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This work introduces the MSFAUMobileNet model, a complex U-Net structure tailored for retinal
blood vessel segmentation, which is a critical process for detecting and monitoring retinal diseases
such as diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD). The model uses
Multi-Scale Feature Aggregation (MSFA), Residual Connections, and Attention Mechanisms to enhance
its segmentation accuracy. Utilizing MobileNetV2 as the encoder, the model is capable of effectively
generating 13 bottleneck layers’ worth of hierarchical features. Although residual connections and
attention mechanisms are useful in improving the segmentation process and guaranteeing the precise
outlining of intricate vascular networks, MSFA extracts spatial information at various resolutions.

The model was tested on the DRIVE dataset and produced exceptionally high scores with accuracy

at 99.99%, Dice coefficient at 99.95%, and Intersection over Union (loU) at 99.94%. These scores

show how efficiently the model separates the complex retinal network, enabling early treatment

and detection of retinal disease. MSFAUMobileNet is a good medical image analysis software for real
clinical practice owing to its computational speed and precision, particularly in the management of
retinal disease.
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The human retina is that light-sensitive, critical layer of the eye at the posterior, which is a central factor in
the vision process'. It transforms visible input into neural signals and subsequently sends them to the brain to
interpret. Retinal blood vessels are crucial because they supply the necessary oxygen and nutrients to ensure
retinal tissue health and function?. Retinal blood vessel examination is fundamental to the diagnosis of conditions
like diabetic retinopathy, glaucoma, age-related macular degeneration (AMD), and hypertensive retinopathy.
These are among the top causes of blindness in the world, and early diagnosis and regular monitoring of retinal
blood vessels are hence critical to effective treatment and avoidance of visual loss’. There has been a lot of interest
in recent times in automated retinal blood vessel segmentation methods to enhance the diagnostic functionality
of ophthalmic imaging devices*.

Retinal blood vessel segmentation is defined as detection and outlining of blood vessels in retinal images®.
Segmentation is challenging because of differences in size, shape, and orientation of vessels. Despite this,
segmentation is important because retinal blood vessels are indicators of a number of conditions, primarily
those of the vascular component of the retina®. For instance, diabetic retinopathy comprises vascular changes
like dilation, leakage, and development of neovascular structures, which can be identified from retinal images.
Segmentation assists doctors in getting an idea of how severe the disease is and how it develops with time, and
complication development during the disease could be predicted’. In addition, retinal vascular examination can
be helpful in the diagnosis of systemic conditions like hypertension and cardiovascular diseases, which are often
evidenced by changes in the vasculature of the retina®.

Over the years, a multitude of techniques have been presented for segmenting blood vessels from the
retina using traditional image processing techniques and state-of-the-art machine learning-based approaches.
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Conventional techniques were initially very dominant and included edge detection, thresholding, and
morphological operations’. These techniques usually increased the contrast of blood vessels and the background
with respect to each other, after which filtering and thresholding were applied to isolate the vessel-like features.

Publicly available datasets have contributed significantly to advancements in research and development
regarding retinal blood vessel segmentation'®. Various well-known datasets have been compiled with annotated
retinal images to train and evaluate segmentation algorithms'!. Among these, DRIVE (Digital Retinal Images for
Vessel Extraction) comprises 40 retinal images with detailed vessel annotations; the STARE (Structured Analysis
of the Retina) dataset shall consist of 400 images with corresponding vessel markings; and the CHASE-DB1
(Child Heart and Health Study in England) dataset features 28 high-resolution retinal images'%.

U-Net has evolved as one of the most widely used deep architectures in recent years for segmentation
applications'®. U-Net is a CNN uniquely designed for image segmentation, characterised by an encoder-decoder
structure. The encoder decodes the high-level information, while the decoder learns to reconstruct the image
as a pixel-wise classification process'?. However, because U-Net exhibits fine-tuning capabilities with small
training samples, is accurate in segmentation tasks, and has shown excellent results in many biomedical imaging
problems, including retinal blood vessel segmentation, it shows outstanding performance in this test case.

Other than U-Net, deep learning models like ResNet, DenseNet, and Fully Convolutional Networks (FCNs)
have also been used for retinal vascular segmentation. These architectures use deeper network structures and
residual connections to improve learning efficiency and reduce the vanishing gradient problem common in deep
networks!®.

Key contributions of this work are as follows.

a) Developed the MSFAUMobileNet model: Proposed an enhanced U-Net-based architecture explicitly de-
signed for retinal blood vessel segmentation, incorporating advanced components to improve performance.

b) Integrated multi-scale feature aggregation (MSFA): Introduced MSFA to capture both fine-grained details
and broader contextual information, enabling accurate segmentation of intricate retinal vascular structures.

¢) Incorporated residual connections: Utilized residual connections to enhance gradient flow and feature pres-
ervation, ensuring effective learning in deep neural networks.

d) Leveraged MobileNetV2 for lightweight feature extraction: Adopted MobileNetV2 with 13 bottleneck layers
as the encoder, providing computational efficiency and high-quality hierarchical feature extraction.

The paper has been arranged as follows: a detailed literature review is discussed in Sect. 2. Section 3 describes
the input DRIVE retina dataset and the detailed architecture of the proposed model. Section 4 deals with the
outcome of the proposed model. Section 5 describes the ablation study of the proposed model. State-of-the-art
analysis is described in Sect. 6. Section 7 concludes the work.

Literature review

Segmentation of retinal vessels has received considerable interest due to its importance in early medical
detection and treatment planning. To enhance segmentation accuracy, several researchers have examined novel
methodologies that combine classic techniques with powerful deep-learning models.

Wang et al.! introduced a new method for retinal vessel segmentation through the utilization of grey relational
analysis to improve the segmentation performance. The use of relational properties of grey-level features in this
method facilitated accurate segmentation of retinal vessels from background noise. For these reasons, DRIVE
and STARE databases have been utilized, as they are dominant in the literature for retinal vessel segmentation. It
made use of image preprocessing through the enhancement of contrast, and subsequent grey relational analysis
classified vessel-like structures. Segmentation results confirmed that the model is capable of functioning under
different illumination and contrast, thereby being usable in clinical environments requiring precise vascular
definition.

Javed et al.? introduced a region-guided attention network for segmenting retinal vessels, with combined
spatial and channel-wise attention mechanisms. The effectiveness of the model was assessed on the CHASE_
DBI1 and HRF datasets, which are known for their high-resolution retina images. By paying attention to the
important regions of the vessels, this method solves the problem of finding the fine and thin vessels often missed
by traditional segmentation methods. A multi-scale feature fusion method was implemented in this study and
allowed for the network to comprehend the large context and local feature specificities. The extensive method
resulted in improved accuracy and consistency with multiple datasets; therefore, it is appropriate for wider
clinical application.

Xia et al.? introduced a multi-scale position-aware cyclic convolutional network (MPCCN) to segment
retinal blood vessels by identifying intricate patterns hidden within vascular structures. The model was evaluated
on the DRIVE and STARE datasets, which are sets of retinal vessel annotated images. It utilizes symmetry-
oriented cyclic convolutions that tend to favor small and connected vessels. At the same time, multi-scale feature
extraction allows it to preserve the fine and general features of the vascular structure. Combining these strategies
yields a technique that aims for accuracy in segmentation as well as computational efficiency.

AutoMorph was investigated for application in clinical settings: the reliability of retinal vessel segmentation
metrics was evaluated by Giesser et al.%. Supportive of its conclusion, the paper utilized several well-available
databases, including DRIVE and CHASE_DB1. AutoMorph combines traditional morphological operations with
contemporary image processing methods to establish segmentation consistency. Inter-session consistency and
the need for standardised measures were discussed in an effort to provide consistent results in clinical practice.
The study shows how tackling variability between test scenarios has demonstrated the benefit of automated tools
in rendering medical image analysis more consistent.
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Jahan et al.® proposed segmentation of retinal vessels in OCTA images through deep learning, which makes
use of high-resolution vascular imaging. Training and validation were carried out with a proprietary dataset of
OCTA images obtained in a clinical environment. The proposed model was found to capture rich vascular features
using the U-Net architecture while maintaining computational efficiency. In addition, it therefore boosted the
overall generalization of the model to closely mirror human expert annotation through the incorporation of
advanced augmentation techniques during training. The study demonstrates the applicability of deep learning
to image segmentation tasks of high resolution.

Keerthivasan et al.® suggested a segmentation approach based on spatial attention kernels to identify early
glaucoma indications in retinal images. The task was performed on the RIM-ONE dataset, which consists of
annotated retinal fundus images for the intent of glaucoma diagnosis. The model can be more region-specific
about areas demonstrating glaucoma change (e.g., optic nerve harm and blood vessel thinning) by having spatial
attention modules in the segmentation network. Medical image segmentation according to this new method
demonstrates how crucial the attention-based method is in that application and can be used as a possible means
of early disease diagnosis.

Ramezanzadeh et al.” built a hybrid segmentation technique combining classic image processing methods
with deep learning models for retinal vessel segmentation in fluorescein angiography images. The research used a
custom dataset of angiographic images gathered from clinical settings. The vessel extraction uses a convolutional
neural network, after which preprocessing steps like histogram equalization and noise reduction are run. With
this approach, anatomical variations, and indeed imaging artifacts, are readily addressed. This is the best method
in diverse clinical settings.

Vessels in retinal images have been segmented by DeVi et al.® using supervised learning and by using
morphological cascaded features to increase accuracy. They used well-known datasets such as DRIVE and
STARE to evaluate their approach. The model achieved significant improvements in segmentation performance
by merging morphological features with sophisticated machine learning approaches, including Random Forests.
Combining this strategy enlightens a sensible strategy whereby traditional image analysis is coupled with
contemporary machine learning for precise and efficient retinal vessel segmentation.

Guo et al.” proposed the spatial attention U-Net (SA-UNet) to combine the spatial attention modules into
the U-Net framework to promote segmentation performance. This method tested the precise segmentation
of complex and delicate vascular structures on the CHASE_DB1 and HRF datasets. Using different types of
spatial attention mechanisms helps the network focus on the critical vessel areas and increases clarity of the
intricate patterns. The payoff of attention mechanisms to segmentation performance is explicit in this approach,
particularly in challenging imaging conditions.

Wei et al.!” introduced Genetic U-Net, a model for retinal vessel segmentation that automatically designs
its architecture with genetic algorithms. Training and testing the model on the DRIVE and STARE datasets
shows the model’s capability to deal with little manual input for segmentation tasks. Combining these genetic
algorithms was key in dynamically optimising the model architecture via hyperparameters and network layers
to create a model tailored for retinal vessel segmentation. This is a promise of genetic algorithms to boost the
performance of deep learning models.

Spider U-Net was introduced by Lee et al.!!, who proposed a 3D U-Net model with LSTM layers to increase
inter-slice connectivity. A 3D retinal imaging dataset was utilised for which volumetric data was available for
training and testing. Using LSTM layers, the model can consistently identify spatial dependencies between
neighbouring slices to segment the volume. In particular, its new style of architecture is highly suitable for
imaging in 3-dimensional (e.g. OCT), where knowledge of inter-slice relationships is essential for precise
segmentation.

In the past, MRU-Net!? formed a modified U-Net architecture to use a multi-resolution strategy to improve
its segmentation results. First, the DRIVE and STARE datasets were used, and the precise segmentation of small
and complex vascular structures was focused on. The model can capture features at different resolutions such
that fine details and broader patterns are preserved in segmenting intricate retinal vessels on diverse imaging
scenarios.

M2U-Netis a computation-saving model, optimized for real-world applications of retinal vessel segmentation,
proposed by Laibacher et al.!*. Retaining the same balance between computation saving and segmentation
accuracy, evaluation on the DRIVE and CHASE_DB1 datasets was obtained. Fast processing speed at the cost
of model complexity is what the model operates with, and this is ideal to use in situations where resources are
limited, such as portable medical devices and low-resource healthcare.

Gu et al.' developed CE-Net, a residual block context encoder network with context encoders to improve
retinal vessel segmentation. Finally, the research utilized the DRIVE and HRF datasets to prove that the model
can utilize contextual information for better boundary delineation of vessels. The method is typical of the
significance of using context-aware approaches to improve segmentation, especially for medical images with
challenging visual features.

LUVS-Net, a light U-Net network for real-time retinal vessel segmentation, was introduced by Islam et al.'>.
Experiments with the approach on DRIVE and STARE datasets revealed that its processing speed does not
compromise the accuracy of segmentation. Architectural optimization renders it a first candidate for real-time
deployment, the light weight being a lovely solution for fast and accurate retinal vessel detection in clinical
settings.

Cao et al.'® proposed MFA-UNet, a vessel segmentation algorithm for the retina that combines multi-scale
feature fusion and attention mechanisms for capturing large and fine vessels. The model utilizes a Multi-scale
Fusion Self-Attention Module (MSAM) in skip connections to extract global dependencies and preserve
subtle vessel structures, and a Multi-Branch Decoding Module (MBDM) with deep supervision for enabling
macrovessel and microvessel segmentation separately. Moreover, a Parallel Attention Module (PAM) is also
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embedded in the decoder to remove redundant information and refine feature representations. Experiments on
widespread datasets such as DRIVE, STARE, and CHASE_DB1 showed that MFA-UNet outperformed existing
methods in maintaining thin vessels, thereby demonstrating strong potential for clinical deployment.

To briefly outline their work in the area of retinal vascular segmentation research, Table 1 provides critical
methodologies and datasets that are in progress.

Materials and methods
This section describes the dataset used for retina blood vessel segmentation and the data augmentation
techniques applied to it. This section also describes the proposed model for retina blood vessel segmentation.

Dataset

DRIVE includes images of high resolution, rich in detail about the retina, especially taken for segmentation
tasks dealing with blood vessels. In that regard, it is equipped with 40 colour fundus images annotated alongside,
serving as a ground truth to the segmented retinal blood vessels. Images are available with dimensions at

Reference
number

Datasets used

Technique used

Summary

DRIVE, STARE

Grey relational analysis

Grey Relational Analysis is used as a novel approach to retinal vein segmentation. Utilizing the DRIVE and STARE
retinal vascular datasets, the method is evaluated to assess its performance on segmenting single samples. Results
using different vessel configurations are shown.

DRIVE, STARE,
CHASE-DBI1

Region guided attention
network

Using a region guided attention network it gives more accurate segmentation of the retina’s blood vessels. In an
attempt to get better segmentation accuracy, the model uses an attention mechanism that takes a focus on the
relevant area. The approach was tested on the following datasets: DRIVE, STARE, and CHASE-DBI.

DRIVE, STARE

Multi-scale position-
aware cyclic convolutional

Retinal vascular segmentation is performed using the Multi-Scale Position Aware Cyclical Convolutional Network
(MPCCN) model which utilizes these techniques. The suggested approach is shown to improve segmentation

cetwork (MPCCN) accuracy in the DRIVE and STARE datasets. On many datasets this proves to have outstanding functionality.
This study investigates the effect of segmentation metrics on the reproducibility of retinal vascular segmentation
4 DRIVE, STARE :ﬂz?h]ﬁ[g]rgh f{;&;teoc{nated retest. Upon use of the AutoMorph tool to examine a wide variety of retinal vascular data sets such as DRIVE and
> segnlfentaéggn) STARE, the aim is not only to provide a tool that accurately demonstrates morphologic difference across retinal

vascular disease, but to do so in order to assure therapeutic relevance. Reliability and consistency are in opposition.

OCTA

U-Net deep learning
model

A U-Net deep learning model for retinal vessel segmentation from Optical Coherence Tomography Angiography
photographs is presented in this work. The model is designed to increase the segmentation accuracy of retinal
vascular structure in OCTA images. The results show suitability of the model for modern imaging techniques.

DRIVE, STARE

ANSAN-infused retinal
vessel segmentation

In this work, the methodology is presented to exploit this retinal vascular segmentation feature, injected with
ANSAN, for an early diagnosis of glaucoma. In retinal images, this method improves accuracy of segmentation
of early-stage glaucoma. Finally, test how well and how accurately the performance works using the DRIVE and
STARE datasets.

Fluorescein
angiography

Hybrid segmentation
method

A hybrid segmentation method is proposed to accurately identify retinal blood vessels in Fluorescein Angiography
images. Then trained the model on images of people with diabetic retinopathy and were able to make our
segmentation method more precise. The method works like a charm on real world clinical datasets.

DRIVE, STARE

Morphology cascaded
features and supervised
learning

Supervised learning with morphological cascaded characteristics is combined to segment the retinal blood vessels
in this study. Features used in the approach are engineered in order to increase the accuracy of the segmentation.
Results on DRIVE and STARE retinal vessel datasets are given to validate the approach.

DRIVE, STARE

Spatial attention U-Net
(SA-UNet)

The Spatial Attention U-Net (SA-UNet) was developed for retinal vascular segmentation, where segmentation
outcomes are improved by an emphasis on spatial attention processes. First, the model improves segmentation by
boosting it to the relevant areas of retinal images. The DRIVE and STARE datasets are used for testing SA-UNet.

DRIVE, STARE

Genetic U-Net

The Genetic U-Net model uses genetic algorithms to determine automatically deep networks for retinal vessel
segmentation. In the strategy, instead of building the network to reduce the influence of noise to improve

the segmentation accuracy, the network is made optimal for the purpose of increasing the accuracy of the
segmentation. The model developed is tested using results of DRIVE and STARE datasets of the retinal vessels, and
the result is promising.

3D retinal vessel
datasets

Spider U-Net (LSTM for
3D segmentation)

Using its LSTM for inter slice communication, Spider U-Net makes 3D retinal blood vessel segmentation possible.
The model improves 3D segmentation by taking into account inter-slice interactions. The approach is evaluated on
a 3D retinal vascular dataset for improved outcomes.

DRIVE, STARE

MRU-Net (U-Net Variant)

For retinal vessel segmentation, a variant of U-Net, MRU-Net, is preferred because it can handle the complicated
vascular structure better. The model has a modified U-shaped architecture to improve accuracy. The DRIVE and
STARE datasets got a better performance in terms of segmentation.

DRIVE, STARE

M2U-Net

as efficient and effective retinal vascular segmentation, a model, called M2U-Net was developed. The modified
U-Net architecture was used by the model for the best segmentation performance. The presented method was
validated on two widely used retinal vessel datasets: DRIVE and STARE.

DRIVE, STARE

Context encoder network
(CE-Net)

CE Net tries to enhance retinal vascular segmentation using a context encoder network to 2D medical image
segmentation. Encoder decoder architecture along with contextual information is used to improve segmentation
accuracy in the model. The DRIVE and STARE databases provide information of retinal vessels and evaluations
are based on these two databases.

Fundus images

LUVS-Net (Lightweight
U-Net)

Specifically for fundus image retinal vasculature identification, a lightweight U-Net model named LUVS-Net
was designed. The goal of the model is to achieve excellent segmentation performance with low computational
complexity. When used on images datasets of fundus images, it has provided promising results.

DRIVE, STARE,
CHASE_DB1

Multi-scale feature fusion
and attention (MFA-
UNet)

MFA-UNet integrates a Multi-scale Fusion Self-Attention Module (MSAM) in skip connections to capture global
dependencies and retain vessel details, and a Multi-Branch Decoding Module (MBDM) with deep supervision

to separately guide macrovessel and microvessel learning. A Parallel Attention Module (PAM) is also used in the
decoder to suppress redundant information. The model outperformed existing methods, particularly in preserving
thin vessels, making it effective for clinical application.

Table 1. Literature survey
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Original Image

Mask Image

768 x 584 pixels and saved in PNG: an original RGB image together with its corresponding binary vessel mask.
Sample images of the DRIVE dataset is shown in Fig. 1.

Data pre — processing

Preprocessing of the data is a crucial step of preparing the DRIVE dataset for the segmentation of retinal vessels,
so that input images and masks are in a homogeneous and appropriate format for training. Normalization comes
first, in which image pixel values are normalized from 0 to 255 to [0, 1] for more stable and quicker model
convergence and masks are transformed into binary values (0 or 1) in order to maintain class labels. Then,
resizing is done to transform all the images and masks from their native 768 x 584 resolution into a consistent
256 %256 size for standardized inputs to the deep learning model. Lastly, vertical flip, horizontal flip, rotation,
and scaling data augmentation methods are employed to artificially expand the size and diversity of the dataset.
These enhancements enable the model to generalize more effectively by subjecting it to varied retinal structures’
orientations and sizes, combating overfitting and enhancing segmentation performance.

Data normalization

Normalization refers to the process of readying images and masks by resizing their pixel values into an appropriate
range for training models. For retinal images, pixel values (0-255) are scaled to floating-point numbers and then
divided by 255 to scale them into the [0, 1] range, which reduces training time for the model, avoids numerical
instability, and enhances convergence. For segmentation masks where vessels are marked as 255 and background
is marked as 0, division by 255 transforms them into binary values (1 or 0) to provide explicit class labels for
precise segmentation. This is performed to normalize the data so that the network learns better without being
influenced by large intensity pixel values.

Data resizing

In Fig. 2, the original DRIVE dataset is presented before and after resizing. The original images of 768 x 584 pixels
are transformed into a fixed size of 256 x 256 pixels. It makes all the inputs for the segmentation model uniform
in size, computationally feasible, and of the same shape. This is an essential step in deep learning pipelines, where
networks require inputs of the same size for training and inference efficiently.

Data augmentation

Figure 3 shows various data augmentation techniques applied to retinal fundus images along with their
corresponding blood vessel segmentation masks. These include horizontal and vertical flips, which produce
mirror images of the images, thereby enhancing symmetry-based variations. Rotation changes the angular
orientations of the retinal image, which helps the model to detect vessels irrespective of direction. Scaling
transformations reorient and resize images, simulating changes in angle and size, while zoom has a focus
difference effect, simulating actual image capturing environments. Using these tactics augments the dataset
diversity, thus improving the model’s ability to generalise and effectively perform in retinal blood vessel
segmentation tasks. After data augmentation, the dataset has 240 photographs. The data set clearly splits into
three parts: 80% for training, 10% for test, and the other 10% for validation.

Proposed MSFAUMobileNet model

The MSFAUMobileNet model that has been suggested is a U-Net architecture that is quite sophisticated with
the addition of Multi-Scale Feature Aggregation (MSFA), Residual Connections, and Attention Mechanisms to
enhance semantic segmentation performance, as can be observed in Fig. 4. The encoder employs MobileNetV2
as a light-weight backbone for extracting multi-scale feature maps, which are aggregated in the bottleneck with

Fig.1.  Sample dataset with mask image.
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Image Resizing

256%256

768x584

256%256

768%x584

Fig. 2. Image resize.

MSFA in order to capture local and global context. Residual connections enable effective gradient flow through
the combination of skip connection properties from the encoder and decoder upsampled features.

Attention mechanisms enhance segmentation accuracy by emphasizing significant areas in the feature
maps. The decoder creates the segmentation map using transposed convolutions, progressively upsampling the
features without losing spatial resolution. The architecture is computationally efficient while ensuring accurate
segmentation and is thus appropriate for real-world use.

MobileNet V2 for feature extraction

In the proposed model, MobileNetV2 is used as the backbone for feature extraction, with its pre-trained layers
serving as a foundation for the construction of a more complex architecture aimed at segmentation or image
classification tasks shown in Fig. 5. MobileNetV2 is structured as a series of bottleneck layers where each layer
consists of Depthwise separable convolutions, which split the convolution into two operations (depthwise and
pointwise convolutions) to reduce computational complexity and Inverted residuals, where the number of
channels is first expanded (increased) and then reduced back to a smaller number, ensuring that the important
features are preserved in a more compact form.

The network does not have a fully connected layer at the top, making it especially well-suited for tasks such
as object detection and segmentation, where the model needs to handle a large spatial feature map rather than
just a single output vector.

MobileNetV2 processes the input through a series of 13 bottleneck layers, progressively reducing the spatial
dimensions and extracting hierarchical features. The output from various layers is captured for skip connections
to be used later in the decoder part of the network.

The activations from key layers of MobileNetV2 are used as skip connections. These include layers like
block_1_expand_relu, block 3_expand_relu, block 6_expand_relu, block 13_expand_relu, and block 16_
project. These skip connections are critical in U-Net-style architectures where high-resolution features are
needed to refine the segmentation output. These layers provide multi-scale feature representations. Since each
block captures different spatial resolutions, these feature maps can be used at different stages of the decoder part
of the model to refine the upsampled output.

Stride 1 is employed in the convolutional layers in the suggested model, especially for the downsampling
blocks such as MobileNetV2’s first few blocks and the Multi-Scale Feature Aggregation (MSFA) layer depicted
in Fig. 6. Stride 1 implies that the filter of the convolution progresses by one pixel at a time through the input
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Fig. 3. Sample dataset after data augmentation

feature map, thus making sure the output feature map has high spatial resolution. This assists in the capturing
of fine-grained information from the input image, retaining its spatial structure while abstracting significant
features. Stride 1 is usually applied in layers in which retention of the spatial dimensions matters for operations
like segmentation.

The output from the bottom-most layers (after all 16 bottleneck blocks) is also fed through a Multi-Scale
Feature Aggregation block. The block employs several convolution filters (1x1, 3x3, 5x5, and 7x7) for

aggregating multi-scale features, which makes the model better at capturing fine-grained details as well as larger-
scale patterns.
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Fig. 7. Bottleneck block of MobileNetV2 with stride 2.

Stride 2 is utilized in the upsampling blocks and some of the convolution layers with the intention of
downsampling or decreasing the spatial size of the feature map illustrated in Fig. 7. If stride 2 is utilized, the
convolution filter would be shifted two pixels at once, consequently cutting the height and width of the output
feature map by half. This downsampling operation assists in successively reducing the spatial resolutions of the
input image, abstracting higher-level features in each layer, and building a more compact representation, which
is beneficial for the extraction of the general context during the feature extraction process.

MobileNetV2 is especially beneficial in this regard due to its efficiency. The model has high representational
power even when it has fewer parameters than traditional CNNs, and it is hence apt for applications with limited
computational resources.

Let the input Image I be the shape H X W X C Where H=W =256 and C=3. After passing through

MobileNetV2, in Eq. (1) extract feature maps from intermediate layers corresponding to different spatial
resolutions:

= O o nerws (1), Fori=12,....5 (1)

Where F, represents the feature maps at scales 64 x 64, 32x 32, 16 x 16, 8 x 8 and 4 x 4, corresponding to specific
layers like block_1_expand_relu, block_3_expand_relu, block_6_expand_relu, block_13_expand_relu and
block_16_project.

These feature maps serve as inputs for skip connections and feed into the upsampling path after processing
in the bottleneck.

Multi scale feature aggregation (MSFA)

Multi-Scale Feature Aggregation (MSFA) is a method used to capture and merge information across several
spatial scales within one feature map as illustrated in Fig. 8. This is especially useful in image processing and
computer vision applications, for example, segmentation, where objects or features can be of varying size and
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Fig. 8. Multi scale feature aggregation.

spatial context. The fundamental concept of MSFA is to extract fine-grained details and also coarse, abstract
features using convolutions of different kernel sizes (e.g., 1 x 1, 3x 3, 5% 5, 7% 7) and then effectively combining
them to enhance the representation of the input data.

The main objective of MSFA is to enhance how feature extraction is done from the data by allowing the
model to learn many patterns, different in size. This way, small kernels that are like 1 x 1 capture small details by
highlighting local features. For this layer, the mechanism is designed to capture the fine details, and here, it works
on one channel without considering the large spatial context, which makes the computational process efficient.
This leads to kernels of sizes 3 x 3, 55, and 7 x 7. These catch bigger spatial patterns and wider connections in
the input data and gradually enlarge the receptive field so that the model would be able to identify quite complex
spatial patterns of many sizes.

After applying convolutions with varying sizes of kernels, the resultant feature maps are stacked by piling
them next to each other in the channel dimension. In such a manner, features that were captured at different
scales are combined into a single feature map. If 1 X1, 3x3, 5x5, and 7 x 7 convolutions produce feature maps
with 64 channels, then the total output would be a feature map with 256 channels. This combined map holds so
much different location information; this helps the model to see broad and specific details.

The MSFA block enables better spatial hierarchies and relationships to be interpreted from the model by
aggregating features across multiple dimensions. The resulting feature map has high spatial information and
serves as input to subsequent processing blocks such as classification or segmentation depending on the
application in hand.

Given that X indicates the input of the MSFA block, this would comprise several layers of different kernel
sizes’ convolution; each layer added to give unique spatial features on the last output. In subsequent later stages
of this model, the improved feature map of this is utilised so as to increase precision in getting complete outputs.
The output of each convolutional operation can be mathematically represented in Egs. (2), (3), (4) and (5):

Y1 x1 = ReLU (C’onv2D (X, filters = f, Kernelsize = 1, padding="Same’ )) (2)
Y3 x 3 = ReLU (Conv2D (X, filter = f, Kernelsi.. = 3, Padding="Same")) (3)
Ys x 5 = ReLU (Conv2D (X, filters = f, Kernelize = 5, Padding="Same")) (4)
Y7 x 7 = ReLU (Conv2D (X, filters = f, Kernalsize = 7, Padding="Same')) (5)

o Xis the input feature map.

o fis the number of filters used in the convolution (usually the same across all layers).
o The kernels are of size 1x1,3%x3,5x%x5,and 7x7.

o ReLU activation is applied after each convolution.
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Multi-Scale Feature Aggregation addresses the need for capturing both fine-grained details and larger contextual
information. It achieves this by convolving the input features with filters of varying kernel sizes: I x 1, 3x 3, 5x5,
and 7x 7. The outputs from these convolutions are concatenated to form a unified feature representation. The
formula for MSFA is represented in equation :

Let X € R *™X¢be theinput feature map. In Eq. (6) the aggregated output is computed.

Y = Concat(Convix 1 (X), (Convsx 3 (X), (Convsx 5 (X), (Convrx 7 (X)) (6)

Where:

. Convkxk(X): Wi x X + by

o Wiy and by are the weights and biases of the convolutional layer with kernel size £ X k and * represents
convolution.

« Concat concatenates the outputs along the channel dimension.

The MSFA block ensures that the network learns features from both local (small kernel sizes) and global (large
kernel sizes) perspectives.

Residual connections

A Residual Connection is the skip connection or bypass. The input bypasses one or more layers, where the
output of that layer is added with it. This helps a lot in retaining much information and gradients in the model
which improve the learning, specially for deep neural networks. In the proposed model, within the context of
U-Net architecture, Residual Connections are integrated. From the encoder-the downsampling path, the skip
connection is combined with the decoder-the upsampling path, which is meant to help this network acquire
much more realistic representations by making it impossible for the gradient to “vanish,” and ensuring that
information does not pass through the network in dead-end paths but flows accordingly. At every level of
U-Net, the down-sampled skip connections bypassing is passed to corresponding decoder layers (upsampling)
following their processing in the encoder (downsampling). For this case, output of decoder will be added
through concatenation or addition with the bypass connections.

The output is added to the skip connection from the encoder after multi-scale aggregation (MSFA) rather
than just concatenating it, after the decoder processes the feature map through upsampling. This addition
establishes a residual link between the encoder and decoder outputs, which is a distinguishing characteristic of
Residual Learning. This helps the model focus more on the residuals (or “discrepancies”) between what it learns
and the original features instead of re-learning the feature map. That addition aids the model in determining the
original and modified features; hence it improves the flow of gradient. This ensures the decoder receives features
from higher layers, but also retains features from the lower layers, which further enhances its ability to catch
semantic meaning and fine details. Every upsampling is accompanied by the use of an Attention Block, which
highlights critical features while removing extraneous areas in the feature map. This is coupled with the residual
connection to enhance the model’s capacity to learn the most critical areas of the input image, thereby further
enhancing the efficacy of the residual connections.

Residual connections make the flow of gradients during backpropagation smoother, thereby achieving faster
and stable convergence. In this architecture, element-wise addition is used to combine the skip connection
features from the encoder with the upsampled decoder features. Residual Connections: are critical components
in the structure of encoder-decoder-based U-Net as the proposed architecture. In any case, it’s also used for
maintaining features or critical information from prior layers, optimization of gradients with the help of them
while enhancing the overall learning of process. With residuals addition after each upsampling stage improves
the task for the model such as segmenting images.

Given an upsampled feature map after attention mechanism and a skip connection feature map from encoder
after MSFA, the residual output is computed in Eq. (7)

R=U+S (7)

WhereU € R#*W*%andSe RF*WxC
Residual connections prevent overfitting and ensure that important low-level features from earlier layers are
preserved in the final segmentation map.

Attention mechanism

In the proposed model, the Attention Mechanism is implemented to enhance important features while suppressing
irrelevant or less important ones, specifically during the upsampling process in the U-Net architecture shown in
Fig. 9. This mechanism helps the model focus on the most relevant parts of the input image, which is crucial for
tasks like segmentation, where fine details are often essential.

The attention mechanism of the given model is implemented inside the AttentionBlock class. It is employed
as a part of the upsampling block and is used on the feature maps resulting from the encoder (through skip
connections) and the decoder during the upsampling step. The feature map that is fed into the attention block
is subjected to two forms of pooling operations. Global Average Pooling (GAP) operation calculates the average
value over all spatial dimensions (width and height) per feature map channel. This gives a global description of
the input. Global Max Pooling (GMP) is Like GAP, but it calculates the max value over all spatial dimensions.
These pooling operations enable the model to learn global feature representations and mark significant areas in
the image. The outputs of GAP and GMP are combined together to generate one attention map. The concept is
to capture the average and the maximum features along the spatial axes.
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A 1x1 convolution is performed on the concatenated attention map. The convolution is done to compress
the dimension of the attention map and produce more concise, refined feature representations. The produced
tensor is a learned attention map that gives a weight for every channel of the feature map. A sigmoid activation
function is then applied to the output of the 1 x 1 convolution, producing values between 0 and 1. The values are
used as attention weights that scale each channel of the feature maps. Channels with heavier attention weights
will contribute more to the output, and channels with lighter attention weights will be suppressed. Last but not
least, the attention weights are multiplied element-wise with the input feature map. This process increases the
significant channels of the feature map in a selective way, enabling the model to concentrate on features most
relevant to the task. The output is weighted feature map where the most relevant features (as determined by the
attention mechanism) are highlighted. Attention mechanisms reinforce the model’s concentration on salient
areas in feature maps, leaving out the irrelevant background. This is realized through Channel Attention through
Global Average Pooling (GAP) and Global Max Pooling (GMP) before learnable transformations. Formula for
attention block:

Let X € R™* W X (C be the input feature map. he attention mechanism computes a refined output as:

o Compute the GAP and GMP in Eq. (8).

Jgap = ﬁ Z il WX (8)
o Combine GAP and GMP in Eq. (9)
Geombined = Ggmp + YJgap 9)
o Transform using convolutional layer in Eq. (10)

a = o (W x ReLU (W1 % Geombined + b1) + b2) (10)

Where W1 and W are the learnable weights, * is convolution, o is the sigmoid activation function, and a €
R is the attention mask in Eq. (11).

o Refine the input feature map.
A=Xe « (11)

where - represents element-wise multiplication. Attention ensures that the model focuses on the most relevant
channels of the feature map, improving the segmentation quality.

Upsampling operation

The decoder upsamples the feature maps using transposed convolutions. Each upsampling block doubles the

spatial resolution while halving the number of channels, progressively reconstructing the segmentation map.
Let X € RIXWXC be the input feature map, and let k be the kernel size, s be the stride, and p be the padding.

The transposed convolution output U is computed in Eq. (12):

U=Wx+T X +b (12)

Where W are the learnable weights, *T represents the transposed convolution operation, and b is the bias in
Eqgs. (13) and (14).

Hout =5 o (Hpn—1)+k—2p (13)
Wout =5 ® (Wi, —1)+k—2p (14)
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Algorithm of the proposed model

The segmentation framework for Table 2 employs MobileNetV2 as an encoder and incorporates state-of-the-art
multi-scale feature extraction and attention. The method begins with an Input Layer that accepts RGB images
of dimensions 256 x 256 x 3. MobileNetV2 extracts features from various layers at different resolutions (e.g.,
64 x 64, 32x 32, etc.) during the Downsampling stage and freezes its pre-trained weights so that they are not
updated. Bottleneck has a Multi-Scale Feature Aggregation (MSFA) block, which employs convolutions with
varying kernel sizes (1x 1, 3x3, 5x5, 7x7) and then concatenates them for the capturing of spatial features
at various scales. Four blocks are described in the Upsampling, each consisting of transposed convolutions for
upsampling, batch normalization, and an attention mechanism. The attention block combines salient features
with global pooling (average and max pooling) as pre-processing, followed by convolutions and activation
functions to compute attention weights. Skip Connections link the encoder and decoder. All skip connections
pass through an MSFA block to enable effective feature propagation. Up-sampled features and aggregate of skip
connections are concatenated and then passed through residual summation to enhance feature maps. Finally, the
Output Layer does a transposed convolution to transform the feature map to the input image size (256 x 256).
The number of outputs represents the segmentation type: 1 for binary or N for multi-class segmentation. This
combination of MobileNetV2, MSFA, and attention mechanisms offers effective feature extraction, multi-scale
representation, and improved segmentation accuracy.

Result and discussion

The Proposed model is trained and tested on the single optimizer: Adam, 200 Epochs and 3 batch size. Result
is evaluated on several parameters ie. accuracy, Loss, Precision, Recall, F1 - Score, IoU(Jaccard) and Dice
coefficient. Although the DRIVE dataset is a binary segmentation dataset with only vessel and background
classes, there exists a strong class imbalance because vessel pixels occupy a much smaller proportion of the
image compared to the background. To address this imbalance, we employed Focal Loss, which down-weights
well-classified majority class examples and focuses training on hard and minority class (vessel) pixels. In our
implementation, the Focal Loss was configured with y (gamma)=2.0 and a (alpha) =0.25, which are standard
values found to balance class weights effectively in medical image segmentation tasks!”. This ensures that the
model does not become biased toward predicting the background, thereby improving vessel delineation. Our
choice of Focal Loss is consistent with recent works in medical image segmentation where class imbalance is a
critical issue'”.

Result analysis with UMobileNet

The UMobileNet model demonstrates excellent performance in retinal vessel segmentation with high training
accuracy of 95.28% and validation accuracy of 95.46%, as indicated in Fig. 10a, which is excellent generalization
across datasets. Its 5.28% training loss and 14.23% validation loss suggest excellent learning, although its higher
validation loss suggests slight overfitting as demonstrated in Fig. 10b. The accuracy rates were as high as 90.86%
on training and 94.73% on validation, confirming the potential of the model in eliminating false positives, a
necessary aspect for correct segmentation as observed in Fig. 10c. Similarly, recall was as high as 90.15% on
training and 87.90% on validation, confirming the model’s ability to detect real vessel areas, though slightly
lower validation recall showing omitted structures at times in Fig. 10d. The F1-Score also balanced precision
and recall heavily, at 88.87% on training and 89.74% on validation, once more indicating the strong predictive
balance of the model in Fig. 10e. In segmentation-specific metrics of evaluation, the IoU measures were 89.33%
on training and 90.40% on validation, emphasizing the correctness of region overlap by the model in Fig. 10f.

Step

Description

1 | Input layer

- Define an input tensor of shape [256, 256, 3] to handle RGB images.

2 | Downsampling

- Use MobileNetV2 as the backbone for feature extraction:

- Extract feature maps from the layers: block_1_expand_relu (64 x 64), block_3_expand_relu (32 x32), block_6_expand_relu (16 x 16),
block_13_expand_relu (8 x8), and block_16_project (4 x 4).
- Freeze the backbone to prevent weight updates during training.

3 | Bottleneck (MSFA)

Apply Multi-Scale Feature Aggregation (MSFA) at the lowest resolution (4 x 4) feature map:
- Use convolutional layers with kernel sizes 1x 1,3 %3, 5x5,and 7x7.
- Concatenate the resulting feature maps to capture multi-scale spatial features.

4 | Upsampling with attention | - Attention Block to enhance important features:

Define 4 upsampling blocks, each including:
- Transposed convolution for upsampling (stride=2).
- Batch normalization and ReLU activation.

- Use Global Average Pooling and Global Max Pooling to create attention weights.
- Pass pooled features through convolution layers with ReLU and sigmoid activations.
- Apply the attention weights to the feature maps.

Skip connections with
MSFA

For each upsampling step:

- Retrieve the corresponding downsampled feature map (skip connection).

- Pass the skip connection through Multi-Scale Feature Aggregation (MSFA).

- Concatenate the upsampled feature map with the aggregated skip connection.

- Add a residual connection by summing the concatenated features with the original skip connection.

6 | Output layer

Apply a transposed convolution layer to upsample the final feature map to the original input size (256 x 256):
- The number of filters corresponds to the number of output channels (e.g., 1 for binary segmentation, N for multi-class segmentation).

Table 2. Algorithm of the proposed model.
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Fig. 10. Result analysis of UMobileNet training and validation (a) accuracy, (b) Loss, (c) Precision, (d) Recall,
(e) F1 - Score, (f) IoU(Jaccard) and (g) Dice coeflicient.
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Finally, the Dice coefficient reached 86.87% during training and 87.74% during validation, providing correct
boundary match between prediction and ground truth as observed in Fig. 10g.

Result analysis of UMobileNet with multi scale feature aggregation

UMobileNet with Multi-Scale Feature Aggregation model demonstrates better performance in retinal blood
vessel segmentation with training accuracy of 97.35% and validation accuracy of 96.82%, showing good
generalization and strength as shown in Fig. 11a. Training loss converged to 3.87% and validation loss settled on
9.76%, demonstrating good optimization with minimal overfitting, as illustrated in Fig. 11b. Precision measures
were 95.42% in training and 94.68% in validation, both of which reflect the ability of the model to suppress false
positives and produce consistent segmentation, as seen in Fig. 11c. Recall measurements hit 92.84% in training
and 91.37% in validation, both of which confirm the ability of the model to accurately detect vessel structures,
but with lower validation recall showing infrequent misdetections in Fig. 11d. The F1-Score that balances recall
and precision improved by 94.11% on the training and 93.02% on the validation, suggesting uniform predictive
ability across datasets as shown in Fig. 11e. With respect to segmentation-specific scores, IoU achieved 91.64%
on training and 90.85% on validation, suggesting extremely high overlap of ground truth and predicted masks
in Fig. 11f. Finally, the Dice coeflicient was 92.87% on training and 91.92% on validation, confirming proper
boundary alignment and optimal vessel segmentation as indicated in Fig. 11g.

Result analysis of proposed MSFAUMobileNet model

(UMobileNet + MSFA + attention + residual connections)

The suggested MSFAUMOobileNet model has exceptional performance in retinal blood vessel segmentation with
almost perfect results in all the metrics. As depicted in Fig. 12a, training accuracy was 99.99% and validation
accuracy also achieved 99.99%, indicating very good convergence and generalization. Training loss decreased
to 0.0012 and validation loss to 0.0041, indicating very efficient optimization with very little overfitting as can
be seen in Fig. 12b. Accuracy scored 99.92% on training and 99.94% on validation, indicating the model’s
effectiveness in keeping false positives low and providing highly accurate predictions in Fig. 12c. Recall scored
99.99% on training and 99.99% on validation, validating the model’s performance in identifying nearly all vessel
structures accurately with few misses as shown in Fig. 12d. The F1-Score had great balance between recall and
precision, achieving 99.95% for training and 99.97% for validation, and as such, exhibiting consistently high
segmentation quality in Fig. 12e. In the same vein, the IoU attained 99.91% training and 99.94% validation,
which indicated almost perfect overlap between ground truth and predicted regions as illustrated in Fig. 12f.
Lastly, the Dice coefficient achieved 99.95% during training and 99.97% during validation, again confirming
accurate boundary alignment and segmentation accuracy as in Fig. 12g.

Ablation analysis
Table 3 and Fig. 13 show the ablation study of the suggested MSFAUMobileNet model against its baseline
UMobileNet and the in-between variant UMobileNet with multi feature Extraction. The baseline UMobileNet
has decent performance with validation accuracy of 95.46% + 0.002, dice coefficient of 87.74% + 0.005, and
IoU of 90.40% =+ 0.004 but still has potential for improvement because of class imbalance. By using focal loss
and combining multi-feature extraction, the model gains significant improvements, especially in recall and
segmentation quality, with validation IoU Raised to 92.08% + 0.004 and dice coeflicient Raised to 96.23% + 0.004,
demonstrating the advantage of more comprehensive multi-scale feature representation. The best performance
improvement is seen when the attention mechanism is also integrated into the suggested MSFAUMobileNet
model, with almost perfect results of validation accuracy of 99.99% + 0.0001, precision of 99.94% + 0.0002,
recall of 99.99% + 0.0001, F1-score of 99.97% + 0.0001, IoU of 99.94% + 0.0001, and dice coefficient of 99.97%
+ 0.0001, with negligible validation loss of 0.0041+0.0003. The bar plots in Fig. 12visually corroborate these
improvements, with the steady rise of all measures echoing the cumulative effect of multi-feature extraction and
attention. Ablation Analysis.

Furthermore, paired t-tests confirm that the observed improvements are statistically significant (p <0.05),
establishing the robustness of the proposed MSFAUMobileNet for retinal vessel segmentation.

Visual analysis of proposed model

This visual comparison displays the input retinal images, their ground truth vessel segmentation masks, and the
segmentation masks predicted, as illustrated in Fig. 14. The input images demonstrate retinal fundus images,
whereas the ground truth masks indicate the complex network of vessels that are manually annotated. The
predicted masks are the model’s segmentation output. Though the model well simulates the vessel structure
in some areas, there are detectable differences from ground truth, especially in finer details of vessels and
segmentation noise in some areas.

State of art

Figure 15; Table 4 show the comparisons of different segmentation models based on two evaluation metrics:
Jaccard Index (IoU) and accuracy. The proposed MSFAUMobileNet model shows outstanding results in
segmentation tasks with a 99.94% Jaccard Index and almost perfect accuracy of 99.99%. The GLCAA model'
yielded a higher accuracy of 96.03% and Jaccard Index of 59.28%, which is surpassed by the MPCCN model’,
whose accuracy was 97.38% and Jaccard Index was 81.85%. MobileNetV2¢ performed poorer with an accuracy
of 88.00% and a Jaccard Index of 77.64%. The Support Vector Machine Base Model®, which reached a Jaccard
Index of 61.99% but achieved a very high accuracy of 97.47%, is the base model that was compared. Genetic
U-Net!? and Spider U-Net!! models obtained 97.04% and 96.97% accuracy with corresponding Jaccard Indices
of 67.83% and 72.91%, respectively. The additional methods involved MRU-Net!?> and CE-Net!*, achieving
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Fig. 11. Result analysis of UMobileNet with multi scale feature aggregation training and validation (a)
accuracy; (b) Loss, (c) Precision, (d) Recall, (e) F1 - Score, (f) IoU(Jaccard) and (g) Dice coefficient.
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Fig. 12. Result analysis of proposed model training and validation (a) accuracy, (b) Loss, (c) Precision, (d)
Recall, (e) F1 - Score, (f) IoU(Jaccard) and (g) Dice coeflicient.
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Metric Dataset UMobileNet (baseline) | UMobileNet + multi feature extraction | UMobileNet + multi feature extraction +attention (proposed)
Accuracy Training 0.9528 £0.002 0.9546+0.002 0.9999+0.0001
Validation | 0.9546+0.002 0.9524+0.003 0.9999 £0.0001
Training 0.0528 £0.004 0.0470+0.003 0.0012+0.0002
Loss Validation | 0.1423+0.005 0.1558 +£0.006 0.0041+0.0003
Precision Training 0.9086 +0.004 0.9128 £0.004 0.9992£0.0002
Validation | 0.9473 +0.004 0.8956 £0.005 0.9994 +£0.0002
Recall Training 0.9015+0.005 0.9149+0.004 0.9999+0.0001
Validation | 0.8790+0.006 0.9423+0.004 0.9999+0.0001
Training 0.8887£0.005 0.8860+0.006 0.9995+0.0002
Fl-score Validation | 0.8974+0.005 0.8900+0.006 0.9997 £0.0001
Training 0.8933+0.004 0.9158 £0.004 0.9991+0.0001
ToU/Jaccard
Validation | 0.9040+0.004 0.9208 £0.004 0.9994£0.0001
Training 0.8687+0.005 0.9583£0.004 0.9995+0.0001
Dice coefficient
Validation | 0.8774+0.005 0.9623 £0.004 0.9997 £0.0001
Table 3. Ablation analysis
Reference number | Technique used Dataset used | Accuracy | Jaccard/IoU
! GLCAA DRIVE 0.9603 0.5928
3 MPCCN DRIVE 0.9738 0.8185
6 ANSAN-Infused Retinal Vessel Segmentation DRIVE 0.88 0.7764
8 Morphology Cascaded Features and Supervised Learning | DRIVE 0.9747 0.6199
o Spatial Attention U-Net (SA-UNet) DRIVE 0.9583 0.7011
10 Genetic U-Net DRIVE 0.9704 0.6783
1 Spider U-Net (LSTM for 3D Segmentation) DRIVE 0.9697 0.6812
12 MRU-Net (U-Net Variant) DRIVE 0.9837 0.7291
13 M2U-Net DRIVE 0.963
14 Context Encoder Network (CE-Net) DRIVE 0.9523 0.81
1 LUVS-Net (Lightweight U-Net) DRIVE 0.9578 0.7955
Proposed model MSFAUMobileNet Model DRIVE 0.9999 0.9994

Table 4. State of art analysis

72.91% and 81.00% Jaccard Indices, respectively, but obtaining higher accuracies at 98.37% and 95.23%. Overall,
the proposed MSFAUMobileNet model shows a significant improvement in both accuracy and segmentation
quality compared to existing methods.

Conclusion

MSFAUMobileNet model is a modified U-Net architecture that has been proposed for retinal blood vessel
segmentation. Proposed uses MobileNetV2 as its encoder containing 13 bottleneck blocks to extract hierarchical
features with efficiency. MSFA, Residual Connections, and Attention Mechanisms are incorporated to obtain
precise segmentation of intricate retinal vascular patterns. DRIVE dataset of high-resolution fundus images with
annotated blood vessels was utilized for training and validation. The model worked superbly well with a Dice
score of 99.95%, an IoU of 99.94%, and accuracy of 99.99%. These reflect the capability of the model in handling
the problems of retinal segmentation tasks well. In real-world clinical ophthalmology settings, the lightweight
nature of MSFAUMOobileNet makes it suitable for implementation on handheld fundus cameras, tele-ophthalmic
systems, and point-of-care devices, where it could possibly be beneficial in assisting clinicians to identify and
track early signs of retinal diseases such as diabetic retinopathy, glaucoma, age-related macular degeneration,
and hypertensive retinopathy. Prior clinical evidence supports that exact vessel segmentation enhances disease
screening, disease progression tracking, and treatment planning, and the results of our study support the model’s
preservation of large vessels and fine vessels with high accuracy. With its low computational burden and high
accuracy, MSFAUMobileNet is a useful and effective tool for the diagnosis and monitoring of retinal disease in
daily medical image analysis.
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Fig. 13. Ablation analysis.
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Fig. 14. Visual analysis.
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Data availability
The dataset used in this study is publicly available at the following link: https://www.kaggle.com/datasets/andre
wmvd/drive-digital-retinal-images-for-vessel-extraction.
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