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OPEN Early diagnosis of alzheimer’s
disease using PET imaging and
deep learning with comparative
data augmentation techniques
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Muhammad Sheeraz?, Aidarus Mohamed Ibrahim®** & Taher M. Ghazal'%%12

Alzheimer’s Disease (AD) is a neurological disorder affecting the functioning of central nervous system.
It can lead to poor coordination, seizures and paralysis. Neuroimaging modalities such as Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography (PET) can provide important information
about AD and will continue to do so in the future as far as clinical manifestations of this disease are
concerned. Information from neuroimaging modalities can be combined with deep learning (DL)
approaches to diagnose AD in its early stages, reducing the burden on neuropathologists. In this study,
we compared the performances of six data augmentation methods —ellipsoidal averaging, Laplacian
of Gaussian (LoG), local Laplacian, local contrast, Prewitt-edge emphasising, and unsharp masking
—on AD diagnosis. We studied three binary problems: AD-Normal Control (NC), AD-Mild Cogpnitive
Impairment (MCl), and MCI-NC, and one multiclass (3-classes) classification problem: AD-MCI-NC. We
also combined these data augmentation methods and tried a strided convolution architecture for these
tasks. We find that Prewitt-edge emphasising augmentation yields the best performance for AD-MCI-
NC and AD-MCI classification tasks. In contrast, local Laplacian augmentation performs the best for the
MCI-NC classification task, while LoG augmentation yields the best results for the AD-NC classification
task.

Alzheimer’s Disease (AD) is a neuropsychological disorder that is associated with the loss of mental faculties
especially in the elderly. It is an irreversible, progressive and most common form of dementia. As projected by
Alzheimer’s Disease International, it's numbers will rise to 152 million people in 2050 and estimated annual cost
to $2 trillion in 2030. Early diagnosis of AD can help delay its progression!. These techniques offer the opportunity
to diagnose AD early by detecting the changes in the brain in-vivo®. Machine Learning (ML) techniques have
been successfully applied for the early detection of AD and can aid a neuropathologist in making a cost-effective
decision. These techniques can remove inter- and intra-rater differences among observers and can be a time-
efficient module to provide a scalable compensation for multiple diagnoses’.

Deep Learning (DL), a subtype of ML, allows feature extraction through non-linear transformations in an
end-to-end fashion. It works by reducing the difference between ideal and current output through a loss function
using backpropagation algorithm. The extracted features include shapes such as dots, lines, and object edges*.
It can reduce overfitting and achieve generalization whilst providing more information from a reduced set of
samples. These techniques can effectively diversify the datasets, increasing the performance of DL architectures
on the underlying task.

Hadeer A. Helaly et al.! proposed a deep learning model, based on a pre-trained VGG-19 model, named
E2AD2C for multiclass classification between AD, early Mild Cognitive Impairment (EMCI), late MCI and
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Normal Control (NC) classes achieving an accuracy of 97%. Carol Y. Cheung et al.” used retinal images to train
a binary classifier based on the EfficientNet-b2 network, achieving an accuracy of 83.6%. Janani Venugopalan et
al.® proposed an approach that uses stacked denoising auto-encoders and 3D Convolutional Neural Networks
(CNN) to extract features from genetic, clinical, and imaging data for multiclass classification into NC, MCI,
and AD classes, achieving an accuracy of 79%. Shangran Qiu et al.” report a DL framework to identify NC,
MCI, AD, and non-AD dementias utilising imaging and non-imaging datasets, achieving an accuracy of 55.8%.
Sheng Liu et al.® developed an approach to utilize 3D-CNNs achieving area under the curve (AUC) of 85.12%
for NC identification, 62.45% for MCI identification, and 89.21% for AD identification tasks. Marwa El-Geneedy
et al.” proposed a DL pipeline utilising MRI images for a multiclass classification task between NC, very mild
dementia, mild dementia, and moderate dementia classes, achieving an accuracy of 99.68%. Andrea Loddo
et al.!' proposed an ensemble approach for binary (AD/non-AD) and multiclass Classification tasks achieved
accuracies of 98.51% and 98.67% for both cases, respectively, using MRI and functional MRI image features.

Suriya Murugan et al.!! proposed a DL architecture utilising 2D-CNN layers and MRI images for multiclass
classification between very mild demented, mild demented, moderate demented, and non-demented subjects,
achieving an accuracy of 95.23% on this task. Serkan Savas'? compared the performances of 29 pre-trained
models and found the accuracy of EfficientNetB0 model to be the highest at 92.98%. F M Javed Mehedi Shamrat
et al.!®* proposed a fine-tuned CNN architecture. They compared the performances of VGG16, MobileNetV2,
AlexNet, ResNet50 and InceptionV3 architectures and found the performance of InceptionV3 architecture to
be the best. They further modified the InceptionV3 architecture achieving an accuracy of 98.67% in identifying
all five stages of AD and the NC class. Prasanalakshmi Balaji et al.'* proposed a hybrid DL approach combining
CNN and Long Short Term Memory (LSTM) architectures and utilizing information from MRI and PET scans
to achieve an accuracy of 98.5% in classifying cognitively normal controls from early MCI subjects. Pan et al.
confirmed the recent finding that advanced, deep visual representation models are able to reproduce complex
stimuli, indicating that highly flexible AI architectures can truly capture faint and fine details in biomedical
imaging. This type of representation learning could potentially be applied to enhance the accuracy of FDG-PET-
based diagnosis of Alzheimer’s'.

Zhu'® developed an Al classification model to identify memory impairment, which showed that Al was a
versatile tool for identification of cognitive deficits. These same strategies could be useful in the development
of PET-based diagnostic models for Alzheimer’s disease. Yin et al.!” presented an innovative feature fusion
and temporal modelling framework for biomedical signal-based emotion recognition problems, proving the
effectiveness of hybrid deep learning architectures. These fusion approaches are extendable to the improvement
of tracer imaging analysis for early Alzheimer’s detection using PET signals.

Data augmentation is a less targeted area in the early diagnosis of AD using DL approaches. There is a need
for further exploration of data augmentation techniques for small size datasets. Due to scarcity of samples in AD
datasets because of high costs, data augmentation is of great interest in learning the features during training of
DL architectures®.

In this article, we carried out experiments using PET scans. Six data augmentation methods are chosen:
ellipsoidal averaging, Laplacian of Gaussian (LoG), local Laplacian, local contrast, Prewitt-edge emphasizing,
and unsharp masking. We selected these techniques to improve the robustness of DL architectures, extract better
features, reduce noise, focus on relevant structures, and enhance sensitivity to detect small variations in brain
activity and structure.

This article is organised as follows: Dataset Description, which includes patient inclusion criteria and
socioeconomic information; and the Methods section, which outlines all data augmentation strategies and
deep learning architectures used for classification tasks. Results: Shows the result of an experiment and reflects
possible interpretation in the Discussion segment. The conclusion section summarizes the main findings of the
study.

Dataset description
Demographics of the subjects are summarized in Table 1. Values are expressed as mean (min-max), obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database website.

Methods

Data sources The data used in this study were downloaded from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. ADNI is a long-term, multicenter study designed to develop and test methods for the early
detection of Alzheimer’s disease. Established in 2004, the initiative compiles standardized, high-quality data
from subjects at various research sites—cognitively normal individuals, those with MCI and patients diagnosed
with Alzheimer’s disease.

Research Group AD MCI NC

Number of Subjects | 94 97 102

Age 75.82 (55.3-88) | 74.54 (55.3-87.2) | 76.01 (62.2-86.6)
FAQ total score 13.67 (0-27) 3.16 (0-15) 0.186 (0-6)
NPI-Q total score 4.074 (0-15) 1.97 (0-17) 0.402 (0-5)

Table 1. Demographics of subjects considered in the study. FAQ: Functional Activities Questionnaire, NPI-Q:
Neuropsychiatric Inventory Questionnaire.
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Data augmentation techniques

We chose six methods: ellipsoidal averaging, LoG, local Laplacian, local contrast, Prewitt- edge emphasizing,
and unsharp masking; and studied their impact on the early diagnosis of AD using 3D PET scans. We considered
only positive values. A description of these methods is provided next.

Ellipsoidal averaging

The 3D ellipsoidal averaging filter is a high-quality filter commonly utilized to enhance the smoothness of
volumes. It relies on the insight that the affine mapping establishes a skewed 2D system around a source pixel.
An ellipsoidal projection is subsequently calculated around this source pixel, which is utilized to filter the source
image using a Gaussian whose inverse covariance matrix is represented by this ellipsoid. We used ‘fspecial3’ and
‘imfilter’ functions in MATLAB to implement the 3D ellipsoidal averaging filter.

Laplacian of Gaussian

The 3D LoG filter is commonly used to detect edges in volumes. It works by calculating the second derivative
in the spatial domain. The LoG response can be zero, positive, or negative depending on its distance from the
edge. The 2D LoG function that is centered on zero and with Gaussian standard deviation has the following
mathematical form:

1 I R
LoG (z,y) = —71_0_4[1—20_7216 20 2 (1)

We used ‘fspecial3” and ‘imfilter’ functions in MATLAB to implement the 3D LoG filter.

Local laplacian

Local Laplacian is a type of filter that uses the amplitude of edges and smoothing of details with a Laplacian to
control the dynamic range of an image. It can be deployed to increase the local contrast of a coloured image,
to perform edge-aware noise reduction, as well as to smooth image details. We used ‘locallapfilt’ function in
MATLAB to implement 3D Local Laplacian filter. We set to 0.4, and to 0.5.

Local contrast

Local contrast can be used to increase or decrease the local contrast of an image. It works by controlling
the desired smoothing as well as intensity of strong edges. We used ‘localcontrast’ function in MATLAB to
implement 3D Local contrast filter. We set ‘edgeThreshold’ to 0.4, and ‘amount’ to 0.5.

Prewitt-edge emphasizing

The Prewitt operator can be used to detect edges in both horizontal and vertical directions in an image
using first-order derivatives. It is a separable filter because it’s kernels can be decomposed by averaging and
differentiation operations. We used ‘fspecial3’ and ‘imfilter’ functions in MATLAB to implement the 3D Prewitt-
edge emphasizing filter.

Unsharp masking

Sharpness is the difference in color between two or more colors. A strong transition from black to white is
achieved quickly. It appears hazy as black gradually changes to grey and then to white. An image is sharpened by
removing a blurry (unsharp) version of itself. This method is known as unsharp masking. We used ‘imsharpen’
function in MATLAB to implement the 3D unsharp masking operation.

Deep learning architectures

Figure 1 shows the generic architecture that we used throughout experiments. We input a 3D volume of size
79%x95% 69, normalised using a zero-centre normalisation procedure that subtracts the mean calculated from
each channel.

In addition, we also performed experiments using the strided convolution architecture given in Fig. 2,
without augmentation for this task. We used 10 filters in the convolutional 3D layer.

A convolution layer is then used to extract the features in the input volume. We used a small kernel of
size 3x3x3 to combine local features effectively. To further optimize the network, we apply weight and bias
L2 regularization in order to reduce overfitting. A batch normalization layer is then used to mitigate internal
covariance shift by normalizing the observations across channels independently. After that, we used Exponential
Linear Unit (ELU) activation layer which the following equation can describe:

ELU (z) = { 1), =0 @)

After that, we used the max-pooling operation to reduce the size of the feature maps by selecting the maximum
value in a neighbourhood of pixels. We ensure that pooling regions do not overlap by keeping stride equal to the
corresponding pool size of 2 in all dimensions.

We then applied fully connected or dense layers to capture global patterns followed by a softmax layer that
works by applying exponential function to each element of the input and further normalizing these values
according to the following equation:
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Fig. 1. Architecture used in the experiments.
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Fig. 2. Strided DL architecture for AD-NC task.
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softmazx (z;) = % (3)
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Finally, we applied classification layer that works by computing the cross-entropy loss for classification given by
the following equation:

CFEloss = —% Z et Z K witnilng,, (4)

o

In Eq. 4, ‘N’ is the number of samples, ‘K’ is the number of classes, w, is the weight for class %, tm,’ indicates that
sample I’ belongs to class ‘i, while ‘y, ” is the output for sample 0’ for class .

We used 100 neurons in Fully-Connected (FC) layer 1, 30 neurons in FClayer 2 and two (binary classification)
or three (multiclass classification) neurons in FC layer 3. We shuffle the training set after every epoch during
training. We used ‘Adam’ as an optimiser, set the initial learning rate to 0.001, and trained the model for 50
epochs with a mini-batch size of 2. We also periodically dropped the learning rate after every 10 epochs by
multiplying it by a factor of 0.1.

AD-NC binary classification tasks

For the AD-NC classification task without augmentation, we employed 10 filters in the convolutional 3D layer.
For tasks involving augmentation, such as unsharp masking, Prewitt-edge emphasising, local Laplacian, local
contrast, LoG, and ellipsoidal averaging, we utilised 15 filters in the convolutional 3D layer. We also performed
experiments combining Prewitt-edge emphasizing augmentation and LoG augmentation schemes for this task.
We used 15 filters in the convolutional 3D layer.

AD-MCI binary classification tasks
We used 10 filters in the convolutional 3D layer while for tasks involving unsharp masking augmentation,
Prewitt- edge emphasizing augmentation, local Laplacian augmentation, local contrast.

We employed augmentation methods, including LoG augmentation and ellipsoidal averaging augmentation,
and utilised 15 filters in the convolutional 3D layer. We also performed experiments combining Prewitt-edge
emphasizing augmentation and LoG augmentation schemes for this task. We used 15 filters in the convolutional
3D layer.

MCI-NC binary classification tasks

We employed 10 filters in the convolutional 3D layer. For tasks involving augmentation, such as unsharp
masking, Prewitt-edge emphasising, local Laplacian, local contrast, LoG, and ellipsoidal averaging, we utilised
15 filters in the convolutional 3D layer. We also performed experiments combining Prewitt-edge emphasizing
augmentation and LoG augmentation schemes for this task. We used 15 filters in the convolutional 3D layer.
In addition, we also performed experiments combining LoG, Local Laplacian, and Prewitt- edge emphasizing
augmentation techniques for this task. We used 20 filters in the convolutional 3D layer.

AD-MCI-NC muilticlass classification tasks

We employed 10 filters in the convolutional 3D layer. For tasks involving augmentation, such as unsharp
masking, Prewitt-edge emphasising, local Laplacian, local contrast, LoG, and ellipsoidal averaging, we utilised
15 filters in the convolutional 3D layer. We also performed experiments combining Prewitt-edge emphasizing
augmentation and LoG augmentation schemes for this task. We used 15 filters in the convolutional 3D layer.

Results
We deployed 5-fold Cross-Validation (CV) approach in our experiments. We used sensitivity (SEN), specificity
(SPEC), F-measure, precision and balanced accuracy as performance metrics for the methods in Tables 2, 3, 4
and 5. In Table 5, we defined these metrics for each class.

For binary classification tasks, their definitions are given as follows:

Method SEN | SPEC | F-measure | Precision | Balanced Accuracy
No augmentation 0.8191 | 0.8922 | 0.8462 0.875 0.8557

Local Laplacian augmentation 0.8404 | 0.8431 | 0.836 0.8316 0.8418
Prewitt-edge emphasizing augmentation 0.8617 | 0.8627 | 0.8571 0.8526 0.8622

Unsharp masking augmentation 0.8191 | 0.8627 | 0.8324 0.8462 0.8409

Local contrast augmentation 0.8404 | 0.8725 | 0.8495 0.8587 0.8565

LoG augmentation 0.8404 | 0.902 | 0.8634 0.8876 0.8712

Ellipsoidal averaging augmentation 0.8404 | 0.8235 | 0.8272 0.8144 0.832

Modified architecture (strided convolution) 0.8404 | 0.8431 | 0.836 0.8316 0.8418
Prewitt-edge emphasizing + LoG augmentations | 0.8191 | 0.8725 | 0.837 0.8556 0.8458

Table 2. Results for AD-NC binary classification task.
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Method SEN | SPEC | F-measure | Precision | Balanced Accuracy
No augmentation 0.734 | 0.6804 | 0.7113 0.69 0.7072
Local Laplacian augmentation 0.6383 | 0.6598 | 0.6417 0.6452 0.649
Prewitt-edge emphasizing augmentation 0.7128 | 0.701 | 0.7053 0.6979 0.7069
Unsharp masking augmentation 0.6383 | 0.6804 | 0.6486 0.6593 0.6594
Local contrast augmentation 0.6702 | 0.6598 | 0.6632 0.6562 0.665
LoG augmentation 0.6809 | 0.732 | 0.6957 0.7111 0.7064
Ellipsoidal averaging augmentation 0.6596 | 0.701 | 0.6703 0.6813 0.6803
Prewitt-edge emphasizing + LoG augmentations | 0.7021 | 0.6392 | 0.6769 0.6535 0.6707
Table 3. Results for AD-MCI binary classification task.
Method SEN SPEC | F-measure | Precision | Balanced Accuracy
No augmentation 0.5773 | 0.6471 | 0.5926 0.6087 0.6122
Local Laplacian augmentation 0.6392 | 0.6863 | 0.6492 0.6596 0.6627
Prewitt-edge emphasizing augmentation 0.7423 | 0.5 0.6545 0.5854 0.6211
Unsharp masking augmentation 0.5361 | 0.6863 | 0.5746 0.619 0.6112
Local contrast augmentation 0.6082 | 0.6078 | 0.602 0.596 0.608
LoG augmentation 0.6495 | 0.5686 | 0.6176 0.5888 0.6091
Ellipsoidal averaging augmentation 0.6082 | 0.6176 | 0.6051 0.602 0.6129
Prewitt-edge emphasizing + LoG augmentations 0.7423 | 0.5196 | 0.6606 0.595 0.6309
Prewitt-edge emphasizing + LoG augmentations + Local Laplacian | 0.6907 | 0.5882 | 0.6505 0.6147 0.6395
Table 4. Results for MCI-NC binary classification task.
Method SEN SPEC F-measure Precision Balanced Accuracy
No augmentation 0.7340(AD) 0.3711(MCI) | 0.8342(AD) 0.7296(MCI) | 0.7041(AD) 0.3871(MCI) | 0.6765(AD) 0.4045(MCI) | 0.7841(AD) 0.5504(MCI)
& 0.6275(NC) 0.8010(NC) 0.6275(NC) 0.6275(NC) 0.7142(NC)
Local laplacian augmentation | 0-6383(AD) 0.3918(MCI) | 0.8241(AD) 0.6786(MCI) | 0.6349(AD) 0.3838(MCI) | 0.6316(AD) 0.3762(MCI) | 0.7312(AD) 0.5352(MCD)
P & 0.5686(NC) 0.7958(NC) 0.5829(NC) 0.5979(NC) 0.6822(NC)
Prewitt-edge emphasizing 0.7021(AD) 0.4227(MCI) | 0.8040(AD) 0.7041(MCI) | 0.6633(AD) 0.4184(MCI) | 0.6286(AD) 0.4141(MCI) | 0.7531(AD) 0.5634(MCI)
augmentation 0.6078(NC) 0.8586(NC) 0.6492(NC) 0.6966(NC) 0.7332(NC)
Unsharp masking 0.6702(AD) 0.4021(MCI) | 0.8342(AD) 0.7041(MCI) | 0.6632(AD) 0.4021(MCI) | 0.6562(AD) 0.4021(MCI) | 0.7522(AD) 0.5531(MCI)
augmentation 0.6176(NC) 0.8063(NC) 0.6238(NC) 0.6300(NC) 0.7120(NC)
Local contrast augmentation 0.5851(AD) 0.3608(MCI) | 0.8141(AD) 0.6786(MCI) | 0.5914(AD) 0.3590(MCI) | 0.5978(AD) 0.3571(MCI) | 0.6996(AD) 0.5197(MCI)
8 0.6078(NC) 0.7853(NC) 0.6049(NC) 0.6019(NC) 0.6966(NC)
LoG augmentation 0.6809(AD) 0.3918(MCI) | 0.8191(AD) 0.6837(MCI) | 0.6598(AD) 0.3858(MCI) | 0.6400(AD) 0.3800(MCI) | 0.7500(AD) 0.5377(MCI)
g 0.5980(NC) 0.8325(NC) 0.6256(NC) 0.6559(NC) 0.7152(NC)
Ellipsoidal averaging 0.6915(AD) 0.3505(MCI) | 0.7990(AD) 0.7194(MCI) | 0.6533(AD) 0.3656(MCI) | 0.6190(AD) 0.3820(MCI) | 0.7452(AD) 0.5350(MCI)
augmentation 0.6275(NC) 0.8168(NC) 0.6368(NC) 0.6465(NC) 0.7221(NC)
Erf‘,\g;ts-iez?fe+LoG 0.7340(AD) 0.3608(MCI) | 0.7940(AD) 0.7092(MCI) | 0.6765(AD) 0.3704(MCI) | 0.6273(AD) 0.3804(MCI) | 0.7640(AD) 0.5350(MCI)
P 8 0.5686(NC) 0.8272(NC) 0.6010(NC) 0.6374(NC) 0.6979(NC)
augmentations
Table 5. Results for AD-MCI-NC multiclass classification task.
TP
SEN = ——— (5)
TP+ FN
TN
SPEC = ———— (6)
TN+ FN
2TP
F — measure = ————————— (7)
2P+ FP+ FN
TP
Precision = ——— (8)
TP+ FP
SEN + SPEC
Balanced accuracy = — s 9)
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For multiclass classification, true positive (TP), true negative (TN), false positive (FP) and false negative (FN) are
defined with the help of confusion matrix given in Fig. 3 as follows:

TP(AD) = cell 1
FN(AD) = cell 2+ cell 3 11)

(10)
(
FP(AD) = cell 4 + cell 7 (12)
(
(

TN(AD) = cell 5+ cell 6 + cell 8 + cell 9 13)
TP(MCI) = cell 5 14)

FN(MCI) = cell 4+ cell 6 (15)
FP(MCI) = cell 2 + cell 8 (16)
TN(MCI) = cell 1 4 cell 3+ cell 7+ cell 9 (17)
TP(NC) = cell 9 (18)

FN(NC) = cell 7T+ cell 8 (19)
FP(NC) = cell 3+ cell 6 (20)
TN(NC) =cell 1 + cell 2+ cell 4 + cell 5 (21)

Tables 2, 3, 4 and 5 present the results for this study.

Table 3 shows the performance metrics of different data augmentation techniques on a classification model.

Table 4 presents the results for the MCI-NC binary classification task, evaluating various augmentation
techniques.

In Table 5, we present the results in the following format: AD, MCI, NC. For example, for no augmentation
method, SEN for AD class is 0.7340, SEN for MCI class is 0.3711, while SEN for NC class is 0.6275.

Discussion

In Tables 2, 3, 4 and 5, it can be seen that augmentation may help in achieving better outcomes. The performance
of the Prewitt-edge emphasising augmentation scheme for AD-MCI and AD-MCI-NC classification
tasks is quite strong. Similarly, LoG augmentation shows excellent performance for AD-MCI and AD-NC
classification tasks, whereas Local Laplacian augmentation performs well for the MCI-NC classification task.
Furthermore, it can be noted that combining augmentation techniques may not result in better performances.
The modified architecture, which uses strided convolution instead of maxpooling layers, does not perform as
well as augmentation techniques without strided convolution. For MCI-NC classification task, we found the
performance of local Laplacian augmentation to be the best. For both AD-MCI-NC and AD-MCI classification
tasks, we found the performance of Prewitt-edge emphasizing augmentation to be the best. Finally, for AD-
NC classification task, we found the performance of LoG augmentation to be the best. The differences in

—>

PREDICTED

ACTUAL

Fig. 3. Confusion matrix for the multiclass classification task.
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Reference Data | Method(s) Accuracy | Classification Task

Ahsanetal® | PET | 3D-CNN Box Filtering augmentation 86.22% AD-NC

Ahsan etal.?! | PET | 3D-CNN (Scenario-2) 86.22% AD-NC

Our approach | PET | 3D-CNN LoG augmentation 87.24% AD-NC

Ahsan etal?! | PET | 3D-CNN (Scenario-2) 69.1% AD-MCI
3D-CNN Prewitt-edge

Our approach | PET | emphasizing 70.68% AD-MCI
augmentation

Ahsanetal?® | PET |3D-CNN 62.25% MCI-NC

Ahsanetal? | PET | 3D-CNN Median Filtering augmentation | 64.82% MCI-NC

3D-CNN Local Laplacian
augmentation

Our approach | PET 66.33% MCI-NC

Ahsan etal.?! | PET | 3D-CNN (Scenario-2) 56.31% AD-MCI-NC
Ahsanetal?® | PET | 3D-CNN Gaussian filtering augmentation | 55.63% | AD-MCI-NC

3D-CNN Prewitt-edge
Our approach | PET | emphasizing 57.68% AD-MCI-NC
augmentation

Table 6. Comparison with other methods reported in the literature.

performance can be tied to the specific nature of the changes in brain structures at different stages of AD. Local
Laplacian augmentation enhances both the edges and fine details in a PET scan, allowing the DL model to
focus on regional variations in brain structures that are indicative of disease progression, especially occurring
in the MCI stage. LoG augmentation emphasises rapid intensity changes, such as boundaries between different
brain regions, making it easy for DL models to detect early changes in AD, especially in critical areas like the
hippocampus. Thus, it could be a suitable candidate for NC to AD related progression detection. Prewitt-edge
emphasising augmentation highlights transitions between different brain structures, revealing early signs of
atrophy. AD typically affects specific brain regions like the hippocampus, and edge emphasizing ensures that
these regions can be accurately detected and classified by DL models.

From these results, it is clear that the methods that utilized information present in the derivatives are the
better performing ones. The Prewitt operator is a discrete differentiation operator that gives the direction of
largest possible increase from high to low intensity. At regions of constant image intensity, it gives a zero vector.
LoG can be used for blob detection. It uses a Gaussian kernel to return positive responses for dark blobs and
negative responses for bright ones. It’s responses are covariant with affine transformations in the image domain.
Laplacian of an image utilizes information in the second derivatives. It crosses zero at edge. LoG combines
Gaussian filtering with Laplacian for the detection of an edge. This approach has the advantage of isolating noise
points and small structures, particularly those in the brain, which can be filtered out effectively. This is especially
true when the image contrast across the edge is combined with the slope of the zero crossing.

While traditional approaches for feature description may require the expertise of a designer, DL systems are
end-to-end systems that extract features in the absence of such expertise. We deployed Convolutional Neural
Networks in the present study because of their ability to partition the feature space using nonlinear boundaries for
classes. They can learn classification boundaries in their feature spaces despite their limitations given a carefully
selected training set. It is recognized that neuropsychiatric symptoms such as agitation and aggression, have a
strong link with cognitive impairment connected with AD. Changes in amygdala, frontal cortex, hippocampus,
occipital cortex and other brain areas trigger neuroinflammation and neuronal dysfunction during early stages
of AD and can be captured effectively by a PET scan!®. DL models can be deployed to represent these changes
effectively by processing PET scans which can contribute to the identification of vital factors leading the way for
personalized treatments.

Table 6 provides a comparison of the proposed method to existing techniques available in the literature
for different Alzheimer’s disease classifications using PET data. Our results demonstrate that our method is
consistently better than previous approaches in different classification scenarios, obtaining the best accuracy for
AD-NC, AD-MCI, MCI-NC and AD-MCI-NS task.

As seen in Table 6, our LoG- based augmentation approach produces better results for AD-NC binary
classification task in comparison to box filtering approach which could be due to the fact that LoG identify
changes in image intensity effectively preserving edges while reducing noise sensitivity while box filtering blurs
an image by averaging out the neighborhood pixels defined by the kernel.

For the AD-MCI binary classification task, our approach, which emphasises augmentation based on Prewitt-
edge features, outperforms the architecture-based approach in Ahsan et al.>!. Combined with the fact that the
architecture in the present study has not employed dropout before softmax, which essentially rules out the
possibility of dropping such useful features, and the powerful horizontal and vertical edge detection by Prewitt-
edge emphasising filtering method, better performance in the recognition of continuum defined by AD and MCI
can be achieved.

For the MCI-NC binary classification task, our approach based on Local Laplacian augmentation has
outperformed other approaches, especially those based on median filtering augmentation. This could be due to
the fact that our approach uses the Laplacian pyramid effectively, decomposing an image into different frequency
bands and locally enhancing details near each pixel. In contrast, the median filtering approach has the potential
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to blur fine details and reduce effectiveness against Gaussian noise, thus effectively reducing accuracy in this
task. This superiority may be attributed to the blurring effect of Gaussian filtering, which reduces high-frequency
components and fine details, potentially hindering the performance of deep learning architectures in this context.
New Al-based healthcare research has offered methodologies that can be applied to improve the diagnosis
of Alzheimer’s disease with PET. Pan et al.?* found that combining decision-level fusion across multiple data
domains can greatly enhance the classification accuracy of cognitive state, which may provide new guidance for
incorporating multimodal PET biomarkers. Luan et al. For the detection of early-stage disease, PET scan images
have suboptimal spatial resolution that can be improved with the recently emerging deep learning method for
super-resolution imaging by Zhu et al.?%. Zhan et al. Based on their results?®, Taskar and his team recommended
that the choice of the algorithm design can highly affect the precision in brain analysis as well, suggesting to use
computational techniques optimized for PET data processing. Li et al. Using machine learning on physiological
data for the diagnosis of age-related diseases, AI models show their promise in non-invasive assessments as well
in neurodegenerative conditions’. Wang et al.?” emphasised the convergence of novel therapy with validated
clinical treatment strategies, and integrations into multi-disciplinary team approaches as advancing peri-
diagnosis Al-enhanced PET reading would greatly improve early diagnostic endeavour and patient guidance.

Conclusion

This study compared and contrasted six data augmentation methods: ellipsoidal averaging, LoG, local Laplacian,
local contrast, Prewitt-edge emphasizing, and unsharp masking. We used PET neuroimaging modality scans
from ADNI database for the early diagnosis of AD. Furthermore, we considered three binary classification
problems: AD-NC, AD-MCI, and MCI-NC, as well as one multiclass classification problem, AD-MCI-NC. We
also combined data augmentation methods and tried a modified strided convolution architecture for all these
tasks. We found the performances of Prewitt-edge emphasizing, LoG and local Laplacian augmentation methods
to be the best. In the future, we plan to study the impact of other data augmentation methods, such as Sobel-edge
emphasising, superpixel over-segmentation, numerical gradient, directional gradient, GANS, etc., on the early
diagnosis of AD using novel DL architectures.

Data availability

The datasets used and/or analyzed during the current study were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database. Due to restrictions outlined in the ADNI Data Use Agreement, the datasets
are not publicly available but can be accessed by qualified researchers upon request through the ADNI website:
https://adni.loni.usc.edu/data-samples/access-data/.
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