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In response to existing compressed sensing ghost imaging (CSGI) schemes, an innovative Bayesian 
compressed sensing ghost imaging with better anti-noise performance is proposed, by using the sparse 
representation of K-Singular Value Decomposition (KSVD) and a 3Level (3L)-hierarchical variational 
message passing (VMP) algorithm. Simulation and experimental results confirm that, this innovative 
method overcomes the limitations of presetting specific parameters (sparsity, noise level, etc.), and 
also demonstrates superior performance in terms of reconstruction accuracy and imaging quality, 
especially for highly complex objects, where it effectively achieves accurate imaging under varying 
levels of noise at a low sampling rate (below 12.2%). In addition, compared to existing Bayesian 
compressive sensing ghost imaging (BCSGI), our algorithm moderately reduces time consumption 
while ensuring high precision. Our results may provide potential applications of CSGI in the field of 
biomedical imaging.

Ghost imaging (GI) has garnered increasing attention due to its novel non-local imaging technique, which 
reconstructs the image of an object by correlation calculation between two correlated beams. GI was first 
experimentally validated in 1995 using entangled photon pairs1. Later, it is demonstrated theoretically and 
experimentally that thermal source and pseudo-thermal source can also be employed to achieve GI2,3. Shapiro 
further enhanced the technique by introducing computational ghost imaging (CGI)4. Notably, a variety of 
reconstruction algorithms have been proposed to enhance the imaging quality of GI, such as differential ghost 
imaging (DGI)5, normalized ghost imaging (NGI)6, pseudo-inverse ghost imaging (PGI)7. However, these 
algorithms typically require a larger number of samples. And deep learning-based ghost imaging (GIDL)8, which 
also requires a substantial training data to learn effective feature representations. It is noted that compressed 
sensing ghost imaging (CSGI) leverages the sparsity of signals to achieve precise reconstruction with a number 
of samples far less than what is required by the traditional sampling theorem9, which significantly enhanced the 
imaging efficiency.

Over the years, a growing number of compressed sensing (CS) algorithms have been applied in the field of GI. 
Pioneering studies have integrated greedy algorithms such as matching pursuit (MP)10 and orthogonal matching 
pursuit (OMP)11 into the CSGI system, treating the image reconstruction challenge as an optimization task. 
Nevertheless, greedy algorithms generally require the noise level parameter and sparsity as known conditions, 
which can be challenging to satisfy in practice, and the parameter settings, significantly affect the reconstruction 
results the OMPCSGI mentioned in this paper sets the sparsity parameter as T0 = T/4, T=measurement count). 
In contrast, the Bayesian learning model offers a notable advantage in its ability to frame the reconstruction 
problem of complex targets (such as biological tissues) under noisy conditions as an estimation problem of 
relevant signal parameters through Bayesian inference12. More recently, some studies have introduced Bayesian 
learning model into the GI system13–15, which use the parametrically obtained Gaussian distribution as the 
prior distribution of the solution (2Level (2L)-hierarchical prior model). It is worth mentioning that the 
3Level (3L)-hierarchical prior model16, which adds a layer of latent variables based on the 2L-hierarchical 
model, enabling the Bayesian hierarchical model to handle more complex dependency structures. Moreover, 
the majority of studies utilize the discrete cosine transform (DCT) or the fast Fourier transform (FFT) for the 
sparse representation of signals (the traditional CSGI algorithm mentioned in this paper employs a sparse 
representation method using FFT). Despite the simplicity of their expressions, both fail to consider the distinctive 
attributes of individual signals. Consequently, they may not be the most optimal choices for signals that require 
a more adaptive and flexible approach to achieve the sparse representation. The algorithm of K-Singular Value 
Decomposition (KSVD)17 demonstrates robust adaptability to diverse complex image datasets, presenting a 
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compelling alternative. This work extends the Bayesian K-SVD framework16 to CGI by two key innovations: (1) 
Dimensional equivalence-driven measurement model: The equivalence KP = L enables direct application 
of measurement matrix Φ to sparse codes αvec, simplifying reconstruction while maintaining accuracy. (2) 3L 
hierarchical prior: The Gaussian-Gamma-Gamma hierarchy explicitly models speckle noise statistics, enabling 
automatic sparsity adaptation without manual parameter tuning.

In this paper, we introduce a novel anti-noise Bayesian model in the CSGI system, which integrates the 
hierarchical 3L Bayesian model with the variational message passing algorithm (VMP)18,19 evolved by the 
generalized mean field (GMF)20, to estimate sparse representations of the image obtained through KSVD. 
To validate the applicability and effectiveness of the model we introduced, simple binary pattern, complex 
biological tissue, and real human blood cell sample are used as the target objects respectively. In addition, we 
consider the impact of noise at different levels to validate whether our algorithm outperforms others in terms 
of noise resistance. The peak signal-to-noise ratio (PSNR), the correlation coefficient (rT G)21, and the structure 
similarity index measure (SSIM), as metrics, to assess the quality and accuracy of the reconstructed images. The 
results demonstrate that the proposed algorithm ensures high signal sparsity without the need for presetting 
sparsity, outperforming traditional GI (TGI)4 and OMP algorithm-based CSGI (OMPCSGI)22 in terms of the 
adaptability to data changes and the preservation of detailed information in real complex biological samples 
under noisy conditions, even if the sampling rate lower than 12.2%. In addition, our algorithm strikes a balance 
between time consumption and imaging accuracy when compared to existing Bayesian compressive sensing 
ghost imaging (BCSGI)14. Therefore, our approach may have great application potential in the identification of 
complex biological tissues in biomedicine.

Methods
Principle of CSGI System
Figure  1 illustrates the fundamental schematic of CSGI. A digital projector emits random speckle patterns 
{Ii}M

i=1, where each pattern Ii ∈ Rn×n is vectorized as ϕi = vec(Ii) ∈ RL (L = n2), with vec(·) denoting 
the vectorization operator that stacks matrix columns into a column vector. Subsequently, the light transmits 
through the target object W ∈ Rn×n and is detected by a single-pixel detector. The measurement vector is 
B = [B1, . . . , BM ]⊤ ∈ RM . The forward model with noise is expressed as9,23:

	 B = Φw + N,� (1)

where Φ = [ϕ1, ϕ2, · · · , ϕM ]⊤ ∈ RM×L and N ∼ N (0, λ−1IM ), with λ > 0 being the noise precision 
(inverse variance). w = vec(W) ∈ RL is the vectorized target object, L = n2.

For Bayesian reconstruction of sparse signals in CSGI, the target object W should possess a sparse 
representation. However, since natural images typically lack inherent sparsity, we employ the KSVD algorithm 
to construct an adaptive sparse representation. The image W is divided into P non-overlapping patches of 
size p × p (where d = p2). In this paper, we set p = 8 (d = 64) for computational efficiency, but the method 
generalizes to arbitrary patch sizes. The image W is reconstructed by assembling the sparse-represented patches:

	
W

Rn×n
= R

(
D

Rd×K
α

RK×P

)
s.t. ∥αi∥0 ≤ T0, ∀i,� (2)

where D is the learned dictionary (Rd×K), α is the sparse coefficient matrix (RK×P ), R reassembles the 
reconstructed patches Dα into the full image, the constraint ∥αi∥0 ≤ T0 applies independently to each patch 
representation αi (specifically the i-th column of α), ∥·∥0 denotes the ℓ0-norm defined as the number of the 

Fig. 1.  The fundamental schematic of CSGI. L, Lens; BD, bucket detector.
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non-zero elements in a vector, and T0 represents the sparsity level indicating the maximum allowable non-zero 
coefficients per patch.

CSGI based on sparse representation and Bayesian estimates
Traditional GI reconstruction techniques like OMP and MP require manual tuning of the sparsity level (T0) and 
exhibit significant noise sensitivity. The proposed CSGI framework, which integrates KSVD dictionary learning 
and Bayesian 3L-Prior estimation, overcomes these limitations by providing the following benefits: (1) Robust 
reconstruction under ultra-low sampling rates (<12.5%), (2) Automatic sparsity adaptation without manual 
parameter tuning, and (3) Explicit noise modeling for speckle-correlated measurements.

Sparse representation via KSVD
Unlike orthonormal bases (e.g., DCT), KSVD learns the dictionary that maximizes sparsity through adaptive 
representation of image patches, solving a bilevel optimization problem17. The image W ∈ Rn×n is partitioned 
into P non-overlapping patches of size p × p (where d = p2), with stride equal to patch size (stride = p). Each 
patch is vectorized into yi ∈ Rd, forming the training matrix Y = [y1, . . . , yP ] ∈ Rd×P  (W = R(Y)). We 
seek a dictionary D ∈ Rd×K  and sparse codes α = [α1, . . . , αP ] ∈ RK×P  that solve:

	
min
D,α

∥Y − Dα∥2
F s.t. ∥αi∥0 ≤ T0, ∀i ∈ {1, . . . , P },� (3)

where αi ∈ RK  denotes the sparse representation vector for the i-th patch. The optimization alternates between 
sparse coding (via OMP) and dictionary update. Detailed steps are provided in Appendix A, and a more detailed 
explanation and specific mathematical formulations can be found in the relevant literature  16,24.

The use of non-overlapping tiling (stride p) in the KSVD dictionary learning stage is crucial for 
adapting to GI, which also effectively enhances computational efficiency. The KSVD algorithm operates on 
local patches but outputs a globally shared dictionary D ∈ Rd×K  and a maximally sparse representation 
α = [α1, . . . , αP ] ∈ RK×P  stored patchwise. For Bayesian estimation, we vectorize it to obtain 
αvec = vec(α) = [α11, . . . , αK1, α12, . . . , αKP ]⊤ ∈ RKP .

Sparse estimation using Bayesian 3L-hierarchical prior modeling
In the CGI phase illustrated in Fig.  1, the reconstruction problem is transformed into estimating the sparse 
coefficient vector αvec ∈ RKP . For Bayesian reconstruction, we leverage the dimensional equivalence 
KP = L when K = d and P = (n/p)2. In our experimental setup (64×64 images, p=8, K=64), 
KP = 64 × 64 = 4096 = n2 = L. This simple equivalence, L = KP , serves as a mathematical bridge from 
local sparse representations to the global GI model.

Specifically, this dimensional equivalence enables the linear reconstruction mapping vec(W) = Gαvec, 
where G = R(IP ⊗ D) ∈ RL×L combines dictionary application and patch reassembly. Whereas the physical 
measurement model is B = ΦGαvec + N, we employ the computationally efficient model25:

	 B = Φαvec + N, N ∼ N (0, λ−1IM ).� (4)

This approximation is justified by three key factors: (1) The dimensional equivalence establishes a one-to-
one correspondence between αvec and vec(W), (2) KSVD reconstruction maintains high consistency with 
Gαvec ≈ vec(W), and (3) The hierarchical priors compensate residuals through adaptive error tolerance.

Equation (4) establishes a linear relationship between B and αvec via Φ. This simplification retains sparsity 
while avoiding the explicit computation of G, and adaptively compensates for the residual through the 3L 
hierarchical prior model described below.

3L hierarchical prior model: For notational simplicity, we denote α ≡ αvec in Bayesian estimation. The 
likelihood fBm  models bucket measurement Bm as Gaussian distributed with mean [Φα]m and variance λ−1, 
while the three-layer hierarchy decomposes the sparse coefficient prior p(αl) into a Gaussian conditional prior 
p(αl|γl) with precision γl, a Gamma hyperprior p(γl|ηl), and a Gamma hyper-hyperprior p(ηl) with non-
informative parameters al = 1, bl = 10−6. This ”Gaussian-Gamma-Gamma” hierarchy enables automatic 
sparsity adaptation while capturing speckle coherence properties. The joint probability distribution of this 3level 
hierarchy can be factorized as15,26:

	

f(B, α, γ, η, λ) = fλ(λ)︸ ︷︷ ︸
Noise prior

M∏
m=1

fBm (α, λ)︸ ︷︷ ︸
Likelihood

K·P∏
l=1

fαl (αl, γl)︸ ︷︷ ︸
Sparsity prior

fγl (γl, ηl)︸ ︷︷ ︸
Hyperprior

fηl (ηl)︸ ︷︷ ︸
Hyper-hyperprior

.� (5)

This factorization maps to the factor graph in Fig. 2, which provides a visual representation of the hierarchical 
dependencies and message passing flow:

•	 Variable nodes (circles) represent the random variables θ = {α, γ, η, λ}
•	 Factor nodes (squares) encode probability distributions. N (x|µ, F ) represents a Gaussian distribution 

with mean µ and covariance F. Ga(x|a, b) represents the Gamma distribution, with the equation given by 
Ga(x|a, b) = ba

Γ(a) xa−1 exp(−bx). 
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fBm = p(Bm|α, λ) = N
(
Bm | [Φα]m , λ−1)

: Global measurement model for bucket value Bm

fαl = p(αl|γl) = N (αl|0, γ−1
l ) : Sparsity prior for sparse coefficient αl

fγl = p(γl|ηl) = Ga(γl|ϵ, ηl) : Hyperprior for variance parameter γl

fηl = p(ηl) = Ga(ηl|al, bl) : Hyperprior-hyperprior for rate parameter ηl

fλ = p(λ) : Prior for noise precision
Variational Message Passing: The closed-form updates for θ = {α, γ, η, λ} derive from applying VMP rules 
to the factor graph (Fig. 2). The adjacency structure restricts message passing to directly connected nodes, 
ensuring computational efficiency. The update rules derive from the mean-field approximation27:

	

b(θi) ∝
∏

fn∈Nθi

mfn→θi , � (6)

	 mfn→θi = exp ⟨ln fn⟩b(θ\θi), � (7)

where b(θi) is belief (approximate posterior) of variable θi, mfn→θi  is message from factor node fn to variable 
node θi, Nθi  is neighboring factor nodes of θi, and b(θ \ θi) denotes expectation over all variables except θi. 
Closed-form updates are obtained by exploiting conjugate prior properties: 

	1.	 Sparse coefficients α: Combining messages mfBm →α (from likeli-
hood factors) and mfαl

→αl  (from prior factors) via Eq.  (6) yields28. That is, 
b(α) ∝

[∏M

m=1 mfBm →α

]
×

[∏L

l=1 mfαl
→αl

]
= exp (⟨ln p(B|α, λ)⟩ + ⟨ln p(α|γ)⟩) , which follows 

a Gaussian distribution with mean α̂ and covariance Σα̂: 

	 Σα̂ =
(
⟨λ⟩Φ⊤Φ + diag(⟨γ⟩)

)−1
, � (8)

	 α̂ = ⟨λ⟩Σα̂Φ⊤B. � (9)

	2.	 Noise precision λ: b(λ) follows a Gamma distribution with mean: 

	
⟨λ⟩ = M + c

⟨∥B − Φα∥2
2⟩ + d

,� (10)

	 where 
⟨
∥B − Φα∥2

2
⟩

= ∥B − Φα̂∥2
2 + Tr(ΦΣα̂Φ⊤), c =0, d =0 in implementation.

	3.	 variance and rate parameter γ, η29,30: For each component l: 

	
⟨ηl⟩ = ϵ + al

⟨γl⟩ + bl
, � (11)

	

⟨γ−1
l ⟩ =

√
⟨|αl|2⟩

⟨ηl⟩

Kp

(
2
√

⟨ηl⟩⟨|αl|2⟩
)

Kp−1

(
2
√

⟨ηl⟩⟨|αl|2⟩
) , � (12)

Fig. 2.  Factor graph of the 3L hierarchical prior model. Edges connect variables to their direct dependencies. 
Dashed box highlights the hierarchical prior structure. Message passing occurs exclusively between adjacent 
nodes.
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	 where ⟨|αl|2⟩ = |α̂l|2 + [Σα̂]ll, Kp(·) is the modified Bessel function, defined as 
Kp(z) =

´∞
0 exp(−z cosh t) cosh(pt)dt, p = ϵ − 1 = −0.9, which analytically solves for the hyperparam-

eters, thereby accurately capturing the spatial correlation of the light source speckle noise.

	4.	 Output: α̂est = α̂(T ) (sparse coefficients after T VMP iterations), West = R (Dα̂est).

Full derivations are provided in Appendix A, and the derivation follows the framework established in 
References16,24,27,29.

The overall schematic diagram of the reconstruction algorithm based on Sparse representation via KSVD and 
sparse Bayesian estimation for GI is shown in Fig. 3.

This algorithm differs from natural image denoising in that it is specifically tailored to the GI physical 
model, which consists of two processes as illustrated in the blue and green boxes in Fig. 3. Its strengths lie in its 
physical adaptability, achieved through threefold innovations: physical constraint modeling, non-overlapping 
KSVD acceleration, and ”Gaussian-Gamma-Gamma three-layer” - Bessel VMP noise adaptivity. These 
innovations significantly enhance computational efficiency, robustness to low sampling, and noise adaptability, 
as experimentally verified in next Section.

Results
In order to verify the performance of the model we optimized, simulation and experiment are performed. In 
this process, a simple binary pattern (“double-slit”), a complex pattern of biological tissues (“lung structure”), 
and a real biological sample (”human blood cell sample”) are selected as target objects. In the experiment, as 
shown in Fig.   1, the pregenerated speckle patterns are projected onto the transmissive object using a DLP 

Fig. 3.  Workflow of the proposed CSGI framework. (Phase 1) KSVD Dictionary Learning (blue), Input: 
training image patches Y; Process: sparse coding and dictionary update (details in Appendix A.1); Output: 
dictionary D, sparse codes α. (Phase 2) 3L-Bayesian Reconstruction (green), Input: bucket measurements 
B in Eq. (4); Process: initialize and update parameters (details in Appendix A.4-A.7); Output: α̂est, 
West = R(Dα̂est).
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projector. Subsequently, the transmitted light intensity was then collected using a bucket detector (Thorlabs 
PDA100A2, detected area 75.4 mm2, gain 70dB) for correlation-based image reconstruction. The double slit 
pattern was specifically chosen as the test object (with a center-to-center separation of 1 mm and a height 
of 4 mm) due to fabrication constraints. The variable M is used to represent the number of samples, and the 
simulation reconstruction results of four reconstruction algorithms are compared (TGI, OMPCSGI, BCSGI and 
our approach). In order to quantitatively analyze the imaging quality, the PSNR is introduced, which is defined 
as the ratio of the maximum possible signal power to the reconstruction error power, with the formula described 
below31

	
PSNR = 10 log10

[ Tmax

MSE

]
,� (13)

where MSE = 1/L
∑K−1

x=0

∑K−1
y=0 [R (x, y) − T (x, y)]2, with R(x,  y) and T(x,  y) being the original and 

restored images, respectively, Tmax represents the maximum pixel value of the image.
Firstly, the corresponding simulation and experiment results for the binary object “double-slit” are presented 

in Fig. 4, where each column corresponds to different measurement times (M = 200, 400, 600, 800, 1000), and 
each row represents a type of restructuring algorithms (TGI, OMPCSGI, BCSGI and our approach). For ease of 
comparison, the PSNR (the PSNR is measured in dB) of every restructuring algorithm is marked at the bottom 
of results. As shown in Fig. 4(a) and (A), the reconstruction result in TGI is barely visible even for the gradual 
increment in M. For the BCSGI and OMPCSGI, as depicted in the Figs. 4(b)-(c) and (B)-(C), minor discrepancies 
are observed in the visual angle effects, where quality of image improves as M increases, and upon reaching a 
value of 1000 for M, both methods are capable of reconstructing a clear “double slit” image. Notably, the PSNR 
for BCSGI is marginally higher than that for OMPCSGI. By comparing the four algorithms, it can be found that 
our approach achieves superior reconstruction quality. Specifically, when M equals 200, the background noise of 
our approach becomes invisible, while the images from the other three algorithms are still overwhelmed by noise. 
Upon increasing M to 400, which corresponds to a sampling rate below 12.2%, a near-perfect reconstruction 
is essentially achieved in our model. In summary, both simulation and experimental results indicate that, for 
simple binary images, our scheme not only provides clearer and more precise reconstructions but also requires 
a lower sample count for optimal imaging.

Figure  4 showcases the exceptional reconstruction capabilities of our optimized algorithm, without 
considering the complexity of the patterns or objects involved. Here, we selected “lung structure” as the target 
object to simulate the highly intricate biological tissue, and the corresponding simulation results are depicted in 
Figs. 5 (a)-(d). It is shown that the model we designed achieves near-perfect imaging result, even with a sampling 
rate below 12.2%. BCSGI can only produce images with sub-optimal clarity (PSNR = 13.3060 dB), at M = 2000, 
as shown in Fig. 5(c5). And the results of OMPCSGI, as illustrated in Fig. 5(b5), lags slightly behind BCSGI 
in both visual quality and numerical metrics (PSNR = 11.2790 dB). In addition, its implementation requires 
preset sparsity, which is difficult to achieve in a real biological tissue environment. Given that the coefficients of 
KSVD sparse representation are sparser and that BCSGI does not need to preset the sparsity level, our optimized 
algorithm shows superiority in reconstructive performance under conditions of limited sample data, particularly 
for images rich in edge information. This offers significant theoretical support and potential application value for 
the identification of complex biological tissues in the biomedical field.

To verify the practical applicability and effectiveness of our method in real biological samples, we employ 
human blood cell sample as target object. The comparative results of the four algorithms are displayed in 
Figs. 5 (A)-(D). Our algorithm consistently products the best reconstruction results at various sampling rates. 
Particularly at M = 400, our method maintains 29.8964 dB PSNR while perfectly conserving the biconcave 
discoid shapes and cellular edges. In contrast, for OMPCSGI and BCSGI, it is only at M = 2000, with PSNR 
values of 22.2858 dB and 23.4151 dB respectively, that BCSGI manages to achieve a slightly clearer image, while 
the output of OMPCSGI still has artifacts. Notably, TGI shows the poorest performance and failed to effectively 
reconstruct the image of the original target object. Apparently, among the four evaluated algorithms, our 
approach not only exhibits superior reconstruction quality but also significantly decreases the required sampling 
rate for the algorithm.

Then, we take into account the noise robustness of our proposed scheme, various types of path noises are 
considered, which degrade imaging quality by perturbing the field strength fluctuations detected by the bucket 
detector. We introduce the noise amplitude ratio (ηa) as a metric to transform the traditional signal-to-noise 
ratio (SNR, ηa =

√
10−SNR/10), directly quantifying field-strength perturbations, where higher ηa values 

indicate stronger noise interference. The corresponding results for complex biological tissue ”lung structure” 
and ”real human blood cell sample” (M = 2000) are compiled in Fig. 6, where each column corresponds to a 
certain degree of noise effect (column 1: no-noise, column 2-4: noise conditions of 25 dB (ηa = 5.6%), 20 dB 
(ηa = 10%) and 15 dB (ηa = 17.8%), respectively), and each row corresponds to a kind of algorithms (TGI, 
OMPCSGI, BCSGI and our approach). It is evident that, with the escalation of noise levels, the PSNR of each 
method undergoes a decrease, while our approach exhibits remarkable noise resistance, boasting the highest 
PSNR of the four algorithms, which indicates that our approach performs strong noise resistance while presents 
better imaging quality even under the noise conditions of 15 dB (ηa = 17.8%). However, higher levels of noise 
(ηa ≥ 15%) can interfere with the KSVD algorithm’s ability to sparsely represent the signal, thereby affecting 
the accuracy of the dictionary update, which may lead to the ”block effect” in the reconstructed image, as shown 
in Figs. 6 d(4) and D(4). In addition to that, considering complexity and realism, our approach performs best in 
path noise environments, particularly with Gaussian white noise.
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To demonstrate the universality of our approach, Gaussian white noise is replaced with multiplicative noise 
to assess the noise resistance of four GI methods under different degrees of noises when M = 2000. The effect of 
multiplicative noise is distinct from that of Gaussian white noise, it is more complex as it can affect not only the 
amplitude but also the shape and characteristics of the signal. The corresponding results are depicted in Fig. 7. It 
becomes evident that as the noise levels increase, the PSNR of each system decreases, with a greater extent than 

Fig. 4.  Simulation results of (a) TGI, (b) OMPCSGI, (c) BCSGI, (d) our approach and experimental results of 
(A) TGI, (B) OMPCSGI, (C) BCSGI, (D) our approach for (a0) object “double-slit”. Each column corresponds 
to M = 200, 400, 600, 800 and 1000.
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that observed under the influence of Gaussian white noise. It is worth noting that, whether for complex patterns 
or real biological samples, when ηa ≥ 10% (equivalent to 20 dB), GI, OMPCSGI, and BCSGI are particularly 
susceptible to multiplicative noise interference, which can nearly submerge the images, while our method retains 
a relatively stable reconstruction capability. However, as shown in Figs. 7 d(4) and D(4), under the influence of 

Fig. 5.  Simulation results of four reconstruction algorithms for (a0) “lung structure” and the corresponding 
reconstruction for (A0) “real human blood cell sample”. The first to fourth rows of each image set correspond 
to TGI, OMPCSGI, BCSGI, and our approach, respectively, while each column represents M = 400, 800, 1200, 
1600 and 2000.
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higher levels of multiplicative noise (ηa = 17.8%), more pronounced structural breaks are evident compared to 
the Gaussian white noise depicted in Figs. 7 d(4) and D(4). For such significant multiplicative noise interference, 
effective solutions may be achieved in the future through the application of deep learning (such as Graph 
Convolutional Networks) or optical path correction techniques.

Fig. 6.  The corresponding reconstruction results for (a0) “lung structure” and (A0) “real human blood cell 
sample” under different Gaussian white noise factors when M = 2000. The first to fourth columns represent 
the reconstruction results with no-noise, and noise conditions of 25 dB (ηa = 5.6%), 20 dB (ηa = 10%) and 
15 dB (ηa = 17.8%).
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To objectively and accurately evaluate the capabilities of different algorithms in terms of image reconstruction 
accuracy, the reconstruction accuracy can be evaluated by computing the correlation coefficient (rT G) and 
structure similarity index measure (SSIM) between the reconstructed image G and the original image T. rT G 
is a linear description of the degree of approximation between the two images, whereas SSIM provides a more 
holistic assessment by taking into account luminance distortion, contrast distortion, and structural distortion. 

Fig. 7.  The corresponding reconstruction results of four algorithms for two objects under different 
multiplicative noise levels. The parameters are the same as those in Fig. 6.
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Higher values of these evaluation metrics indicate superior image quality, with the maximum attainable value 
being 1 for both indices. The calculation formulas for rT G and SSIM are as follows32:

	
rT G = E(T − E (T )) (G − E (G))√

D(T )D(G)
,� (14)

	
SSIM = (2E(T )E(G) + C1)(2σT G + C2)

(E(T )2 + E(G)2 + C1)(D(T ) + D(G) + C2) ,� (15)

where D(T) and D(G) are the variance of the T and G, respectively. E(T) and E(G) are their means. σT G is the 
covariance between T and G, C1 and C2 are constants to prevent the denominator from approaching 0.

The variation curves of rT G for above three target objects under different measurement samples are 
illustrated in Figs. 7(a)-(c), and their corresponding SSIM curves are presented in Figs. 8(d)-(e), respectively. 
Each curve in these sub-plots corresponds to a different algorithm, with TGI illustrated in black, OMPCSGI in 
blue, BCSGI in red, and our scheme in green. It is easy to find that all three graphs demonstrate that when M = 
500, the reconstruction effects for three target objects of our optimized model become extremely outstanding, 
achieving near-perfect results with rT G and SSIM are almost equal to 1. In Figs. 8(a) and (d), for the binary 
object “double-slit”, the rT G and SSIM of the our approach increases rapidly (rT G and SSIM are equal to 1 at 
M = 400), while the values of rT G and SSIM for TGI, BCSGI and OMPCSGI are difficult to reach 1 and achieve 
the perfect reconstruction, even if M increases to 1000. Especially for the complex images and the real blood cell 
sample displayed in Figs. 8(b), (e) and Figs. 8(c), (f), respectively, the values of rT G and SSIM of reconstructed 
images for our approach consistently maintain a value of 1. In contrast, the SSIM values for both BCSGI and 
OMPCSGI are fall below 0.8 at M = 2000. This disparity sufficiently demonstrates the superior reconstruction 
performance of our method.

To quantify the anti-noise capabilities and the precision of image recovery for four algorithms, the rT G curves 
(Figs. 9 (a)-(d)) and SSIM curves (Figs. 9 (e)-(f)) for complex object and real biological sample under above two 
types of noises are presented in Fig. 9. The first and third columns correspond to Gaussian white noise, while 
the second and fourth columns correspond to multiplicative noise. Each curve of different colors corresponds 
to different methods (with TGI illustrated in black, OMPCSGI in blue, BCSGI in red, and our scheme in green). 
It is evident that as the ηa increases, the system becomes increasingly susceptible to noise interference, leading 
to a decline in both rT G and SSIM of the reconstructed image. Figures 9(a) and (e) display the reconstruction 
results (when M = 2000) of the ”lung structure” object under different varying levels of Gaussian white noise. 
Obviously, rT G values in Fig. 9(a) of our approach are always higher than those of others, and the SSIM curves 
depicted in Fig.  9(e) reflect the same conclusion. This suggests that our approach significantly reduces the 

Fig. 8.  Variation curves of rT G and SSIM with different number of measurements M, where the lines in black, 
blue, red, and green corresponding to TGI, OMPCSGI, BCSGI, and our approach, respectively.
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adverse effects of Gaussian white noise. As depicted in Figs. 9 (c) and (g), the same conclusion can be drawn for 
”real human blood cell sample”. When accounting for multiplicative noises, whether it is a complex object or a 
real biological sample, both rT G and SSIM curves drop sharply as the noise increases. In particular, when the 
noise ratio ηa ≥ 15%, although our method still outperforms other algorithms, it is also significantly affected 
in terms of structural integrity. Consequently, our algorithm demonstrates strong robustness against Gaussian 
white noise and medium-to-low levels of multiplicative noise. For higher levels (ηa ≥ 15%) of non-uniform 
multiplicative noise, to avoid structural discontinuities (”block effects”), future work could consider integrating 
deep learning to mitigate the noise-induced damage to the original signal.

For compressive sensing algorithms, the time consumption of the algorithm is an important evaluation 
criteria. Subsequently, the issue of time consumption is discussed. For existing BCSGI, due to the complex 
posterior probability calculations involved in Bayesian estimation, it tends to show higher time complexity, 
especially when dealing with large-scale data. In contrast, our method, by integrating KSVD, optimizes the 
iterative process, ensuring that the algorithm maintains high imaging accuracy while appropriately reducing 
computational time. Figure 10 illustrates the time consumption curves for the above three target objects of both 
BCSGI and our optimized approach, with the red line representing BCSGI and the green line representing our 
algorithm. It is shown that the time consumption increases with the growth of M, yet our algorithm consistently 
shows lower time consumption compared to the existing BCSGI. Particularly, for complex target objects and real 
blood cell sample with M >1200, as depicted in Figs. 10 (b) and (c), the time consumption exceeds 30 seconds. 
Conversely, the KSVD algorithm, as shown by the green curves in the three figures, enables our method to 
achieve a balance between maintaining reconstruction accuracy and moderately reducing the algorithm’s time 
consumption through its iterative optimization process. Nevertheless, future research should still focus on the 

Fig. 10.  Variation curves of time consumption for the reconstruction of three objects with different number of 
measurements M.

 

Fig. 9.  Variation curves of rT G and SSIM with different path noise conditions. The left and right columns in 
each set of graphs correspond to Gaussian white noise and multiplicative noise, respectively.
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time efficiency of algorithm to further optimize the running time of algorithm while ensuring the quality of 
reconstruction is maintained.

Conclusions
In this paper, we have proposed an anti-noise variational sparse Bayesian estimation CSGI based on 3Level factor 
graph for the imaging of complex biological tissues at low sampling rates. Comparative analysis reveals that our 
algorithm surpasses other traditional methodologies in reconstruction quality and anti-noise capability under 
lower sampling rate, especially for images with complex edge details, indicating near-perfect reconstruction at a 
low sampling rate (below 12.2%). In addition, compared to existing BCSGI, our approach appropriately reduces 
the time consumption. These advancements address the practical challenge that the sparsity of traditional CSGI 
algorithm cannot be preset, which is conducive to the popularization of biomedical imaging applications. And 
subsequent research can integrate deep learning to address the issue of imaging structural breaks (“block effect”) 
under significant noise influence.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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