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OPEN A hybrid recurrent neural network
and optimization framework for
intelligent mobile robot navigation
in smart manufacturing

K. Radha'™ & S. Karthikeyan?

In the third dimension prospective of production industries taking on smart manufacturing principles,
the integration of automation and digitalization revolutionizes conventional processes, unlocking
heightened productivity and operational efficiency. This endeavour implicates coordinating unified
interactions among machines and human operators, capitalizing on their unique strengths and
capabilities. In this study, a multi-objective optimal navigation system tailored for mobile robots
operating in dynamic surroundings, leveraging hybrid optimization algorithms. Primarily, introduce
the modified animal’s migration optimization (MAMO) algorithm, which measures obstacle state

data essential for dynamic obstacles. This facilitates proactive collision avoidance, thus minimizing
unnecessary disruptions. Consequently, deep features are extracted from all feasible paths spanning
the target region connecting the origin and destination points. These path features are then subjected
to the chaos locust search (CLS) algorithm, which determines multiple paths to consider. In addition,
the hypercube search with recurrent neural network (HS-RNN) is employed to locate the optimal path
while removing redundant alternatives among the multiple choices, thereby refining the path planning
process. Simulation outcomes highlight the better performance of the proposed system in optimal
path generation compared to alternative approaches, validating its efficacy in dynamic environments.

Keywords Navigation system, Mobile robot, Smart manufacturing, Production industries, Obstacle state

information

Abbreviations

NP The total number of animal agents in the population

D The number of variables in the optimization problem

Xq Current State position of the obstacle (i) at generation (G)

Xneighborhood,G State of randomly selected Neighboring obstacle at generation (G)

X g New State position of the obstacle through the neighborhood
Gaussian random parameter between 0 and 1

rand (0,1) A uniformly distributed random number between 0 and 1

Pa A threshold probability used in the population update process. An agent is updated if
a random number is greater than Pa

rl, r2 Randomly generated indices within the population [1, NP], used in the position up-
date equation

L={112,...IN} The population of N locust agents (path solutions)

Lk = {lk1,lk2,...1kN}  The position (a candidate path) of the ith locust agent at iteration k

ik Position of agent (i) at iteration

Lk The entire population of path agents at iteration

Sf; Total social force acting on agent (i) at iteration

Sis - Pairwise social force between agents (i) and (j)

P(gli ) 1 Dominance value of agent (i) relative to agent (j)

Tij Distance between agents (i) and (j)
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S (7"5 ) Social factor function (attraction/repulsion)

EL Parameters controlling the magnitude and forces

pk Behavior probability (Solitary vs. social phase) k
Subset of q best solutions at iteration k

A (b]K ) The attractiveness of solution

£ est> Frvorst The best and worst fitness within the set BX.
A very small constant to stop division by zero

bk A guide solution randomly selected from BX

C Chaotic variable from the logistic map

X[] Random (n, m) are formed based on the parameters dimension (m), radius (R), lower
and upper bounds (LB, UB), and population size (n)

LB, UB Lower and Upper bound of search space

R Radii of the hybercube (R=UB -LB)

X, Center of hybercube

Xy est The best solution found in the current hybercube

S Converge factor of the hybercube

d Normalized distance matrix

Smart manufacturing' refers to the efficient utilization of labor, materials, and energy to produce tailored, high-
quality products with a technology-driven approach, ensuring timely delivery. These traits collectively contribute
to the resilience and sustainability of manufacturing by enhancing resource and energy management®.
Autonomous navigation is a pivotal capability for mobile robots, reducing their dependence on human
intervention?. Path planning entails decisive the most efficient sequence of achievement for a robot to move from
its present state to a desired one, with these states representing the initial position and the goal, respectively®. The
swift evolution of mobile robots not only enhances daily conveniences, exemplified by technologies like sweeping
robots, but also plays a vital role in substituting workers in perilous industries such as mining and aerospace®.
Within intelligent building systems’, inspection robots exhibit the capability to strategically plan the shortest
path to navigate a path from danger in critical situations like fires. Path planning algorithms®” usually try to find
the best path or acceptable supposition. For instance, the ideal path could be one that restricts the time required,
an essential figure missions like request and-rescue errands, where brief assist with canning unfathomably critical
issue!”. These constraints may stem from the robot’ limitations in adapting to specific terrains'"!2. Conversely,
dynamic path planning!® is more intricate, capable of adapting to real-time changes in the environment to plan
a route for a moving robot. Robot path preparation methods fall into two main classes such as conventional
and modern systems!*. Classic techniques incorporate cell decay, likely field, sub-target, and examining based
strategies!>!®. Heuristic algorithms comprise neural networks'’, fuzzy logic'®, normal heuristic techniques',
and half-breed calculations. While exemplary strategies might confront difficulties in additional working on the
proficiency of path search and improvement, prompting a progressive decrease in usage, heuristic techniques
have acquired notoriety for their viable worldwide streamlining capacities and parallelism?.

The literature review on navigation system for mobile robot for smart manufacturing focused the research
gaps in existing literatures, particularly on the type of technique used for path finding. Luo et al.,*! planned an
improved ant colony algorithm (IAC) to resolve issues connected with neighborhood enhancement, unfortunate
assembly, and low pursuit proficiency in portable robot average path length (PL) and delay finding. Maoudj et al.,?
introduced an effective Q-learning to address difficulties, guaranteeing the deduction of an ideal crash free path
in negligible computational time and safety. Ajeil et al.,” introduced a hybridized particle swarm optimization-
modified frequency bat calculation, expecting to limit PL/distance while sticking to path perfection standards.
Chen et al.,** have introduced the bio-spurred organizing computations for the effect free path orchestrating
of robots in strong circumstances, expressly without a hint of prior information. The padding mean mind
dynamic model is composed association with relationship among abutting neurons, planned to work with the
spread of nerve main thrusts like waves without coupling influences. Li et al.,** have introduced an enhanced
rapidly-exploring random tree (PQ-RRT) algorithm, showing culmination, asymptotic optimality, and quick
convergence rate to the ideal arrangement. RRT keeps up with a similar computational intricacy. Albeit static
path arranging is transcendently investigated at the on-going phase, certifiable conditions are dynamic. Miao
et al.,?® have presented an enhanced adaptive ant colony algorithm intended for enhancing the path arranging
and length findings of indoor portable robots. Song et al.,” have devised a strategy for addressing the planning
challenge of achieving a smooth robot path with accuracy and F-measure. This includes using a constant serious
level Bezier bend related to an improved particle swarm optimization (IPSO) calculation. Instead of associating
various low-degree Bezier bend fragments, the persistent serious level Bezier bend is utilized to meet the rules
for smooth path arranging. Lyu et al.,?® have introduced a graph-based system aimed at optimizing robot average
paths and computational time, with the focal point being the application of the Floyd algorithm to dynamically
allocate masses to various paths. Zhang et al.,”” have presented extrapolative path planning designed for robots
navigating dynamic surroundings, utilizing the RRT. It speeds up the time to revaluating framework, restricting
the path cost, diminishing the likelihood of accidents, and finally working on the idea of the re-examined
path. Nayab Zafar et al.,’* have introduced a navigation control methodology utilizing a hybrid grey wolf’s
optimization and the artificial potential field technique for timely path preparation of mobile robots. Existing
path planning methods struggle with adaptability and efficiency in dynamic, complex environments due to
limitations in optimality, continuity, and computational speed. Yang et al.,*! have introduced a unique robot path
preparation that facilitates a predominant improved A* algorithm with better strong window technique. Zhong
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et al.,*? have utilized a classic A and safe A for mobile robot in large-scale environment. Raj et al.,>* presented the
reinforcement learning technique for intelligent mobile robot navigation problem.

Many existing classical algorithms often fail to provide globally optimal paths in dynamic environments.
Most research papers assume static environments and real-time path planning that adapts to moving obstacles
in smart manufacturing settings is still a major challenge. The integration of hybrid optimization approaches
remains underexplored. The main contribution of this research paper is intended to improve the dynamic path
planning by combining the MAMO, CLS and HS-RNN, to overcome the drawbacks of conventional tools such
as poor exploration and local optima entrapment. In the proposed approach, MAMO is applied to measure
obstacle states, and CLS is employed to explore the various paths by chaotic theory and a HS-RNN is used to
determine the optimal path. Hence, the primary objectives of this work is to efficiently design an intelligent
multi-path decision-making navigation scheme by leveraging optimal feature extraction from all potential paths
between the source and destination in static and dynamic scenarios. Also, the proposed navigation scheme has
been validated with existing solutions to ensure suitability for smart manufacturing in production industries.

Problem environment

In this study, the environment modeling relies on the grid technique, a technique that partitions the two-
dimensional workstation of mobile robots into a uniform grid structure. The illustration in Fig. 1 demonstrates
the division of the entire workspace into a grid map, where each grid is allocated a unique amount. Initially,
information is gathered from the grid map, utilizing the discrete nature of the environment.

The experimental environment is defined as a (20 x20), (40 x40), (50x50), (80x80) and (100x 100) grid
maps, where each cell represents a possible position for the mobile agent. Black cells denote obstacles, and
white cells correspond to free navigable spaces. The agent starts at the lower-left corner and aims to reach the
goal position located at the upper-right corner. The grid includes both static and dynamic obstacles to emulate
a real-world navigation scenario. Static obstacles remain fixed throughout the simulation and form the baseline
environment for path generation. In contrast, dynamic obstacles change their positions over time according to
predefined movement rules. During navigation, the MAMO algorithm computes the current obstacle states at
each time step by updating the availability matrix. When a dynamic obstacle moves into a previously free cell, its
corresponding entry in is updated from 0 (free) to 1 (occupied/obstacle) and vice versa if the obstacle moves away.
For example, consider a navigation scenario on a 5x5 grid where coordinates (x, y) represent positions, with
x-values from 1 to 5 spanning left to right and y-values from 1 to 5 spanning bottom to top. The agent’s starting
pointis S = (1, 1), and the target destination is G = (5,5). Agent mobility is continuous, meaning positions are not
confined to discrete grid points; however, for the purpose of obstacle detection, these continuous coordinates
are rounded to the nearest integer grid cell. The environment includes predefined static obstacles at cells (2,5),
(4,4), and (3,2), forming an initial binary obstacle map. Additionally, a dynamic obstacle, unknown to the agents
initially, starts at (2,3) at time t=0 and transitions to (2,4) at t=1. Agents can only identify obstacles, whether
static or dynamic, by physically occupying the corresponding cell during movement. This simulation utilizes in
Eq. (1)** with a parameter §=0.5 and in Eq. (3)** with p=0.6. Over the course of two MAMO iterations (from
generation 0 to generation 2), an occupancy detection matrix is updated. This matrix begins with the static
obstacles already marked, and a cell is flagged as detected if any agent lands on it during iteration.

Initial state

510100 |G
410010110
30000 |0
2001 ]01]0O0
1/S]0|0 |00

112345

The MAMO begins with three agents positioned near (1,1), (3,1), and (2,4). In the first iteration (G=0-1),
migration guides the agents to new sensing cells at (2,2), (4,2), and (2,4), but none encounter the dynamic
obstacle D at (2,3). A subsequent population update replaces the worst-performing agent, repositioning it to
(2,4). In the next iteration (G=1-2), the dynamic obstacle moves to (2,4). Agent migration now leads two
agents to land on cell (2,4), resulting in the successful detection of the dynamic obstacle. This discovery is then
integrated into the observed obstacle matrix, updating the system’s knowledge of the environment.

51010 ]JO0|G
410|101 ]0
3 /0000 |0
2001 ]01]0O0
1/S|0|0 |00

112345

(2,4) =1 because two agents confirmed observation by landing there.
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The CLS is employed to select multiple paths based on the extracted features. CLS introduces chaos to
enhance exploration, considering various alternatives for navigation. For example, the iteration begins with the
solitary phase, where pairwise social forces are computed for the three path locusts. For the worst locust 1_3
(P,), forces from the better-ranked locusts are calculated using the defined s(r) function and dominance rule
p. The sum of these forces S_3 is a vector, which is added to 1_3 to update its position. In the subsequent social
phase, the best set B is formed from the top two paths, P, and P,. Their attractiveness values are calculated to be
approximately 1.0. For the updated worst locust, the roulette selection probabilities for P, and P,, respectively.
P, is selected as the attractor. Finally, the social update rule with a random value of 0 to 1 is apphed moving
the worst locust to a new position, very close to the best centroid P. Further illustrated, the PL?®, measured as
the total number of moves, was identical for all three candidate paths at 8 units. However, the paths differed
significantly in smoothness, quantified by their cumulative turning angle (CTA)*'. Paths P, and P,, which
consisted of straight segments with only one direction change, had a low CTA of 90°. In contrast, Path P3’s zig-
zag pattern resulted in five turns, yielding a cumulative turning angle of 450° five times higher. While the average
turning angle (ATA)?? was 90° for all paths, as each individual turn was a right angle, the cumulative metric
effectively captured P,’s tortuosity, making it a key differentiator for path quality where smoothness impacts
efficiency. Finally, the HS-RNN model is to identify the optimum path from the alternatives generated by CLS.
The model discerns between optimal and redundant paths, refining the path selection process. The MAMO +
CLS + HS-RNN system was implemented in MATLAB programming simulation on an Intel core I5-9400 CPU
and 16 GB RAM platform. Key parameters included: MAMO with 20 agents and a migration rate (§ = 0.5). The
CLS algorithm used a population of 50, with F (social force magnitude) = 1.5, L (social interaction range) = 1.0,
and q (number of best solutions for attraction) = 10. The HS-RNN performed multi-criteria optimization using
PL, a turning penalty (weight = 0.01), and safety. Multiple independent runs validated the results.

Proposed methodology
In this section, it describe the multi-objective optimal navigation system integrates grid-based environment
model.

Compute obstacle state information

Obstacle state information refers to a dynamic assessment of the current state or characteristics of obstacles
within the environment. The need to compute obstacle state information arises from the necessity to enhance
the ability to direct through its environment effectively. The modified animal’s migration optimization (MAMO)
algorithm is a nature-inspired optimization that draws stimulus from the collective performance of animals.
During the migration procedure, the algorithm pretends collections of animals moving from an existing state.
In the process of informing the population, the algorithm pretends the probabilistic renewal of animals. If the
index of an animal is i, its neighborhood consists of animals having indices are i — 2,i— 1,4, i+ 1, i + 2, and if the
index is 1, then the neighborhood indices NP — 1, NP, 1, 2, 3, etc. Once the locality topology is created, randomly
choose a neighbor and appraise the individual’s location rendering to that neighbor, using Eq. (1)*.

Xi;,G+1=X;,¢+ 6 (Xneiborhood, G — X; &) (1)

The new position X; ., is calculated using the current position X; , a neighborhood position X v 4004 ¢, a
Gaussian random parameter 0, and the vector difference between two other randomly selected i ing 1V1duals ()
r,). The better position between the new and current one is selected using Eq. (2)**.

Xiif f(Xi,¢) isbetterthan f (X c41)
X = ) (2)
Xi.g+1 otherwise
In the MAMO, the best individual defines the G™ cycle living region. As resources diminish, few animals begin
to migrate, developing the G+ 1th cycle living region. This continuous shrinking of the living region makes
individuals converge toward the best string/solution, improving convergence speed and accuracy.
The boundary of the living region is recognized as in Eq. (3)**.

Low = Xpest — R7 up = Xbpest + Ra R= PR (3)

Here, X, ., denotes the leader animal; low and up are the living region bounds; R is the radius; is the shrinkage
coeflicient; and € (0, 1), low, up and R are all 1xD array vectors. Initially, R depends on the search region size and
larger R improves exploration, while smaller R enhances exploitation during cycles.

The MAMO contains: (a) animals living in a defined region, (b) migrating as resources deplete, (c) population
updating, and (d) settling in a new region. So, it’s covering living, migration, and updating processes.

In the initialization, the MAMO starts by initialize a set of animal locations X, X,, X,,...X,, every location
X, D-dimensional vector w1th components umformly distributed among lower bound a; and upper bound b So
the jth component of the it vector as Eq. (4)> and (5)*.

Xi,j = aj +rand; ; [0, 1] (b; — a;) 4)
i=1, NP, j=1, D (5)

where, [0,1] i j rand is a uniformly distribution.
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In MAMO, migration occurs as resources deplete or conditions change, updating grid map and locations
based on neighbors. During new population updating, replaced individuals maintain a fixed population size,
allowing computing the obstacle state and ensuring continuity of the algorithm. The working process of obstacle
state information computation using MAMO is explained in Algorithm 1.

Input

:Information from grid map. number of population, maximum iteration

Output : Obstacle state — static or dynamic

1.

-

sl o

(=)}

Initialize the random population

The update the person's position according to that neighbour
‘YLG+1 = ‘Yz'zG +0- (‘X,neiborhood:G - ‘){?G)

Ifi=0.j=1

While Do

Compute the boundary of the existing area

Low=X,, ,—R, up=X,,,+R, R=p-R

Compute component vector X; ; =a; +rand; ;[0.1]-(b; —a;)

Find the best output values
End

Algorithm 1. Obstacle state information computation usign MAMo.

Feature extraction and multiple path selection

Feature extraction is the procedure of capturing and representing relevant features from raw data. In the context,
feature extraction is functional to paths within the grid map to capture essential information that aids in the
navigation process. The CLS algorithm is used for selecting multiple paths which enhance the exploration,
considering various alternatives for navigation. CLS is a population-based global optimization method inspired
by the collective movement of desert locust swarms®. In the CLS algorithm, search agents are represented by
an L = {I,1,,...1} set of N individual locusts that interact with each other as they traverse the n-dimensional
solution space. Every individual condition I, = {11 L -+, }is constrained in bounded region (S = { xéR" | Ib, <
x,<ub}), with x =[x, x,, x5, x,], lower Ib,, upper ub bounds at the d-dimensional and characterizes apphcants
string to a particular problem. Like other swarm based methods, CLS proceeds by cycles where agents alter their
locations across generations. These updates are guided by operators modeled on the two behavioral phases of
locusts such as solitary and social phase. During the solitary phase, individuals move to different locations in
search of food sources, while avoiding mating with other potential partners. Hence, for any cycles ‘K is the total
attractive and repulsion force by a particular individual ‘7, as in Eq. (6)*°.

N

_ k

=255 (©6)
#1

@ @

where S}; denotes the pairwise attraction among separate “i” and some other individuals “” and is assumed by

Eq (7)35

Sfj =P (lf, lf) s (Tfj) dij +rand (1, —1) 7)

where the operativep (l'-C l ’-“) is known as supremacy value amongl} and [¥ the worths (Tk )characterizes the

so named social factor, where 7’ = ||i¥, l H | denotes the Euclidian distance among the elements “/” and

i

>

7. Therefore, d;; =

|| / r;;attitudes for the unit course cement from *tol lk though and (1, -1) is a
random vector whose fundamentals are haggard from the unchanging distribution of [- 1, 1]. The value s (rfj)

is assumed by Eq. (8)*°.
ok ,
s (Tfj) — Fe UL _ efr’fj (8)

where the limitations f and I represent the attraction greatness and measurement scale, individually. To apply
operatorp (li€ 15 ) and presumed that each individual 1k el® {l X, lﬁ} is ordered with number from 0
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Optimal pathplanning using
HS-RNN model

Optimal paths

Fig. 1. Overall system architecture of proposed multi-objective optimal navigation system.

Dynamic obstacles

Grid map
@ Source ¥ Destination
Discard paths

(Best) to N—1 (Worst) contingent on their individual fitness worth. Then, the dominance worth may be assumed
asin Eq. (9)**:

o (rank(1f)/N) if rank (liK) < (l )

K
) J )
o (rank(1f)/N) if rank (lf() > (l;{)

As effect of the inspiration of the total social forces?, each person shows a certain propensity to move towards

other memberships of the “” population. In such cases, the new location resulting from individual “” can bes¥
expressed as in Eq. (10)*°.

I; =1 + SF (10)

Applying solitary phase movement operators to every individual separately leads I; € [*to refine the best
candidate strings L = {I ,1,...1 }that represent every individual’s location as an outcome of the inspiration used
by all other members of the swarm.

In the social phase, the aim is to improve the best candidate strings (L = {11,12,. . .lN}), which are attained by the
solitary phase movement operator. From this set, a subset (B=b,,....b ) containing the best strings (q) is selected.
For each string (I, € B), a group of (k) random solutions (M"* = {mll, mh }) is created within its respective

subspace (C, € S), where the boundaries of are predefined, as in Eq. (11)* and Eq. (12)*.

Ol =bip — 7 (11)
Co =bin +r (12)

whereC{5*" and C}'*”*" characterize the lower and upper bounds of every sub region c, at the n-th dimension,
correspondingly, while b; nattitudes for the n' element from string b,, as in Eq. (13)*.

o ZZZl (bZPPEdT) _ (b?nower) ﬂ (13)

whereb!?" and b“PP*" denoting the b represents the lower and higher bounds, and d represents the total
amount of decision variables. Also, 8 € [0, 1]€ [0, 1] characterizes a scaling factor that changes the scale C..
Finally, the best string I, € N and its corresponding i from the random strings ((m’l, ms, mé)) are assigned to
a unique location “i” in the next iteration “k + 17, expressed in Eq. (14)%.

lf“ = best (mi, mé, mz) (14)

Any solution not grouped in the best solution ] set B is not eligible for exclusion by the social status director.
Therefore, the last location update practical to each individual in the entire swarm by " can be summarized as
in Eq. (15)%:

best (If, mi, my, m},) if lje B
lf“z{es ( mi, Mo mh> if (15)

I !¢ B
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The CLS combines global and local search by solitary and social phases but suffers from maximum computational
imbalance among exploration and exploitation. It introduces a probabilistic pattern that applies either phase
selectively and adjusts the social operator with a probabilistic attraction, improving performance and efficiency.
The solitary and social phases are based on cycles. Early steps emphasize solitary exploration, while later steps
favor social exploitation. The probability of social behaviors increases in the search progresses, guiding the
choice of the phase at every cycle. Underneath such conditions, at a piece repetition “k”, the behavior phase
P (l k ) functional to the populace I*is selected as shadows in Eq. (16).

{solitary if rand < pk (16)

P(I*) =

solitary if rand > pk

A random number between 0 and 1 is compared against a performance probability, p¥, calculated using Eq. (17)%.

p=1-% (17)
itern

The number of cycles measured in the search process is indicated as itern. For this modified social operator, the
social phase leads each individual toward hopeful strings instead of relying on multiple local valuations, thereby
minimizing computational time. A subset of the best strings (B* = b ,....bF ) is chosen that includes the g best
strings from the total set L¥ = {I* % ,...I* }, and every individual ¥ moves toward a randomly chosen bk with a
probability affected by both its quahty and distance, as in Eq. (18)*.

p A (b%) el =5
I VY (P

where ||liC — b? ||denotes the Euclidian distance among the separate “” (IF ) and associate

(18)

s

j” from the set of

greatest strings B” (bf), while A (bf) stands for the attractiveness of string bj as mentioned by Eq. (19)%.

kY — f (bf) - fworst (Bk)
A (b7) - fbest (Bk) - fworst (Bk) + € (19)

It represents f ( ) the relative fitness value b (rank) frest (Bk) Sfworst (B k) stand the best and worst fitness

values from the members of the best string sets. The social phase characteristics, every individual I, within the
swarm population LX updates their location as in Eq. (20):

[ LT (b’rC - lf) rand (20)

where b (by r € [L.. ., q]) is a randomly selected explanation b¥ € B, with respect to their particular
prospectsPZ (qualified to I¥, and b), while rand stands for a random haggard from within the consistently
dispersed mterval [0, 1]. The working process of feature extraction and multiple path selection using CLS is
explained in Algorithm 2. The extracted path features are then subjected to the CLS algorithm, which produces a
set of multiple feasible paths rather than a single solution. This step ensures that the diversity of potential routes
is preserved.
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Input :Static and dvnamic obstacle information
Output -Multiple paths

1. Initialize the random population

? 7 ! PN kg kK
- Define the value Sh,‘} _,lis given bys(;'l.-;l‘ _||= Fe I E_
3. If =0, =1

4. While Do

5.

Compute individual 7" as a result of .S‘I‘ expressed as

A
6 (o ol i i\ i gt
I+ ]be.sr(.’l.- mi mh, my,| if I, B
Compute the whole swarm /; ™ =+ '

7} if I 2B
1. If not discard then
8 Compute distance separating both individuals (I, and b*;)
r ;‘I'Ib‘i.-[: L_,_W Y I
EERRE Y
Zir=1dl-b’? r

9. Define the swarm population L* updates their position

= 0K opE —1F ) rand
10. Store all feasible paths generated in the current iteration into

Path_set.
11. End while loop
12. Retumn the collection of all feasible paths as the final output

Algorithm 2. Feature extraction and multiple path selection usig CLS.

Optimal path planning

After the assortment of multiple paths, the optimum path planning process involves identifying the most
efficient and effective path while eliminating redundant or suboptimal alternatives. In this context, the HS-
RNN is employed to enhance the optimization of the planning process, and equations are taken from Tunay
and Rahib®® whose advantages are utilized in different applications®”. During initialization, candidate strings
(X [search region] = random (#n, m) are formed based on the parameters dimension (), radius (R), lower and
upper bounds (LB, UB), and population size (n). The hypercube is defined by its radius (R) and center (X ), given
by Eqs. (22) and (23). Within the defined search region, points x, (i = 1,.,n; j = 1,.,m) are created in Eq. (21), and
their corresponding objectives f. (elements of F) are attained. Thereafter, the best string matrices X, and F,
(nx1) are observed, creating the initial population for subsequent cycles. The situation of the X, using local
search and following measures X;..; = Xsest + pAF, where F is the objective meaning and0 < p < 1.

Lower bound (LB) and upper bound (UB) to scale the strings x; in Eq. (21)%¢

X,; = LB+ X,,; (UB - LB) (21)

Determine radii (R) of the hybercube expressed in Eq. (22)3¢:
R=UB-LB (22)

Center of hybercube are gotten in Eq. (23)°.

R
L= 23
Xe=3 (23)
Xnew center — (XC + XbeSt) (24)
- 2
Rnew =RxS (25)
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In the initialization process, next cycle, the X, . is used to compute the hypercube center. This process
is gathered through calculating the center and mean of the last location (X,) and the last best X, . In this
displacement shrink process, the algorithm computes the new hypercube center and estimates the objective. The
next hypercube center is attained through averaging the current hypercube center and the best string (X, )
Relationally, it is given in Eq. (24)* and Eq. (25)*.

The convergence factor S is used to calculate new R (R _ ) based on an old one, R. This operation gradually
minimizes the hypercube size and, subsequently, the search region, a stage called shrink. As the hypercube deals,
the point density (population) increases. The movement of the best string is governed by contraction, which is
higher for lesser displacements, ensuring quicker convergence while escaping local minima. At every cycle, new
points are produced, and their functions are computed. Based on these outcomes, the hypercube size is updated,
smaller with every stage, leading to a denser search region and fast convergence toward the optimum path. The
algorithm thus explores a sequence from the current position, where the displacement ranges are defined, as in
Egs. (26-29)%:

Normalizedz;;:
n (mlj - Xc)
x) = 7 (26)
Normalizedxpest:
n ij Xc
= LX) 27)
Normalized distance d :
)
n n 2
[sum (m” - Xbest) } (28)
dn =
R
Re-Normalized distance:
dn
dnn = —— (29)

Jm

At every cycle, element of x is first divided by its respective interval, converting the displacement into unit-scaled
points as given in Eqs. (26)*¢ and (27)3°. These normalized values are then further divided through the diagonal
length PJ; as given in Egs. (28)* and (29)*. This normalization increases the contraction rate of the hypercube,
resulting in progressively smaller movements toward the optimum solution.

In this searching area phase, the distances between the new and previous optimal solutions are computed
using Eqgs. (26-29)%. The process also employs the defined interval for renormalization to adjust the search
region of x dynamically throughout/m, ensuring efficient exploration around the updated optimum.

When the movement x satisfies the given condition, the convergence factor (S) is calculated and updated at
each cycle using Eq. (30)%.

S=1-0.2e—3dnn (30)

Here, dnn represents the normalized distance attained from Eq. (29)%, found from the average of the 2 latest best
x values. This mechanism guides the population toward the minimum efficiently by continuously reducing the
hypercube area after each cycle. The entire process is recurrent until the decisions are gratified. The algorithm 3
depicts the function of optimal path planning using HS-RNN.
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Input :Number of selected paths, maximum iteration and threshold condition
! Qutput :Optimal best path

| Initialize the random population
2. Compute sequence vectors LB and UB |
3. [ Ifi=0.j=1 §
o4 WhileDo
I R |
; Define central standards X = 2 |
.6 | Perform normalization of X; and Xp.;normalization
A e 1 J
lismn [xﬁ - X i‘ﬂ r]
Compute regularized distance d,, = -
78 Compute factor of § and updated with each iteration
_______________ e S=102e
9 Compute hypercube parameters are modemized by R,,,, =R *S |
1o Endif |
_____ 11. | Updatethe final value |
12 End

Algorithm 3. Optimal path planning using HS-RNN tenique.

Result and discussions

In this section, the validation of proposed MAMO + CLS + HS-RNN system compared with existing methods in
both static and dynamic obstacle environments. To assess the static and dynamic path planning performance
of method, conduct comparisons with established systems, including classic A*, safe A**?, and improved A*3!.

Simulation setup

To facilitate performance analysis, this study employs specific surroundings for mobile robots and the
conservation map. The map is defined with a designated starting and ending point, and some areas may contain
unknown obstacles. Dynamic obstacles within the map move in a straight line at a consistent speed, although
their moving direction and position remain unknown. Equipped with sensors, the mobile robot can perceive
information within aim perfect range, including the position and speed of obstacles. The mobile robot itself
maintains a continuous speed and is capable of movement in all directions. Its maximum velocity, angular
velocity, velocity resolution, angular velocity resolution, acceleration and angular acceleration of 1 m/s, 20°/s,

LT 1T LT 1T
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Fig. 2. (a) Input grid map (Static obstacles) (b) Output optimal path (Static obstacles).

Scientific Reports|  (2025) 15:44617 | https://doi.org/10.1038/s41598-025-28585-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

o b w o

o

0 dOn kD

1234 5 6 789 101112131415 1617 1819

(@)

=3

123456789101

S

12 13 14 15 1617 18 19 2

(b)

Fig. 3. (a) Input grid map (Dynamic obstacles) (b) Output optimal path (Dynamic obstacles).

20x20 | 50x50 | 100x100 | 200x200 | 20x20 | 50x50 | 100x100 | 200200

Path planning system CTAs (°) ATAs (°)
Classic A*3132 4889 |- - 309.4 3256 |- - 61.9
SafeA*31:32 12892 |- - 273.4 2578 |- - 54.7
Improved A*3! 8541 |- - - 1424 |- - -
MAMO+CLS+HS-RNN |52.32 | 55.64 |58.04 229.2 5.62 6.34 | 8.96 45.8
PL PPT

Classic A*3132 28.70 |82.80 |169.70 1051.4 22 26 155 -
SafeA*3132 25.60 | 67.20 | 77.30 1065.8 18 22 85 -
Improved A*3! 26.10 | 61.90 |74.80 - 10 16 42 -
MAMO +CLS+HS-RNN | 22.15 |31.25 |41.23 10387 |6 8 19 -

Table 1. Results comparison of path planning systems for static Obstacles environments in production

industries.

Path planning system | 20x20 | 50x50 | 100x100 | 20x20 | 50x50 | 100x 100
CTAs (°) ATAs (°)

Classic A**? - - - - - -

Safe A*3? - - - - - -
Improved A**! - - - - - -
MAMO+CLS+HS-RNN | 7744 | 8077 |83170 |1291 |1346 |13.862
PL PPT

Classic A*3? - - - - - -

Safe A** 55.8 - - 35 - -
Improved A*3! 47.6 - - 26 - -
MAMO +CLS+HS-RNN | 34,51 | 4361 |53.59 3 5 16

Table 2. Results comparison of path planning systems for dynamic Obstacles environments.

0.01 m/s, 1°/s, 0.2 m/s? and 50°/s>. Figures 2 and 3 shows the reproduction results of path planning using

planned MAMO + CLS + HS-RNN system for static and dynamic obstacles, respectively.

Comparative analysis of proposed and existing path planning systems

Tables 1 and 2 present a comprehensive comparison of the results gotten from various path preparation systems
in motionless static and dynamic obstacle environments. In static and dynamic environment, the proposed
MAMO + CLS + HS-RNN system stands out by consistently showing significantly lower PL, CTAs and improved
ATAs compared to other systems such as classic A¥, safe A*32 and improved A*3L respectively. Also, it produced
shorter PLs with less path planning time (PPT) in larger grid sizes than other systems. Overall, proposed system

outperforms the proportional growth of complexity and erratic pattern-fluctuations.
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Accuracy | Precision | Recall II:’Ieasure Accuracy | Precision | Recall | F-measure

Path planning system Measure (%) - Static obstacles Measure (%) - Dynamic obstacles

Random forest 79.714 75.715 75.138 | 75.426 67.739 66.740 66.399 | 66.569
Linear regression 82.070 78.071 77.494 | 77.782 71.301 70.302 69.961 | 70.131
K-nearest neighbor 84.426 80.427 79.850 | 80.138 74.863 73.864 73.523 | 73.693
Support vector machine | 86.782 82.783 82.206 | 82.494 78.425 77.426 77.085 | 77.255
Decision tree 89.138 85.139 84.562 | 84.850 81.987 80.988 80.647 | 80.817
XG boosting 91.494 87.495 86.918 | 87.206 85.549 84.550 84.209 | 84.379
Deep neural network 93.850 89.851 89.274 | 89.562 89.111 88.112 87.771 | 87.941

Artificial neural network | 96.206 92.207 91.630 | 91.918 92.673 91.674 91.333 | 91.503
MAMO +CLS+HS-RNN | 98.562 94.563 93.986 | 94.274 96.235 95.236 94.895 | 95.065

Table 3. Quality comparisons of proposed and existing path planning systems for static and dynamic
Obstacles environments.

100 T T T .
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Accuracy Precision Recall F-measure

Fig. 4. Quality measure (Static obstacles).

Quality comparison of proposed and existing path planning systems

In this study, each trial’s performance metrics, including PL, PPT, CTA, and ATA, were first normalized to
allow fair comparison across algorithms. These normalized values were then combined into a single composite
performance index (PI) representing the overall efficiency of the path planning process. Success thresholds were
defined on the PI to classify trials as optimal or non-optimal, and the MAMO + CLS + HS-RNN algorithm was
used as the ground truth to assign labels to all other algorithms. Using these labels, the confusion matrix was
calculated to determine Accuracy, Precision, Recall, and F-measure. Finally, the proposed MAMO + CLS + HS-
RNN was compared with traditional machine learning algorithms including Random Forest, Linear Regression,
K-Nearest Neighbor, Support Vector Machine, Decision Tree, XGBoost, Deep Neural Network, and Artificial
Neural Network using these statistical metrics to evaluate its performance and reliability in both static and
dynamic path planning scenarios.

Table 3 presents a detailed quality comparison of the proposed MAMO + CLS + HS-RNN system against
existing path planning systems for static and dynamic obstacle environments in production industries. In static
environment, each system exhibits a progression in measure (%), with the MAMO + CLS + HS-RNN system
surpassing them all by achieving improved accuracy, precision, recall and F-measure of 98.562%, 94.563%,
93.986% and 93.986%. Figure 4 shows the system’s proficiency in achieving a balance between precision and
recall, resulting in accurate and reliable path planning in static obstacle environments. The performance valuation
of the MAMO + CLS + HS-RNN and existing models was validated using a confusion matrix, which records
the number of correctly and incorrectly classified samples. It consists of four parameters: True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN). These metrics collectively assess the model’s
classification capability in terms of correctness, sensitivity, and reliability. In the static obstacle environment, 188
out 0of 200 test samples were correctly classified as positive and 189 as negative, while 12 positives and 11 negatives
were misclassified. From these values, Accuracy = (188 +189) / 200 =98.5% Precision=188 / (188 + 11) =94.56%,
Recall=188 / (188+12)=93.98%, and F-measure=2x(0.9456x0.9398) / (0.9456+0.9398)=94.27%. These
results closely align with the reported performance metrics, validating the model’s high classification accuracy
and reliability. In dynamic environment, MAMO + CLS + HS-RNN system produced better performance than
others by achieving enhanced accuracy, precision, recall, and F-measure of 96.235%, 95.236%, 94.895% and
95.065%. Figure 5 reflects the system’s ability to strike a balance between precision and recall, resulting in
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Fig. 5. Quality measure (Dynamic obstacles).

accurate and reliable path planning in dynamic obstacle environment. In test environment, 95 out of 200 tests
were correctly predicted as positive and 98 as negative, while 5 positives and 2 negatives were misclassified. From
these values, Accuracy = (95+98) / 200 =96.5%, Precision =95/ (95+2) = 95.24%, Recall=95 / (95 + 5) = 94.90%,
and F-measure=2x(0.9524 x0.9490) / (0.9524 +0.9490) =95.06%. These computed results closely match the
reported values, confirming the model’s excellent classification reliability and predictive consistency.

It is revealed from the outcomes that, when the grid size increases, the time also increases to find the optimal
results. Though, the MAMO deals through logically examining obstacle states and implementing modifications
in the environment. At the same time, when CLS develops chaos theory of finding the optimal path selection
is better for the proposed system. The purpose may be the next generation in classic A*, Safe A* and improved
A* is strongly affected by this generation’s best individuals. This constrains classic A*, Safe A* and improved
A* in terms of search region and may have gotten caught in the local optima. Besides the ability of classic A%,
Safe A* and improved A* to improve them, they tend to reach prematurely. After that, every iterations of the
search region of the proposed system is not strongly controlled through the current best individual. It increases
its search region to calculate optimal outcomes and does not get stuck in local minima such as classic A*, Safe
A* and improved A*. Further, HS-RNN leverages deep learning to recollect and forecast better paths over time,
altering outcomes by new combination learning patterns.

The hybrid framework demonstrates significant advancements over established path planning algorithms,
including the hybrid approach presented in Yang and Teng>!. While such conventional hybrid methods effectively
combine improved A planning with local dynamic window approach obstacle avoidance, they typically operate
sequentially and can produce suboptimal paths with excessive turns. In contrast, our approach introduces a
more sophisticated hierarchical architecture. The multi-population migration component enables parallel
exploration through multiple subpopulations, effectively overcoming the premature convergence of standard
genetic algorithms. The CLS further refines path quality using chaotic dynamics, providing more comprehensive
optimization than the simple path smoothing techniques typically employed in improved A variants. Finally, the
HS-RNN performs advanced decision-making for optimal path selection and outperforming the conventional
approaches. This integrated methodology generates kinematically superior trajectories with significantly reduced
turning angles and enhanced navigation efficiency across diverse environmental conditions.

The proposed algorithm, though effective, has certain limitations. The computation time increases with grid
size and environmental complexity, affecting real-time performance. The system’s efficiency also depends on
careful parameter tuning, and its adaptability may decrease when obstacles move unpredictably. Additionally,
as the validation was conducted in a simulated environment, real-time hardware implementation may face
processing constraints. Moreover, the HS-RNN model may require retraining for significantly different
environments, limiting its generalization capability.

Conclusions

This work, a novel multi-objective optimal navigation system tailored for mobile robots navigating dynamic
surroundings, leveraging the effectiveness of hybrid optimization algorithms. The MAMO algorithm is
instrumental in computing obstacle state information, enhancing the system’s capacity to navigate amidst
dynamic obstacles. Additionally, the CLS algorithm is employed for feature extraction and multiple path
selection, contributing to the system’s adaptability and versatility. The HS-RNN further refines the path planning
process by identifying optimal paths and eliminating redundant alternatives. The proposed system overcomes
the drawbacks of classic A*, Safe A*, and improved A* through enhancing search regions and removing
premature reach. Combining the methods, it guarantees adaptive, multipath, smart optimal path planning even
in large grid and dynamic environments. Further, the MAMO + CLS + HS-RNN algorithm was compared with
traditional machine learning algorithms using a composite index of normalized path metrics, and performance
metrics showed it outperformed all baselines in static and dynamic environments. The confusion matrix based
validation confirms the system’s high measure (%) in static conditions, and similarly strong performance in
dynamic environments, ensuring reliable and precise path planning for industrial applications. The limitations
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of applied framework include increased computation time increases with larger grid sizes or more complex
dynamic environments, affecting real-time performance. Its effectiveness depends on careful parameter tuning,
and unpredictable obstacle movements can reduce adaptability. Additionally, real-world implementation may
face hardware constraints, and the HS-RNN may require retraining for different environments.

Data availability

We sincerely thank the reviewer for this constructive suggestion. Datasets was generated and/or analyzed dur-
ing current study available and accessible at web link provided below, as it can effectively handle mobile robot
navigation problems, particularly when the outputs involve objectives. “Data availability “The datasets utilized
in this research are openly accessible, as they are linked to the paper: https://doi.org/10.1155/2022/2183229. The
datasets were generated during and/or analyzed during the current study are available from the corresponding/
first author upon reasonable request.”’Now, it is included in the end Section and relevant reference’!.
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