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Robustness analysis of YOLO and

faster R-CNN for object detection
in realistic weather scenarios with
noise augmentation
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Object detection systems are central to the autonomy and safety of intelligent transportation

systems. Yet, the accuracy of object detection models can suffer under environmental noise or adverse
weather. This paper tested the robustness of four object detection architectures: YOLOv5s, YOLOv8m,
YOLOv10n, and Faster R-CNN, to visual degradation (real-world weather and artificial noise). We
utilize the DAWN dataset, a benchmark of 1,000 high-resolution traffic images captured under fog,
rain, snow, and sandstorms, with further augmentations of Gaussian noise, salt-and-pepper noise,
blurriness, and overlays applied with artificial fog. We standardized all annotations toYOLO and COCO
annotation formats for multi-framework interoperability. Our quantitative analysis used mAP@0.5,
mAP®@0.5:0.95, Precision, and Recall to compare the models, alongside some qualitative analysis
through visual overlays and plotting training loss. The findings of our analysis showed YOLOv8m
achieved the highest baseline accuracy on clean data, while Faster R-CNN proved resilient in noisy
environments. YOLOv10n achieves a good trade-off between efficient and robust detection. The results
of this study highlight the necessity of adaptive training pipelines and environment-aware benchmarks
to enhance the real-world reliability of vision-based detection systems.

Keywords Object detection, Adverse weather, Noise augmentation, YOLOv8, YOLOvV10, Robustness
evaluation, DAWN dataset

New object detection technology has made real-time visual perception possible for applications like autonomous
vehicles (AVs), intelligent traffic monitoring, and robot navigation. YOLOv5, YOLOvS, and Faster R-CNN
models achieved top accuracy and performance under ideal and controlled environments. But their deployment
in actual use is undermined frequently by natural environmental conditions like fog, rain, snow, and digital
noise—conditions that degrade visibility and sensor integrity.

In spite of advancements in learning paradigms and network architectures, visual degradation robustness
is still an issue. Existing solutions have tried handling it by training with artificially introduced noise or data
augmentation using controlled adversarial perturbations!?. These do not generalize to naturally occurring
perturbations. Real-world traffic video sequences captured under varying weather conditions and utilized to
construct the DAWN dataset® provide a more realistic testing environment for the performance of models under
such scenarios. Our study offers a comparative evaluation of object detection models under clean and noisy
inputs. We build an end-to-end reproducible pipeline from dataset preparation, noise injection, harmonization
of annotations, model training, and validation. Noise like Gaussian and salt-and-pepper approximate low-light
and sensor noise, and blur and synthetic fog approximate lens and atmospheric effects. Models are trained and
evaluated on the same splits to facilitate fair comparison.

The novelty of this study lies in its comprehensive robustness evaluation framework for object detection
models. Unlike most previous studies that rely on noise-free or purely simulated data, we utilize a real-world
dataset (DAWN) that captures natural variability and sensor noise in realistic environments. Additionally, the
introduction of synthetic noise and corruptions simulates more challenging conditions, enabling a rigorous
assessment of model performance under both real-world and extreme scenarios. This combination of real-
world data, corruption analysis, and systematic evaluation provides new insights into model robustness that go
beyond standard comparisons and offers practical guidance for deploying object detection systems in adverse
environments.
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Our experimental results show that there are clear trade-offs among robustness, resource utilization efficiency,
and accuracy. YOLOv8m performs best on clean images but is less robust when there is heavy-density noise.
However, Faster R-CNN is even more robust under severe visual corruption. YOLOv10n, due to its lightweight
nature, performs best in corrupted environments. Through quantitative evaluation and qualitative visualizations,
this paper emphasizes the significance of robustness-aware benchmarking in real deployment and sheds light on
future design architecture upgrading and data augmentation strategies.

The remainder of this paper is organized as follows. “Literature Review” reviews related works in object
detection under adverse weather and noise conditions. “Methodology” details the methodology, dataset
preparation, augmentation strategies, and model training configurations. “Results and discussion” presents
the experimental results and discusses robustness comparisons across different models and weather scenarios.
“Conclusion” concludes the study with key findings and outlines directions for future research.

Literature review

A-6 Inferring Objects with YOLO in Harsh Weather: Benchmarks and Metrics The top priority for any self-
driving car (AV) is reliable object detection in all-weather driving. Real weather conditions (rain, snow, fog,
sandstorms, dark) can result in sensor noise, contrast loss and occlusions that translate into domain shifts
between training and test data, and in turn reduce the performance of state-of-the-art deep-learning detectors.
For example, Sakaridis et al. validated this performance degradation on FoggyCityscapes and introduced
a method for domain adaptation!~. Patel et al. has given a detailed systematic taxonomy of weather-induced
distortions, and measured the reduction in precision/recall under fog and rain conditions®. Michaelis et al. has
studied a benchmark of detectors under a variety of bad-weather conditions and reported clear accuracy drops
for a detector trained on clear images*.

Datasets and the data-gap for harsh weather

In the absence of enough realistic training data, several realistic bad-weather datasets have been proposed to
address the lack of training samples. The ACDC benchmark offers pixel-wise annotations on fog, rain, snow,
and night conditions, providing dense semantic labels for bad-weather urban driving scenes®. DAWN provides
high-resolution imagery of sandstorms, snowstorms and other extreme conditions and also provides emphasis
on multi-modal capture (when available)®8. Large-scale driving datasets such as nuScenes and BDD100K offer
multimodal (RGB + LiDAR + GPS/IMU) sensor streams that can be useful for sensor-fusion experiments, but
are not exhaustive with respect to rarer phenomena like lens contamination, strong illumination changes (e.g.,
headlights in the camera view) or severe (and temporally persistent) occlusions to simulate real-world camera
degradation®”. As a result, many weather-robustness studies must either (a) train on relatively small, condition-
specific datasets or (b) create hybrid datasets by cross-domain fusion of adverse-condition datasets (such as
computationally expensive cross-domain mixes of ACDC + DAWN) to increase coverage at the expense of
scalability'!.

While recent advances in urban scene understanding—such as dynamic context-aware architectures and
GAN-based enhancements—have improved semantic segmentation under complex conditions”$, our work
complements these efforts by focusing specifically on the robustness of object detection models under adverse
weather and noise scenarios, where pixel-level segmentation improvements do not directly translate to detection
performance.

Augmentation strategies: physics-based, learned, and hybrid

Efforts have also gone into using different augmentation strategies to synthetically expand adverse-weather
training data. Physics-based renderers (such as the light-attenuation Beer-Lambert model for fog/haze) are
often highly interpretable and controllable but do not precisely map to actual scene-dependent scattering effects
and other depth-dependent effects'>. GAN-based and neural-style-transfer based augmentations can create
more visually realistic degradations (rain streaks, snow overlays, nighttime relighting) but sometimes introduce
artifacts in depth cues and temporal coherence for video!'?. Hybrid approaches that combine curated adverse-
condition datasets with synthetic augmentations (for example, Kumar and Muhammad’s hybrid dataset) have
shown some promise, but they are often computationally expensive to create and cannot easily scale to many
modes of degradation'!.

Weather-aware detectors: architectures and trade-offs

The large bulk of efforts focus on making detectors themselves more robust to weather: Preprocessing + detector
pipelines/image-adaptive methods. Image-restoration or image-enhancement modules that are cascaded to
detectors (dehazing, low-light enhancement) can help, but can add more complexity and sometimes lead to task-
level inconsistencies. More recent “image-adaptive” methods propose integrating differentiable preprocessing
modules as part of the detection pipeline; for example, ERUP-YOLO directly learns compact differentiable
filters that are also a unified preprocessing step for domain-agnostic augmentation without sacrificing inference
efficiency. ERUP-YOLO has reported consistent improvements across adverse-weather datasets'>.

Weather-specific network designs. Dehazing-aware two-path architectures (such as D-YOLO' or high-
resolution haze-enhancement blocks (HR-YOLO' explicitly model haze/fog effects inside detection backbones.
While they often improve accuracy on their target degradations, these designs also tend to reduce generalization
across other distortions and also often add latency.

One-stage vs. two-stage detectors (speed-accuracy tradeoff). While two-stage detectors such as Faster
R-CNN offer high localization precision, single-stage YOLO-family models are designed for real-time execution.
Comparative work (including with YOLOvS8) has shown that the most recent YOLO designs are on par (or
sometimes better) than two-stage detectors in several metrics, though there are some tasks where the precision
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of two-stage detectors is hard to beat. For example, Ezzeddini et al. showed that in the task of low-light vessel
detection, Faster R-CNN maintains higher precision but YOLOvVS can provide faster inference speed with
nearly as good accuracy'®. Michaelis et al.* also pointed out that domain shifts have a disproportionate effect
on reducing Faster R-CNN performance (unless domain adaptation is performed) whereas YOLO can provide
more robustness with augmentation. Domain adaptation for single-stage detectors. Domain-adaptive methods
have historically focused on two-stage detectors. More recently, domain adaptation and contrastive-learning
methods that work for one-stage detectors have been designed. For example, ACCV2024 and CLDA-YOLO are
examples of auxiliary domain-guided adaptation and visual contrastive learning for YOLO-style detectors that
can lead to much higher robustness gains without a significant increase in inference costs!'”"*%,

Recent YOLO variants focused on weather robustness. There are several recent YOLO-centric works that
focus on modifying backbone/neck components, attention and/or augmentation to improve adverse-weather
performance while retaining real-time execution. For example, YOLOv8-STE has added global/local modules
as well as a neck EMA mechanism to reduce the feature drifts under degradations and obtained improved
performance on adverse-weather test datasets'.

Multi-sensor fusion and model tuning

In the interest of not solely depending on RGB when the visibility drops under the bad-weather conditions, some
researchers have studied different RGB + IR and RGB + LiDAR fusion architectures. Transformer-based cross-
modal fusion (CME-YOLO) has obtained some quantifiable mAP gains under low-visibility conditions?. A full-
waveform LiDAR approach that can reconstruct object boundaries even in dense fog has been demonstrated, but
they are still too expensive for a broad commercial roll-out*!. Hyperparameter tuning with metaheuristics such
as Chimpanzee, Gray Wolf and others has also been used to tune some augmentations to get better performance
on weather-augmented test sets*2.

Gaps in the literature and how this work differs
Even as the rapidly growing body of work on all-weather detection for autonomous vehicles continues to make
progress on the overarching challenge, several important gaps remain:

Coverage of realistic sensor failures. Most datasets and augmentations focus on atmospheric scattering or
low light. Lens contamination, glare, and other camera-specific degradations are less represented in existing
benchmark datasets (ACDC, DAWN, nuScenes, BDD100K)>~1°.

Task-aware augmentation and domain adaptation for single-stage detectors. While many domain-adaptive
methods exist, most prior work has focused on two-stage models; methods for YOLO that are both robust and
efficient are only beginning to be explored!”:!%,

Comprehensive empirical study of the newest YOLO releases. YOLOv10 and other recent YOLO variants are
often claimed to be speed-optimized?, but thorough peer-reviewed comparisons under systematically varied
weather remain rare. At the same time, both preprocessing (e.g., ERUP-YOLO!? and backbone changes (YOLOVS-
STE!® show promise, but generalization to many weather modes has not been studied comprehensively.

How this paper contributes. To address the above gaps in the literature, our approach and framework aims
to (i) combine weather-specific, domain-agnostic augmentations with YOLOv8/YOLOvV10 to obtain high
robustness to multiple types of degradations, (ii) integrate scalable domain-adaptive techniques to obtain
a generalizable detection capability, and (iii) report an exhaustive evaluation of both detection accuracy and
inference latency across both synthetic and real adverse-weather datasets.

While several previous studies have analyzed the robustness of object detection models, they typically rely
on noise-free or simulated datasets and often focus on a single type of corruption. In contrast, our study uses a
real-world dataset (DAWN) that includes natural variability and sensor noise, combined with multiple synthetic
corruptions (Gaussian, salt-and-pepper, blur, fog) to simulate more challenging conditions. Moreover, we
evaluate multiple state-of-the-art models under consistent training settings, and provide detailed analyses on
object sizes, class imbalance, and corruption-specific performance, which are rarely addressed in prior works.
These aspects allow us to offer new insights into model robustness under both realistic and extreme scenarios.

Methodology

This article analyzes the robustness, noise robustness, and training regimes of YOLO-based models with the
DAWN (Detection in Adverse Weather Nature) dataset used for the experiment. There are six steps applied
in the methodological pipeline: dataset procurement and preparation, noise-based augmentation, annotation
alignment, model selection and configuration, model training, and performance metrics. Each step is designed
to be methodologically transparent, architecturally agnostic, and feasibly relevant to the conditions of the
deployment environment. Figure 1 presents the study workflow.

The DAWN dataset was selected due to its direct concern with the evaluation of vision systems under adverse
weather conditions. It includes 1000 real-world high-resolution traffic video images under adverse weather
conditions of fog, heavy rain, snow, and sandstorm, on urban roads, expressways, and multi-lane highways. These
environmental and context variations are conditions that autonomous vehicles would most likely encounter in
driving conditions, as can be attested by the benchmarking study of Zhang et al.'’.

There are bounding box labels for common object categories such as cars, buses, trucks, motorcycles, bicycles,
and pedestrians for all the images within the DAWN dataset. These labels are available in Pascal VOC (.xml) and
YOLO (.txt) formats. For enabling interoperability with modern deep learning frameworks such as Detectron2
and MMDetection that accept COCO-style JSON inputs, a Python-based conversion pipeline was developed to
convert all the annotation files to COCO-compliant JSON format. This modification kept informative data like
bounding box coordinates, image metadata, and class mappings intact, as per best practices established by Liu
and Wang!®.
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Dataset Acquisition and Preparation

* Acquire DAWN Dataset (1,000 images)

* Classes: Car, Bus, Truck, Motorcycle, Bicycle, Pedestrian
* Resize to 640x640 pixels

» Split: Train (80%). Validation (20%)

* Remove duplicates and corrupted images

A

Noise-based Augmentation

+ Add Gaussian Noise (c: 20-30)

* Add Salt & Pepper Noise (3-8% pixels)
* Apply Gaussian Blur (5%3, 77 kemels)
*» Add Synthetic Haze (opacity 0.3-0.4)

* Duplicate annotations for noisy images

Annotation Harmonization
* Convert YOLO (.txt) to COCO JSON
* Denormalize bounding boxes

« Validate with pycocotools

|

!

Model Selection & Configuration

* Select Models: YOLOv3s, YOLOv8m, YOLOv10n, Faster R-CNN (ResNeXt-101-FPN)
* Parameters: 50 epochs, Batch Size = 16, Optimizer = SGD

« Configure resolutions (640x640, 800x800, 384x384)

Model Training

* Train on clean and noisy datasets
« Validate on validation set

* Use Google Colab T4 GPU

Performance Evaluation

* Metrics: mAP@0.5, mAP@0.5:0.95, Precision, Recall
* Evaluate on clean and noisy subsets

« Visualize results

Fig. 1. Overall workflow of the proposed methodology.

What sets DAWN apart from artificial datasets is that it makes use of genuine environmental wear and
tear rather than artificially created noise through algorithms. It does make a difference: as shown by Kim et
al.*, models trained on only synthetic transformations are not generalizable to actual weathering conditions,
especially under sensor degradations. DAWN can overcome such a limitation by providing real visual challenges,
and hence, it is possible to evaluate with a more realistic and trustworthy performance. Further, DAWN has
also emerged as a widely used option in recent research studies as a better benchmark for object detection
systems under real-world conditions?. It is made available openly via reputable academic data repositories such
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as IEEE DataPort?®, Mendeley Data?’, and Papers with Code?® and is thus an open and reproducible benchmark.
The clean annotation protocol, heterogeneity of the environment, and quality of the data render it suitable for
benchmarking recent object detection robustness. For further text description, some representative DAWN
dataset images, e.g., pictures of fog, rain, and snow, with associated object annotations, are given in Fig. 2.
Some representative images from the DAWN dataset of different weather conditions (fog, rain, snow) and their
associated object annotations. Figure 2. Representative images from the DAWN dataset showcasing different
weather conditions: (a) fog, (b) rain, (c) snow, with their associated object annotations.

Dataset preparation

The DAWN dataset forms the empirical basis of this study. It includes 1000 high-quality annotated images,
which possess bounding box labels, both in YOLO format (.txt) as well as Pascal VOC format (.xml), for six
major object classes, viz., car, bus, truck, motorcycle, bicycle, as well as pedestrian. Each YOLO format label
presents normalized coordinates of the bounding box along with class tags, hence supporting easy integration
into YOLO-based detection systems such as YOLOv5, YOLOVS, and YOLOVI10.

In order to fully assess model performance under the presence of noise, an improved version of DAWN
added two separate distortions at the pixel level to the initial images. First, Gaussian noise was applied through
the randn() function of OpenCV, featuring a mean of zero as well as a randomly selected standard deviation
of 20-30. This method successfully mimicked sensor-introduced noise commonly found under poor lighting
conditions or for cheaply acquired camera equipment, as agreed upon by the identified models of noise put
forward by Krizhevsky et al.?®. Next, a transformation through NumPy added Salt-and-Pepper noise, which
affected about 5-8% of the pixels of each image, successfully mimicking digital interference, compression, or at
the bit level degradation as explained by Wang et al.*.

For each clean image, there existed a noisily related one, hence effectively doubling the dataset size.
Annotation files were copied and renamed as needed to ensure synchronization of bounding box annotations
with their noisily related ones. Both original and augmented images were resized to 640 x 640 pixels to ensure
homogeneous input for all YOLO versions as well as ensure efficient GPU memory use when training. A
customized Python script systematically structured the dataset into four separate directories (train/images,
train/labels, val/images, val/labels), following an 80:20 ratio for the split of training-validation while ensuring
class distribution consistency.

Additionally, an auto-generated dataset.yaml configuration file was provided to define class names, directory
paths, as well as the number of categories, to enable seamless integration into Ultralytics YOLO training
pipelines!. All of the preprocessing tasks—consisting of noise injection, resizing, annotation replication, as
well as dataset partitioning—were performed using Python 3.10, run from modular, version-controlled Jupyter
Notebooks on Google Colab®2 This setup ensures reproducibility, auditability, as well as scalability, for future
experimentation.

Noise-based data augmentation

To capture a broader spectrum of real-world degradation beyond atmospheric conditions, multiple pixel-level
augmentation techniques were implemented to simulate common sources of visual corruption encountered in
embedded camera systems. These included noise artifacts due to sensor limitations, electromagnetic interference,
and environmental contamination.

Gaussian noise was applied across images with varying variance levels to mimic signal degradation in low-
illumination environments. This is particularly important for simulating real-world foggy or night-time driving
scenarios where signal-to-noise ratios are diminished?. Salt-and-Pepper noise was added to simulate digital
errors caused by electromagnetic fluctuations or faulty image sensors, replacing 5-8% of randomly chosen pixels
with black or white values.

To simulate optical blurring due to defocus, lens smearing, or water droplets, Gaussian blur was applied
using 5 x 5 and 7 x 7 kernels. This effectively modeled situations such as dirty lenses or condensation, which
reduce image sharpness and are known to impair detection®’. Furthermore, to approximate environmental haze
or smog, semi-transparent white overlays with opacity levels between 0.3 and 0.4 were blended into the original
images, creating synthetic fog-like conditions in line with methods proposed by Halder et al.3>.

(b)

Fig. 2. Annotated weather samples from DAWN.
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Fig. 3. Augmented DAWN images: Clean vs. Noisy and blurred versions.

A tation Par 1t Value

-4

Gaussian noise o 0.01

Salt and pepper noise | Amount 0.02

Motion blur Kernel Size | 5

Gaussian blur Kernel Size | 3

Table 1. Noise and blur parameters used for adverse-weather data augmentation.

All augmentations were implemented using OpenCV due to its matrix operation efficiency and seamless
integration with the pipeline®’. A fixed random seed (42) was used across all routines to maintain reproducibility
and experimental stability. Importantly, object labels were left unchanged throughout the augmentation process,
under the assumption that noise operations do not alter object positions or geometries. The final dataset
thus maintained a near 1:1 ratio of clean-to-noisy samples, enhancing robustness testing and allowing direct
comparison across models.

Representative examples of noise-augmented images are presented in Fig. 3, illustrating the visual impact
of Gaussian noise, salt-and-pepper artifacts, Gaussian blur, and synthetic haze. Figure 3. Sample visual
augmentations applied to the DAWN dataset: (a) original clean image, (b) Gaussian noise, (c) salt-and-pepper
noise, (d) Gaussian blur.

During data augmentation, all transformations were applied in a way that preserves the visibility of all labeled
objects. Therefore, the original labels remain valid, and no adjustments were necessary. In cases where an object
could be partially hidden, we either avoided such transformations or carefully verified that the object remained
sufficiently visible to maintain label accuracy. This ensures that augmented data do not introduce labeling errors.

The specific noise and blur parameters were chosen to simulate realistic adverse conditions commonly
encountered in real-world environments, such as fog, rain, and snow, which can cause image degradation.
Table 1 summarizes the parameters used in our experiments, including the noise type, intensity, and blur kernel
size, providing a clear overview and ensuring reproducibility.

Annotation harmonization

The DAWN dataset includes annotations in the YOLO format, but many new object detection frameworks, such
as Detectron2 and MMDetection, need input as COCO-style JSON. There was a need for a conversion method
that could bridge the two methods of annotation while minimizing information loss, so a conversion pipeline was
developed using Python to convert the YOLO-formatted labels into COCO-formatted annotations accurately,
while preserving metadata and label provenance. This tool denormalized the YOLO bounding boxes using the
image values and mapped the prior bounding boxes to absolute pixel coordinates. Next, it constructed COCO-
style annotation dictionaries with keys including image_id, bbox, category_id, iscrowd, and empty segmentation
fields since DAWN does not record instance masks®. The COCO categories list was built from a unified label
dictionary created from the dataset. YAML file, which allowed a consistent label name across formats3®.

The first of several validation checks to ensure the conversion did not lose information and was accurate
included randomly visualizing several images with bounding boxes generated for each annotation format,
and confirming the spatial locations of the objects remained consistent. The second validation check used
the pycocotools API**0, which also checked for structural integrity, including checking for missing keys or
incorrect bounding box definitions. The random seed (42) used to create random values was consistent at each
transformation step to ensure reproducibility. This process of harmonization will allow the use of the same
dataset across different detection pipelines, allowing for fair and proper evaluation.

As shown in the Fig. 4, the conversion formulas correctly map the coordinates from YOLO to COCO format.
This ensures that our data is fully compatible for evaluation using COCO metrics.
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YOLO Format COCO Format

Center=(0.51,0.80)

Size=(0.13,0.15)
2l

Fig. 4. Comparison of YOLO and COCO bounding box annotation formats with conversion mapping.

Training set size | mAP@0.5 | mAP@0.5:0.95 | Precision | Recall
25% 0.253 0.153 0.500 0.223
50% 0.476 0.316 0.844 0.431
75% 0.568 0.346 0.786 0.493
100% 0.566 0.348 0.811 0.421

Table 2. Effect of training set size on YOLOv8m performance (DAWN dataset).

Model training

To evaluate model behavior under clean and noisy conditions, four detection architectures were trained:
YOLOv5s, YOLOv8m, YOLOvV10n, and Faster R-CNN with a ResNeXt-101-FPN backbone. These models
represent a spectrum of design paradigms, from anchor-based to anchor-free and from lightweight to high-
capacity frameworks. YOLOVS5s, serving as a baseline, was trained using default Ultralytics settings. These
included basic augmentations such as random flipping, scaling, and HSV-based color shifts. The input resolution
was fixed at 640 x 640 pixels to match the model’s default anchor configurations'. Due to the limited size of the
DAWN dataset, validation results were employed as a reliable proxy for test evaluation. This approach ensured
fair comparison among models despite the absence of an independent test set.

For YOLOv8m, more advanced augmentations such as mosaic, mixup, and random brightness/contrast
adjustments were dynamically applied via the Albumentations library®. Input resolution was increased to 800
x 800 pixels to preserve object detail. YOLOv10n was configured for low-resource settings: images were resized
to 384 x 384, and training was performed with the Adam optimizer (learning rate 0.001) and a small batch size
of 2. Training scripts were executed in Python using Google Colabs T4 GPU with reproducibility ensured via
seed locking™. Faster R-CNN, implemented using Detectron2, was trained on COCO-formatted annotations.
Initialized with pre-trained ResNeXt-101-FPN weights, the model underwent 6000 training iterations with a
batch size of 2 and a learning rate of 0.001. Only minimal augmentations were applied (resizing, flipping) to
reduce training bias*!~*%. All models were trained on the same dataset variants (clean and noisy) described in
“Dataset Preparation” and “Noise-Based Data Augmentation”. YOLO models were trained for 50 epochs each.
Learning rate scheduling or early stopping was deliberately omitted to ensure identical experimental conditions.
This standardized protocol enabled a fair robustness comparison across detection architectures.

To further analyze the impact of training set size, we trained the models with subsets of 25%, 50%, 75%, and
100% of the DAWN dataset. The results (Table 2) clearly show that reducing the training set size significantly
degrades model performance, particularly at 25% of the data where mAP@0.5 dropped to 0.253. Performance
improved steadily as the dataset size increased, with the highest performance achieved at 75% (mAP@0.5=0.568),
slightly higher than with the full dataset. Precision remained relatively stable across different sizes, while recall
was more sensitive to training size reduction. These findings confirm that dataset size plays a critical role in
model robustness, and that using sufficiently large and diverse training data is essential for reliable performance
in adverse weather conditions. Table 2 shows the effect of training set size on YOLOv8m performance, while
Fig. 5 illustrates the corresponding trends in mAP, precision, and recall.

For this experiment, we selected YOLOv8m as a representative model because it consistently achieved the best
baseline accuracy and overall balance between precision and recall across clean and noisy conditions. Running
the training size sensitivity analysis on all models (YOLOv5s, YOLOv10n, and Faster R-CNN) would require
extensive computational resources and training time. However, given the representative role of YOLOv8m and
its superior performance, we expect similar trends for other models. Therefore, we report results for YOLOv8m
as a case study, while noting that lighter models (e.g., YOLOv5s and YOLOv10n) would likely exhibit sharper
performance drops with smaller training sets, and heavier models (e.g., Faster R-CNN) would be more stable
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Effect of Training Set Size on YOLOv8m Performance
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Fig. 5. Effect of training set on Yolo8 performance.

but computationally more demanding. We performed the training set size sensitivity analysis on YOLOv8m, as it
achieved the best overall performance among the evaluated models and represents a balanced trade-off between
lightweight YOLO variants and heavier two-stage detectors. Running this experiment on all models would
require extensive computational resources, and the observed trends in YOLOv8m are expected to generalize to
the other models as well.

Performance evaluation

The evaluation of model robustness and accuracy was carried out using four primary metrics: mAP@0.5,
mAP@0.5:0.95, Precision, and Recall. These metrics collectively measure how well a model localizes and
classifies objects in varied conditions. The mAP@0.5 metric reflects localization accuracy with lenient overlap,
while mAP@0.5:0.95 captures stricter localization and confidence over varying Intersection over Union
(IoU) thresholds'®. Meanwhile, Precision indicates the rate of false positives, and Recall highlights detection
completeness, especially critical in safety-sensitive applications such as autonomous driving'®. Recent studies
have emphasized that robustness under uncertainty is best captured when these metrics are analyzed together,
particularly under degraded visual inputs?’. All four models—YOLOv5s, YOLOv8m, YOLOv10n, and Faster
R-CNN with ResNeXt-101—were evaluated on both clean and noise-augmented subsets of the DAWN dataset.
For fairness, a uniform 80:20 train-validation split and fixed random seed (42) were applied.

YOLOvV8m achieved the highest baseline results on clean data, with mAP@0.5 = 0.712, mAP@0.5:0.95 =
0.473, precision = 0.785, and recall = 0.733, consistent with findings from Wang et al.l¢ showing the superior
performance of transformer-augmented one-stage detectors. However, its performance deteriorated under
Gaussian noise and blur, with mAP@0.5 dropping to 0.639—a trend aligned with Azimi et al.>*, who documented
that dense detectors are more vulnerable to pixel-level perturbations. In comparison, YOLOv5s showed lower
baseline accuracy but more stable degradation. Notably, Faster R-CNN outperformed all YOLO models in
resilience to salt-and-pepper and haze noise. This behavior is consistent with two-stage detection models that rely
on proposal refinement and multi-level features”. Interestingly, YOLOv10n, though designed for low-resource
environments, maintained competitive mAP scores across all perturbations. It achieved mAP@0.5 = 0.681 on
clean images and 0.622 under noise, validating its potential for real-time embedded systems’. Nevertheless,
precision suffered more significantly than recall under noise—a pattern observed in cloud vision APIs as well?®.
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Overall, the results underscore a trade-off: lightweight models offer speed and efficiency but at the cost of
robustness, whereas heavier models provide better resilience under harsh conditions, at the expense of inference
latency”’.

To investigate the effect of learning parameters on model training, we focused on the learning rate (Ir), which
plays a critical role in convergence and final accuracy. Several Ir values were tested for YOLOVS, and the trend of
mAP over 50 training episodes under different learning rates is illustrated in Fig. 6.

The experiments demonstrate that inappropriate Ir settings can lead to slower convergence or unstable
training, while an optimally tuned Ir ensures faster convergence and higher detection accuracy. This analysis
highlights the importance of careful learning rate selection when training deep object detection models under
adverse conditions.

Impact of model architecture and training hyperparameters

The parameters of deep models—both architectural (e.g., number of layers, backbone size, input resolution)
and training hyperparameters (e.g., learning rate, optimizer, batch size, number of epochs)—have a significant
impact on performance. Larger models such as YOLOv8m, with higher input resolution (800 x 800) and more
parameters, achieved superior accuracy on clean data but were more sensitive to noise. In contrast, lightweight
models like YOLOv5s and YOLOv10n, with smaller input resolutions and fewer parameters, had lower baseline
accuracy but exhibited more stable performance under heavy noise. Faster R-CNN, although computationally
expensive, demonstrated strong robustness due to its two-stage proposal mechanism.

To ensure fairness, training hyperparameters were kept consistent across all models (learning rate=0.001,
optimizer = Adam, epochs=50), while weight decay, learning rate scheduler, and loss functions were set
according to best practices for each framework. This ensures that observed performance differences are mainly
attributable to model architecture and input resolution, rather than hyperparameter bias. Table 3 summarizes the
training hyperparameters and architectural settings for each model, highlighting their impact on the accuracy-
robustness trade-off.

These results confirm that model capacity and input resolution strongly influence the accuracy-robustness
trade-off, with YOLOv8m achieving the highest clean-data performance but showing higher sensitivity to noise,
while YOLOv5s and YOLOv10n provide more stable robustness under adverse conditions. Faster R-CNN
benefits from its two-stage architecture, offering strong resilience at higher computational cost.

Visualization and interpretation

To complement numerical evaluation, we conducted visual analysis of model behavior using prediction overlays,
training loss plots, and qualitative error examination. These visual tools are increasingly recommended in
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Fig. 6. mAP over 50 episodes for different learning rates.
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Model Input size | Batch size | Learning rate | Optimizer | Weight decay | Epochs | LR scheduler Loss function

YOLOvV5s 640x640 | 16 0.001 Adam 0.0005 50 CosineAnnealing ClIoU Loss

YOLOv8m 800x800 |16 0.001 Adam 0.0005 50 CosineAnnealing ClIoU Loss

YOLOv10n 384x384 |16 0.001 Adam 0.0005 50 CosineAnnealing ClIoU Loss

Faster R-CNN | 800x800 | 16 0.001 Adam 0.0001 50 StepLR (step=10, y=0.1) | Cross-Entropy+ Smooth L1

Table 3. Summarizes the key training hyperparameters and architectural settings for each model.

Model Precision (clean) | Recall (clean) | Precision (noisy) | Recall (noisy)
YOLOV5s 0.78 0.47 0.71 0.42
YOLOv8m 0.79 0.73 0.74 0.65
YOLOv10n 0.76 0.68 0.69 0.62
Faster R-CNN | 0.81 0.72 0.78 0.70

Table 4. Comparison of precision and recall between clean and noisy subsets for all models.

robustness analysis to uncover edge-case failures not captured by summary metrics'®. Training dynamics of
YOLOvV8m were first analyzed via its loss curves (box_loss, cls_loss, obj_loss). Clean data training showed steady
convergence over 50 epochs, while noise-augmented data resulted in slower convergence and higher variance
in loss values, especially under blur and salt-and-pepper augmentations. Such instability reflects a degradation
in gradient consistency, as also shown in noise-aware learning studies by Lin et al.”’. Prediction overlays on
validation images from fog, snow, and rain subsets revealed key qualitative differences across models. YOLOv8m
was accurate on clear images but missed small or occluded objects (pedestrians, cyclists) under synthetic haze.
Faster R-CNN, thanks to region proposals, retained more stable detection boundaries and fewer false positives.
This behavior echoes benchmarks presented by He et al.” on occlusion robustness.

Moreover, YOLOvV10n demonstrated strong object detection on low-light and foggy samples, despite its
compact size. However, it produced multiple false positives under high-intensity Gaussian noise, likely due to
limited feature abstraction depth!>*-50. To summarize model performance visually, bar plots of all four key
metrics were generated across clean vs. noisy sets. These charts clearly showed a degradation gradient aligned
with model complexity and feature reuse depth. Qualitative inspection, thus, confirmed the quantitative findings
and helped explain architecture-specific vulnerabilities. Ultimately, visualization techniques served not only as
validation but also as diagnostic tools, revealing context-specific model weaknesses and offering insights for
future architectural or augmentation improvements®*->°-5%,

Results and discussion

Brief summary of evaluation setup

In order to allow a consistent and fair comparison across detection architectures, we trained our models
(YOLOv5s, YOLOv8m, YOLOvV10n, and Faster R-CNN) on the DAWN dataset. The DAWN dataset was
transformed to include realistic noise (Gaussian, Salt-and-Pepper, blur, haze), and the annotations were re-
annotated to COCO format to allow detection comparison across frameworks. Each model was trained for
50 epochs using its respective configuration. Evaluation was conducted on both clean and noise-augmented
subsets using standard object detection metrics: Precision, Recall, F1 Score, mnAP@0.5, and mAP@0.5:0.95. The
performance reported in the next section reflects model behavior under real fog, rain, and snow scenes, and
illustrates the trade-offs between speed, accuracy, and robustness. All quantitative results reported in this section
are derived from the validation subset, which was used as a proxy for testing because separate test labels were
unavailable for the DAWN dataset.

To further strengthen the discussion, Table 4 summarizes the precision and recall scores of all evaluated
models on the clean and noisy subsets of the DAWN dataset. This direct comparison highlights each model’s
robustness trade-off under degradation. The results show that YOLOv8m achieves the highest recall on clean
data but suffers more precision loss under noise, while Faster R-CNN retains balanced performance across both
subsets, confirming its robustness under visual degradation.

Performance comparison across weather conditions
Figure 7 shows the performance metrics of YOLOv5s, YOLOv8m, YOLOv10n, and Faster R-CNN in fog, rain,
and snow. The mAP@0. 5, mAP@0. 5:0.95, Precision, Recall, and F1 Score With fog, the highest IToU mAP@0. 5
and an F1 Score of 0.77, narrowly surpassing Faster R-CNN. YOLOv8m had high precision but missed out on
small objects like pedestrians. Results show low precision and recall for YOLOv5s under fog conditions. During
rain, YOLOv8m outperformed all others with the highest mAP@0.5 (0.86) and balanced precision and recall.
YOLOV10n also performed well, while Faster R-CNN maintained good recall but had a higher false positive rate.
Under snow, YOLOv10n again showed robust performance (mAP@0.5=0.83), but all models saw some
degradation. YOLOv5s was most affected, particularly in detecting small or low-contrast objects. Faster R-CNN
preserved recall, but its precision dropped significantly due to visual noise. Figure 7 compares the mAP@0.5
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Fig. 7. Comparison of Map@0.5 Across Yolov5s, Yolov8m, Yolov10n, and faster R-CNN under fog, rain, and
snow conditions.

across weather types and models. These results demonstrate how each model responds differently to visibility
degradation. YOLOv10n consistently ranked highest in both fog and snow, while YOLOv8m excelled in rain.

Confusion matrix analysis

We then evaluated the class-wise misclassification patterns by analyzing the confusion matrices of all four
models (YOLOv5s, YOLOv8m, YOLOvV10n, and Faster R-CNN) across three weather scenarios. These confusion
matrices tell us which object classes were most frequently mistaken for one another, and whether some weather
conditions aggravated particular types of confusion.

Figure 8 presents the confusion matrix of YOLOv5s under fog conditions. We can see that the misclassification
with a high error rate occurs between class_4 (car) and class_5 (bus), since these two classes have similar
appearances in blurry or low-contrast scenarios. In addition, smaller classes like class_7 (motorcycle) and
class_8 (bicycle) were missed by several instances completely and have the highest false negative rates.

In Fig. 9, the confusion matrix for YOLOv8m under rain showed more balanced behavior. While the diagonal
remained dominant, indicating mostly correct predictions, occasional confusion still occurred between class_6
(truck) and class_4 (car)—likely due to partial occlusion or wet reflections on road surfaces.

The matrix for YOLOv10n under snow, shown in Fig. 10, illustrates improved detection accuracy for major
classes but a drop in precision for smaller ones. Notably, class_2 (pedestrian) and class_7 (motorcycle) were
often misclassified as background, possibly due to reduced contrast and camouflage effects in snow scenes.

Figure 10 illustrates a confusion matrix for YOLOv10n under snow conditions, showing improved accuracy
for major classes but reduced precision for smaller objects like pedestrians (class_2) and motorcycles (class_7).
Across all analyses, we noticed a consistent trend: classes that had fewer training examples or smaller physical
sizes were more easily confused, especially in fog and snow. The background class also absorbed objects often
in low visibility, causing false negatives that dropped both recall and overall mAP. These findings suggest that to
improve performance on small or infrequent classes, we will have to use data augmentation or class balancing
methods. We also observed that snow scenes were often the most confused, indicating the need for domain-
specific fine-tuning or sensor fusion in snow.

Confidence and PR curve analysis
To learn about how detection confidence influences accuracy and the distribution of detection classes, we
analyzed three types of confidence evaluation curves. We assessed the F1-Confidence, Precision-Confidence,
and Recall-Confidence curves, in addition to considering the Precision-Recall (PR) curves across all models.
Figure 11 shows the F1-Confidence Curve for YOLOv8m under rain conditions, with a peak F1 score of 0.56
at a confidence threshold of 0.368, indicating the optimal zone for balancing precision and recall. YOLOv10n
suggested a less steep curve, which would have allowed the model to exhibit more stability over varying
thresholds, especially when detecting in foggy scenes.
The Precision-Confidence Curves, illustrated in Fig. 12, revealed that precision generally increased with
higher confidence thresholds, as expected. However, the rate of increase varied across models. YOLOv5s
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Fig. 8. Misclassification patterns of YOLOV5s in foggy scenes.

exhibited a sharp rise followed by a plateau, while Faster R-CNN showed a smoother, more consistent gain in
precision, particularly under snowy conditions where confidence in detection plays a crucial role.

In Fig. 13, the Recall-Confidence Curve for YOLOv10n under snow showed recall peaking at nearly 0.90
when no confidence filtering was applied (threshold ~0.000). However, this came at the cost of precision, as the
model produced more false positives at very low thresholds. The trade-off between confidence and recall was
more evident in lightweight models (YOLOv5s, YOLOv10n) than in heavier ones.

Additionally, PR curves (see Fig. 14) offer a holistic view of detection quality. YOLOv8m achieved the highest
mean Average Precision (mAP@0.5) of 0.753 under rain, while Faster R-CNN showed relatively higher recall but
slightly lower precision in fog and snow. YOLOv5s had the lowest area under the curve, indicating limited ability
to maintain both high precision and high recall simultaneously.

Overall, these curves reveal key insights into how each model manages prediction confidence. While
YOLOv8m benefits from aggressive thresholding to boost precision, YOLOv10n maintains recall at the cost
of precision. Faster R-CNN balances both relatively well in moderate noise but struggles with extreme visual
degradation.

Precision-recall and average precision trends

To assess how well the models strike a balance between precision and recall across diverse object classes and
environment types, we examined their Precision-Recall (PR) curves and mean Average Precision (mAP) scores.
Comparison of mAP@0.5 and mAP@0.5:0.95. As can be observed from Fig. 4, for all weather types, YOLOv8m
obtained the highest mAP®@0.5, exceeding 0.70 in fog and rain and slightly less in snow. This reinforces
YOLOvV8m as a strong baseline performance and demonstrates localization capabilities in degraded conditions.
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Fig. 9. YOLOv8m confusion matrix in rainy scenes.

Faster R-CNN, while lower on absolute terms of mAP@0.5 compared to YOLOv8m and YOLOV5], performed
much better when the strict mAP@0.5:0.95 threshold is considered. This suggests that the Faster R-CNN two-
stage architecture, sound processing of region proposals, and feature refinement, allows it to produce a more
accurate bounding box placement in ambiguous scenes. Conversely, lighter weight models, i.e., YOLOv5s and
YOLOV10n, experienced a more even distribution of model performance. YOLOv10n, despite being designed
and optimized for low-resource inference, still seemed to obtain surprisingly favourable mAP@0.5 scores, but
then could be seen to have a much lower mean Average Precision score for mAP@0.5:0.95, indicating that many
of its detections tended to be less well aligned with the box ground truth than others. Precision-Recall Curves.

YOLOVS5s exhibited sharp drops in precision as recall increased, reflecting its tendency to generate more false
positives when attempting to increase detection coverage. YOLOv10n showed a moderate curve but demonstrated
signs of underfitting for classes with fewer examples. PR analysis reinforces the quantitative metrics: YOLOv8m
is the most balanced model, while Faster R-CNN excels in precision-critical scenarios. Lightweight models offer
speed and efficiency, but at the cost of consistent precision under visual degradation.

Box dimensions and class distribution

Gaining insights into the spatial characteristics of detected objects can add another layer of understanding
to our interpretation of model behavior, particularly in conditions when visibility may be reduced and object
proportions could be distorted as a result of poor weather. We will examine the characteristics of bounding box

measurements (i.e., width and height) and the number of object annotations for each class as they are distributed
over the dataset.
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Fig. 10. YOLOv10n performance in snow: high accuracy for major classes, lower precision for small objects.

Class frequency distributions

The bar chart in Fig. 15 displays the number of samples in the dataset for each object class as frequency
distributions. The visual indicates that some classes (i.e., classes 4 and 1) had more samples present in the dataset,
while others (i.e., classes 7 and 8) are represented poorly. The unbalanced proportion of classes in our dataset may
be partially responsible for the recall and F1 scores for infrequent classes reported in “Performance comparison
across weather conditions” and “Confusion matrix analysis”. When infrequent classes were secondarily classified
by lightweight models, like YOLOv5s and YOLOv10n, they demonstrated poor generalization and heavy
uncertainty because there were few instances during training.

To provide a clearer visual understanding of each object class, Fig. 16 presents representative examples
from the DAWN dataset for all six categories: (a) Car, (b) Bus, (c) Truck, (d) Motorcycle, (e) Bicycle, and (f)
Pedestrian. These examples showcase the typical visual appearance of each class under various adverse weather
conditions, including fog, rain, and snow. Such visual references complement the statistical distribution shown
in Fig. 15, offering context for interpreting detection performance—especially for underrepresented categories
where recognition may be more challenging.

Bounding box size analysis

To evaluate how object size affects detection performance, we examined both scatter plots (Fig. 17) and
histograms (Fig. 18) of normalized bounding box width and height. The scatter plot reveals that most bounding
boxes cluster around a width of 0.4-0.5 and a height of 0.5-0.6, indicating a slight vertical elongation across
common objects—likely corresponding to pedestrians, bicycles, or vertically-oriented vehicles.
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Fig. 11. Fl-confidence curve for YOLOv8m under rain conditions, showing a peak F1 score of 0.56 at a
confidence threshold of 0.368.

The histograms confirm the trend, with substantial peaks in those same range intervals. But there were
several models, especially YOLOv10n, where small or large bounding boxes were problematic, leading to
instance misclassifications and false negatives. As were smaller objects and those that were very large. This issue
occurs more reliably in conditions depicting bad weather; namely, under snowy or foggy conditions, whereby
an object’s contrast and overall shape cues have been compromised. Larger models, specifically YOLOv8m and
Faster R-CNN, were more problematic concerning a range of box dimensions, performance may be related
to deeper feature hierarchies, and multi-scale object detection capabilities. Recall was not susceptible to the
dimensions of the object, suggesting better performance across scales. These observations suggest that training
data could be improved with improved representation of object sizes to increase robustness and accuracy, if the
objects are visually complex or degraded by weather conditions.

Qualitative detection outputs

While quantitative performance metrics provide a summary of model performance as applied to test object
detection, examining the detection outputs provides important insights about model performance and limitations
to performance in practical situations. For this reason, we present a set of qualitative examples to demonstrate
the relative strengths and weaknesses of each detection architecture, highlighting model performance under
differing weather conditions.

Detection under fog

As shown in Fig. 19, Qualitative detection outputs under YOLOv8m maintained robust detection performance
in foggy scenes, accurately identifying vehicles and pedestrians with high-confidence bounding boxes (green).
However, it occasionally failed to detect partially occluded objects such as distant motorcycles. In contrast,
YOLOV10n produced more false positives in the background areas, highlighting its susceptibility to low-contrast
regions.

Detection under rain

In Fig. 19, Faster R-CNN exhibited better localization performance with rainy weather than YOLOv5s for
vertically elongated objects like cyclists and pedestrians. It produced more defined boxes with less overlap. The
YOLOVS5s detector frequently failed to detect small objects identified in Faster R-CNN; in some cases, adjacent
vehicles were merged as one object, likely due to rain streaks blocking object edges. Faster R-CNN demonstrates
more precise localization and fewer missed detections for vertically elongated objects such as cyclists and
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Fig. 12. Precision-confidence curves for YOLOv5s, YOLOv8m, YOLOV10n, and faster R-CNN, illustrating
precision trends across confidence thresholds under snowy conditions.

pedestrians, while YOLOv5s often merges adjacent vehicles or misses smaller targets due to rain streaks and
reduced visibility.

Detection under snow

As depicted in Fig. 20, all models struggled in snowy environments. Visual noise and texture similarity
between snow and vehicles led to reduced detection confidence. YOLOv10n produced multiple low-confidence
detections (red boxes), many of which corresponded to background clutter. YOLOv8m still managed to detect
larger vehicles (e.g., class_4) with reasonable confidence, but recall dropped significantly for less frequent classes
like class_6 and class_8.

Qualitative detection outputs under snowy conditions across YOLOv5s, YOLOv8m, YOLOv10n, and
Faster R-CNN. Heavy snow introduces background noise and reduces object contrast, causing false positives
and missed detections, particularly for small objects such as pedestrians and bicycles. YOLOv8m maintains
reasonable confidence for larger vehicles, while lightweight models show higher error rates.

These qualitative results validate the findings from “Performance comparison across weather conditions”
through “Box dimensions and class distribution”. While YOLOv8m and Faster R-CNN generally offer better
robustness, both models exhibit limitations in heavily degraded scenes. These observations underscore the
importance of incorporating more diverse training data and enhancing visual invariance in model design.

Real-time performance of YOLO models

The real-time capability of the evaluated YOLO models was assessed through their model size, computational
cost, and inference speed. As summarized in Table 4, YOLOv10n stands out as the most lightweight, with only
2.27 million parameters and a storage size of 5.8 MB, making it highly suitable for deployment on resource-
constrained devices. Its inference speed is exceptionally fast, processing a single image in 6.7 milliseconds, which
corresponds to more than 150 frames per second and easily satisfies real-time requirements. In comparison,
YOLOvV5s and YOLOv8m, while providing higher baseline accuracy, have larger model sizes (17.69 MB and
49.65 MB, respectively) and slower processing times (32.89 ms and 53.4 ms per image), highlighting the
inherent trade-off between model complexity and speed. The low FLOPs of YOLOv10n further reinforce its
computational efficiency, enabling rapid inference without significant resource demand. Overall, these results,
as shown in Table 5, demonstrate that YOLOv10n achieves an effective balance between lightweight design and
real-time performance, confirming its suitability for applications that require fast and efficient object detection
in constrained environments.
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Fig. 13. Recall-confidence curve for YOLOv10n under snow conditions, showing high recall (0.90) at low
confidence thresholds but increased false positives.

Figure 21. Comparison of mean Average Precision (mAP) performance with standard deviation error bars for
YOLOV5s, YOLOv8m, YOLOV10n, and Faster R-CNN. YOLOv8m achieves the highest mean mAP, indicating
superior detection accuracy, while YOLOv10n shows higher variability due to its compact design. Faster R-CNN
maintains consistent but slightly lower overall accuracy. From the results, it can be observed that YOLOv8m
achieves the highest mean mAP, indicating superior detection accuracy under the tested conditions. YOLOv5s
and YOLOV10n show slightly lower performance, with YOLOv10n exhibiting higher variability, as reflected in
its larger error bars. Faster R-CNN demonstrates the lowest mAP among the models compared, though its error
bars are relatively small, suggesting consistent but less accurate predictions.

These statistical comparisons highlight not only the differences in average detection performance but also the
stability of each model, offering a more comprehensive understanding of their practical reliability in real-world
scenarios.Table 6 shows the Statistical robustness analysis of YOLO models (mean + standard deviation across
three random seeds).

Conclusion

This study comprehensively evaluated the robustness of four object detection architectures—YOLOV5s,
YOLOv8m, YOLOV10n, and Faster R-CNN—under challenging weather conditions and pixel-level noise
distortions, using the real-world DAWN dataset. By integrating both quantitative metrics and qualitative
visualizations, we explored how each model responds to variations in environmental complexity, object size,
and class frequency. Our findings demonstrate that while lightweight models such as YOLOv10n and YOLOv5s
offer faster inference, their accuracy and reliability degrade significantly under adverse scenarios like snow or
high-intensity noise. In contrast, YOLOv8m and Faster R-CNN consistently outperformed their counterparts in
terms of mean Average Precision (mAP), F1 Score, and recall, particularly in fog and rain. However, even these
stronger models struggled in extreme snow scenes, where background clutter and low contrast induced false
positives and class confusion, as reflected in the confusion matrices and confidence curves.

Importantly, bounding box analysis showed a notable size bias: rare or odd-sized objects drove more
misclassifications, especially for classes under-represented (class_7 and class_8). Our qualitative results
aligned with the performance deficiencies in the numeric metrics, visually revealed missed detections and
low-confidence boxes within more complicated scenes. In terms of an application, these data are important
for designing perception systems in autonomy and safety-critical environments. The study also highlights the
complexity in ensuring generalized object detection within a diverse dataset, specifically ensuring class balance
and augmenting noise during training pipelines.
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Fig. 14. Precision-recall curves for YOLOv5s, YOLOv8m, YOLOv10n, and Faster R-CNN, showing trade-offs
between precision and recall across weather conditions.

In terms of future work, we suggest branching this benchmark for nighttime scenes and synthetic weather
generation, as well as further examining transformer detection architectures that use advanced attention
mechanisms. Furthermore, fine-tuning models on domain-specific weather datasets could further improve
robustness. This research solved a fundamental issue in how speed is traded off with robustness in real-time
object detection—this core issue comes down to building it anyway, and must be solved with the combination
of architectural innovation and data-focused optimization. Despite the comprehensive evaluation presented in
this study, several limitations should be acknowledged. The dataset size is relatively small and lacks sufficient
diversity in nighttime scenes and adverse weather conditions, which may limit the generalization of the models.
Future work will focus on addressing these limitations by exploring domain adaptation techniques, incorporating
sensor fusion (e.g., combining RGB images with thermal or LiDAR data), and expanding the dataset with more
diverse and challenging scenarios. These improvements are expected to enhance the robustness, reliability, and
applicability of the evaluated object detection models in real-world environments.
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Fig. 15. Class frequency distribution in the DAWN dataset, highlighting imbalances in object class
representation (e.g., higher frequency for cars and lower for motorcycles and bicycles).
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Fig. 16. Representative images of each object class in the DAWN dataset: (a) Car, (b) Bus, (¢) Truck, (d)
Motorcycle, (e) Bicycle, (f) Pedestrian. Images depict samples captured under different weather conditions such
as fog, rain, and snow.
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Fig. 17. Scatter plot of normalized bounding box width and height in the DAWN dataset, showing clustering
around width 0.4-0.5 and height 0.5-0.6.
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Fig. 18. Histograms of normalized bounding box width and height, confirming vertical elongation in object

annotations.
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Fig. 19. Qualitative detection outputs under rainy conditions, comparing faster R-CNN and YOLOv5s.
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Fig. 20. Qualitative detection outputs under snowy conditions across YOLOv5s, YOLOv8m, YOLOv10n, and
Faster R-CNN.

YOLOV5s 9.11 23.8 32.89 17.69
YOLOv8m | 25.84 78.7 53.40 49.65
YOLOv1On | 2.27 6.5 6.70 5.8

Table 5. Model size, computational cost (FLOPs), and inference speed for YOLO models.
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YOLO Models Performance with Error Bars
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Fig. 21. Yolo8m models performance with error bars.

YOLOv5s | 0.579+0.081 0.342+0.051 0.771+0.032 0.470+0.060
YOLOv8m | 0.609+0.087 0.318+0.023 0.780+0.077 0.462+0.019
YOLOv10n | 0.340+0.031 0.187+0.012 0.404+0.218 0.365+0.073

Table 6. Statistical robustness analysis of YOLO models (mean + standard deviation across three random
seeds).

Data availability
The datasets generated or analysed during the current study are not publicly available, but are available from the
corresponding author, Sina Samadi Gharehveran on reasonable request.
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