, J. J. Modeling a Ship’s Ferromagnetic Signatures (Springer, 2007).
	 7.	 Sheinker, A., Ginzburg, B., Salomonski, N., Yaniv, A. & Persky, E. Estimation of ship’s magnetic signature using multi-dipole 

modeling method. IEEE Trans. Magnet. 57, 1–8. https://doi.org/10.1109/TMAG.2021.3062998 (2021).
	 8.	 Tarnawski, J., Cichocki, A., Rutkowski, T. A., Buszman, K. & Woloszyn, M. Improving the quality of magnetic signature 

reproduction by increasing flexibility of multi-dipole model structure and enriching measurement information. IEEE Access 8, 
190448–190462. https://doi.org/10.1109/ACCESS.2020.3031740 (2020).

	 9.	 Woloszyn, M. & Tarnawski, J. Magnetic signature reproduction of ferromagnetic ships at arbitrary geographical position, direction 
and depth using a multi-dipole model. Sci. Rep. 13, 14601. https://doi.org/10.1038/s41598-023-41702-4 (2023).

	10.	 Jankowski, P. & Woloszyn, M. Applying of thin plate boundary condition in analysis of ship’s magnetic field. COMPEL Int. J. 
Comput. Math. Electr. Electron. Eng. 37, 1609–1617. https://doi.org/10.1108/COMPEL-01-2018-0032 (2018).

	11.	 Tarnawski, J., Buszman, K., Woloszyn, M. & Puchalski, B. The influence of the geographic positioning system error on the quality 
of ship magnetic signature reproduction based on measurements in sea conditions. Measurement 229, 114405. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​
1​0​1​6​/​j​.​m​e​a​s​u​r​e​m​e​n​t​.​2​0​2​4​.​1​1​4​4​0​5​​​​ (2024).

	12.	 Zielonacki, K. & Tarnawski, J. Neural network model of ship magnetic signature for different measurement depths. In 2024 28th 
International Conference on Methods and Models in Automation and Robotics (MMAR). 328–333. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​M​M​A​R​
6​2​1​8​7​.​2​0​2​4​.​1​0​6​8​0​7​7​9​​​​ (IEEE, 2024).

	13.	 Le Dorze, F., Bongiraud, J., Coulomb, J., Labie, P. & Brunotte, X. Modeling of degaussing coils effects in ships by the method of 
reduced scalar potential jump. IEEE Trans. Magnet. 34, 2477–2480. https://doi.org/10.1109/20.717570 (1998).

	14.	 Synnes, S.  A., Brodtkorb, P.  A. & Lepelaars, E. Representing the ship magnetic field using prolate spheroidal harmonics—A 
comparative study of methods. In MARELEC 2006 (2006).

	15.	 Jeung, Giwoo, Yang, Chang-Seob., Chung, Hyun-Ju., Lee, Se-Hee. & Kim, Dong-Hun. Magnetic dipole modeling combined with 
material sensitivity analysis for solving an inverse problem of thin ferromagnetic sheet. IEEE Trans. Magnet. 45, 4169–4172. 
https://doi.org/10.1109/TMAG.2009.2021853 (2009).

	16.	 Jakubiuk, K., Zimny, P. & Wołszyn, M. Multidipoles model of ship’s magnetic field. Int. J. Appl. Electromagnet. Mech. 39, 183–188. 
https://doi.org/10.3233/JAE-2012-1459 (2012).

	17.	 Nilsson, M. S. Modelling of civilian ships’ ferromagnetic signatures. In Technical Report. ISBN: 8246427431, Norwegian University 
of Science and Technology (2016).

	18.	 Zivieri, R. & Crupi, V. Extended dipole approximation of a ship induced magnetic signature modeled by means of a hollow 
cylinder. J. Magnet. Magnet. Mater. 632, 173484. https://doi.org/10.1016/j.jmmm.2025.173484 (2025).

	19.	 Hall, J.-O., Claésson, H., Kjäll, J. & Ljungdahl, G. Decomposition of ferromagnetic signature into induced and permanent 
components. IEEE Trans. Magnet. 56, 1–6. https://doi.org/10.1109/TMAG.2019.2953860 (2020).

	20.	 Lu, B. & Zhang, X. An improved composite ship magnetic field model with ellipsoid and magnetic dipole arrays. Sci. Rep. 14, 4070. 
https://doi.org/10.1038/s41598-024-54848-6 (2024).

	21.	 Distefano, F., Zivieri, R., Epasto, G., Pantano, A. & Crupi, V. Metallic metamaterials for reducing the magnetic signatures of ships. 
Metals 15, 274. https://doi.org/10.3390/met15030274 (2025).

	22.	 Assani, N., Matić, P., Kaštelan, N. & Čavka, I. R. A review of artificial neural networks applications in maritime industry. IEEE 
Access 11, 139823–139848. https://doi.org/10.1109/ACCESS.2023.3341690 (2023).

	23.	 Dao-Duc, C., Xiaohui, H. & Morère, O. Maritime vessel images classification using deep convolutional neural networks. In 
Proceedings of the Sixth International Symposium on Information and Communication Technology. 276–281. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​
5​/​2​8​3​3​2​5​8​.​2​8​3​3​2​6​6​​​​ (ACM, 2015).

	24.	 Petković, M., Vujović, I., Kaštelan, N. & Šoda, J. Every vessel counts: Neural network based maritime traffic counting system. 
Sensors 23, 6777. https://doi.org/10.3390/s23156777 (2023).

	25.	 Zhang, T. & Zhang, X. High-speed ship detection in SAR images based on a grid convolutional neural network. Remote Sens. 11, 
1206. https://doi.org/10.3390/rs11101206 (2019).

	26.	 Liu, S. et al. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images. Remote Sens. 
14, 1149. https://doi.org/10.3390/rs14051149 (2022).

	27.	 Chen, C., He, C., Hu, C., Pei, H. & Jiao, L. A deep neural network based on an attention mechanism for SAR ship detection in 
multiscale and complex scenarios. IEEE Access 7, 104848–104863. https://doi.org/10.1109/ACCESS.2019.2930939 (2019).

	28.	 Mishra, N. K., Kumar, A. & Choudhury, K. Deep convolutional neural network based ship images classification. Defence Sci. J. 71, 
200–208. https://doi.org/10.14429/dsj.71.16236 (2021).

	29.	 Daranda, A. Neural network approach to predict marine traffic. Trans. Balt. J. Mod. Comput 4, 483 (2016).
	30.	 Jin, X., Xiong, J., Gu, D., Yi, C. & Jiang, Y. Research on ship route planning method based on neural network wave data forecast. 

IOP Conf. Ser. Earth Environ. Sci. 638, 012033. https://doi.org/10.1088/1755-1315/638/1/012033 (2021).
	31.	 Zhu, F. Ship short-term trajectory prediction based on RNN. J. Phys. Conf. Ser. 2025, 012023. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​8​8​/​1​7​4​2​-​6​5​9​6​/​

2​0​2​5​/​1​/​0​1​2​0​2​3​​​​ (2021).
	32.	 Suo, Y., Chen, W., Claramunt, C. & Yang, S. A ship trajectory prediction framework based on a recurrent neural network. Sensors 

20, 5133. https://doi.org/10.3390/s20185133 (2020).
	33.	 Niksa-Rynkiewicz, T. et al. Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural 

network. J. Artif. Intell. Soft Comput. Res. 11, 143–155. https://doi.org/10.2478/jaiscr-2021-0009 (2021).
	34.	 Liang, S., Yang, J., Wang, Y. & Wang, M. Fuzzy neural network in condition maintenance for marine electric propulsion system. In 

2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). 1–5. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​T​E​
C​-​A​P​.​2​0​1​4​.​6​9​4​1​2​5​2​​​​ (IEEE, 2014).

	35.	 Raptodimos, Y. & Lazakis, I. An artificial neural network approach for predicting the performance of ship machinery equipment. 
In Maritime Safety and Operations 2016 Conference Proceedings (University of Strathclyde Publishing, 2016).

	36.	 Zhang, Y., Hearn, G. & Sen, P. A neural network approach to ship track-keeping control. IEEE J. Ocean. Eng. 21, 513–527. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​4​8​.​5​4​4​0​6​1​​​​ (1996).

	37.	 Le, T. T. Ship heading control system using neural network. J. Mar. Sci. Technol. 26, 963–972. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​0​0​7​7​3​-​0​2​0​-​0​
0​7​8​3​-​w​​​​ (2021).

	38.	 Lou, R., Wang, W., Li, X., Zheng, Y. & Lv, Z. Prediction of ocean wave height suitable for ship autopilot. IEEE Trans. Intell. Transport. 
Syst. 23, 25557–25566. https://doi.org/10.1109/TITS.2021.3067040 (2022).

	39.	 Zhao, L. & Shi, G. Maritime anomaly detection using density-based clustering and recurrent neural network. J. Navig. 72, 894–916. 
https://doi.org/10.1017/S0373463319000031 (2019).

	40.	 Zhang, W., Feng, X., Goerlandt, F. & Liu, Q. Towards a convolutional neural network model for classifying regional ship collision 
risk levels for waterway risk analysis. Reliab. Eng. Syst. Saf. 204, 107127. https://doi.org/10.1016/j.ress.2020.107127 (2020).

Scientific Reports |        (2025) 15:44758 16| https://doi.org/10.1038/s41598-025-28425-4

www.nature.com/scientificreports/

https://doi.org/10.1109/ACCESS.2025.3557331
https://doi.org/10.13140/RG.2.2.14643.58401
https://doi.org/10.1109/TMAG.2021.3062998
https://doi.org/10.1109/ACCESS.2020.3031740
https://doi.org/10.1038/s41598-023-41702-4
https://doi.org/10.1108/COMPEL-01-2018-0032
https://doi.org/10.1016/j.measurement.2024.114405
https://doi.org/10.1016/j.measurement.2024.114405
https://doi.org/10.1109/MMAR62187.2024.10680779
https://doi.org/10.1109/MMAR62187.2024.10680779
https://doi.org/10.1109/20.717570
https://doi.org/10.1109/TMAG.2009.2021853
https://doi.org/10.3233/JAE-2012-1459
https://doi.org/10.1016/j.jmmm.2025.173484
https://doi.org/10.1109/TMAG.2019.2953860
https://doi.org/10.1038/s41598-024-54848-6
https://doi.org/10.3390/met15030274
https://doi.org/10.1109/ACCESS.2023.3341690
https://doi.org/10.1145/2833258.2833266
https://doi.org/10.1145/2833258.2833266
https://doi.org/10.3390/s23156777
https://doi.org/10.3390/rs11101206
https://doi.org/10.3390/rs14051149
https://doi.org/10.1109/ACCESS.2019.2930939
https://doi.org/10.14429/dsj.71.16236
https://doi.org/10.1088/1755-1315/638/1/012033
https://doi.org/10.1088/1742-6596/2025/1/012023
https://doi.org/10.1088/1742-6596/2025/1/012023
https://doi.org/10.3390/s20185133
https://doi.org/10.2478/jaiscr-2021-0009
https://doi.org/10.1109/ITEC-AP.2014.6941252
https://doi.org/10.1109/ITEC-AP.2014.6941252
https://doi.org/10.1109/48.544061
https://doi.org/10.1109/48.544061
https://doi.org/10.1007/s00773-020-00783-w
https://doi.org/10.1007/s00773-020-00783-w
https://doi.org/10.1109/TITS.2021.3067040
https://doi.org/10.1017/S0373463319000031
https://doi.org/10.1016/j.ress.2020.107127
http://www.nature.com/scientificreports


	41.	 Vukša, S., Vidan, P., Bukljaš, M. & Pavić, S. Research on ship collision probability model based on Monte Carlo simulation and 
bi-LSTM. J. Mar. Sci. Eng. 10, 1124. https://doi.org/10.3390/jmse10081124 (2022).

	42.	 Modi, A. & Kazi, F. Magnetic-signature prediction for efficient degaussing of naval vessels. IEEE Trans. Magnet. 56, 1–6. ​h​t​t​p​s​:​/​/​d​
o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​M​A​G​.​2​0​2​0​.​3​0​1​0​4​2​1​​​​ (2020).

	43.	 Wang, S., Zhang, X., Qin, Y., Song, W. & Li, B. Marine target magnetic anomaly detection based on multitask deep transfer learning. 
IEEE Geosci. Remote Sens. Lett. 20, 1–5. https://doi.org/10.1109/LGRS.2023.3273722 (2023).

	44.	 Wang, Y., Zhou, G., Wang, K. & Zhu, X. Prediction on the induced magnetic signature of ships using genetic neural network. In 
The Proceedings of the 16th Annual Conference of China Electrotechnical Society (Liang, X., Li, Y., He, J. & Yang, Q. eds.). Vol. 890. 
592–605 (Springer, 2022). https://doi.org/10.1007/978-981-19-1870-4_64 (series title: Lecture Notes in Electrical Engineering).

	45.	 Arantes Do Amaral, J., Botelho, P., Ebecken, N. & Caloba, L. Ship’s classification by its magnetic signature. In 1998 IEEE International 
Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227). Vol. 3. 
1889–1892. https://doi.org/10.1109/IJCNN.1998.687146 (IEEE, 1998).

	46.	 Axelsson, O. & Rhen, C. Neural-network-based classification of commercial ships from multi-influence passive signatures. IEEE J. 
Ocean. Eng. 46, 634–641. https://doi.org/10.1109/JOE.2020.2982756 (2021).

	47.	 Jie, X., Jinfang, C., Guangjin, H. & Xiudong, Y. A neural network recognition model based on ship acoustic-magnetic field. In 2011 
Fourth International Symposium on Computational Intelligence and Design. 135–138. https://doi.org/10.1109/ISCID.2011.42 (IEEE, 
2011).

	48.	 Dassault Systèmes. Opera (2023).
	49.	 Christopher, S., Biddlecombe, C. & Riley, P. Improvements to finite element meshing for magnetic signature simulations. In 

MARELEC 2015 Conference, Philadelphia, PA, USA (2015).
	50.	 Tarnawski, J. et al. Measurement campaign and mathematical model construction for the ship Zodiak magnetic signature 

reproduction. Measurement 186, 110059. https://doi.org/10.1016/j.measurement.2021.110059 (2021).
	51.	 Holmes, J. J. Past, present, and future of underwater sensor arrays to measure the electromagnetic field signatures of naval vessels. 

Mar. Technol. Soc. J. 49, 123–133. https://doi.org/10.4031/MTSJ.49.6.1 (2015).
	52.	 Tarnawski, J., Rutkowski, T. A., Woloszyn, M., Cichocki, A. & Buszman, K. Magnetic signature description of ellipsoid-shape vessel 

using 3d multi-dipole model fitted on cardinal directions. IEEE Access 10, 16906–16930. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​A​C​C​E​S​S​.​2​0​2​2​.​3​1​
4​7​1​3​8​​​​ (2022).

Author contributions
K.Z. contributed to conceptualization, methodology, validation, formal analysis, investigation, data curation, 
creation of original draft and visualization. J.T. contributed to conceptualization, methodology, validation, inves-
tigation and editing. M. W. contributed to provision of software and resources, supervision and project admin-
istration. All authors reviewed the manuscript.

Funding
Financial support of these studies from Gdańsk University of Technology by the DEC-39/1/2024/IDUB/III.4c/
Tc grant under the Technetium Talent Management Grants - ‘Excellence Initiative - Research University’ pro-
gram is gratefully acknowledged.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:44758 17| https://doi.org/10.1038/s41598-025-28425-4

www.nature.com/scientificreports/

https://doi.org/10.3390/jmse10081124
https://doi.org/10.1109/TMAG.2020.3010421
https://doi.org/10.1109/TMAG.2020.3010421
https://doi.org/10.1109/LGRS.2023.3273722
https://doi.org/10.1007/978-981-19-1870-4_64
https://doi.org/10.1109/IJCNN.1998.687146
https://doi.org/10.1109/JOE.2020.2982756
https://doi.org/10.1109/ISCID.2011.42
https://doi.org/10.1016/j.measurement.2021.110059
https://doi.org/10.4031/MTSJ.49.6.1
https://doi.org/10.1109/ACCESS.2022.3147138
https://doi.org/10.1109/ACCESS.2022.3147138
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Neural network for predicting ship magnetic signatures at arbitrary depths and courses: a comparison with the multi-dipole model
	﻿Related works
	﻿Synthetic FEM data
	﻿Training data
	﻿Discussion on the network’s type and optimization of the networks’its structure and hyperparameters
	﻿Influence of the training dataset size on magnetic signature prediction
	﻿Comparison with the multi-dipole model
	﻿Prediction accuracy and training time
	﻿Robustness

	﻿Conclusions & future research
	﻿References


