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Acute myocardial infarction (AMI) stands as a major contributor to mortality and disability worldwide, 
with obesity playing a significant role in its development. This study aims to investigate potential 
biomarkers associated with obesity-related genes (ORGs) in patients with AMI. We downloaded four 
training gene expression datasets and one validation dataset from the Gene Expression Omnibus (GEO) 
database, and extracted ORGs from the GeneCards database. Feature genes were identified using 
machine learning techniques, and their diagnostic potential was evaluated through receiver operating 
characteristic (ROC) curves. To assess the identified critical pathways, Gene Set Enrichment Analysis 
(GSEA) was performed. Levels of immune infiltration were analyzed using the CIBERSORT algorithm 
and single-sample Gene Set Enrichment Analysis (ssGSEA). A signature comprising five genes (IL1RN, 
TLR2, NFKBIA, MMP9, and ITLN1) was established as a diagnostic biomarker for AMI, achieving an 
area under the curve (AUC) of 0.924, which was confirmed in the GSE59876 dataset (AUC = 0.825). 
According to the diagnostic model, comparisons between high- and low-risk groups revealed six 
distinct immune cell types and thirteen differing immune functions. Validation through reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) reaffirmed the differential expression 
of the signature genes in AMI and control samples. Our findings provide crucial insights into the roles of 
ORGs in AMI and may facilitate the identification of valuable biomarkers for AMI diagnosis.
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The rates of incidence and mortality associated with cardiovascular diseases are increasing, with acute myocardial 
infarction (AMI) being the most lethal and presenting considerable health risks to patients1,2. AMI signifies 
a severe progression of ischemia and hypoxia in myocardial tissue resulting from the blockage of coronary 
arteries; this condition may lead to localized or extensive damage and necrosis of myocardial cells, causing 
serious complications, including cardiogenic shock, heart failure, and cardiac arrest3,4. Furthermore, some 
cases of AMI may exhibit no symptoms during their initial stages. Consequently, accurate and timely diagnosis, 
along with effective reperfusion therapies such as thrombolysis or percutaneous coronary intervention (PCI), 
is vital in reducing the extent of AMI and enhancing patient outcomes5,6. At present, the identification of AMI 
typically relies on alterations in cardiac biomarkers. Standard biomarkers used in clinical settings consist of 
cardiac troponin T, cardiac troponin I, creatine kinase-MB (CK-MB), and myoglobin7. Nevertheless, these 
biomarkers are primarily released from necrotic cardiomyocytes within 2–4 h after the onset of AMI, and their 
concentrations can also be elevated in patients suffering from chronic kidney disease, heart failure, sepsis, and 
thyroid disorders, particularly among the elderly8. Hence, it is essential to discover additional, more specific 
biomarkers for the diagnosis of AMI.

Invasive coronary angiography is considered the “gold standard” for the detection of acute myocardial 
infarction (AMI). Nonetheless, this procedure comes with significant costs and may carry risks for patients9. 
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Due to advancements in gene chip technology and transcriptome sequencing techniques, an increasing number 
of gene chip applications and bioinformatics analyses are being adopted in cardiovascular research and clinical 
practice, aiding in the discovery of new biomarkers for the early diagnosis and prognosis of various diseases10–12. 
Conventional methods typically concentrate on a limited number of genes or proteins; in contrast, bioinformatics 
allows for the evaluation of complex biological systems as cohesive entities. Its advantages in fields such as 
disease forecasting, personalized medicine, and drug development are becoming more widely acknowledged in 
clinical environments13,14. For example, Chen et al. identified PRF1 and TBX21 as novel biomarkers for diagnosis 
as well as potential therapeutic targets through the analysis of microarray expression profiles in patients with 
AMI15. Similarly, Kiliszek et al. employed a microarray technique to showcase that during ST-segment elevation 
myocardial infarction (STEMI), numerous genes show altered expression patterns, including those associated 
with various pathways related to platelet functionality, lipid and glucose metabolism, and the stability of 
atherosclerotic plaques16. Additionally, Liu et al. conducted a weighted gene co-expression network analysis 
(WGCNA) on GSE4648 and highlighted the diagnostic potential of ten hub genes, including Socs3, Hspa1b, 
Atf3, Il1b, Cxcl1, Selp, Ptgs2, Cxcl2, S100a8, and Myd88, using both bioinformatics and laboratory methods17.

In recent years, the issues of obesity and being overweight have generated increasing concerns. The prevalence 
of these conditions is on the rise and has been linked to type II diabetes mellitus, metabolic syndrome, various 
cancers, hypertension, and cardiovascular diseases within the general population18–20. However, the connection 
between being overweight or obese and acute myocardial infarction (AMI) remains a topic of debate. Mehta et 
al. indicated that obese individuals experiencing AMI have a lower risk of mortality compared to those with a 
normal body mass index (BMI)21. Conversely, Yusuf et al. found that abdominal obesity elevates the risk of AMI 
across different ages and genders in all regions22. Nonetheless, there has been a limited number of studies that 
have examined the influence of obesity-related genes (ORGs) on the diagnosis, risk assessment, and prognosis 
of AMI thus far.

In this study, our goal is to carefully organize multiple microarray datasets, including AMI and control 
samples, using data from the Gene Expression Omnibus (GEO) database. The main objective is to identify 
potential biomarkers associated with ORG for the diagnosis of AMI by combining bioinformatics analysis and 
machine learning methods.

Materials and methods
Data acquisition, processing and identification of differentially expressed genes
We conducted a comprehensive screening of the Gene Expression Omnibus (GEO) database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​c​
b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​) using the search terms “AMI” or “acute myocardial infarction,” “array” type, and “Homo 
sapiens.” The inclusion criteria for datasets required that each group contain at least three patients and three 
controls, and that gene symbols and Entrez IDs were available in the annotated platforms (GPL). Ultimately, five 
datasets were selected (Table S1). The datasets GSE48060, GSE60993, GSE66360, and GSE97320, encompassing 
90 samples from AMI and 81 control samples, were combined to create a metadata file. This metadata served as 
the training cohort for the analysis of differentially expressed genes (DEGs) and the development of a diagnostic 
model. Additionally, GSE59867, which includes 111 AMI samples and 46 control samples, was selected for 
independent validation. To preprocess the data and eliminate batch effects, the ComBat function from the SVA 
package was employed23, followed by principal component analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) to verify the removal of batch effects. The “limma” package in R was applied for background 
correction, inter-array normalization, and analysis of differential expression between AMI and control samples. 
A false discovery rate adjusted p-value of < 0.05 and | log2 (fold change) | >0.8 were established as the criteria 
for identifying DEGs. We identified 1556 obesity-related genes (ORGs) from the GeneCards database ​(​​​h​t​t​p​s​:​/​/​
w​w​w​.​g​e​n​e​c​a​r​d​s​.​o​r​g​/​​​​​) using the term “obesity” with a relevance score of ≥ 5 as the screening criteria. Finally, the 
differentially expressed obesity-related genes (DE-ORGs) were derived by intersecting the DEGs with ORGs.

Screening of candidate diagnostic biomarkers
To discover genes with diagnostic capabilities, three machine learning techniques were employed to forecast 
disease status. The least absolute shrinkage and selection operator (LASSO) is a regression analysis technique 
that incorporates regularization to enhance predictive accuracy24,25. The LASSO methodology was implemented 
with the “glmnet” package in R to detect genes significantly linked to the differentiation between AMI and 
normal samples. Support vector machine recursive feature elimination (SVM-RFE) was employed to identify 
the features with the greatest discriminative ability26. In the case of random forest, we assessed the error rates 
for 1 to 500 trees, with the optimal number of trees identified as the count yielding the lowest error rate while 
maintaining the best stability27. The selection of candidate genes was based on the combined outcomes of the 
three machine learning methods.

Function analysis and protein-protein interaction network of DEGs
In order to enhance our understanding of the biological functions associated with the chosen DEGs, we 
conducted an analysis utilizing Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways through the “clusterProfiler” package. Concurrently, we developed a protein-protein interaction (PPI) 
network by employing the STRING database (http://string-db.org), applying a minimum interaction score set 
to a medium confidence level of 0.4 as our selection criterion and excluding isolated nodes from the network.

Construction of obesity-related genes model
The expression levels of the candidate genes were obtained from both the training and validation 
cohorts, and the feature value for each sample was computed using the following formula: 
F eature value = β0 + β∗

1 X1 + β∗
2 X2 + ... + β∗

nXn. In this equation, β0 denotes the Y-intercept, βn 
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signifies the binary logistic regression coefficient for the n-th gene, Xn represents the expression measurement 
of the n-th gene, and n indicates the total number of genes included in the regression model. To assess the 
diagnostic efficacy of the feature genes, the receiver operating characteristic (ROC) curve was generated utilizing 
the pROC package.

Immune cells infiltration, immune function and correlation analysis
The immune gene dataset and its corresponding annotations were obtained from the ImmPort database ​(​​​h​t​t​p​s​:​/​
/​w​w​w​.​i​m​m​p​o​r​t​.​o​r​g​/​​​​​)​. To assess the infiltration proportions of 22 different immune cell types across all samples 
in the training cohort, the CIBERSORT algorithm was employed. The immune gene-annotated pathways were 
evaluated in each sample using the ssGSEA algorithm. Subsequently, based on the median feature values, 
samples within the training cohort were categorized into low-risk and high-risk groups. The Wilcoxon test, 
utilizing the “ggplot2” package in R, was conducted to analyze the variations in immune cell types and immune 
functions between these two risk groups28. To determine the relationships between diagnostic genes and the 
differing immune cells or functions, Spearman correlation analysis was executed. Furthermore, the genes 
distinguishing the low-risk from the high-risk groups underwent KEGG pathway enrichment analysis via the 
gene set enrichment analysis (GSEA) method29. Multiple-testing corrections were applied to the comparisons of 
immune-cell and immune-function, as well as to the GSEA results. An adjusted p-value < 0.05 were considered 
significant.

Real-time qPCR
Blood samples from five patients diagnosed with AMI and five control subjects were obtained from Huaihe 
Hospital at Henan University in China. The criteria for excluding participants from this study included the presence 
of cancer, autoimmune disease, serious infectious disease, advanced liver and kidney failure, hematological 
disease, and a prior history of cardiovascular disease (Table S 2). Prior to sample collection, informed consent 
was secured from all participants, both patients and healthy individuals. The study protocols involving human 
blood were carried out in alignment with the principles outlined in the Declaration of Helsinki and received 
approval from the Medical School’s Ethics Committee at Henan University, China (HUSOM-2018-282). 
Peripheral blood mononuclear cells (PBMCs) were isolated using a PBMC separation solution. Total RNA was 
extracted employing Trizol reagent (Takara, Dalian, China) as per the manufacturer’s guidelines. Following this, 
the extracted RNA underwent reverse transcription (RR036A, Takara) to create complementary DNA (cDNA). 
Real-time PCR was performed with the TB GreenTM premix Ex TaqTM (RR420A, Takara) using the ABI Prism 
7900 System, adhering to the following protocol: the denaturation step was carried out for 10 s at 95 °C, the 
annealing phase took 20 s at 60 °C, the extension phase lasted for 30 s at 72 °C, and a total of 40 cycles were 
executed30. Gene expression levels were analyzed using the 2−ΔΔCt method, with GAPDH being the endogenous 
control. The primer sequences are detailed in Supplementary Table S3.

Statistical analysis
Statistical analyses for the bioinformatics section of this research were performed using R (version 4.4.2). To 
assess the diagnostic effectiveness of the biomarkers and the diagnostic model, ROC curve analysis was applied. 
The correlation between the expression levels of model genes and the presence of infiltrating immune cells was 
evaluated utilizing Spearman’s correlation coefficient. All statistical tests were two-sided, and a p-value of less 
than 0.05 was considered statistically significant.

Results
Screening of DEGs in AMI
Following the standardization of the original data from the four data sets, t-SNE and PCA mappings were 
created, demonstrating that batch differences were effectively eliminated and the data remained stable (Fig. 1A-
D). Next, the DEGs within the training cohort were analyzed utilizing the limma package after addressing batch 
effects. In comparison to the control group, 157 genes showed significant expression changes in the AMI patients 
group, featuring 142 genes up-regulated and 15 down-regulated. These DEGs were then represented in both a 
volcano plot and a cluster heatmap (Fig. 1E, F).

Identification of differentially expressed obesity-related genes and enrichment analysis
The overlap of 157 genes with differential expression and those associated with human obesity indicated the 
identification of 18 differentially expressed obesity-related genes (DE-ORGs), which include IL1RN, SERPINA1, 
TLR2, NFKBIA, PYGL, IL1B, MMP9, DGAT2, TLR4, NLRP3, ITLN1, CEBPB, CD163, ALDH2, STEAP4, IRS2, 
SLC7A7, and PTGS2 (Fig. 2A). The heatmap indicated that these 18 genes formed a cluster characterized by 
elevated expression in AMI samples while exhibiting lower expression in control samples, as evaluated using 
the training database (Fig. 2B). To further explore the pathophysiological roles of these DE-ORGs, enrichment 
analyses were conducted using clusterProfiler, involving Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and Disease Ontology (DO). The GO analysis showed that the DE-ORGs were predominantly 
implicated in the response to lipopolysaccharide, inflammatory responses, and membrane rafts (Fig. 2C). KEGG 
analysis revealed that these DE-ORGs participated in various signaling pathways, such as those related to lipids 
and atherosclerosis, the IL-17 signaling pathway, and the TNF signaling pathway. Moreover, they also played 
roles in the NF-kappa B signaling pathway and toll-like receptor signaling pathway (Fig. 2D). Additionally, the 
DO analysis indicated that the 18 DE-ORGs were primarily enriched in conditions such as pancreatitis, fatty 
liver disease, and lipid storage disease (Fig. 2E). Considering the strong association between pancreatitis, lipid 
metabolism disorders, and cardiovascular disease31–33, these findings underscored a significant link between 
DE-ORGs and AMI, emphasizing that DE-ORGs primarily regulate inflammatory responses and lipid storage.
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Diagnostic features biomarkers were determined by machine learning
A total of three machine learning algorithms were utilized to identify diagnostic signature biomarkers within the 
18 DE-ORGs mentioned above. By applying LASSO analysis, we discovered 9 feature genes: IL1RN, SERPINA1, 
TLR2, NFKBIA, IL1B, MMP9, ITLN1, ALDH2, and PTGS2 (Fig.  3A, B). Support vector machine (SVM) is 
supervised machine learning method widely used for classification and regression tasks. To mitigate the risk 
of overfitting, a recursive feature elimination (RFE) algorithm was employed to extract the most relevant genes 
from the meta-data cohort. Subsequently, SVM-RFE was utilized to identify the features with the highest 
discriminative power. The SVM-RFE algorithm indicated that the model’s prediction error was minimized 
when n = 16, enhancing its predictive capacity (Fig. 3C, D). Consequently, we identified sixteen feature genes 
including IL1B, ITLN1, NFKBIA, PTGS2, MMP9, TLR2, IL1RN, ALDH2, SLC7A7, CEBPB, TLR4, IRS2, 

Fig. 1.  Normalization of the dataset and analysis of differential gene expression. (A-D) Normalization and 
batch effect correction in four microarray datasets GSE48060, GSE60993, GSE66360, and GSE97320. (E, F) 
Volcano map of differentially expressed genes (DEGs) after screening (adjusted p < 0.05 and |log2FC|>0.8) (E) 
and cluster heatmap of DEGs (F) between acute myocardial infarction (AMI) and control samples using the 
merged dataset (AMI = 90, control = 81) derived from GSE48060, GSE60993, GSE66360, and GSE97320.
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CD163, PYGL, NLRP3, and DGAT2. Random forest analysis revealed that the model reached a stable state at 
ntree = 500 (Fig. 3E). Following this, we selected genes with importance scores exceeding 5, leading us to eight 
genes: MMP9, SERPINA1, IL1RN, TLR2, IRS2, NFKBIA, ITLN1, and DGAT2 (Fig. 3F). Finally, we intersected 
the findings of the three machine learning algorithms (Fig. 3G), resulting in the identification of five key genes: 
IL1RN, TLR2, NFKBIA, MMP9, and ITLN1. The distribution of these genes among differentially expressed 
genes is depicted in Fig. 3H. An analysis of protein-protein interactions suggests that these selected candidate 
genes can create an interaction network that revolves around IL1RN (Fig. 3I).

Obesity-related genes model for diagnosis of AMI and validation
The five identified genes were utilized to develop a diagnostic model employing a binary logistic regression 
algorithm within the training cohort. The feature value is calculated using the formula: feature value = 
-23.3899 + 1.3338 * IL1RN + 0.4214 * TLR2 + 0.6228 * NFKBIA + 0.3462 * MMP9 + 0.6269 * ITLN1. The ROC 
curve generated from the diagnostic model for acute myocardial infarction (AMI) was employed to assess the 
model’s diagnostic performance. The results indicated that the area under the curve (AUC) for this model was 
0.924 in the training dataset and 0.825 in the validation dataset, reflecting a high level of diagnostic accuracy 
(Fig. 4A, B). Subsequently, a nomogram was developed utilizing the “rms” package to forecast the occurrence of 
AMI, incorporating IL1RN, TLR2, NFKBIA, MMP9, and ITLN1. The “Points” were illustrated independently as 
scores for the five key DE-ORGs, while the “Total Points” represented the cumulative score of these DE-ORGs 
(Fig. 4C). To evaluate the nomogram’s predictive performance, the AUC was utilized, demonstrating superior 
predictive accuracy when compared to the five previously mentioned DE-ORGs (Fig. 4D and Supplementary 
Figure S1A-E). The calibration curve revealed a minimal discrepancy between the actual and predicted 
incidences of AMI (Fig. 4E). Additionally, the Decision Curve Analysis (DCA) illustrated that the diagnostic 
model performs effectively, yielding significant net benefits (Fig. 4F). Lastly, we assessed the expression levels 
of IL1RN, TLR2, NFKBIA, MMP9, and ITLN1 in both AMI and healthy controls using the validation dataset 
GSE59876. Notable alterations were observed in the expression of IL1RN, TLR2, NFKBIA, and MMP9 between 
the AMI and control cohorts, whereas ITLN1 did not show significant variation (Fig.  4G). RT-qPCR was 

Fig. 2.  Differentially expressed obesity-related genes (DE-ORGs) and functional enrichment. (A) 
Identification of 18 DE-ORGs by overlapping the 157 differentially expressed genes with 1556 obesity-related 
genes. (B) Expression heatmap of 18 DE-ORGs in AMI patients and controls. (C) GO enrichment analysis of 
DE-ORGs. (D) KEGG enrichment analysis of DE-ORGs. (E) DO enrichment analysis of DE-ORGs.
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conducted to further validate the expression levels of the diagnostic biomarkers, and the findings confirmed that 
the expression levels of IL1RN, TLR2, NFKBIA, MMP9, and ITLN1 were in agreement with those of the training 
sets (Fig. 4H and Supplementary Figure S1F-J).

Correlation analysis between immune cells and high-risk and low-risk populations
The samples in the training dataset were categorized into low-risk (n = 85) and high-risk (n = 86) groups based on 
the median feature value obtained from the diagnostic model. A total of six immune cell subsets exhibited distinct 
infiltration patterns between these two groups, including resting memory CD4 T cells, gamma delta T cells, 
resting NK cells, monocytes, activated mast cell, and neutrophils (Fig. 5A). The heatmap depicting differential 
immune cell expression was generated using the “pheatmap” package in R (Supplementary Figure S2A). The 
relationship between immune cells and genes of the diagnostic model was assessed across different risk groups. 
The genes IL1RN, TLR2, NFKBIA, and MMP9 demonstrated a significant positive correlation with neutrophils 

Fig. 3.  Identification of diagnostic signature genes. (A, B) The variation curve of regression coefficient (A) and 
root mean square (RMS) error (B) as a function of Log (λ) in Lasso regression. (C, D) The results of support 
vector machine-recursive feature elimination (SVM-RFE) algorithm, with the broken line chart showing 
the number of genes corresponding to the lowest error rate (C) and the highest accuracy (D) for AMI. (E) 
Identification of the AMI-specific genes using random forest approach, illustrating the impact of the number 
decision trees on the error rate; the x-axis represents the number of decision trees, while the y-axis denotes the 
error rate. (F) The most importance genes selected by random forest, with the x-axis indicating the importance 
index and the y-axis listing the genes. (G) Venn diagram of five candidate genes. (H) Distribution of five 
candidate genes in a volcano map of differentially expressed genes (DEGs) between AMI and control samples. 
(I) Protein-protein interaction network based on candidate genes.
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in both risk categories. Additionally, genes IL1RN, TLR2, and NFKBIA exhibited positive correlations with 
activated mast cells, while IL1RN, TLR2, NFKBIA, and MMP9 revealed a notable negative correlation with 
memory resting CD4 T cells and gamma delta T cells within the high-risk group (Supplementary Figure S2B, 
C). Moreover, a significant variance was detected among thirteen immune functions, the most pronounced 
of which was related to CCR, CD8 + T cells, cytolytic activity, macrophages, MHC class I, neutrophils, NK 
cells, parainflammation, T cell co-inhibition, T cell co-stimulation, Th1 cells, Th2 cells, and tumor-infiltrating 
lymphocytes (TIL) (Fig. 5B). The correlation analysis between diagnostic marker genes and immune function 
categories was performed using the Spearman method. In the high-risk group, IL1RN and TLR2 displayed a 
notably positive correlation with macrophages and immature dendritic cells (iDCs), while showing a significant 
negative correlation with T cell co-stimulation, Th2 cells, Th1 cells, helper T cells, checkpoints, and type II 

Fig. 4.  Development and validation of a diagnostic model for predicting AMI. (A, B) ROC curves for the 
diagnostic model in both the training cohort (A) and the validation cohort (B). (C) Nomogram designed for 
predicting AMI within the training cohort. (D) The ROC curves of the diagnostic model, revealing AUC of 
0.933 for the training set and 0.882 for the testing set. (E, F) Calibration curve (E) and DCA curve (F) of the 
nomogram model in the training cohort. (G) Validation of the expression of diagnostic biomarkers using the 
GSE59867 dataset (AMI = 111, control = 49). (H) Diagnostic biomarkers validated in peripheral blood samples 
from AMI patients (n = 5) and controls (n = 5) through RT-qPCR.
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interferon (IFN) responses (Fig. 5C, D). Additionally, the findings from the GSEA enrichment analysis revealed 
that the high-risk group showed significant enrichment in pathways such as chemokine signaling, FC-gamma-
R-mediated phagocytosis, leishmania infection, and Toll-like receptor signaling, while ribosome enrichment 
was most pronounced in the low-risk group (Fig. 5E). This observation implies that these immune functions 
could play crucial roles during key moments in the pathophysiology of AMI.

Discussion
AMI represents the most severe form of coronary artery disease, resulting in millions of fatalities each year 
across both developed and developing nations34,35. The evolution of AMI is notably rapid, often leading to 
delays in treatment. Even with advancements in reperfusion techniques and pharmacological therapies, AMI 
continues to pose a significant challenge to global health, impacting over 7 million individuals globally on an 
annual basis36. In industrialized nations, obesity has emerged as a critical health concern, with its prevalence 
escalating among both adults and children37. This issue goes beyond aesthetics; it considerably heightens the 
likelihood of serious health complications, such as AMI22,38,39. The link between obesity and coronary artery 
disease (CAD) largely arises from atherosclerosis, which is intensified by excess fat, especially in the abdominal 
region40. The American Heart Association recognizes obesity as a significant modifiable risk factor for CAD. 
In a study based on population data, independent associations were found between being overweight or obese 
and the early onset of AMI41,42. Moreover, various long-term longitudinal studies have confirmed that obesity 
serves as an independent risk factor for coronary atherosclerosis43,44. Nevertheless, there has been a scarcity of 
reports focusing on the impact of obesity-related genes in the diagnosis and risk assessment of AMI. To address 
this shortcoming, the present study established a new diagnostic signature related to DE-ORGs utilizing datasets 
obtained from the GEO database. Through comprehensive analysis of transcriptome alongside clinical data, 
this signature demonstrated promising discriminatory efficacy in both training and validation cohorts. It offers 

Fig. 5.  Correlation of immune cells and immune functions with high- and low-risk groups. (A, B) Differential 
analysis of immune cell infiltration (A) and 29 immune functions (B) across these groups. (C, D) Heatmap of 
the correlation between diagnostic genes and 29 immune functions in the low-risk group (C) and the high-risk 
group (D). (E) GSEA results for the pathways in the high-risk group. ** p < 0.01, *** p < 0.001; ns, no significant.
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remarkably high accuracy in predicting AMI, with AUC values ranging from 0.747 to 0.962. Furthermore, this 
signature is correlated with the infiltration of immune cells and varying patterns of immune function. These 
findings provide new perspectives that enrich the discourse on obesity-related genes and cardiovascular disease 
(CVD), suggesting valuable clinical applications for the early detection and risk classification of AMI.

In this study, we developed a robust diagnostic scoring system composed of five specific genes: IL1RN, TLR2, 
NFKBIA, MMP9, and ITLN1. Previous studies have revealed certain associations between these genes and the 
development and pathogenesis of cardiovascular disease (CVD). For example, IL1RN (interleukin 1 receptor 
antagonist) is essential in modulating inflammatory responses by suppressing the activities of interleukin 1 (IL-
1), a significant pro-inflammatory cytokine45,46. An analysis comparing gene expression levels in 92 patients with 
AMI and 57 control participants demonstrated that IL1RN, along with IL1B and AQP9, exhibited significant 
dysregulation in AMI. Functional enrichment analysis associated these genes with immune-related pathways, 
such as leukocyte migration and cytokine production. The research proposed that the FSTL3-miR-330-3p-IL1B/
IL1RN axis could represent novel RNA regulatory pathways involved in the progression of AMI. These results 
underscored IL1RN’s dual function in inflammation and tissue repair, indicating its potential as a diagnostic or 
therapeutic target47. TLR2 (toll-like receptor 2), a well-conserved member of the TLR family, has been linked 
to the regulation of ventricular remodeling following AMI48. Notable cardioprotective benefits, including the 
preservation of cardiac function and the reduction of ischemia-reperfusion injury, were reported in a mouse 
model of AMI after the inhibition of TLR248,49. NFKBIA, referred to as NF-kappa B inhibitor alpha, is a protein 
that plays a crucial role in the regulation of the NF-kappa B signaling pathway, which is essential for controlling 
the expression of genes involved in inflammation, immune response, and cell survival50. Chronic inflammation 
is a key characteristic observed in conditions like atherosclerosis, heart failure, and myocardial infarction51,52. 
By modulating this pathway, NFKBIA can affect the onset and progression of these diseases. MMP9, known 
as Matrix Metalloproteinase-9, functions as an enzyme that is integral to the degradation of the extracellular 
matrix. This enzyme plays a significant role in various physiological and pathological processes, encompassing 
tissue remodeling and inflammation. Its function is closely linked to numerous diseases, particularly those 
associated with cardiovascular conditions53,54. Increased levels of MMP9 are commonly identified in individuals 
diagnosed with atherosclerosis55, wherein plaque accumulation occurs in the arteries, resulting in narrowing and 
diminished blood flow. This plaque accumulation is aggravated by inflammatory processes within the arterial 
walls, while MMP9 further promotes the degradation of the extracellular matrix in these regions, potentially 
leading to plaque instability and a heightened risk of rupture53. In the case of myocardial infarction, or a heart 
attack, serum levels of MMP9 rise markedly within 6 h of onset, peaking between 24 and 48 h thereafter. There 
is a significant correlation between MMP9 levels and the extent of myocardial infarction as well as the reduction 
in left ventricular ejection fraction. In clinical settings, the simultaneous assessment of MMP9 and cardiac 
troponin I (cTnI) enhances the diagnostic sensitivity for early acute coronary syndrome (ACS) (< 4 h) from 
72% to 89%56,57. ITLN1 (also referred to as “omentin”) is a highly prevalent mRNA and protein found in visceral 
adipose tissue and has been linked to the pathophysiology of obesity as well as other metabolically associated 
diseases, being characterized as a “novel adipokine”58,59. In their research utilizing the ApoE −/− mouse model, 
Lin et al. demonstrated that administering ITLN1 could elevate collagen levels in the coronary vascular plaques 
of these mice, diminish the size of necrotic cores, and prevent plaque rupture. This suggests that ITLN1 plays a 
role in modulating macrophage functionality, impeding the release of inflammatory factors and apoptosis, while 
also enhancing the stability of atherosclerotic plaques via integrin receptors α v β 3 and α v β 560. In a separate 
study, Bai et al. reported that plasma concentrations of ITLN1 in individuals with coronary heart disease (CAD) 
were markedly lower compared to healthy controls (61.21 ± 10.21 ng/dL vs. 95.22 ± 12.21 µg/L, p < 0.0001), and 
a negative correlation was found between ITLN1 levels and the severity of CAD61. Nevertheless, our findings 
revealed that the mRNA expression of ITLN1 in the group of patients with acute myocardial infarction (AMI) 
was significantly elevated compared to the control group. The reasons for this discrepancy with existing literature 
may relate to differences in sample sizes or individual patient variations, which require further investigation. 
Thus far, the aforementioned findings partially correspond with the outcomes of the present study, wherein 
TLR2 and MMP9 were found to be upregulated in AMI. Notably, the abnormal expression of IL1RN, TLR2, 
NFKBIA, MMP9, and ITLN1 is strongly associated with clinical outcomes in CVD patients. Additionally, this 
novel diagnostic signature consisting of five DE-ORGs demonstrated excellent predictive capability in both the 
training cohort (AUC = 0.924) and external validation cohort (AUC = 0.825), offering valuable insights for 
the prompt diagnosis of AMI. Huang et al. created a logistic regression diagnostic model for AMI, achieving 
AUC values of 0.794 in the training set and 0.745 in the testing set62. Meanwhile, Chen et al. established a 
random forest diagnostic model for AMI, with AUC values of 0.855 (training set) and 0.731 (testing set)63. In 
comparison to these prior studies, our diagnostic model demonstrated commendable accuracy, indicating that 
it is more robust and universally applicable. This may provide significant insights into new molecular subtypes 
and improve early diagnostic assessments of AMI, ultimately facilitating tailored treatment and management 
approaches for future patients.

However, it is important to recognize the constraints of our research. First, the original case numbers in 
each dataset were somewhat limited, prompting us to utilize multiple datasets. Second, because the study was 
retrospective and certain critical clinical data were missing in the GEO datasets, comparing the diagnostic 
model’s predictive value with that of traditional biomarkers in diagnosing AMI is not feasible. Third, verification 
of the expression levels of IL1RN, TLR2, NFKBIA, MMP9, and ITLN1 should be conducted using RT-qPCR 
or Western blot in datasets that include larger sample sizes. Lastly, this investigation relied on bioinformatics 
analysis, highlighting the necessity for larger, prospective clinical validation and comparison with established 
cardiac biomarkers, such as troponins and CK-MB, to evaluate in vivo outcomes.
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Conclusion
Through three machine learning algorithms, LASSO, RF, and SVM-RFE, we identified five genes associated with 
obesity: IL1RN, TLR2, NFKBIA, MMP9, and ITLN1. These genes may serve as potential therapeutic targets and 
biomarkers for the development of AMI. More importantly, the present study created an innovative diagnostic 
model aimed at the early AMI detection, centered on these five genes, thereby providing fresh insights into the 
underlying mechanisms of AMI and presenting an intriguing avenue for future research initiatives.

Data availability
All data generated or analyzed during this study are included in this published article. The datasets used and/or 
analyzed during the present study are available from the corresponding author on reasonable request.
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