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In the third dimension prospective of production industries taking on smart manufacturing principles, 
the integration of automation and digitalization revolutionizes conventional processes, unlocking 
heightened productivity and operational efficiency. This endeavour implicates coordinating unified 
interactions among machines and human operators, capitalizing on their unique strengths and 
capabilities. In this study, a multi-objective optimal navigation system tailored for mobile robots 
operating in dynamic surroundings, leveraging hybrid optimization algorithms. Primarily, introduce 
the modified animal’s migration optimization (MAMO) algorithm, which measures obstacle state 
data essential for dynamic obstacles. This facilitates proactive collision avoidance, thus minimizing 
unnecessary disruptions. Consequently, deep features are extracted from all feasible paths spanning 
the target region connecting the origin and destination points. These path features are then subjected 
to the chaos locust search (CLS) algorithm, which determines multiple paths to consider. In addition, 
the hypercube search with recurrent neural network (HS-RNN) is employed to locate the optimal path 
while removing redundant alternatives among the multiple choices, thereby refining the path planning 
process. Simulation outcomes highlight the better performance of the proposed system in optimal 
path generation compared to alternative approaches, validating its efficacy in dynamic environments.
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Abbreviations
NP	� The total number of animal agents in the population
D	� The number of variables in the optimization problem
Xi,G	� Current State position of the obstacle (i) at generation (G)
Xneighborhood,G	� State of randomly selected Neighboring obstacle at generation (G)
Xi,G+1	� New State position of the obstacle through the neighborhood
Δ	� Gaussian random parameter between 0 and 1
rand (0,1)	� A uniformly distributed random number between 0 and 1
Pa	� A threshold probability used in the population update process. An agent is updated if 

a random number is greater than Pa
r1, r2	� Randomly generated indices within the population [1, NP], used in the position up-

date equation
L = {l1,l2,…lN}	� The population of N locust agents (path solutions)
Lk = {lk1,lk2,…lkN}	� The position (a candidate path) of the ith locust agent at iteration k
lk
i 	� Position of agent (i) at iteration

Lk	� The entire population of path agents at iteration
Sk

i 	� Total social force acting on agent (i) at iteration
Sk

ij 	� Pairwise social force between agents (i) and (j)
ρ

(
lk
i , lk

j

)
	� Dominance value of agent (i) relative to agent (j)

rK
ij 	� Distance between agents (i) and (j)
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s
(
rK

ij

)
	� Social factor function (attraction/repulsion)

F, L	� Parameters controlling the magnitude and forces
pk	� Behavior probability (Solitary vs. social phase) k
Bk	� Subset of q best solutions at iteration k
A

(
bK

j

)
	� The attractiveness of solution

fbest, fworst	� The best and worst fitness within the set Bk.
∈	� A very small constant to stop division by zero
bk

r	� A guide solution randomly selected from Bk

C	� Chaotic variable from the logistic map
X [ ]	� Random (n, m) are formed based on the parameters dimension (m), radius (R), lower 

and upper bounds (LB, UB), and population size (n)
LB, UB	� Lower and Upper bound of search space
R	� Radii of the hybercube (R = UB –LB)
Xc	� Center of hybercube
Xbest	� The best solution found in the current hybercube
S	� Converge factor of the hybercube
dnn	� Normalized distance matrix

Smart manufacturing1 refers to the efficient utilization of labor, materials, and energy to produce tailored, high-
quality products with a technology-driven approach, ensuring timely delivery. These traits collectively contribute 
to the resilience and sustainability of manufacturing by enhancing resource and energy management2,3. 
Autonomous navigation is a pivotal capability for mobile robots, reducing their dependence on human 
intervention4. Path planning entails decisive the most efficient sequence of achievement for a robot to move from 
its present state to a desired one, with these states representing the initial position and the goal, respectively5. The 
swift evolution of mobile robots not only enhances daily conveniences, exemplified by technologies like sweeping 
robots, but also plays a vital role in substituting workers in perilous industries such as mining and aerospace6. 
Within intelligent building systems7, inspection robots exhibit the capability to strategically plan the shortest 
path to navigate a path from danger in critical situations like fires. Path planning algorithms8,9 usually try to find 
the best path or acceptable supposition. For instance, the ideal path could be one that restricts the time required, 
an essential figure missions like request and-rescue errands, where brief assist with canning unfathomably critical 
issue10. These constraints may stem from the robot’s limitations in adapting to specific terrains11,12. Conversely, 
dynamic path planning13 is more intricate, capable of adapting to real-time changes in the environment to plan 
a route for a moving robot. Robot path preparation methods fall into two main classes such as conventional 
and modern systems14. Classic techniques incorporate cell decay, likely field, sub-target, and examining based 
strategies15,16. Heuristic algorithms comprise neural networks17, fuzzy logic18, normal heuristic techniques19, 
and half-breed calculations. While exemplary strategies might confront difficulties in additional working on the 
proficiency of path search and improvement, prompting a progressive decrease in usage, heuristic techniques 
have acquired notoriety for their viable worldwide streamlining capacities and parallelism20.

The literature review on navigation system for mobile robot for smart manufacturing focused the research 
gaps in existing literatures, particularly on the type of technique used for path finding. Luo et al.,21 planned an 
improved ant colony algorithm (IAC) to resolve issues connected with neighborhood enhancement, unfortunate 
assembly, and low pursuit proficiency in portable robot average path length (PL) and delay finding. Maoudj et al.,22 
introduced an effective Q-learning to address difficulties, guaranteeing the deduction of an ideal crash free path 
in negligible computational time and safety. Ajeil et al.,23 introduced a hybridized particle swarm optimization-
modified frequency bat calculation, expecting to limit PL/distance while sticking to path perfection standards. 
Chen et al.,24 have introduced the bio-spurred organizing computations for the effect free path orchestrating 
of robots in strong circumstances, expressly without a hint of prior information. The padding mean mind 
dynamic model is composed association with relationship among abutting neurons, planned to work with the 
spread of nerve main thrusts like waves without coupling influences. Li et al.,25 have introduced an enhanced 
rapidly-exploring random tree (PQ-RRT) algorithm, showing culmination, asymptotic optimality, and quick 
convergence rate to the ideal arrangement. RRT keeps up with a similar computational intricacy. Albeit static 
path arranging is transcendently investigated at the on-going phase, certifiable conditions are dynamic. Miao 
et al.,26 have presented an enhanced adaptive ant colony algorithm intended for enhancing the path arranging 
and length findings of indoor portable robots. Song et al.,27 have devised a strategy for addressing the planning 
challenge of achieving a smooth robot path with accuracy and F-measure. This includes using a constant serious 
level Bezier bend related to an improved particle swarm optimization (IPSO) calculation. Instead of associating 
various low-degree Bezier bend fragments, the persistent serious level Bezier bend is utilized to meet the rules 
for smooth path arranging. Lyu et al.,28 have introduced a graph-based system aimed at optimizing robot average 
paths and computational time, with the focal point being the application of the Floyd algorithm to dynamically 
allocate masses to various paths. Zhang et al.,29 have presented extrapolative path planning designed for robots 
navigating dynamic surroundings, utilizing the RRT. It speeds up the time to revaluating framework, restricting 
the path cost, diminishing the likelihood of accidents, and finally working on the idea of the re-examined 
path. Nayab Zafar et al.,30 have introduced a navigation control methodology utilizing a hybrid grey wolf ’s 
optimization and the artificial potential field technique for timely path preparation of mobile robots. Existing 
path planning methods struggle with adaptability and efficiency in dynamic, complex environments due to 
limitations in optimality, continuity, and computational speed. Yang et al.,31 have introduced a unique robot path 
preparation that facilitates a predominant improved A* algorithm with better strong window technique. Zhong 
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et al.,32 have utilized a classic A and safe A for mobile robot in large-scale environment. Raj et al.,33 presented the 
reinforcement learning technique for intelligent mobile robot navigation problem.

Many existing classical algorithms often fail to provide globally optimal paths in dynamic environments. 
Most research papers assume static environments and real-time path planning that adapts to moving obstacles 
in smart manufacturing settings is still a major challenge. The integration of hybrid optimization approaches 
remains underexplored. The main contribution of this research paper is intended to improve the dynamic path 
planning by combining the MAMO, CLS and HS-RNN, to overcome the drawbacks of conventional tools such 
as poor exploration and local optima entrapment. In the proposed approach, MAMO is applied to measure 
obstacle states, and CLS is employed to explore the various paths by chaotic theory and a HS-RNN is used to 
determine the optimal path. Hence, the primary objectives of this work is to efficiently design an intelligent 
multi-path decision-making navigation scheme by leveraging optimal feature extraction from all potential paths 
between the source and destination in static and dynamic scenarios. Also, the proposed navigation scheme has 
been validated with existing solutions to ensure suitability for smart manufacturing in production industries.

Problem environment
In this study, the environment modeling relies on the grid technique, a technique that partitions the two-
dimensional workstation of mobile robots into a uniform grid structure. The illustration in Fig. 1 demonstrates 
the division of the entire workspace into a grid map, where each grid is allocated a unique amount. Initially, 
information is gathered from the grid map, utilizing the discrete nature of the environment.

The experimental environment is defined as a (20 × 20), (40 × 40), (50 × 50), (80 × 80) and (100 × 100) grid 
maps, where each cell represents a possible position for the mobile agent. Black cells denote obstacles, and 
white cells correspond to free navigable spaces. The agent starts at the lower-left corner and aims to reach the 
goal position located at the upper-right corner. The grid includes both static and dynamic obstacles to emulate 
a real-world navigation scenario. Static obstacles remain fixed throughout the simulation and form the baseline 
environment for path generation. In contrast, dynamic obstacles change their positions over time according to 
predefined movement rules. During navigation, the MAMO algorithm computes the current obstacle states at 
each time step by updating the availability matrix. When a dynamic obstacle moves into a previously free cell, its 
corresponding entry in is updated from 0 (free) to 1 (occupied/obstacle) and vice versa if the obstacle moves away. 
For example, consider a navigation scenario on a 5 × 5 grid where coordinates (x, y) represent positions, with 
x-values from 1 to 5 spanning left to right and y-values from 1 to 5 spanning bottom to top. The agent’s starting 
point is S = (1, 1), and the target destination is G = (5,5). Agent mobility is continuous, meaning positions are not 
confined to discrete grid points; however, for the purpose of obstacle detection, these continuous coordinates 
are rounded to the nearest integer grid cell. The environment includes predefined static obstacles at cells (2,5), 
(4,4), and (3,2), forming an initial binary obstacle map. Additionally, a dynamic obstacle, unknown to the agents 
initially, starts at (2,3) at time t = 0 and transitions to (2,4) at t = 1. Agents can only identify obstacles, whether 
static or dynamic, by physically occupying the corresponding cell during movement. This simulation utilizes in 
Eq. (1)34 with a parameter δ = 0.5 and in Eq. (3)34 with ρ = 0.6. Over the course of two MAMO iterations (from 
generation 0 to generation 2), an occupancy detection matrix is updated. This matrix begins with the static 
obstacles already marked, and a cell is flagged as detected if any agent lands on it during iteration.

Initial state

5 0 1 0 0 G

4 0 0 0 1 0

3 0 0 0 0 0

2 0 0 1 0 0

1 S 0 0 0 0

1 2 3 4 5
 

The MAMO begins with three agents positioned near (1,1), (3,1), and (2,4). In the first iteration (G = 0→1), 
migration guides the agents to new sensing cells at (2,2), (4,2), and (2,4), but none encounter the dynamic 
obstacle D at (2,3). A subsequent population update replaces the worst-performing agent, repositioning it to 
(2,4). In the next iteration (G = 1→2), the dynamic obstacle moves to (2,4). Agent migration now leads two 
agents to land on cell (2,4), resulting in the successful detection of the dynamic obstacle. This discovery is then 
integrated into the observed obstacle matrix, updating the system’s knowledge of the environment.

5 0 1 0 0 G

4 0 1 0 1 0

3 0 0 0 0 0

2 0 0 1 0 0

1 S 0 0 0 0

1 2 3 4 5
 

(2,4) = 1 because two agents confirmed observation by landing there.
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The CLS is employed to select multiple paths based on the extracted features. CLS introduces chaos to 
enhance exploration, considering various alternatives for navigation. For example, the iteration begins with the 
solitary phase, where pairwise social forces are computed for the three path locusts. For the worst locust l_3 
(P3), forces from the better-ranked locusts are calculated using the defined s(r) function and dominance rule 
ρ. The sum of these forces S_3 is a vector, which is added to l_3 to update its position. In the subsequent social 
phase, the best set B is formed from the top two paths, P1 and P2. Their attractiveness values are calculated to be 
approximately 1.0. For the updated worst locust, the roulette selection probabilities for P1 and P2, respectively. 
P1 is selected as the attractor. Finally, the social update rule with a random value of 0 to 1 is applied, moving 
the worst locust to a new position, very close to the best centroid P1. Further illustrated, the PL38, measured as 
the total number of moves, was identical for all three candidate paths at 8 units. However, the paths differed 
significantly in smoothness, quantified by their cumulative turning angle (CTA)31. Paths P1 and P2, which 
consisted of straight segments with only one direction change, had a low CTA of 90°. In contrast, Path P3’s zig-
zag pattern resulted in five turns, yielding a cumulative turning angle of 450° five times higher. While the average 
turning angle (ATA)32 was 90° for all paths, as each individual turn was a right angle, the cumulative metric 
effectively captured P3’s tortuosity, making it a key differentiator for path quality where smoothness impacts 
efficiency. Finally, the HS-RNN model is to identify the optimum path from the alternatives generated by CLS. 
The model discerns between optimal and redundant paths, refining the path selection process. The MAMO + 
CLS + HS-RNN system was implemented in MATLAB programming simulation on an Intel core I5-9400 CPU 
and 16 GB RAM platform. Key parameters included: MAMO with 20 agents and a migration rate (δ = 0.5). The 
CLS algorithm used a population of 50, with F (social force magnitude) = 1.5, L (social interaction range) = 1.0, 
and q (number of best solutions for attraction) = 10. The HS-RNN performed multi-criteria optimization using 
PL, a turning penalty (weight = 0.01), and safety. Multiple independent runs validated the results.

Proposed methodology
In this section, it describe the multi-objective optimal navigation system integrates grid-based environment 
model.

Compute obstacle state information
Obstacle state information refers to a dynamic assessment of the current state or characteristics of obstacles 
within the environment. The need to compute obstacle state information arises from the necessity to enhance 
the ability to direct through its environment effectively. The modified animal’s migration optimization (MAMO) 
algorithm is a nature-inspired optimization that draws stimulus from the collective performance of animals34. 
During the migration procedure, the algorithm pretends collections of animals moving from an existing state. 
In the process of informing the population, the algorithm pretends the probabilistic renewal of animals. If the 
index of an animal is i, its neighborhood consists of animals having indices are i − 2, i − 1, i, i + 1, i + 2, and if the 
index is 1, then the neighborhood indices NP − 1, NP, 1, 2, 3, etc. Once the locality topology is created, randomly 
choose a neighbor and appraise the individual’s location rendering to that neighbor, using Eq. (1)34.

	 Xi, G + 1 = Xi,G + δ (Xneiborhood, G − Xi,G)� (1)

The new position Xi, G+1 is calculated using the current position Xi, G, a neighborhood position Xneighborhood, G, a 
Gaussian random parameter δ, and the vector difference between two other randomly selected individuals (r1, 
r2). The better position between the new and current one is selected using Eq. (2)34.

	
Xi =

{
Xi if f (Xi,G ) is betterthan f (Xi,G+1 )
Xi,G+1 otherwise

� (2)

In the MAMO, the best individual defines the Gth cycle living region. As resources diminish, few animals begin 
to migrate, developing the G + 1th cycle living region. This continuous shrinking of the living region makes 
individuals converge toward the best string/solution, improving convergence speed and accuracy.

The boundary of the living region is recognized as in Eq. (3)34.

	 Low = Xbest − R, up = Xbest + R, R = ρ R� (3)

Here, Xbest denotes the leader animal; low and up are the living region bounds; R is the radius;  is the shrinkage 
coefficient; and ∈ (0, 1), low, up and R are all 1×D array vectors. Initially, R depends on the search region size and 
larger R improves exploration, while smaller R enhances exploitation during cycles.

The MAMO contains: (a) animals living in a defined region, (b) migrating as resources deplete, (c) population 
updating, and (d) settling in a new region. So, it’s covering living, migration, and updating processes.

In the initialization, the MAMO starts by initialize a set of animal locations X1, X2, X3,…XNP, every location 
Xi D-dimensional vector with components uniformly distributed among lower bound aj and upper bound bj, So 
the jth component of the ith vector as Eq. (4)34 and (5)34.

	 Xi,j = aj + randi,j [0, 1] (bj − aj)� (4)

	 i = 1, NP, j = 1, D� (5)

where, [0,1] i j rand is a uniformly distribution.
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In MAMO, migration occurs as resources deplete or conditions change, updating grid map and locations 
based on neighbors. During new population updating, replaced individuals maintain a fixed population size, 
allowing computing the obstacle state and ensuring continuity of the algorithm. The working process of obstacle 
state information computation using MAMO is explained in Algorithm 1.

Algorithm 1.  Obstacle state information computation usign MAMo.

Feature extraction and multiple path selection
Feature extraction is the procedure of capturing and representing relevant features from raw data. In the context, 
feature extraction is functional to paths within the grid map to capture essential information that aids in the 
navigation process. The CLS algorithm is used for selecting multiple paths which enhance the exploration, 
considering various alternatives for navigation. CLS is a population-based global optimization method inspired 
by the collective movement of desert locust swarms35. In the CLS algorithm, search agents are represented by 
an L = {l1,l2,…lN} set of N individual locusts that interact with each other as they traverse the n-dimensional 
solution space. Every individual condition li = {li,1,li,2,…li,n} is constrained in bounded region (S = { x∈Rn | lbd ≤ 
xd ≤ ubd}), with x = [x1, x2, x3, xd], lower lbd, upper ubd bounds at the d-dimensional and characterizes applicant’s 
string to a particular problem. Like other swarm-based methods, CLS proceeds by cycles where agents alter their 
locations across generations. These updates are guided by operators modeled on the two behavioral phases of 
locusts such as solitary and social phase. During the solitary phase, individuals move to different locations in 
search of food sources, while avoiding mating with other potential partners. Hence, for any cycles ‘K’ is the total 
attractive and repulsion force by a particular individual ‘i’, as in Eq. (6)35.

	

Sk
i =

N∑
j=1
j ̸=1

Sk
ij � (6)

where Sk
ij  denotes the pairwise attraction among separate “i” and some other individuals “j” and is assumed by 

Eq. (7)35.

	 Sk
ij = ρ

(
lk
i , lk

j

)
s

(
rk

ij

)
dij + rand (1, −1)� (7)

where the operativeρ
(
lk
i , lk

j

)
is known as supremacy value amonglk

i  and lk
j  the worths

(
rk

ij

)
characterizes the 

so named social factor, where rk
ij =

∥∥lk
i , lk

j

∥∥ ‖ denotes the Euclidian distance among the elements “i” and 
“j”. Therefore, dij =

∥∥lk
i , lk

j

∥∥ /rk
ijattitudes for the unit course cement from lk

i  to l lk
j , though and (1, − 1) is a 

random vector whose fundamentals are haggard from the unchanging distribution of [− 1, 1]. The value s
(
rk

ij

)
 

is assumed by Eq. (8)35.

	 s
(
rk

ij

)
= F e

−rk
ij/L − e−rk

ij � (8)

where the limitations f and l represent the attraction greatness and measurement scale, individually. To apply 
operatorρ

(
lk
i , lk

j

)
 and presumed that each individual lk

i ∈ lk =
{

lK
1 , lK

2 , lK
N

}
 is ordered with number from 0 
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(Best) to N − 1 (Worst) contingent on their individual fitness worth. Then, the dominance worth may be assumed 
as in Eq. (9)35:

	
ρ

(
lK
i , lK

j

)
=

{
e−(rank(lK

i )/N) if rank
(
lK
i

)
≤

(
lK
j

)

e−(rank(lK
i )/N) if rank

(
lK
i

)
>

(
lK
j

) � (9)

As effect of the inspiration of the total social forcesk
i , each person shows a certain propensity to move towards 

other memberships of the “i” population. In such cases, the new location resulting from individual “i” can besk
i  

expressed as in Eq. (10)35.

	 l∗
i = lk

i + Sk
i � (10)

Applying solitary phase movement operators to every individual separately leads l∗
i ∈ lkto refine the best 

candidate strings L = {l1,l2,…lN}that represent every individual’s location as an outcome of the inspiration used 
by all other members of the swarm.

In the social phase, the aim is to improve the best candidate strings (L = {l1,l2,…lN}), which are attained by the 
solitary phase movement operator. From this set, a subset (B = b1,….bq) containing the best strings (q) is selected. 
For each string (li ∈ B), a group of (h) random solutions (M i =

{
mi

1, mh
i

}
) is created within its respective 

subspace (Ci ∈ S), where the boundaries of are predefined, as in Eq. (11)35 and Eq. (12)35.

	 Clower
i,n = bi,n − r� (11)

	 Cupper
i,n = bi,n + r� (12)

whereClower
i,n  and Cupper

i,n characterize the lower and upper bounds of every sub region ci at the n-th dimension, 
correspondingly, while bi,nattitudes for the nth element from string bi, as in Eq. (13)35.

	
r =

∑d

n=1 (bupper
n ) −

(
blower

n

)
d

β� (13)

whereblower
n  and bupper

n  denoting the b represents the lower and higher bounds, and d represents the total 
amount of decision variables. Also, β ∈ [0, 1]∈ [0, 1] characterizes a scaling factor that changes the scale Ci. 
Finally, the best string li ∈ N and its corresponding i from the random strings (

(
mi

1, mi
2, mi

3
)

) are assigned to 
a unique location “i” in the next iteration “k + 1”, expressed in Eq. (14)35.

	 lk+1
i = best

(
mi

1, mi
2, mi

h

)
� (14)

Any solution not grouped in the best solution l∗
i set B is not eligible for exclusion by the social status director. 

Therefore, the last location update practical to each individual in the entire swarm by ‘i’ can be summarized as 
in Eq. (15)35:

	
lk+1
i =

{
best

(
l∗
i , mi

1, mi
2, mi

h

)
if l∗

i ε B

l∗
i l∗

i /∈ B
� (15)

Fig. 1.  Overall system architecture of proposed multi-objective optimal navigation system.
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The CLS combines global and local search by solitary and social phases but suffers from maximum computational 
imbalance among exploration and exploitation. It introduces a probabilistic pattern that applies either phase 
selectively and adjusts the social operator with a probabilistic attraction, improving performance and efficiency. 
The solitary and social phases are based on cycles. Early steps emphasize solitary exploration, while later steps 
favor social exploitation. The probability of social behaviors increases in the search progresses, guiding the 
choice of the phase at every cycle. Underneath such conditions, at a piece repetition “k”, the behavior phase 
P

(
lk

)
functional to the populace lkis selected as shadows in Eq. (16)35.

	
P

(
lk

)
=

{
solitary if rand ≤ pk

solitary if rand > pk
� (16)

A random number between 0 and 1 is compared against a performance probability, pk, calculated using Eq. (17)35.

	
pk = 1 − K

itern
� (17)

The number of cycles measured in the search process is indicated as itern. For this modified social operator, the 
social phase leads each individual toward hopeful strings instead of relying on multiple local valuations, thereby 
minimizing computational time. A subset of the best strings (Bk = bk

1,….bk
q) is chosen that includes the q best 

strings from the total set Lk = {lk
1,lk

2,…lk
N}, and every individual lk

i moves toward a randomly chosen bk
j with a 

probability affected by both its quality and distance, as in Eq. (18)35.

	
pK

1i,bj
=

A
(
bk

j

)
e−∥lk

i − bk
j |

∑q

n=1 A
(
bk

n

)
e−∥lk

i
−bk

n

� (18)

where 
∥∥lk

i − bk
j

∥∥denotes the Euclidian distance among the separate “i” (lk
i  ) and associate “j” from the set of 

greatest stringsBk
(
bk

j

)
, while A

(
bk

j

)
stands for the attractiveness of string bk

j  as mentioned by Eq. (19)35.

	
A

(
bk

j

)
=

f
(
bk

j

)
− fworst

(
Bk

)
fbest (Bk) − fworst (Bk) + ε

� (19)

It representsf
(
bk

j

)
 the relative fitness value bk

j  (rank) fbest

(
Bk

)
fworst

(
Bk

)
 stand the best and worst fitness 

values from the members of the best string sets. The social phase characteristics, every individual lki within the 
swarm population Lk updates their location as in Eq. (20)35:

	 lk+1
i = lk

i + 2
(
bk

r − lk
i

)
rand� (20)

where bk
r (by r ∈ [1,. . ., q]) is a randomly selected explanation bk

j ∈ Bk, with respect to their particular 
prospectsP k

ij  (qualified to lk
i and bk

j), while rand stands for a random haggard from within the consistently 
dispersed interval [0, 1]. The working process of feature extraction and multiple path selection using CLS is 
explained in Algorithm 2. The extracted path features are then subjected to the CLS algorithm, which produces a 
set of multiple feasible paths rather than a single solution. This step ensures that the diversity of potential routes 
is preserved.
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Algorithm 2.  Feature extraction and multiple path selection usig CLS.

Optimal path planning
After the assortment of multiple paths, the optimum path planning process involves identifying the most 
efficient and effective path while eliminating redundant or suboptimal alternatives. In this context, the HS-
RNN is employed to enhance the optimization of the planning process, and equations are taken from Tunay 
and Rahib36 whose advantages are utilized in different applications37. During initialization, candidate strings 
(X [search region] = random (n, m) are formed based on the parameters dimension (m), radius (R), lower and 
upper bounds (LB, UB), and population size (n). The hypercube is defined by its radius (R) and center (Xc), given 
by Eqs. (22) and (23). Within the defined search region, points xij (i = 1,.,n; j = 1,.,m) are created in Eq. (21), and 
their corresponding objectives fij (elements of F) are attained. Thereafter, the best string matrices Xbest and Fbest 
(n×1) are observed, creating the initial population for subsequent cycles. The situation of the Xbest using local 
search and following measuresXnew

best = Xbest + ρ∆F , where F is the objective meaning and0 ≤ ρ ≤ 1.
Lower bound (LB) and upper bound (UB) to scale the strings xij in Eq. (21)36

	 Xi,j = LB + Xi,j (UB − LB)� (21)

Determine radii (R) of the hybercube expressed in Eq. (22)36:

	 R = UB − LB� (22)

Center of hybercube are gotten in Eq. (23)36.

	
Xc = R

2
� (23)

	
Xnew_center = (Xc + Xbest)

2
� (24)

	 Rnew = R ∗ S� (25)
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In the initialization process, next cycle, the Xbest is used to compute the hypercube center. This process 
is gathered through calculating the center and mean of the last location (Xc) and the last best Xbest. In this 
displacement shrink process, the algorithm computes the new hypercube center and estimates the objective. The 
next hypercube center is attained through averaging the current hypercube center and the best string (Xbest). 
Relationally, it is given in Eq. (24)36 and Eq. (25)36.

The convergence factor S is used to calculate new R (Rnew) based on an old one, R. This operation gradually 
minimizes the hypercube size and, subsequently, the search region, a stage called shrink. As the hypercube deals, 
the point density (population) increases. The movement of the best string is governed by contraction, which is 
higher for lesser displacements, ensuring quicker convergence while escaping local minima. At every cycle, new 
points are produced, and their functions are computed. Based on these outcomes, the hypercube size is updated, 
smaller with every stage, leading to a denser search region and fast convergence toward the optimum path. The 
algorithm thus explores a sequence from the current position, where the displacement ranges are defined, as in 
Eqs. (26–29)36:

Normalizedxij :

	
xn

ij
= (xij − Xc)

R
� (26)

Normalizedxbest:

	
xn

best
= (xij − Xc)

R
� (27)

Normalized distance dn:

	
dn =

[
sum

(
xn

ij − Xn
best

)2
]1/2

R

� (28)

Re-Normalized distance:

	
dnn = dn√

m
� (29)

At every cycle, element of x is first divided by its respective interval, converting the displacement into unit-scaled 
points as given in Eqs. (26)36 and (27)36. These normalized values are then further divided through the diagonal 
length P k

ij ​ as given in Eqs. (28)36 and (29)36. This normalization increases the contraction rate of the hypercube, 
resulting in progressively smaller movements toward the optimum solution.

In this searching area phase, the distances between the new and previous optimal solutions are computed 
using Eqs. (26–29)36. The process also employs the defined interval for renormalization to adjust the search 
region of x dynamically throughout

√
m, ensuring efficient exploration around the updated optimum.

When the movement x satisfies the given condition, the convergence factor (S) is calculated and updated at 
each cycle using Eq. (30)36.

	 S = 1 − 0.2e − 3dnn� (30)

Here, dnn represents the normalized distance attained from Eq. (29)36, found from the average of the 2 latest best 
x values. This mechanism guides the population toward the minimum efficiently by continuously reducing the 
hypercube area after each cycle. The entire process is recurrent until the decisions are gratified. The algorithm 3 
depicts the function of optimal path planning using HS-RNN.
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Algorithm 3.  Optimal path planning using HS-RNN tenique.

Result and discussions
In this section, the validation of proposed MAMO + CLS + HS-RNN system compared with existing methods in 
both static and dynamic obstacle environments. To assess the static and dynamic path planning performance 
of method, conduct comparisons with established systems, including classic A*, safe A*32, and improved A*31.

Simulation setup
To facilitate performance analysis, this study employs specific surroundings for mobile robots and the 
conservation map. The map is defined with a designated starting and ending point, and some areas may contain 
unknown obstacles. Dynamic obstacles within the map move in a straight line at a consistent speed, although 
their moving direction and position remain unknown. Equipped with sensors, the mobile robot can perceive 
information within aim perfect range, including the position and speed of obstacles. The mobile robot itself 
maintains a continuous speed and is capable of movement in all directions. Its maximum velocity, angular 
velocity, velocity resolution, angular velocity resolution, acceleration and angular acceleration of 1 m/s, 20°/s, 

Fig. 2.  (a) Input grid map (Static obstacles) (b) Output optimal path (Static obstacles).
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0.01  m/s, 1°/s, 0.2  m/s², and 50°/s². Figures  2 and 3 shows the reproduction results of path planning using 
planned MAMO + CLS + HS-RNN system for static and dynamic obstacles, respectively.

Comparative analysis of proposed and existing path planning systems
Tables 1 and 2 present a comprehensive comparison of the results gotten from various path preparation systems 
in motionless static and dynamic obstacle environments. In static and dynamic environment, the proposed 
MAMO + CLS + HS-RNN system stands out by consistently showing significantly lower PL, CTAs and improved 
ATAs compared to other systems such as classic A*, safe A*32, and improved A*31, respectively. Also, it produced 
shorter PLs with less path planning time (PPT) in larger grid sizes than other systems. Overall, proposed system 
outperforms the proportional growth of complexity and erratic pattern-fluctuations.

Path planning system 20 × 20 50 × 50 100 × 100 20 × 20 50 × 50 100 × 100

CTAs (°) ATAs (°)

 Classic A*32 – – – – – –

 Safe A*32 – – – – – –

 Improved A*31 – – – – – –

MAMO + CLS + HS-RNN 77.44 80.77 83.170 12.91 13.46 13.862

PL PPT

 Classic A*32 – – – – – –

Safe A*32 55.8 – – 35 – –

Improved A*31 47.6 – – 26 – –

MAMO + CLS + HS-RNN 34.51 43.61 53.59 3 5 16

Table 2.  Results comparison of path planning systems for dynamic Obstacles environments.

 

Path planning system

20 × 20 50 × 50 100 × 100 200 × 200 20 × 20 50 × 50 100 × 100 200 × 200

CTAs (°) ATAs (°)

Classic A*31,32 488.9 – – 309.4 32.56 – – 61.9

SafeA*31,32 128.92 – – 273.4 25.78 – – 54.7

Improved A*31 85.41 – – – 14.24 – – –

MAMO + CLS + HS-RNN 52.32 55.64 58.04 229.2 5.62 6.34 8.96 45.8

PL PPT

 Classic A*31,32 28.70 82.80 169.70 1051.4 22 26 155 –

 SafeA*31,32 25.60 67.20 77.30 1065.8 18 22 85 –

 Improved A*31 26.10 61.90 74.80 – 10 16 42 –

 MAMO + CLS + HS-RNN 22.15 31.25 41.23 1038.7 6 8 19 –

Table 1.  Results comparison of path planning systems for static Obstacles environments in production 
industries.

 

Fig. 3.  (a) Input grid map (Dynamic obstacles) (b) Output optimal path (Dynamic obstacles).
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Quality comparison of proposed and existing path planning systems
In this study, each trial’s performance metrics, including PL, PPT, CTA, and ATA, were first normalized to 
allow fair comparison across algorithms. These normalized values were then combined into a single composite 
performance index (PI) representing the overall efficiency of the path planning process. Success thresholds were 
defined on the PI to classify trials as optimal or non-optimal, and the MAMO + CLS + HS-RNN algorithm was 
used as the ground truth to assign labels to all other algorithms. Using these labels, the confusion matrix was 
calculated to determine Accuracy, Precision, Recall, and F-measure. Finally, the proposed MAMO + CLS + HS-
RNN was compared with traditional machine learning algorithms including Random Forest, Linear Regression, 
K-Nearest Neighbor, Support Vector Machine, Decision Tree, XGBoost, Deep Neural Network, and Artificial 
Neural Network using these statistical metrics to evaluate its performance and reliability in both static and 
dynamic path planning scenarios.

Table  3 presents a detailed quality comparison of the proposed MAMO + CLS + HS-RNN system against 
existing path planning systems for static and dynamic obstacle environments in production industries. In static 
environment, each system exhibits a progression in measure (%), with the MAMO + CLS + HS-RNN system 
surpassing them all by achieving improved accuracy, precision, recall and F-measure of 98.562%, 94.563%, 
93.986% and 93.986%. Figure 4 shows the system’s proficiency in achieving a balance between precision and 
recall, resulting in accurate and reliable path planning in static obstacle environments. The performance valuation 
of the MAMO + CLS + HS-RNN and existing models was validated using a confusion matrix, which records 
the number of correctly and incorrectly classified samples. It consists of four parameters: True Positive (TP), 
True Negative (TN), False Positive (FP), and False Negative (FN). These metrics collectively assess the model’s 
classification capability in terms of correctness, sensitivity, and reliability. In the static obstacle environment, 188 
out of 200 test samples were correctly classified as positive and 189 as negative, while 12 positives and 11 negatives 
were misclassified. From these values, Accuracy = (188 + 189) / 200 = 98.5% Precision = 188 / (188 + 11) = 94.56%, 
Recall = 188 / (188 + 12) = 93.98%, and F-measure = 2 × (0.9456 × 0.9398) / (0.9456 + 0.9398) = 94.27%. These 
results closely align with the reported performance metrics, validating the model’s high classification accuracy 
and reliability. In dynamic environment, MAMO + CLS + HS-RNN system produced better performance than 
others by achieving enhanced accuracy, precision, recall, and F-measure of 96.235%, 95.236%, 94.895% and 
95.065%. Figure  5 reflects the system’s ability to strike a balance between precision and recall, resulting in 

Fig. 4.  Quality measure (Static obstacles).

 

Path planning system

Accuracy Precision Recall
F-
Measure Accuracy Precision Recall F-measure

Measure (%) – Static obstacles Measure (%) – Dynamic obstacles

Random forest 79.714 75.715 75.138 75.426 67.739 66.740 66.399 66.569

Linear regression 82.070 78.071 77.494 77.782 71.301 70.302 69.961 70.131

K-nearest neighbor 84.426 80.427 79.850 80.138 74.863 73.864 73.523 73.693

Support vector machine 86.782 82.783 82.206 82.494 78.425 77.426 77.085 77.255

Decision tree 89.138 85.139 84.562 84.850 81.987 80.988 80.647 80.817

XG boosting 91.494 87.495 86.918 87.206 85.549 84.550 84.209 84.379

Deep neural network 93.850 89.851 89.274 89.562 89.111 88.112 87.771 87.941

Artificial neural network 96.206 92.207 91.630 91.918 92.673 91.674 91.333 91.503

MAMO + CLS + HS-RNN 98.562 94.563 93.986 94.274 96.235 95.236 94.895 95.065

Table 3.  Quality comparisons of proposed and existing path planning systems for static and dynamic 
Obstacles environments.

 

Scientific Reports |        (2025) 15:44617 12| https://doi.org/10.1038/s41598-025-28585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


accurate and reliable path planning in dynamic obstacle environment. In test environment, 95 out of 200 tests 
were correctly predicted as positive and 98 as negative, while 5 positives and 2 negatives were misclassified. From 
these values, Accuracy = (95 + 98) / 200 = 96.5%, Precision = 95 / (95 + 2) = 95.24%, Recall = 95 / (95 + 5) = 94.90%, 
and F-measure = 2 × (0.9524 × 0.9490) / (0.9524 + 0.9490) = 95.06%. These computed results closely match the 
reported values, confirming the model’s excellent classification reliability and predictive consistency.

It is revealed from the outcomes that, when the grid size increases, the time also increases to find the optimal 
results. Though, the MAMO deals through logically examining obstacle states and implementing modifications 
in the environment. At the same time, when CLS develops chaos theory of finding the optimal path selection 
is better for the proposed system. The purpose may be the next generation in classic A*, Safe A* and improved 
A* is strongly affected by this generation’s best individuals. This constrains classic A*, Safe A* and improved 
A* in terms of search region and may have gotten caught in the local optima. Besides the ability of classic A*, 
Safe A* and improved A* to improve them, they tend to reach prematurely. After that, every iterations of the 
search region of the proposed system is not strongly controlled through the current best individual. It increases 
its search region to calculate optimal outcomes and does not get stuck in local minima such as classic A*, Safe 
A* and improved A*. Further, HS-RNN leverages deep learning to recollect and forecast better paths over time, 
altering outcomes by new combination learning patterns.

The hybrid framework demonstrates significant advancements over established path planning algorithms, 
including the hybrid approach presented in Yang and Teng31. While such conventional hybrid methods effectively 
combine improved A∗ planning with local dynamic window approach obstacle avoidance, they typically operate 
sequentially and can produce suboptimal paths with excessive turns. In contrast, our approach introduces a 
more sophisticated hierarchical architecture. The multi-population migration component enables parallel 
exploration through multiple subpopulations, effectively overcoming the premature convergence of standard 
genetic algorithms. The CLS further refines path quality using chaotic dynamics, providing more comprehensive 
optimization than the simple path smoothing techniques typically employed in improved A∗ variants. Finally, the 
HS-RNN performs advanced decision-making for optimal path selection and outperforming the conventional 
approaches. This integrated methodology generates kinematically superior trajectories with significantly reduced 
turning angles and enhanced navigation efficiency across diverse environmental conditions.

The proposed algorithm, though effective, has certain limitations. The computation time increases with grid 
size and environmental complexity, affecting real-time performance. The system’s efficiency also depends on 
careful parameter tuning, and its adaptability may decrease when obstacles move unpredictably. Additionally, 
as the validation was conducted in a simulated environment, real-time hardware implementation may face 
processing constraints. Moreover, the HS-RNN model may require retraining for significantly different 
environments, limiting its generalization capability.

Conclusions
This work, a novel multi-objective optimal navigation system tailored for mobile robots navigating dynamic 
surroundings, leveraging the effectiveness of hybrid optimization algorithms. The MAMO algorithm is 
instrumental in computing obstacle state information, enhancing the system’s capacity to navigate amidst 
dynamic obstacles. Additionally, the CLS algorithm is employed for feature extraction and multiple path 
selection, contributing to the system’s adaptability and versatility. The HS-RNN further refines the path planning 
process by identifying optimal paths and eliminating redundant alternatives. The proposed system overcomes 
the drawbacks of classic A*, Safe A*, and improved A* through enhancing search regions and removing 
premature reach. Combining the methods, it guarantees adaptive, multipath, smart optimal path planning even 
in large grid and dynamic environments. Further, the MAMO + CLS + HS-RNN algorithm was compared with 
traditional machine learning algorithms using a composite index of normalized path metrics, and performance 
metrics showed it outperformed all baselines in static and dynamic environments. The confusion matrix based 
validation confirms the system’s high measure (%) in static conditions, and similarly strong performance in 
dynamic environments, ensuring reliable and precise path planning for industrial applications. The limitations 

Fig. 5.  Quality measure (Dynamic obstacles).
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of applied framework include increased computation time increases with larger grid sizes or more complex 
dynamic environments, affecting real-time performance. Its effectiveness depends on careful parameter tuning, 
and unpredictable obstacle movements can reduce adaptability. Additionally, real-world implementation may 
face hardware constraints, and the HS-RNN may require retraining for different environments.

Data availability
We sincerely thank the reviewer for this constructive suggestion. Datasets was generated and/or analyzed dur-
ing current study available and accessible at web link provided below, as it can effectively handle mobile robot 
navigation problems, particularly when the outputs involve objectives. “Data availability “The datasets utilized 
in this research are openly accessible, as they are linked to the paper: https://doi.org/10.1155/2022/2183229. The 
datasets were generated during and/or analyzed during the current study are available from the corresponding/
first author upon reasonable request.”Now, it is included in the end Section and relevant reference31.
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