
A hybrid recurrent neural network
and optimization framework for
intelligent mobile robot navigation
in smart manufacturing
K. Radha1 & S. Karthikeyan2

In the third dimension prospective of production industries taking on smart manufacturing principles,
the integration of automation and digitalization revolutionizes conventional processes, unlocking
heightened productivity and operational efficiency. This endeavour implicates coordinating unified
interactions among machines and human operators, capitalizing on their unique strengths and
capabilities. In this study, a multi-objective optimal navigation system tailored for mobile robots
operating in dynamic surroundings, leveraging hybrid optimization algorithms. Primarily, introduce
the modified animal’s migration optimization (MAMO) algorithm, which measures obstacle state
data essential for dynamic obstacles. This facilitates proactive collision avoidance, thus minimizing
unnecessary disruptions. Consequently, deep features are extracted from all feasible paths spanning
the target region connecting the origin and destination points. These path features are then subjected
to the chaos locust search (CLS) algorithm, which determines multiple paths to consider. In addition,
the hypercube search with recurrent neural network (HS-RNN) is employed to locate the optimal path
while removing redundant alternatives among the multiple choices, thereby refining the path planning
process. Simulation outcomes highlight the better performance of the proposed system in optimal
path generation compared to alternative approaches, validating its efficacy in dynamic environments.

Keywords  Navigation system, Mobile robot, Smart manufacturing, Production industries, Obstacle state
information

Abbreviations
NP	� The total number of animal agents in the population
D	� The number of variables in the optimization problem
Xi,G	� Current State position of the obstacle (i) at generation (G)
Xneighborhood,G	� State of randomly selected Neighboring obstacle at generation (G)
Xi,G+1	� New State position of the obstacle through the neighborhood
Δ	� Gaussian random parameter between 0 and 1
rand (0,1)	� A uniformly distributed random number between 0 and 1
Pa	� A threshold probability used in the population update process. An agent is updated if

a random number is greater than Pa
r1, r2	� Randomly generated indices within the population [1, NP], used in the position up-

date equation
L = {l1,l2,…lN}	� The population of N locust agents (path solutions)
Lk = {lk1,lk2,…lkN}	� The position (a candidate path) of the ith locust agent at iteration k
lk
i 	� Position of agent (i) at iteration

Lk	� The entire population of path agents at iteration
Sk

i 	� Total social force acting on agent (i) at iteration
Sk

ij 	� Pairwise social force between agents (i) and (j)
ρ

(
lk
i , lk

j

)
	� Dominance value of agent (i) relative to agent (j)

rK
ij 	� Distance between agents (i) and (j)

1Department of Computer Science and Engineering, Dr Mahalingam College of Engineering and Technology,
Pollachi, Tamilnadu, India. 2Department of Mechanical Engineering, Christian College of Engineering and
Technology, Oddanchatram, Tamilnadu, India. email: radhacse.dpm@gmail.com

OPEN

Scientific Reports | (2025) 15:44617 1| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-28585-3&domain=pdf&date_stamp=2025-11-26

s
(
rK

ij

)
	� Social factor function (attraction/repulsion)

F, L	� Parameters controlling the magnitude and forces
pk	� Behavior probability (Solitary vs. social phase) k
Bk	� Subset of q best solutions at iteration k
A

(
bK

j

)
	� The attractiveness of solution

fbest, fworst	� The best and worst fitness within the set Bk.
∈	� A very small constant to stop division by zero
bk

r	� A guide solution randomly selected from Bk

C	� Chaotic variable from the logistic map
X []	� Random (n, m) are formed based on the parameters dimension (m), radius (R), lower

and upper bounds (LB, UB), and population size (n)
LB, UB	� Lower and Upper bound of search space
R	� Radii of the hybercube (R = UB –LB)
Xc	� Center of hybercube
Xbest	� The best solution found in the current hybercube
S	� Converge factor of the hybercube
dnn	� Normalized distance matrix

Smart manufacturing1 refers to the efficient utilization of labor, materials, and energy to produce tailored, high-
quality products with a technology-driven approach, ensuring timely delivery. These traits collectively contribute
to the resilience and sustainability of manufacturing by enhancing resource and energy management2,3.
Autonomous navigation is a pivotal capability for mobile robots, reducing their dependence on human
intervention4. Path planning entails decisive the most efficient sequence of achievement for a robot to move from
its present state to a desired one, with these states representing the initial position and the goal, respectively5. The
swift evolution of mobile robots not only enhances daily conveniences, exemplified by technologies like sweeping
robots, but also plays a vital role in substituting workers in perilous industries such as mining and aerospace6.
Within intelligent building systems7, inspection robots exhibit the capability to strategically plan the shortest
path to navigate a path from danger in critical situations like fires. Path planning algorithms8,9 usually try to find
the best path or acceptable supposition. For instance, the ideal path could be one that restricts the time required,
an essential figure missions like request and-rescue errands, where brief assist with canning unfathomably critical
issue10. These constraints may stem from the robot’s limitations in adapting to specific terrains11,12. Conversely,
dynamic path planning13 is more intricate, capable of adapting to real-time changes in the environment to plan
a route for a moving robot. Robot path preparation methods fall into two main classes such as conventional
and modern systems14. Classic techniques incorporate cell decay, likely field, sub-target, and examining based
strategies15,16. Heuristic algorithms comprise neural networks17, fuzzy logic18, normal heuristic techniques19,
and half-breed calculations. While exemplary strategies might confront difficulties in additional working on the
proficiency of path search and improvement, prompting a progressive decrease in usage, heuristic techniques
have acquired notoriety for their viable worldwide streamlining capacities and parallelism20.

The literature review on navigation system for mobile robot for smart manufacturing focused the research
gaps in existing literatures, particularly on the type of technique used for path finding. Luo et al.,21 planned an
improved ant colony algorithm (IAC) to resolve issues connected with neighborhood enhancement, unfortunate
assembly, and low pursuit proficiency in portable robot average path length (PL) and delay finding. Maoudj et al.,22
introduced an effective Q-learning to address difficulties, guaranteeing the deduction of an ideal crash free path
in negligible computational time and safety. Ajeil et al.,23 introduced a hybridized particle swarm optimization-
modified frequency bat calculation, expecting to limit PL/distance while sticking to path perfection standards.
Chen et al.,24 have introduced the bio-spurred organizing computations for the effect free path orchestrating
of robots in strong circumstances, expressly without a hint of prior information. The padding mean mind
dynamic model is composed association with relationship among abutting neurons, planned to work with the
spread of nerve main thrusts like waves without coupling influences. Li et al.,25 have introduced an enhanced
rapidly-exploring random tree (PQ-RRT) algorithm, showing culmination, asymptotic optimality, and quick
convergence rate to the ideal arrangement. RRT keeps up with a similar computational intricacy. Albeit static
path arranging is transcendently investigated at the on-going phase, certifiable conditions are dynamic. Miao
et al.,26 have presented an enhanced adaptive ant colony algorithm intended for enhancing the path arranging
and length findings of indoor portable robots. Song et al.,27 have devised a strategy for addressing the planning
challenge of achieving a smooth robot path with accuracy and F-measure. This includes using a constant serious
level Bezier bend related to an improved particle swarm optimization (IPSO) calculation. Instead of associating
various low-degree Bezier bend fragments, the persistent serious level Bezier bend is utilized to meet the rules
for smooth path arranging. Lyu et al.,28 have introduced a graph-based system aimed at optimizing robot average
paths and computational time, with the focal point being the application of the Floyd algorithm to dynamically
allocate masses to various paths. Zhang et al.,29 have presented extrapolative path planning designed for robots
navigating dynamic surroundings, utilizing the RRT. It speeds up the time to revaluating framework, restricting
the path cost, diminishing the likelihood of accidents, and finally working on the idea of the re-examined
path. Nayab Zafar et al.,30 have introduced a navigation control methodology utilizing a hybrid grey wolf ’s
optimization and the artificial potential field technique for timely path preparation of mobile robots. Existing
path planning methods struggle with adaptability and efficiency in dynamic, complex environments due to
limitations in optimality, continuity, and computational speed. Yang et al.,31 have introduced a unique robot path
preparation that facilitates a predominant improved A* algorithm with better strong window technique. Zhong

Scientific Reports | (2025) 15:44617 2| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

et al.,32 have utilized a classic A and safe A for mobile robot in large-scale environment. Raj et al.,33 presented the
reinforcement learning technique for intelligent mobile robot navigation problem.

Many existing classical algorithms often fail to provide globally optimal paths in dynamic environments.
Most research papers assume static environments and real-time path planning that adapts to moving obstacles
in smart manufacturing settings is still a major challenge. The integration of hybrid optimization approaches
remains underexplored. The main contribution of this research paper is intended to improve the dynamic path
planning by combining the MAMO, CLS and HS-RNN, to overcome the drawbacks of conventional tools such
as poor exploration and local optima entrapment. In the proposed approach, MAMO is applied to measure
obstacle states, and CLS is employed to explore the various paths by chaotic theory and a HS-RNN is used to
determine the optimal path. Hence, the primary objectives of this work is to efficiently design an intelligent
multi-path decision-making navigation scheme by leveraging optimal feature extraction from all potential paths
between the source and destination in static and dynamic scenarios. Also, the proposed navigation scheme has
been validated with existing solutions to ensure suitability for smart manufacturing in production industries.

Problem environment
In this study, the environment modeling relies on the grid technique, a technique that partitions the two-
dimensional workstation of mobile robots into a uniform grid structure. The illustration in Fig. 1 demonstrates
the division of the entire workspace into a grid map, where each grid is allocated a unique amount. Initially,
information is gathered from the grid map, utilizing the discrete nature of the environment.

The experimental environment is defined as a (20 × 20), (40 × 40), (50 × 50), (80 × 80) and (100 × 100) grid
maps, where each cell represents a possible position for the mobile agent. Black cells denote obstacles, and
white cells correspond to free navigable spaces. The agent starts at the lower-left corner and aims to reach the
goal position located at the upper-right corner. The grid includes both static and dynamic obstacles to emulate
a real-world navigation scenario. Static obstacles remain fixed throughout the simulation and form the baseline
environment for path generation. In contrast, dynamic obstacles change their positions over time according to
predefined movement rules. During navigation, the MAMO algorithm computes the current obstacle states at
each time step by updating the availability matrix. When a dynamic obstacle moves into a previously free cell, its
corresponding entry in is updated from 0 (free) to 1 (occupied/obstacle) and vice versa if the obstacle moves away.
For example, consider a navigation scenario on a 5 × 5 grid where coordinates (x, y) represent positions, with
x-values from 1 to 5 spanning left to right and y-values from 1 to 5 spanning bottom to top. The agent’s starting
point is S = (1, 1), and the target destination is G = (5,5). Agent mobility is continuous, meaning positions are not
confined to discrete grid points; however, for the purpose of obstacle detection, these continuous coordinates
are rounded to the nearest integer grid cell. The environment includes predefined static obstacles at cells (2,5),
(4,4), and (3,2), forming an initial binary obstacle map. Additionally, a dynamic obstacle, unknown to the agents
initially, starts at (2,3) at time t = 0 and transitions to (2,4) at t = 1. Agents can only identify obstacles, whether
static or dynamic, by physically occupying the corresponding cell during movement. This simulation utilizes in
Eq. (1)34 with a parameter δ = 0.5 and in Eq. (3)34 with ρ = 0.6. Over the course of two MAMO iterations (from
generation 0 to generation 2), an occupancy detection matrix is updated. This matrix begins with the static
obstacles already marked, and a cell is flagged as detected if any agent lands on it during iteration.

Initial state

5 0 1 0 0 G

4 0 0 0 1 0

3 0 0 0 0 0

2 0 0 1 0 0

1 S 0 0 0 0

1 2 3 4 5

The MAMO begins with three agents positioned near (1,1), (3,1), and (2,4). In the first iteration (G = 0→1),
migration guides the agents to new sensing cells at (2,2), (4,2), and (2,4), but none encounter the dynamic
obstacle D at (2,3). A subsequent population update replaces the worst-performing agent, repositioning it to
(2,4). In the next iteration (G = 1→2), the dynamic obstacle moves to (2,4). Agent migration now leads two
agents to land on cell (2,4), resulting in the successful detection of the dynamic obstacle. This discovery is then
integrated into the observed obstacle matrix, updating the system’s knowledge of the environment.

5 0 1 0 0 G

4 0 1 0 1 0

3 0 0 0 0 0

2 0 0 1 0 0

1 S 0 0 0 0

1 2 3 4 5

(2,4) = 1 because two agents confirmed observation by landing there.

Scientific Reports | (2025) 15:44617 3| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The CLS is employed to select multiple paths based on the extracted features. CLS introduces chaos to
enhance exploration, considering various alternatives for navigation. For example, the iteration begins with the
solitary phase, where pairwise social forces are computed for the three path locusts. For the worst locust l_3
(P3), forces from the better-ranked locusts are calculated using the defined s(r) function and dominance rule
ρ. The sum of these forces S_3 is a vector, which is added to l_3 to update its position. In the subsequent social
phase, the best set B is formed from the top two paths, P1 and P2. Their attractiveness values are calculated to be
approximately 1.0. For the updated worst locust, the roulette selection probabilities for P1 and P2, respectively.
P1 is selected as the attractor. Finally, the social update rule with a random value of 0 to 1 is applied, moving
the worst locust to a new position, very close to the best centroid P1. Further illustrated, the PL38, measured as
the total number of moves, was identical for all three candidate paths at 8 units. However, the paths differed
significantly in smoothness, quantified by their cumulative turning angle (CTA)31. Paths P1 and P2, which
consisted of straight segments with only one direction change, had a low CTA of 90°. In contrast, Path P3’s zig-
zag pattern resulted in five turns, yielding a cumulative turning angle of 450° five times higher. While the average
turning angle (ATA)32 was 90° for all paths, as each individual turn was a right angle, the cumulative metric
effectively captured P3’s tortuosity, making it a key differentiator for path quality where smoothness impacts
efficiency. Finally, the HS-RNN model is to identify the optimum path from the alternatives generated by CLS.
The model discerns between optimal and redundant paths, refining the path selection process. The MAMO +
CLS + HS-RNN system was implemented in MATLAB programming simulation on an Intel core I5-9400 CPU
and 16 GB RAM platform. Key parameters included: MAMO with 20 agents and a migration rate (δ = 0.5). The
CLS algorithm used a population of 50, with F (social force magnitude) = 1.5, L (social interaction range) = 1.0,
and q (number of best solutions for attraction) = 10. The HS-RNN performed multi-criteria optimization using
PL, a turning penalty (weight = 0.01), and safety. Multiple independent runs validated the results.

Proposed methodology
In this section, it describe the multi-objective optimal navigation system integrates grid-based environment
model.

Compute obstacle state information
Obstacle state information refers to a dynamic assessment of the current state or characteristics of obstacles
within the environment. The need to compute obstacle state information arises from the necessity to enhance
the ability to direct through its environment effectively. The modified animal’s migration optimization (MAMO)
algorithm is a nature-inspired optimization that draws stimulus from the collective performance of animals34.
During the migration procedure, the algorithm pretends collections of animals moving from an existing state.
In the process of informing the population, the algorithm pretends the probabilistic renewal of animals. If the
index of an animal is i, its neighborhood consists of animals having indices are i − 2, i − 1, i, i + 1, i + 2, and if the
index is 1, then the neighborhood indices NP − 1, NP, 1, 2, 3, etc. Once the locality topology is created, randomly
choose a neighbor and appraise the individual’s location rendering to that neighbor, using Eq. (1)34.

	 Xi, G + 1 = Xi,G + δ (Xneiborhood, G − Xi,G)� (1)

The new position Xi, G+1 is calculated using the current position Xi, G, a neighborhood position Xneighborhood, G, a
Gaussian random parameter δ, and the vector difference between two other randomly selected individuals (r1,
r2). The better position between the new and current one is selected using Eq. (2)34.

	
Xi =

{
Xi if f (Xi,G) is betterthan f (Xi,G+1)
Xi,G+1 otherwise

� (2)

In the MAMO, the best individual defines the Gth cycle living region. As resources diminish, few animals begin
to migrate, developing the G + 1th cycle living region. This continuous shrinking of the living region makes
individuals converge toward the best string/solution, improving convergence speed and accuracy.

The boundary of the living region is recognized as in Eq. (3)34.

	 Low = Xbest − R, up = Xbest + R, R = ρ R� (3)

Here, Xbest denotes the leader animal; low and up are the living region bounds; R is the radius; is the shrinkage
coefficient; and ∈ (0, 1), low, up and R are all 1×D array vectors. Initially, R depends on the search region size and
larger R improves exploration, while smaller R enhances exploitation during cycles.

The MAMO contains: (a) animals living in a defined region, (b) migrating as resources deplete, (c) population
updating, and (d) settling in a new region. So, it’s covering living, migration, and updating processes.

In the initialization, the MAMO starts by initialize a set of animal locations X1, X2, X3,…XNP, every location
Xi D-dimensional vector with components uniformly distributed among lower bound aj and upper bound bj, So
the jth component of the ith vector as Eq. (4)34 and (5)34.

	 Xi,j = aj + randi,j [0, 1] (bj − aj)� (4)

	 i = 1, NP, j = 1, D� (5)

where, [0,1] i j rand is a uniformly distribution.

Scientific Reports | (2025) 15:44617 4| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In MAMO, migration occurs as resources deplete or conditions change, updating grid map and locations
based on neighbors. During new population updating, replaced individuals maintain a fixed population size,
allowing computing the obstacle state and ensuring continuity of the algorithm. The working process of obstacle
state information computation using MAMO is explained in Algorithm 1.

Algorithm 1.  Obstacle state information computation usign MAMo.

Feature extraction and multiple path selection
Feature extraction is the procedure of capturing and representing relevant features from raw data. In the context,
feature extraction is functional to paths within the grid map to capture essential information that aids in the
navigation process. The CLS algorithm is used for selecting multiple paths which enhance the exploration,
considering various alternatives for navigation. CLS is a population-based global optimization method inspired
by the collective movement of desert locust swarms35. In the CLS algorithm, search agents are represented by
an L = {l1,l2,…lN} set of N individual locusts that interact with each other as they traverse the n-dimensional
solution space. Every individual condition li = {li,1,li,2,…li,n} is constrained in bounded region (S = { x∈Rn | lbd ≤
xd ≤ ubd}), with x = [x1, x2, x3, xd], lower lbd, upper ubd bounds at the d-dimensional and characterizes applicant’s
string to a particular problem. Like other swarm-based methods, CLS proceeds by cycles where agents alter their
locations across generations. These updates are guided by operators modeled on the two behavioral phases of
locusts such as solitary and social phase. During the solitary phase, individuals move to different locations in
search of food sources, while avoiding mating with other potential partners. Hence, for any cycles ‘K’ is the total
attractive and repulsion force by a particular individual ‘i’, as in Eq. (6)35.

	

Sk
i =

N∑
j=1
j ̸=1

Sk
ij � (6)

where Sk
ij denotes the pairwise attraction among separate “i” and some other individuals “j” and is assumed by

Eq. (7)35.

	 Sk
ij = ρ

(
lk
i , lk

j

)
s

(
rk

ij

)
dij + rand (1, −1)� (7)

where the operativeρ
(
lk
i , lk

j

)
is known as supremacy value amonglk

i and lk
j the worths

(
rk

ij

)
characterizes the

so named social factor, where rk
ij =

∥∥lk
i , lk

j

∥∥ ‖ denotes the Euclidian distance among the elements “i” and
“j”. Therefore, dij =

∥∥lk
i , lk

j

∥∥ /rk
ijattitudes for the unit course cement from lk

i to l lk
j , though and (1, − 1) is a

random vector whose fundamentals are haggard from the unchanging distribution of [− 1, 1]. The value s
(
rk

ij

)

is assumed by Eq. (8)35.

	 s
(
rk

ij

)
= F e

−rk
ij/L − e−rk

ij � (8)

where the limitations f and l represent the attraction greatness and measurement scale, individually. To apply
operatorρ

(
lk
i , lk

j

)
 and presumed that each individual lk

i ∈ lk =
{

lK
1 , lK

2 , lK
N

}
 is ordered with number from 0

Scientific Reports | (2025) 15:44617 5| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

(Best) to N − 1 (Worst) contingent on their individual fitness worth. Then, the dominance worth may be assumed
as in Eq. (9)35:

	
ρ

(
lK
i , lK

j

)
=

{
e−(rank(lK

i)/N) if rank
(
lK
i

)
≤

(
lK
j

)

e−(rank(lK
i)/N) if rank

(
lK
i

)
>

(
lK
j

) � (9)

As effect of the inspiration of the total social forcesk
i , each person shows a certain propensity to move towards

other memberships of the “i” population. In such cases, the new location resulting from individual “i” can besk
i

expressed as in Eq. (10)35.

	 l∗
i = lk

i + Sk
i � (10)

Applying solitary phase movement operators to every individual separately leads l∗
i ∈ lkto refine the best

candidate strings L = {l1,l2,…lN}that represent every individual’s location as an outcome of the inspiration used
by all other members of the swarm.

In the social phase, the aim is to improve the best candidate strings (L = {l1,l2,…lN}), which are attained by the
solitary phase movement operator. From this set, a subset (B = b1,….bq) containing the best strings (q) is selected.
For each string (li ∈ B), a group of (h) random solutions (M i =

{
mi

1, mh
i

}
) is created within its respective

subspace (Ci ∈ S), where the boundaries of are predefined, as in Eq. (11)35 and Eq. (12)35.

	 Clower
i,n = bi,n − r� (11)

	 Cupper
i,n = bi,n + r� (12)

whereClower
i,n and Cupper

i,n characterize the lower and upper bounds of every sub region ci at the n-th dimension,
correspondingly, while bi,nattitudes for the nth element from string bi, as in Eq. (13)35.

	
r =

∑d

n=1 (bupper
n) −

(
blower

n

)
d

β� (13)

whereblower
n and bupper

n denoting the b represents the lower and higher bounds, and d represents the total
amount of decision variables. Also, β ∈ [0, 1]∈ [0, 1] characterizes a scaling factor that changes the scale Ci.
Finally, the best string li ∈ N and its corresponding i from the random strings (

(
mi

1, mi
2, mi

3
)

) are assigned to
a unique location “i” in the next iteration “k + 1”, expressed in Eq. (14)35.

	 lk+1
i = best

(
mi

1, mi
2, mi

h

)
� (14)

Any solution not grouped in the best solution l∗
i set B is not eligible for exclusion by the social status director.

Therefore, the last location update practical to each individual in the entire swarm by ‘i’ can be summarized as
in Eq. (15)35:

	
lk+1
i =

{
best

(
l∗
i , mi

1, mi
2, mi

h

)
if l∗

i ε B

l∗
i l∗

i /∈ B
� (15)

Fig. 1.  Overall system architecture of proposed multi-objective optimal navigation system.

Scientific Reports | (2025) 15:44617 6| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The CLS combines global and local search by solitary and social phases but suffers from maximum computational
imbalance among exploration and exploitation. It introduces a probabilistic pattern that applies either phase
selectively and adjusts the social operator with a probabilistic attraction, improving performance and efficiency.
The solitary and social phases are based on cycles. Early steps emphasize solitary exploration, while later steps
favor social exploitation. The probability of social behaviors increases in the search progresses, guiding the
choice of the phase at every cycle. Underneath such conditions, at a piece repetition “k”, the behavior phase
P

(
lk

)
functional to the populace lkis selected as shadows in Eq. (16)35.

	
P

(
lk

)
=

{
solitary if rand ≤ pk

solitary if rand > pk
� (16)

A random number between 0 and 1 is compared against a performance probability, pk, calculated using Eq. (17)35.

	
pk = 1 − K

itern
� (17)

The number of cycles measured in the search process is indicated as itern. For this modified social operator, the
social phase leads each individual toward hopeful strings instead of relying on multiple local valuations, thereby
minimizing computational time. A subset of the best strings (Bk = bk

1,….bk
q) is chosen that includes the q best

strings from the total set Lk = {lk
1,lk

2,…lk
N}, and every individual lk

i moves toward a randomly chosen bk
j with a

probability affected by both its quality and distance, as in Eq. (18)35.

	
pK

1i,bj
=

A
(
bk

j

)
e−∥lk

i − bk
j |

∑q

n=1 A
(
bk

n

)
e−∥lk

i
−bk

n

� (18)

where
∥∥lk

i − bk
j

∥∥denotes the Euclidian distance among the separate “i” (lk
i) and associate “j” from the set of

greatest stringsBk
(
bk

j

)
, while A

(
bk

j

)
stands for the attractiveness of string bk

j as mentioned by Eq. (19)35.

	
A

(
bk

j

)
=

f
(
bk

j

)
− fworst

(
Bk

)
fbest (Bk) − fworst (Bk) + ε

� (19)

It representsf
(
bk

j

)
 the relative fitness value bk

j (rank) fbest

(
Bk

)
fworst

(
Bk

)
 stand the best and worst fitness

values from the members of the best string sets. The social phase characteristics, every individual lki within the
swarm population Lk updates their location as in Eq. (20)35:

	 lk+1
i = lk

i + 2
(
bk

r − lk
i

)
rand� (20)

where bk
r (by r ∈ [1,. . ., q]) is a randomly selected explanation bk

j ∈ Bk, with respect to their particular
prospectsP k

ij (qualified to lk
i and bk

j), while rand stands for a random haggard from within the consistently
dispersed interval [0, 1]. The working process of feature extraction and multiple path selection using CLS is
explained in Algorithm 2. The extracted path features are then subjected to the CLS algorithm, which produces a
set of multiple feasible paths rather than a single solution. This step ensures that the diversity of potential routes
is preserved.

Scientific Reports | (2025) 15:44617 7| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 2.  Feature extraction and multiple path selection usig CLS.

Optimal path planning
After the assortment of multiple paths, the optimum path planning process involves identifying the most
efficient and effective path while eliminating redundant or suboptimal alternatives. In this context, the HS-
RNN is employed to enhance the optimization of the planning process, and equations are taken from Tunay
and Rahib36 whose advantages are utilized in different applications37. During initialization, candidate strings
(X [search region] = random (n, m) are formed based on the parameters dimension (m), radius (R), lower and
upper bounds (LB, UB), and population size (n). The hypercube is defined by its radius (R) and center (Xc), given
by Eqs. (22) and (23). Within the defined search region, points xij (i = 1,.,n; j = 1,.,m) are created in Eq. (21), and
their corresponding objectives fij (elements of F) are attained. Thereafter, the best string matrices Xbest and Fbest
(n×1) are observed, creating the initial population for subsequent cycles. The situation of the Xbest using local
search and following measuresXnew

best = Xbest + ρ∆F , where F is the objective meaning and0 ≤ ρ ≤ 1.
Lower bound (LB) and upper bound (UB) to scale the strings xij in Eq. (21)36

	 Xi,j = LB + Xi,j (UB − LB)� (21)

Determine radii (R) of the hybercube expressed in Eq. (22)36:

	 R = UB − LB� (22)

Center of hybercube are gotten in Eq. (23)36.

	
Xc = R

2
� (23)

	
Xnew_center = (Xc + Xbest)

2
� (24)

	 Rnew = R ∗ S� (25)

Scientific Reports | (2025) 15:44617 8| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In the initialization process, next cycle, the Xbest is used to compute the hypercube center. This process
is gathered through calculating the center and mean of the last location (Xc) and the last best Xbest. In this
displacement shrink process, the algorithm computes the new hypercube center and estimates the objective. The
next hypercube center is attained through averaging the current hypercube center and the best string (Xbest).
Relationally, it is given in Eq. (24)36 and Eq. (25)36.

The convergence factor S is used to calculate new R (Rnew) based on an old one, R. This operation gradually
minimizes the hypercube size and, subsequently, the search region, a stage called shrink. As the hypercube deals,
the point density (population) increases. The movement of the best string is governed by contraction, which is
higher for lesser displacements, ensuring quicker convergence while escaping local minima. At every cycle, new
points are produced, and their functions are computed. Based on these outcomes, the hypercube size is updated,
smaller with every stage, leading to a denser search region and fast convergence toward the optimum path. The
algorithm thus explores a sequence from the current position, where the displacement ranges are defined, as in
Eqs. (26–29)36:

Normalizedxij :

	
xn

ij
= (xij − Xc)

R
� (26)

Normalizedxbest:

	
xn

best
= (xij − Xc)

R
� (27)

Normalized distance dn:

	
dn =

[
sum

(
xn

ij − Xn
best

)2
]1/2

R

� (28)

Re-Normalized distance:

	
dnn = dn√

m
� (29)

At every cycle, element of x is first divided by its respective interval, converting the displacement into unit-scaled
points as given in Eqs. (26)36 and (27)36. These normalized values are then further divided through the diagonal
length P k

ij ​ as given in Eqs. (28)36 and (29)36. This normalization increases the contraction rate of the hypercube,
resulting in progressively smaller movements toward the optimum solution.

In this searching area phase, the distances between the new and previous optimal solutions are computed
using Eqs. (26–29)36. The process also employs the defined interval for renormalization to adjust the search
region of x dynamically throughout

√
m, ensuring efficient exploration around the updated optimum.

When the movement x satisfies the given condition, the convergence factor (S) is calculated and updated at
each cycle using Eq. (30)36.

	 S = 1 − 0.2e − 3dnn� (30)

Here, dnn represents the normalized distance attained from Eq. (29)36, found from the average of the 2 latest best
x values. This mechanism guides the population toward the minimum efficiently by continuously reducing the
hypercube area after each cycle. The entire process is recurrent until the decisions are gratified. The algorithm 3
depicts the function of optimal path planning using HS-RNN.

Scientific Reports | (2025) 15:44617 9| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 3.  Optimal path planning using HS-RNN tenique.

Result and discussions
In this section, the validation of proposed MAMO + CLS + HS-RNN system compared with existing methods in
both static and dynamic obstacle environments. To assess the static and dynamic path planning performance
of method, conduct comparisons with established systems, including classic A*, safe A*32, and improved A*31.

Simulation setup
To facilitate performance analysis, this study employs specific surroundings for mobile robots and the
conservation map. The map is defined with a designated starting and ending point, and some areas may contain
unknown obstacles. Dynamic obstacles within the map move in a straight line at a consistent speed, although
their moving direction and position remain unknown. Equipped with sensors, the mobile robot can perceive
information within aim perfect range, including the position and speed of obstacles. The mobile robot itself
maintains a continuous speed and is capable of movement in all directions. Its maximum velocity, angular
velocity, velocity resolution, angular velocity resolution, acceleration and angular acceleration of 1 m/s, 20°/s,

Fig. 2.  (a) Input grid map (Static obstacles) (b) Output optimal path (Static obstacles).

Scientific Reports | (2025) 15:44617 10| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

0.01 m/s, 1°/s, 0.2 m/s², and 50°/s². Figures 2 and 3 shows the reproduction results of path planning using
planned MAMO + CLS + HS-RNN system for static and dynamic obstacles, respectively.

Comparative analysis of proposed and existing path planning systems
Tables 1 and 2 present a comprehensive comparison of the results gotten from various path preparation systems
in motionless static and dynamic obstacle environments. In static and dynamic environment, the proposed
MAMO + CLS + HS-RNN system stands out by consistently showing significantly lower PL, CTAs and improved
ATAs compared to other systems such as classic A*, safe A*32, and improved A*31, respectively. Also, it produced
shorter PLs with less path planning time (PPT) in larger grid sizes than other systems. Overall, proposed system
outperforms the proportional growth of complexity and erratic pattern-fluctuations.

Path planning system 20 × 20 50 × 50 100 × 100 20 × 20 50 × 50 100 × 100

CTAs (°) ATAs (°)

 Classic A*32 – – – – – –

 Safe A*32 – – – – – –

 Improved A*31 – – – – – –

MAMO + CLS + HS-RNN 77.44 80.77 83.170 12.91 13.46 13.862

PL PPT

 Classic A*32 – – – – – –

Safe A*32 55.8 – – 35 – –

Improved A*31 47.6 – – 26 – –

MAMO + CLS + HS-RNN 34.51 43.61 53.59 3 5 16

Table 2.  Results comparison of path planning systems for dynamic Obstacles environments.

Path planning system

20 × 20 50 × 50 100 × 100 200 × 200 20 × 20 50 × 50 100 × 100 200 × 200

CTAs (°) ATAs (°)

Classic A*31,32 488.9 – – 309.4 32.56 – – 61.9

SafeA*31,32 128.92 – – 273.4 25.78 – – 54.7

Improved A*31 85.41 – – – 14.24 – – –

MAMO + CLS + HS-RNN 52.32 55.64 58.04 229.2 5.62 6.34 8.96 45.8

PL PPT

 Classic A*31,32 28.70 82.80 169.70 1051.4 22 26 155 –

 SafeA*31,32 25.60 67.20 77.30 1065.8 18 22 85 –

 Improved A*31 26.10 61.90 74.80 – 10 16 42 –

 MAMO + CLS + HS-RNN 22.15 31.25 41.23 1038.7 6 8 19 –

Table 1.  Results comparison of path planning systems for static Obstacles environments in production
industries.

Fig. 3.  (a) Input grid map (Dynamic obstacles) (b) Output optimal path (Dynamic obstacles).

Scientific Reports | (2025) 15:44617 11| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Quality comparison of proposed and existing path planning systems
In this study, each trial’s performance metrics, including PL, PPT, CTA, and ATA, were first normalized to
allow fair comparison across algorithms. These normalized values were then combined into a single composite
performance index (PI) representing the overall efficiency of the path planning process. Success thresholds were
defined on the PI to classify trials as optimal or non-optimal, and the MAMO + CLS + HS-RNN algorithm was
used as the ground truth to assign labels to all other algorithms. Using these labels, the confusion matrix was
calculated to determine Accuracy, Precision, Recall, and F-measure. Finally, the proposed MAMO + CLS + HS-
RNN was compared with traditional machine learning algorithms including Random Forest, Linear Regression,
K-Nearest Neighbor, Support Vector Machine, Decision Tree, XGBoost, Deep Neural Network, and Artificial
Neural Network using these statistical metrics to evaluate its performance and reliability in both static and
dynamic path planning scenarios.

Table 3 presents a detailed quality comparison of the proposed MAMO + CLS + HS-RNN system against
existing path planning systems for static and dynamic obstacle environments in production industries. In static
environment, each system exhibits a progression in measure (%), with the MAMO + CLS + HS-RNN system
surpassing them all by achieving improved accuracy, precision, recall and F-measure of 98.562%, 94.563%,
93.986% and 93.986%. Figure 4 shows the system’s proficiency in achieving a balance between precision and
recall, resulting in accurate and reliable path planning in static obstacle environments. The performance valuation
of the MAMO + CLS + HS-RNN and existing models was validated using a confusion matrix, which records
the number of correctly and incorrectly classified samples. It consists of four parameters: True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN). These metrics collectively assess the model’s
classification capability in terms of correctness, sensitivity, and reliability. In the static obstacle environment, 188
out of 200 test samples were correctly classified as positive and 189 as negative, while 12 positives and 11 negatives
were misclassified. From these values, Accuracy = (188 + 189) / 200 = 98.5% Precision = 188 / (188 + 11) = 94.56%,
Recall = 188 / (188 + 12) = 93.98%, and F-measure = 2 × (0.9456 × 0.9398) / (0.9456 + 0.9398) = 94.27%. These
results closely align with the reported performance metrics, validating the model’s high classification accuracy
and reliability. In dynamic environment, MAMO + CLS + HS-RNN system produced better performance than
others by achieving enhanced accuracy, precision, recall, and F-measure of 96.235%, 95.236%, 94.895% and
95.065%. Figure 5 reflects the system’s ability to strike a balance between precision and recall, resulting in

Fig. 4.  Quality measure (Static obstacles).

Path planning system

Accuracy Precision Recall
F-
Measure Accuracy Precision Recall F-measure

Measure (%) – Static obstacles Measure (%) – Dynamic obstacles

Random forest 79.714 75.715 75.138 75.426 67.739 66.740 66.399 66.569

Linear regression 82.070 78.071 77.494 77.782 71.301 70.302 69.961 70.131

K-nearest neighbor 84.426 80.427 79.850 80.138 74.863 73.864 73.523 73.693

Support vector machine 86.782 82.783 82.206 82.494 78.425 77.426 77.085 77.255

Decision tree 89.138 85.139 84.562 84.850 81.987 80.988 80.647 80.817

XG boosting 91.494 87.495 86.918 87.206 85.549 84.550 84.209 84.379

Deep neural network 93.850 89.851 89.274 89.562 89.111 88.112 87.771 87.941

Artificial neural network 96.206 92.207 91.630 91.918 92.673 91.674 91.333 91.503

MAMO + CLS + HS-RNN 98.562 94.563 93.986 94.274 96.235 95.236 94.895 95.065

Table 3.  Quality comparisons of proposed and existing path planning systems for static and dynamic
Obstacles environments.

Scientific Reports | (2025) 15:44617 12| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

accurate and reliable path planning in dynamic obstacle environment. In test environment, 95 out of 200 tests
were correctly predicted as positive and 98 as negative, while 5 positives and 2 negatives were misclassified. From
these values, Accuracy = (95 + 98) / 200 = 96.5%, Precision = 95 / (95 + 2) = 95.24%, Recall = 95 / (95 + 5) = 94.90%,
and F-measure = 2 × (0.9524 × 0.9490) / (0.9524 + 0.9490) = 95.06%. These computed results closely match the
reported values, confirming the model’s excellent classification reliability and predictive consistency.

It is revealed from the outcomes that, when the grid size increases, the time also increases to find the optimal
results. Though, the MAMO deals through logically examining obstacle states and implementing modifications
in the environment. At the same time, when CLS develops chaos theory of finding the optimal path selection
is better for the proposed system. The purpose may be the next generation in classic A*, Safe A* and improved
A* is strongly affected by this generation’s best individuals. This constrains classic A*, Safe A* and improved
A* in terms of search region and may have gotten caught in the local optima. Besides the ability of classic A*,
Safe A* and improved A* to improve them, they tend to reach prematurely. After that, every iterations of the
search region of the proposed system is not strongly controlled through the current best individual. It increases
its search region to calculate optimal outcomes and does not get stuck in local minima such as classic A*, Safe
A* and improved A*. Further, HS-RNN leverages deep learning to recollect and forecast better paths over time,
altering outcomes by new combination learning patterns.

The hybrid framework demonstrates significant advancements over established path planning algorithms,
including the hybrid approach presented in Yang and Teng31. While such conventional hybrid methods effectively
combine improved A∗ planning with local dynamic window approach obstacle avoidance, they typically operate
sequentially and can produce suboptimal paths with excessive turns. In contrast, our approach introduces a
more sophisticated hierarchical architecture. The multi-population migration component enables parallel
exploration through multiple subpopulations, effectively overcoming the premature convergence of standard
genetic algorithms. The CLS further refines path quality using chaotic dynamics, providing more comprehensive
optimization than the simple path smoothing techniques typically employed in improved A∗ variants. Finally, the
HS-RNN performs advanced decision-making for optimal path selection and outperforming the conventional
approaches. This integrated methodology generates kinematically superior trajectories with significantly reduced
turning angles and enhanced navigation efficiency across diverse environmental conditions.

The proposed algorithm, though effective, has certain limitations. The computation time increases with grid
size and environmental complexity, affecting real-time performance. The system’s efficiency also depends on
careful parameter tuning, and its adaptability may decrease when obstacles move unpredictably. Additionally,
as the validation was conducted in a simulated environment, real-time hardware implementation may face
processing constraints. Moreover, the HS-RNN model may require retraining for significantly different
environments, limiting its generalization capability.

Conclusions
This work, a novel multi-objective optimal navigation system tailored for mobile robots navigating dynamic
surroundings, leveraging the effectiveness of hybrid optimization algorithms. The MAMO algorithm is
instrumental in computing obstacle state information, enhancing the system’s capacity to navigate amidst
dynamic obstacles. Additionally, the CLS algorithm is employed for feature extraction and multiple path
selection, contributing to the system’s adaptability and versatility. The HS-RNN further refines the path planning
process by identifying optimal paths and eliminating redundant alternatives. The proposed system overcomes
the drawbacks of classic A*, Safe A*, and improved A* through enhancing search regions and removing
premature reach. Combining the methods, it guarantees adaptive, multipath, smart optimal path planning even
in large grid and dynamic environments. Further, the MAMO + CLS + HS-RNN algorithm was compared with
traditional machine learning algorithms using a composite index of normalized path metrics, and performance
metrics showed it outperformed all baselines in static and dynamic environments. The confusion matrix based
validation confirms the system’s high measure (%) in static conditions, and similarly strong performance in
dynamic environments, ensuring reliable and precise path planning for industrial applications. The limitations

Fig. 5.  Quality measure (Dynamic obstacles).

Scientific Reports | (2025) 15:44617 13| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

of applied framework include increased computation time increases with larger grid sizes or more complex
dynamic environments, affecting real-time performance. Its effectiveness depends on careful parameter tuning,
and unpredictable obstacle movements can reduce adaptability. Additionally, real-world implementation may
face hardware constraints, and the HS-RNN may require retraining for different environments.

Data availability
We sincerely thank the reviewer for this constructive suggestion. Datasets was generated and/or analyzed dur-
ing current study available and accessible at web link provided below, as it can effectively handle mobile robot
navigation problems, particularly when the outputs involve objectives. “Data availability “The datasets utilized
in this research are openly accessible, as they are linked to the paper: https://doi.org/10.1155/2022/2183229. The
datasets were generated during and/or analyzed during the current study are available from the corresponding/
first author upon reasonable request.”Now, it is included in the end Section and relevant reference31.

Received: 25 August 2025; Accepted: 11 November 2025

References
	 1.	 Wu Jie, K., Lin, Jiasen & Sun Pressure or motivation? The effects of low-carbon City pilot policy on china’s smart manufacturing.

Comput. Ind. Eng. 183, 109512. https://doi.org/10.1016/j.cie.2023.109512 (2023).
	 2.	 Zhang, C. et al. Towards new-generation human-centric smart manufacturing in industry 5.0: A systematic review. Adv. Eng.

Inform. 57, 102121. https://doi.org/10.1016/j.aei.2023.102121 (2023).
	 3.	 Gauttam, H., Pattanaik, K. K. & Bhadauria, S. Garima Nain, and putta Bhanu Prakash, an efficient DNN splitting scheme for edge-

AI enabled smart manufacturing. J. Industrial Inform. Integr.. 34, 100481. https://doi.org/10.1016/j.jii.2023.100481 (2023).
	 4.	 Bhatia, P. & Diaz-Elsayed, N. Facilitating decision-making for the adoption of smart manufacturing technologies by SMEs. Via

Fuzzy TOPSIS Int. J. Prod. Econ.. 257, 108762. https://doi.org/10.1016/j.ijpe.2022.108762 (2023).
	 5.	 Li, C., Zheng, P., Yin, Y., Wang, B. & Wang, L. Deep reinforcement learning in smart manufacturing: A review and prospects. CIRP

J. Manufact. Sci. Technol. 40, 75–101. https://doi.org/10.1016/j.cirpj.2022.11.003 (2023).
	 6.	 De Giacomo, G., Favorito, M., Leotta, F., Mecella, M. & Silo, L. Digital twin composition in smart manufacturing via Markov

decision processes. Comput. Industry, 149, 1–10. https://doi.org/10.1016/j.compind.2023.103916 (2023).
	 7.	 Feng, Q. et al. Multi-level predictive maintenance of smart manufacturing systems driven by digital twin: A matheuristics approach.

J. Manuf. Syst., 68,. https://doi.org/10.1016/j.jmsy.2023.05.004
	 8.	 Eyuboglu, M. & Atali, G. A novel collaborative path planning algorithm for 3-wheel omnidirectional autonomous mobile

Robot,Robotics Autonomous Syst., 169, 104527. https://doi.org/10.1016/j.robot.2023.104527 (2023).
	 9.	 Mısır, O. Dynamic local path planning method based on neutrosophic set theory for a mobile robot. J. Brazilian Soc. Mech. Sci. Eng.

45 (3), 127. https://doi.org/10.1007/s40430-023-04048-6 (2023).
	10.	 Kumar, S., Dadas, S. S. & Parhi, D. R. Path planning of mobile robot using modified DAYKUN-BIP virtual target displacement

method in static environments, Wireless Personal Commun., 128 (3), 2287–2305. https://doi.org/10.1007/s11277-022-10043-2
(2023).

	11.	 Dai, J., Zhang, Y. & Deng, H. Novel potential guided bidirectional RRT* with direct connection strategy for path planning of
redundant robot manipulators in joint space. IEEE Trans. Industr. Electron. 71 (3), 2737–2747. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​I​E​.​2​0​2​3​.​3​
2​6​9​4​6​2​​​​ (2023).

	12.	 Zhang, R., Chai, R., Chai, S., Xia, Y. & Tsourdos, A. Design and practical implementation of a high efficiency two-layer trajectory
planning method for AGV, IEEE Trans. Industrial Electron., 71(2), 1811–1822.https://doi.org/10.1109/TIE.2023.3250847 (2023).

	13.	 Zhao, L. et al. Graph-based robust localization of object-level map for mobile robotic navigation. IEEE Trans. Industrial Electron..
71 (1), 697–707. https://doi.org/10.1109/TIE.2023.3245208 (2023).

	14.	 Zhang, X., Ji, Y., Wang, C., Lin, H. & Wang, Y. Path planning of inspection robot based on improved intelligent water drop
algorithm. IEEE Access. 11, 119993–120000. https://doi.org/10.1109/ACCESS.2023.3326756 (2023).

	15.	 Yang, H., Yao, C., Liu, C. & Chen, Q. Rmrl: robot navigation in crowd environments with risk map-based deep reinforcement
learning. IEEE Rob. Autom. Lett.. 8 (12), 7930–7937. https://doi.org/10.1109/LRA.2023.3322093 (2023).

	16.	 Li, Yong & Cheng, H. A* post-processing algorithm for robots with bidirectional shortcut and path perturbation. IEEE Rob.
Autom. Lett. 8 (11), 7775–7782. https://doi.org/10.1109/LRA.2023.3320432 (2023).

	17.	 Dhouib, S. Shortest path planning via the rapid Dhouib-Matrix-SPP (DM-SPP) method for the autonomous mobile robot, results
in control and optimization, 13, 100299. https://doi.org/10.1016/j.rico.2023.100299 (2023).

	18.	 Ou Junlin, S. H., Hong, G., Song & Wang, Y. Hybrid path planning based on adaptive visibility graph initialization and edge
computing for mobile robots. Eng. Appl. Artif. Intell. Volume. 126 (1), 107110. https://doi.org/10.1016/j.engappai.2023.107110
(2023).

	19.	 Yu, Z. et al. A path planning algorithm for mobile robot based on water flow potential field method and beetle antennae search
algorithm, Comput. Electrical Eng., 109, https://doi.org/10.1016/j.compeleceng.2023.108730 (2023).

	20.	 Bulut, V. Path planning of mobile robots in dynamic environment based on analytic geometry and cubic Bézier curve with three
shape parameters. Expert Syst. Appl.. 233 (3), 120942. https://doi.org/10.1016/j.eswa.2023.120942 (2023).

	21.	 Luo, Q., Wang, H., Zheng, Y. & He, J. Research on path planning of mobile robot based on improved ant colony algorithm. Neural
Comput. Appl., 32, 1555–1566. https://doi.org/10.1007/s00521-019-04172-2 (2020).

	22.	 Maoudj, A. & Hentout, A. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl. Soft Comput.
97, 106796. https://doi.org/10.1016/j.asoc.2020.106796 (2020).

	23.	 Ajeil, F. H., Kasim, I., Ibraheem, M. A., Sahib & Humaidi, A. J. Multi-objective path planning of an autonomous mobile robot using
hybrid PSO-MFB optimization algorithm. Appl. Soft Comput. 89, 106076. https://doi.org/10.1016/j.asoc.2020.106076 (2020).

	24.	 Chen, Y. et al. Autonomous mobile robot path planning in unknown dynamic environments using neural dynamics, Soft comput.,
24 (18), 13979–13995. https://doi.org/10.1007/s00500-020-04771-5 (2020).

	25.	 Sun, H. et al. An improved path planning algorithm for mobile robots. J. Syst. Simul.. 36 (9), 2193–2207. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​1​6​1​​​8​​2​/​
j​.​​i​s​s​n​1​0​​0​4​7​​3​1​​x​.​​j​o​s​​​s​.​2​3​-​0​5​8​5 (2024).

	26.	 Miao, C., Chen, G., Wu, Y. & Chengliang Yan, and Path planning optimization of indoor mobile robot based on adaptive ant colony
algorithm. Comput. Ind. Eng. 156, 107230. https://doi.org/10.1016/j.cie.2021.107230 (2021).

	27.	 Song, B., Wang, Z. & Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-
degree Bezier curve, Appl. Soft Comput., 100, https://doi.org/10.1016/j.asoc.2020.106960 (2021).

	28.	 Lyu, D., Chen, Z., Cai, Z. & Piao, S. Robot path planning by leveraging the graph-encoded Floyd algorithm, Future Generation
Comput. Syst., 122 https://doi.org/10.1016/j.future.2021.03.007, (2021).

	29.	 Zhang, Z., Qiao, B., Zhao, W. & Chen, X. A predictive path planning algorithm for mobile robot in dynamic environments based
on rapidly exploring random tree. Arab. J. Sci. Eng. 46 https://doi.org/10.1007/s13369-021-05443-8 (2021).

Scientific Reports | (2025) 15:44617 14| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

https://doi.org/10.1155/2022/2183229
https://doi.org/10.1016/j.cie.2023.109512
https://doi.org/10.1016/j.aei.2023.102121
https://doi.org/10.1016/j.jii.2023.100481
https://doi.org/10.1016/j.ijpe.2022.108762
https://doi.org/10.1016/j.cirpj.2022.11.003
https://doi.org/10.1016/j.compind.2023.103916
https://doi.org/10.1016/j.jmsy.2023.05.004
https://doi.org/10.1016/j.robot.2023.104527
https://doi.org/10.1007/s40430-023-04048-6
https://doi.org/10.1007/s11277-022-10043-2
https://doi.org/10.1109/TIE.2023.3269462
https://doi.org/10.1109/TIE.2023.3269462
https://doi.org/10.1109/TIE.2023.3250847
https://doi.org/10.1109/TIE.2023.3245208
https://doi.org/10.1109/ACCESS.2023.3326756
https://doi.org/10.1109/LRA.2023.3322093
https://doi.org/10.1109/LRA.2023.3320432
https://doi.org/10.1016/j.rico.2023.100299
https://doi.org/10.1016/j.engappai.2023.107110
https://doi.org/10.1016/j.compeleceng.2023.108730
https://doi.org/10.1016/j.eswa.2023.120942
https://doi.org/10.1007/s00521-019-04172-2
https://doi.org/10.1016/j.asoc.2020.106796
https://doi.org/10.1016/j.asoc.2020.106076
https://doi.org/10.1007/s00500-020-04771-5
https://doi.org/10.16182/j.issn1004731x.joss.23-0585
https://doi.org/10.16182/j.issn1004731x.joss.23-0585
https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1016/j.asoc.2020.106960
https://doi.org/10.1016/j.future.2021.03.007
https://doi.org/10.1007/s13369-021-05443-8
http://www.nature.com/scientificreports

	30.	 Zafar, M., Nayab, J. C., Mohanta & Keshari, A. GWO-potential field method for mobile robot path planning and navigation
control. Arab. J. Sci. Eng. 46 https://doi.org/10.1007/s13369-021-05487-w (2021).

	31.	 Yang, H. & Teng, X. Mobile robot path planning based on enhanced dynamic window approach and improved A∗ algorithm, J.
Robot., 2022 https://doi.org/10.1155/2022/2183229 (2022).

	32.	 Zhong, X., Tian, J. & Peng, X. Huosheng Hu, and Hybrid path planning based on safe A* algorithm and adaptive window approach
for mobile robot in large-scale dynamic environment. J. Intell. Robotic Syst. 99 (1), 65–77. (2024).

	33.	 Raj, R. & Kos, A. Intelligent mobile robot navigation in unknown and complex environment using reinforcement learning
technique, Sci. Rep., 14 (1), 22852. (2024).

	34.	 Luo, Q., Ma, M. & Zhou, Y. A novel animal migration algorithm for global numerical optimization. Comput. Sci. Inf. Syst.. 13 (1),
259–285. https://doi.org/10.2298/CSIS141229041L (2016).

	35.	 Camarena, O., Cuevas, E., Pérez-Cisneros, M. & Fausto, F. Adrián González, and Arturo Valdivia, Ls-II: an improved locust search
algorithm for solving optimization problems, Mathem. Probl. Eng., 1, 1–15. https://doi.org/10.1155/2018/4148975 (2018).

	36.	 Tunay, M. & Abiyev, R. Improved hypercube optimisation search algorithm for optimisation of high dimensional functions. Math.
Probl. Eng. (1), 1–13. https://doi.org/10.1155/2022/6872162 (2022).

	37.	 Deo, D. R. et al. Brain control of bimanual movement enabled by recurrent neural networks, Sci. Rrep., 14 (1), 1598. (2024).
s41598-024-51617-3.

	38.	 Hao, K., Zhao, J., Yu, K., Li, C. & Wang, C. Path planning of mobile robots based on a multi-population migration genetic algorithm,
Sensors, 20, https://doi.org/10.3390/s20205873 (2020).

Acknowledgements
The authors thank Dr. S. Ganesh Kumar (Conception et optimisation de problèmes de disposition utilisant des
métaheuristiques, Scientia Iranica) for the assistance in the mobile robot navigation paper.

Author contributions
K. designed the research framework and developed the multi-objective optimal navigation system. K. imple-
mented the Modified Animal’s Migration Optimization (MAMO) algorithm for obstacle state analysis and pro-
active collision avoidance. K. further integrated the Chaos Locust Search (CLS) and Hypercube Search with
Recurrent Neural Networks (HS-RNN) for multi-path generation and optimal path refinement. K. carried out
the simulations, analyzed the results, and prepared the manuscript. All aspects of the study were conducted by
K and reviewed by S.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:44617 15| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

https://doi.org/10.1007/s13369-021-05487-w
https://doi.org/10.1155/2022/2183229
https://doi.org/10.2298/CSIS141229041L
https://doi.org/10.1155/2018/4148975
https://doi.org/10.1155/2022/6872162
https://doi.org/10.3390/s20205873
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A hybrid recurrent neural network and optimization framework for intelligent mobile robot navigation in smart manufacturing
	﻿Problem environment
	﻿Proposed methodology
	﻿Compute obstacle state information
	﻿Feature extraction and multiple path selection
	﻿Optimal path planning

	﻿Result and discussions
	﻿Simulation setup
	﻿Comparative analysis of proposed and existing path planning systems
	﻿Quality comparison of proposed and existing path planning systems

	﻿Conclusions
	﻿References

