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In response to existing compressed sensing ghost imaging (CSGI) schemes, an innovative Bayesian
compressed sensing ghost imaging with better anti-noise performance is proposed, by using the sparse
representation of K-Singular Value Decomposition (KSVD) and a 3Level (3L)-hierarchical variational
message passing (VMP) algorithm. Simulation and experimental results confirm that, this innovative
method overcomes the limitations of presetting specific parameters (sparsity, noise level, etc.), and
also demonstrates superior performance in terms of reconstruction accuracy and imaging quality,
especially for highly complex objects, where it effectively achieves accurate imaging under varying
levels of noise at a low sampling rate (below 12.2%). In addition, compared to existing Bayesian
compressive sensing ghost imaging (BCSGlI), our algorithm moderately reduces time consumption
while ensuring high precision. Our results may provide potential applications of CSGl in the field of
biomedical imaging.

Ghost imaging (GI) has garnered increasing attention due to its novel non-local imaging technique, which
reconstructs the image of an object by correlation calculation between two correlated beams. GI was first
experimentally validated in 1995 using entangled photon pairs!. Later, it is demonstrated theoretically and
experimentally that thermal source and pseudo-thermal source can also be employed to achieve GI**. Shapiro
further enhanced the technique by introducing computational ghost imaging (CGI)*. Notably, a variety of
reconstruction algorithms have been proposed to enhance the imaging quality of GI, such as differential ghost
imaging (DGI)®, normalized ghost imaging (NGI)®, pseudo-inverse ghost imaging (PGI)’. However, these
algorithms typically require a larger number of samples. And deep learning-based ghost imaging (GIDL)®, which
also requires a substantial training data to learn effective feature representations. It is noted that compressed
sensing ghost imaging (CSGI) leverages the sparsity of signals to achieve precise reconstruction with a number
of samples far less than what is required by the traditional sampling theorem?, which significantly enhanced the
imaging efficiency.

Over the years, a growing number of compressed sensing (CS) algorithms have been applied in the field of GI.
Pioneering studies have integrated greedy algorithms such as matching pursuit (MP)'° and orthogonal matching
pursuit (OMP)!! into the CSGI system, treating the image reconstruction challenge as an optimization task.
Nevertheless, greedy algorithms generally require the noise level parameter and sparsity as known conditions,
which can be challenging to satisfy in practice, and the parameter settings, significantly affect the reconstruction
results the OMPCSGI mentioned in this paper sets the sparsity parameter as 7o = 7'/4, T=measurement count).
In contrast, the Bayesian learning model offers a notable advantage in its ability to frame the reconstruction
problem of complex targets (such as biological tissues) under noisy conditions as an estimation problem of
relevant signal parameters through Bayesian inference'?. More recently, some studies have introduced Bayesian
learning model into the GI system'*~'°, which use the parametrically obtained Gaussian distribution as the
prior distribution of the solution (2Level (2L)-hierarchical prior model). It is worth mentioning that the
3Level (3L)-hierarchical prior model'®, which adds a layer of latent variables based on the 2L-hierarchical
model, enabling the Bayesian hierarchical model to handle more complex dependency structures. Moreover,
the majority of studies utilize the discrete cosine transform (DCT) or the fast Fourier transform (FFT) for the
sparse representation of signals (the traditional CSGI algorithm mentioned in this paper employs a sparse
representation method using FFT). Despite the simplicity of their expressions, both fail to consider the distinctive
attributes of individual signals. Consequently, they may not be the most optimal choices for signals that require
a more adaptive and flexible approach to achieve the sparse representation. The algorithm of K-Singular Value
Decomposition (KSVD)!” demonstrates robust adaptability to diverse complex image datasets, presenting a
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compelling alternative. This work extends the Bayesian K-SVD framework!¢ to CGI by two key innovations: (1)
Dimensional equivalence-driven measurement model: The equivalence K P = L enables direct application
of measurement matrix ® to sparse codes avvec, simplifying reconstruction while maintaining accuracy. (2) 3L
hierarchical prior: The Gaussian-Gamma-Gamma hierarchy explicitly models speckle noise statistics, enabling
automatic sparsity adaptation without manual parameter tuning.

In this paper, we introduce a novel anti-noise Bayesian model in the CSGI system, which integrates the
hierarchical 3L Bayesian model with the variational message passing algorithm (VMP)!®!° evolved by the
generalized mean field (GMF)?, to estimate sparse representations of the image obtained through KSVD.
To validate the applicability and effectiveness of the model we introduced, simple binary pattern, complex
biological tissue, and real human blood cell sample are used as the target objects respectively. In addition, we
consider the impact of noise at different levels to validate whether our algorithm outperforms others in terms
of noise resistance. The peak signal-to-noise ratio (PSNR), the correlation coefficient (rrg )21 and the structure
similarity index measure (SSIM), as metrics, to assess the quality and accuracy of the reconstructed images. The
results demonstrate that the proposed algorithm ensures high signal sparsity without the need for presetting
sparsity, outperforming traditional GI (TGI)* and OMP algorithm-based CSGI (OMPCSGI)? in terms of the
adaptability to data changes and the preservation of detailed information in real complex biological samples
under noisy conditions, even if the sampling rate lower than 12.2%. In addition, our algorithm strikes a balance
between time consumption and imaging accuracy when compared to existing Bayesian compressive sensing
ghost imaging (BCSGI)!. Therefore, our approach may have great application potential in the identification of
complex biological tissues in biomedicine.

Methods

Principle of CSGI System

Figure 1 illustrates the fundamental schematic of CSGI. A digital projector emits random speckle patterns
{L'}?il, where each pattern I; € R"*™ is vectorized as ¢; = vec(I;) € RE (L = n?), with vec(-) denoting
the vectorization operator that stacks matrix columns into a column vector. Subsequently, the light transmits
through the target object W € R"*™ and is detected by a single-pixel detector. The measurement vector is
B=|[By,...,B M]T € R . The forward model with noise is expressed as*?*:

B = &w+ N, (1)

where ® = [p1, o, , dnr] € RM*E and N ~ N (0, A" Tar), with X > 0 being the noise precision
(inverse variance). w = vec(W) € R” is the vectorized target object, . = n?.

For Bayesian reconstruction of sparse signals in CSGI, the target object W should possess a sparse
representation. However, since natural images typically lack inherent sparsity, we employ the KSVD algorithm
to construct an adaptive sparse representation. The image W is divided into P non-overlapping patches of
size p X p (where d = p?). In this paper, we set p = 8 (d = 64) for computational efficiency, but the method
generalizes to arbitrary patch sizes. The image W is reconstructed by assembling the sparse-represented patches:

W —R< D « ) s.t. ||allo < To, Vi, (2)

R Xn RAXKRKXP

where D is the learned dictionary (R¥*K), « is the sparse coefficient matrix (RE*P), R reassembles the
reconstructed patches Dex into the full image, the constraint ||;||o < To applies independently to each patch
representation a; (specifically the i-th column of @), ||-||o denotes the £o-norm defined as the number of the
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Fig. 1. The fundamental schematic of CSGI. L, Lens; BD, bucket detector.
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non-zero elements in a vector, and Ty represents the sparsity level indicating the maximum allowable non-zero
coefficients per patch.

CSGl based on sparse representation and Bayesian estimates

Traditional GI reconstruction techniques like OMP and MP require manual tuning of the sparsity level (7p) and
exhibit significant noise sensitivity. The proposed CSGI framework, which integrates KSVD dictionary learning
and Bayesian 3L-Prior estimation, overcomes these limitations by providing the following benefits: (1) Robust
reconstruction under ultra-low sampling rates (<12.5%), (2) Automatic sparsity adaptation without manual
parameter tuning, and (3) Explicit noise modeling for speckle-correlated measurements.

Sparse representation via KSVD

Unlike orthonormal bases (e.g., DCT), KSVD learns the dictionary that maximizes sparsity through adaptive
representation of image patches, solving a bilevel optimization problem!’. The image W € R™*™ is partitioned
into P non-overlapping patches of size p X p (where d = p?), with stride equal to patch size (stride = p). Each

patch is vectorized into y, € R?, forming the training matrix Y = [y,,...,yp| € R”F (W = R(Y)). We
seek a dictionary D € R*¥ and sparse codes & = [av1, ..., ap] € RE*F that solve:
rgin Y —Dall7 st. |aillo <To,Vie{l,...,P}, 3)
,

where a; € R¥ denotes the sparse representation vector for the i-th patch. The optimization alternates between
sparse coding (via OMP) and dictionary update. Detailed steps are provided in Appendix A, and a more detailed
explanation and specific mathematical formulations can be found in the relevant literature 624,

The use of non-overlapping tiling (stride p) in the KSVD dictionary learning stage is crucial for
adapting to GI, which also effectively enhances computational efficiency. The KSVD algorithm operates on
local patches but outputs a globally shared dictionary D € R**¥ and a maximally sparse representation
a=[ai,...,ap] € RE*P stored patchwise. For Be}yesian estimation, we vectorize it to obtain
Quec = vec(a) = [aa1, ..., k1, @12, . . ,OzKp]T c R™".

Sparse estimation using Bayesian 3L-hierarchical prior modeling
In the CGI phase illustrated in Fig. 1, the reconstruction problem is transformed into estimating the sparse
coeficient vector awec € REF. For Bayesian reconstruction, we leverage the dimensional equivalence
KP =L when K =d and P = (n/p)®. In our experimental setup (64x64 images, p=8, K=64),
KP = 64 x 64 = 4096 = n* = L. This simple equivalence, L. = K P, serves as a mathematical bridge from
local sparse representations to the global GI model.

Specifically, this dimensional equivalence enables the linear reconstruction mapping vec(W) = Gatvec,
where G = R(Ip ® D) € RE*% combines dictionary application and patch reassembly. Whereas the physical
measurement model is B = ®Gavvec + N, we employ the computationally efficient model?:

B=®ovec + N, N~ N(0,A'Tn). (4)

This approximation is justified by three key factors: (1) The dimensional equivalence establishes a one-to-
one correspondence between ctvec and vec(W), (2) KSVD reconstruction maintains high consistency with
Gatvec = vec(W), and (3) The hierarchical priors compensate residuals through adaptive error tolerance.

Equation (4) establishes a linear relationship between B and ovyec via ®. This simplification retains sparsity
while avoiding the explicit computation of G, and adaptively compensates for the residual through the 3L
hierarchical prior model described below.

3L hierarchical prior model: For notational simplicity, we denote c¢ = cvvec in Bayesian estimation. The
likelihood fB,, models bucket measurement B,,, as Gaussian distributed with mean [@a}m and variance A7},
while the three-layer hierarchy decomposes the sparse coefficient prior p(«a;) into a Gaussian conditional prior
p(ai|yr) with precision v;, a Gamma hyperprior p(v:|m:), and a Gamma hyper-hyperprior p(n;) with non-
informative parameters a; = 1, by = 107°. This "Gaussian-Gamma-Gamma” hierarchy enables automatic
sparsity adaptation while capturing speckle coherence properties. The joint probability distribution of this 3level
hierarchy can be factorized as'>?:

M K-P
fBiavm N = HO) ] fen@N [ failonn) foim)  fuln) 5)
M~ N —— —— —
Noise prior ~ ~ Likelihood '~ Sparsity prior Hyperprior Hyper-hyperprior

This factorization maps to the factor graph in Fig. 2, which provides a visual representation of the hierarchical
dependencies and message passing flow:

« Variable nodes (circles) represent the random variables @ = {a, v, 1, A}

« Factor nodes (squares) encode probability distributions. N'(z|u, F') represents a Gaussian distribution
with mean g and covariance F. Ga(z|a, b) represents the Gamma distribution, with the equation given by
Ga(zx|a,b) = Fﬁl)ﬂc“_l exp(—bzx).
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Fig. 2. Factor graph of the 3L hierarchical prior model. Edges connect variables to their direct dependencies.
Dashed box highlights the hierarchical prior structure. Message passing occurs exclusively between adjacent
nodes.
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fB =p(Bn|a,\) =N (Bm | [®a],, , /\_1) : Global measurement model for bucket value By,

= p(au|m) = N(u]|0,~; ") : Sparsity prior for sparse coefficient oy
= p(vi|m) = Ga(vile, m) : Hyperprior for variance parameter -,
f =p(n

f» = p(A) : Prior for noise precision

1) = Ga(ni|ai, br) : Hyperprior-hyperprior for rate parameter n;

Variational Message Passing: The closed-form updates for § = {«,~, 7, A} derive from applying VMP rules
to the factor graph (Fig. 2). The adjacency structure restricts message passing to directly connected nodes,
ensuring computational efficiency. The update rules derive from the mean-field approximation®’:

IT ms.-. (6)

fn eNﬁ’i
M, —0; = exp (I fn)yp\g,), (7)
where b(6;) is belief (approximate posterior) of variable 6;, my, _.o, is message from factor node f, to variable
node 6;, Ny, is neighboring factor nodes of 6;, and b(8 \ 6;) denotes expectation over all variables except 6;.

Closed-form updates are obtained by exploiting conjugate prior properties:

1. Sparse coefficients o Combining messages Mfg  —a (from likeli-
hood factors) and mfal_ml (from prior factors) via Eq. (6) yields®. That is,

b(a) o [H%Zl myp m_,a] [Hz L mfal_,a,} = exp ((Inp(B|e, \)) + (Inp(a|v))), which follows
a Gaussian distribution with mean & and covariance X4 :

1

Yo = (<>\>‘I> ® + diag((y >))_ ) ®)
&= (\Zad B. 9)

2. Noise precision \: b(\) follows a Gamma distribution with mean:

M+c
N =Tz o (10)
(IB—®af3) +d
where <||B — 'I>a||§> =|IB — ®&||2 + Tr(®@X5® "), ¢ =0, d =0 in implementation.
3. variance and rate parameter ~, n>*3%: For each component I:
€ + a
(771> - <’Yl> + bl7 (11)
K, (2/ ) ()
2 p
ity = o/ ) (12)

) Ky (2P
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Phase 1: Sparse Representation via KSVD Color Legend:
Phase 1: Sparse Representation via KSVD
Phase 2: 3L.-Bayesian Reconstruction
l Output/Results

where  {(Jou|?) = |&u|* + [Ba)u, Kp() is the modified Bessel function, defined as
Ky(z) = [, exp(—zcosht) cosh(pt)dt,p = € — 1 = —0.9, which analytically solves for the hyperparam-
eters, thereby accurately capturing the spatial correlation of the light source speckle noise.

4. Output: &est = am (sparse coeflicients after T VMP iterations), West = R (Dévest).

Full derivations are provided in Appendix A, and the derivation follows the framework established in
References!62427:29,

The overall schematic diagram of the reconstruction algorithm based on Sparse representation via KSVD and
sparse Bayesian estimation for GI is shown in Fig. 3.

This algorithm differs from natural image denoising in that it is specifically tailored to the GI physical
model, which consists of two processes as illustrated in the blue and green boxes in Fig. 3. Its strengths lie in its
physical adaptability, achieved through threefold innovations: physical constraint modeling, non-overlapping
KSVD acceleration, and “Gaussian-Gamma-Gamma three-layer” - Bessel VMP noise adaptivity. These
innovations significantly enhance computational efficiency, robustness to low sampling, and noise adaptability,
as experimentally verified in next Section.

Results

In order to verify the performance of the model we optimized, simulation and experiment are performed. In
this process, a simple binary pattern (“double-slit”), a complex pattern of biological tissues (“lung structure”),
and a real biological sample ("human blood cell sample”) are selected as target objects. In the experiment, as
shown in Fig. 1, the pregenerated speckle patterns are projected onto the transmissive object using a DLP

Input: Training patches

|

‘ Initialize D |

Phase 2: 3L-Bayesian Reconstruction

/ Output: image /

Reconstructs: W, =R(Da,,,) <_Yes Iteration
t=1to 18?
Yes
Sparse coding via OMP T
l No Update y, 7,
Compute residual £, ‘ T
No l Update 1
Restrict to Q, T
l = L—— Updatea
SVD: E}
Update:d™™ ,a™" | Initialize (), ), ()
ﬁ/ Output: D, a / Input: B=a ., +N, §, D
Fig. 3. Workflow of the proposed CSGI framework. (Phase 1) KSVD Dictionary Learning (blue), Input:
training image patches Y; Process: sparse coding and dictionary update (details in Appendix A.1); Output:
dictionary D, sparse codes a. (Phase 2) 3L-Bayesian Reconstruction (green), Input: bucket measurements
B in Eq. (4); Process: initialize and update parameters (details in Appendix A.4-A.7); Output: Geest,
West = R(Ddest)-
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projector. Subsequently, the transmitted light intensity was then collected using a bucket detector (Thorlabs
PDA100A2, detected area 75.4 mm?, gain 70dB) for correlation-based image reconstruction. The double slit
pattern was specifically chosen as the test object (with a center-to-center separation of 1 mm and a height
of 4 mm) due to fabrication constraints. The variable M is used to represent the number of samples, and the
simulation reconstruction results of four reconstruction algorithms are compared (TGI, OMPCSGI, BCSGI and
our approach). In order to quantitatively analyze the imaging quality, the PSNR is introduced, which is defined
as the ratio of the maximum possible signal power to the reconstruction error power, with the formula described
below!

PSNR = 10log;, []\T;S“E} , (13)

where MSE =1/L Zf;ol Zj;ol [R(z,y) — T (z,y)]°, with R(x, y) and T(x, y) being the original and

restored images, respectively, T'max represents the maximum pixel value of the image.

Firstly, the corresponding simulation and experiment results for the binary object “double-slit” are presented
in Fig. 4, where each column corresponds to different measurement times (// = 200, 400, 600, 800, 1000), and
each row represents a type of restructuring algorithms (TGI, OMPCSGI, BCSGI and our approach). For ease of
comparison, the PSNR (the PSNR is measured in dB) of every restructuring algorithm is marked at the bottom
of results. As shown in Fig. 4(a) and (A), the reconstruction result in TGI is barely visible even for the gradual
increment in M. For the BCSGI and OMPCSGI, as depicted in the Figs. 4(b)-(c) and (B)-(C), minor discrepancies
are observed in the visual angle effects, where quality of image improves as M increases, and upon reaching a
value of 1000 for M, both methods are capable of reconstructing a clear “double slit” image. Notably, the PSNR
for BCSGI is marginally higher than that for OMPCSGI. By comparing the four algorithms, it can be found that
our approach achieves superior reconstruction quality. Specifically, when M equals 200, the background noise of
our approach becomes invisible, while the images from the other three algorithms are still overwhelmed by noise.
Upon increasing M to 400, which corresponds to a sampling rate below 12.2%, a near-perfect reconstruction
is essentially achieved in our model. In summary, both simulation and experimental results indicate that, for
simple binary images, our scheme not only provides clearer and more precise reconstructions but also requires
a lower sample count for optimal imaging.

Figure 4 showcases the exceptional reconstruction capabilities of our optimized algorithm, without
considering the complexity of the patterns or objects involved. Here, we selected “lung structure” as the target
object to simulate the highly intricate biological tissue, and the corresponding simulation results are depicted in
Figs. 5 (a)-(d). It is shown that the model we designed achieves near-perfect imaging result, even with a sampling
rate below 12.2%. BCSGI can only produce images with sub-optimal clarity (PSNR = 13.3060 dB), at M = 2000,
as shown in Fig. 5(c5). And the results of OMPCSGI, as illustrated in Fig. 5(b5), lags slightly behind BCSGI
in both visual quality and numerical metrics (PSNR = 11.2790 dB). In addition, its implementation requires
preset sparsity, which is difficult to achieve in a real biological tissue environment. Given that the coefficients of
KSVD sparse representation are sparser and that BCSGI does not need to preset the sparsity level, our optimized
algorithm shows superiority in reconstructive performance under conditions of limited sample data, particularly
for images rich in edge information. This offers significant theoretical support and potential application value for
the identification of complex biological tissues in the biomedical field.

To verify the practical applicability and effectiveness of our method in real biological samples, we employ
human blood cell sample as target object. The comparative results of the four algorithms are displayed in
Figs. 5 (A)-(D). Our algorithm consistently products the best reconstruction results at various sampling rates.
Particularly at M = 400, our method maintains 29.8964 dB PSNR while perfectly conserving the biconcave
discoid shapes and cellular edges. In contrast, for OMPCSGI and BCSGI, it is only at M = 2000, with PSNR
values of 22.2858 dB and 23.4151 dB respectively, that BCSGI manages to achieve a slightly clearer image, while
the output of OMPCSGI still has artifacts. Notably, TGI shows the poorest performance and failed to effectively
reconstruct the image of the original target object. Apparently, among the four evaluated algorithms, our
approach not only exhibits superior reconstruction quality but also significantly decreases the required sampling
rate for the algorithm.

Then, we take into account the noise robustness of our proposed scheme, various types of path noises are
considered, which degrade imaging quality by perturbing the field strength fluctuations detected by the bucket
detector. We introduce the noise amplitude ratio (14) as a metric to transform the traditional signal-to-noise
ratio (SNR, 7, = V10~SNR/10) directly quantifying field-strength perturbations, where higher 7, values
indicate stronger noise interference. The corresponding results for complex biological tissue “lung structure”
and ”real human blood cell sample” (M = 2000) are compiled in Fig. 6, where each column corresponds to a
certain degree of noise effect (column 1: no-noise, column 2-4: noise conditions of 25 dB (1, = 5.6%), 20 dB
(na = 10%) and 15 dB (n, = 17.8%), respectively), and each row corresponds to a kind of algorithms (TGI,
OMPCSGI, BCSGI and our approach). It is evident that, with the escalation of noise levels, the PSNR of each
method undergoes a decrease, while our approach exhibits remarkable noise resistance, boasting the highest
PSNR of the four algorithms, which indicates that our approach performs strong noise resistance while presents
better imaging quality even under the noise conditions of 15 dB (1, = 17.8%). However, higher levels of noise
(na > 15%) can interfere with the KSVD algorithm’s ability to sparsely represent the signal, thereby affecting
the accuracy of the dictionary update, which may lead to the “block effect” in the reconstructed image, as shown
in Figs. 6 d(4) and D(4). In addition to that, considering complexity and realism, our approach performs best in
path noise environments, particularly with Gaussian white noise.
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(a4)PSNR=7.6550  (a5)PSNR=7.8922

(b4)PSNR=14.0015  (bS)PSNR=15.4199

(c4)PSNR=16.1533  (c5)PSNR=17.5082

(d4)PSNR=65.1163  (d5)PSNR=71.9499

(a3)PSNR=7.3202

(a2)PSNR=7.2979

(al)PSNR=6.4857

(b1)PSNR=8.3969 (b2)PSNR=11.1717

(c1)PSNR=8.4642  (c2)PSNR=13.0962

(d1)PSNR=16.8719 (d2)PSNR=36.9713

(b3)PSNR=11.6085

(¢3)PSNR=13.9336

(d3)PSNR=48.9923

(A1)PSNR=7.1053

(A2)PSNR=7.1137  (A3)PSNR=7.9677 (A4)PSNR=8.1097 (A5)PSNR=8.2752

T

(B4)PSNR=9.8513  (B5)PSNR=11.6030

(B1)PSNR=5.8868

(B2)PSNR=7.5234  (B3)PSNR=9.0609

(C1)PSNR=7.2606 (C2)PSNR=7.9113 (C3)PSNR=10.1817 (C4)PSNR=11.9022 (C5)PSNR=12.1009

(D1)PSNR=12.2125 (D2)PSNR=22.8584 (D3)PSNR=33.2883 (D4)PSNR=39.7061 (D5)PSNR=48.9281

Fig. 4. Simulation results of (a) TGI, (b) OMPCSGI, (c) BCSGI, (d) our approach and experimental results of
(A) TGI, (B) OMPCSGI, (C) BCSGI, (D) our approach for (a0) object “double-slit”. Each column corresponds
to M = 200, 400, 600, 800 and 1000.

To demonstrate the universality of our approach, Gaussian white noise is replaced with multiplicative noise
to assess the noise resistance of four GI methods under different degrees of noises when M = 2000. The effect of
multiplicative noise is distinct from that of Gaussian white noise, it is more complex as it can affect not only the
amplitude but also the shape and characteristics of the signal. The corresponding results are depicted in Fig. 7. It
becomes evident that as the noise levels increase, the PSNR of each system decreases, with a greater extent than
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(a0) (al)PSNR=8.2875

(a5)PSNR=9.7007

(a2)PSNR=8.9844

(a3)PSNR=9.2301  (a4)PSNR=9. 4866
i - } :

(b)PSNR=0.2537

(b2)PSNR=10.2306

(b3)PSNR=10.5496

(ci)PSNR'lS 3060

RAR

(d5)PSNR=84.2544

(d1)PSNR=32.7210  (d2)PSNR=61.2224 (d3)PSNR=69.7828 (d4)PSNR=75.2235

(AS)PSNR=14.1620

(A1)PSNR=13. 5840 (A2)PSNR=13.8234 (A3)PSNR=13.8349 (A4)PSNR=14.0969

. .
(D1)PSNR=29.8964 (D2)PSNR=57.2301 (D3)PSNR=66.1696 (D4)PSNR=71.9499 (D5)PSNR=87.8523
Fig. 5. Simulation results of four reconstruction algorithms for (a0) “lung structure” and the corresponding
reconstruction for (A0) “real human blood cell sample”. The first to fourth rows of each image set correspond
to TGL, OMPCSGI, BCSGI, and our approach, respectively, while each column represents M = 400, 800, 1200,

1600 and 2000.

that observed under the influence of Gaussian white noise. It is worth noting that, whether for complex patterns
or real biological samples, when 7, > 10% (equivalent to 20 dB), GI, OMPCSGI, and BCSGI are particularly
susceptible to multiplicative noise interference, which can nearly submerge the images, while our method retains
a relatively stable reconstruction capability. However, as shown in Figs. 7 d(4) and D(4), under the influence of
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(c1)PSNR=13.3060

4 P 7 Poian
(c4)PSNR=10.7366

(d1)PSNR=84.2544 (d2)PSNR=21.6718

(A1)PSNR=14.1620

-
(D3)PSNR=19.9851 (D4)PSNR=17.5007

(D1)PSNR=87.8523 (D2)PSNR=25.4796
Fig. 6. The corresponding reconstruction results for (a0) “lung structure” and (A0) “real human blood cell
sample” under different Gaussian white noise factors when M = 2000. The first to fourth columns represent
the reconstruction results with no-noise, and noise conditions of 25 dB (1, = 5.6%), 20 dB (9, = 10%) and
15dB (n, = 17.8%).

higher levels of multiplicative noise (7, = 17.8%), more pronounced structural breaks are evident compared to
the Gaussian white noise depicted in Figs. 7 d(4) and D(4). For such significant multiplicative noise interference,
effective solutions may be achieved in the future through the application of deep learning (such as Graph
Convolutional Networks) or optical path correction techniques.
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Fig. 7. The corresponding reconstruction results of four algorithms for two objects under different
multiplicative noise levels. The parameters are the same as those in Fig. 6.

To objectively and accurately evaluate the capabilities of different algorithms in terms of image reconstruction
accuracy, the reconstruction accuracy can be evaluated by computing the correlation coefficient (rrg) and
structure similarity index measure (SSIM) between the reconstructed image G and the original image T. rra
is a linear description of the degree of approximation between the two images, whereas SSIM provides a more
holistic assessment by taking into account luminance distortion, contrast distortion, and structural distortion.
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Higher values of these evaluation metrics indicate superior image quality, with the maximum attainable value
being 1 for both indices. The calculation formulas for rrg and SSIM are as follows®*:

E(T-E(T))(G-E(G)
D(T)D(G)

TG (14)

(2E(T)E(G) + C1)(201¢ + C2)
(E(T)2 + E(G)2 + C1)(D(T) + D(G) + C2)’

SSIM = (15)

where D(T) and D(G) are the variance of the T and G, respectively. E(T) and E(G) are their means. or¢ is the
covariance between T and G, C1 and C- are constants to prevent the denominator from approaching 0.

The variation curves of rrg for above three target objects under different measurement samples are
illustrated in Figs. 7(a)-(c), and their corresponding SSIM curves are presented in Figs. 8(d)-(e), respectively.
Each curve in these sub-plots corresponds to a different algorithm, with TGI illustrated in black, OMPCSGI in
blue, BCSGI in red, and our scheme in green. It is easy to find that all three graphs demonstrate that when M =
500, the reconstruction effects for three target objects of our optimized model become extremely outstanding,
achieving near-perfect results with rr¢ and SSIM are almost equal to 1. In Figs. 8(a) and (d), for the binary
object “double-slit”, the rr and SSIM of the our approach increases rapidly (rrg and SSIM are equal to 1 at
M = 400), while the values of ¢ and SSIM for TGI, BCSGI and OMPCSGI are difficult to reach 1 and achieve
the perfect reconstruction, even if M increases to 1000. Especially for the complex images and the real blood cell
sample displayed in Figs. 8(b), (e) and Figs. 8(c), (f), respectively, the values of g and SSIM of reconstructed
images for our approach consistently maintain a value of 1. In contrast, the SSIM values for both BCSGI and
OMPCSGI are fall below 0.8 at A/ = 2000. This disparity sufficiently demonstrates the superior reconstruction
performance of our method.

To quantify the anti-noise capabilities and the precision of image recovery for four algorithms, the 77 curves
(Figs. 9 (a)-(d)) and SSIM curves (Figs. 9 (e)-(f)) for complex object and real biological sample under above two
types of noises are presented in Fig. 9. The first and third columns correspond to Gaussian white noise, while
the second and fourth columns correspond to multiplicative noise. Each curve of different colors corresponds
to different methods (with TGI illustrated in black, OMPCSGI in blue, BCSGI in red, and our scheme in green).
It is evident that as the 7, increases, the system becomes increasingly susceptible to noise interference, leading
to a decline in both rrg and SSIM of the reconstructed image. Figures 9(a) and (e) display the reconstruction
results (when M = 2000) of the lung structure” object under different varying levels of Gaussian white noise.
Obviously, 77 values in Fig. 9(a) of our approach are always higher than those of others, and the SSIM curves
depicted in Fig. 9(e) reflect the same conclusion. This suggests that our approach significantly reduces the
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Fig. 8. Variation curves of rr¢ and SSIM with different number of measurements M, where the lines in black,
blue, red, and green corresponding to TGI, OMPCSGI, BCSGI, and our approach, respectively.
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Fig. 9. Variation curves of rr¢ and SSIM with different path noise conditions. The left and right columns in
each set of graphs correspond to Gaussian white noise and multiplicative noise, respectively.
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measurements M.

adverse effects of Gaussian white noise. As depicted in Figs. 9 (c) and (g), the same conclusion can be drawn for
“real human blood cell sample”. When accounting for multiplicative noises, whether it is a complex object or a
real biological sample, both 77¢ and SSIM curves drop sharply as the noise increases. In particular, when the
noise ratio 7, > 15%, although our method still outperforms other algorithms, it is also significantly affected
in terms of structural integrity. Consequently, our algorithm demonstrates strong robustness against Gaussian
white noise and medium-to-low levels of multiplicative noise. For higher levels (1, > 15%) of non-uniform
multiplicative noise, to avoid structural discontinuities ("block effects”), future work could consider integrating
deep learning to mitigate the noise-induced damage to the original signal.

For compressive sensing algorithms, the time consumption of the algorithm is an important evaluation
criteria. Subsequently, the issue of time consumption is discussed. For existing BCSGI, due to the complex
posterior probability calculations involved in Bayesian estimation, it tends to show higher time complexity,
especially when dealing with large-scale data. In contrast, our method, by integrating KSVD, optimizes the
iterative process, ensuring that the algorithm maintains high imaging accuracy while appropriately reducing
computational time. Figure 10 illustrates the time consumption curves for the above three target objects of both
BCSGI and our optimized approach, with the red line representing BCSGI and the green line representing our
algorithm. It is shown that the time consumption increases with the growth of M, yet our algorithm consistently
shows lower time consumption compared to the existing BCSGI. Particularly, for complex target objects and real
blood cell sample with M >1200, as depicted in Figs. 10 (b) and (c), the time consumption exceeds 30 seconds.
Conversely, the KSVD algorithm, as shown by the green curves in the three figures, enables our method to
achieve a balance between maintaining reconstruction accuracy and moderately reducing the algorithm’s time
consumption through its iterative optimization process. Nevertheless, future research should still focus on the
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time efficiency of algorithm to further optimize the running time of algorithm while ensuring the quality of
reconstruction is maintained.

Conclusions

In this paper, we have proposed an anti-noise variational sparse Bayesian estimation CSGI based on 3Level factor
graph for the imaging of complex biological tissues at low sampling rates. Comparative analysis reveals that our
algorithm surpasses other traditional methodologies in reconstruction quality and anti-noise capability under
lower sampling rate, especially for images with complex edge details, indicating near-perfect reconstruction at a
low sampling rate (below 12.2%). In addition, compared to existing BCSGI, our approach appropriately reduces
the time consumption. These advancements address the practical challenge that the sparsity of traditional CSGI
algorithm cannot be preset, which is conducive to the popularization of biomedical imaging applications. And
subsequent research can integrate deep learning to address the issue of imaging structural breaks (“block effect”)
under significant noise influence.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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