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Early and accurate detection of sugarcane leaf diseases is critical for improving crop productivity and 
reducing economic losses in the agricultural sector.  Timely interventions enable sustainable crop 
management and better resource use. In this study, we propose a deep learning-based approach for 
sugarcane leaf disease classification that leverages a novel architecture, the Multi-scale Attention-
based Dense Residual Network (MADRN). The MADRN model integrates dense residual learning and 
multi-scale attention mechanisms to effectively capture fine-grained, disease-specific features and 
address challenges related to domain variability and complex data patterns. Two datasets are used 
to evaluate the model: a Kaggle dataset and a blended dataset created by combining Kaggle images 
with those from the Bangladesh Sugarcrop Research Institute (BSRI), simulating real-world conditions. 
All images undergo preprocessing steps, including resizing, normalization, and data augmentation, 
before training. Additionally, several baseline models (CNN, VGG16, MobileNetV2, and XceptionNet) 
are fine-tuned and compared with the MADRN model. Experimental results demonstrate that MADRN 
consistently outperforms baseline models in accuracy, precision, recall, and F1-score across both 
datasets, achieving up to 94.78% accuracy on the Kaggle dataset and 92.25% on the blended dataset. 
These findings highlight MADRN’s superior ability to learn discriminative features and generalize 
effectively across diverse data sources, making it a promising tool for precision agriculture and 
disease management. To facilitate practical implementation, a web-based application is developed, 
enabling real-time and user-friendly disease detection. This research lays a strong foundation for 
the development of accurate, scalable, and practical disease classification tools that can support 
sustainable agricultural practices.
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 Plant diseases have usually hampered plant growth and agricultural output in many regions of the globe, 
reducing human food supply. Among all commercially cultivated products, sugarcane holds significant economic 
importance in Bangladesh as one of the most profitable and widely cultivated crops across various regions. It 
contributes substantially to agricultural income and supports the production of key products, including sugar, 
bioethanol, and energy generation1. Globally, sugarcane cultivation spans over 100 countries, including major 
producers like India, Brazil, Australia, and China2. In Bangladesh, approximately 0.38 million acres of land are 
dedicated to sugarcane cultivation, yielding an annual production of nearly 5.5 million tons1. Despite its critical 
role in the agricultural economy, Bangladesh meets only about 5% of its total sugar demand through domestic 
production, with jaggery contributing 20% and the remaining 75% met through imports3. However, sugarcane 
farming in the country faces significant challenges, particularly due to the widespread occurrence of various 
leaf diseases. In recent decades, pest and disease infestations have adversely impacted sugarcane productivity, 
and rapid detection and remediation of afflicted sugarcane may greatly reduce economic damages4. The bulk 
of sugarcane disease manifestations are observed on the leaves, but due to their morphological similarities, 
identifying these diseases can be challenging even for expert farmers5. The common sugarcane leaf diseases are 
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rust spots, yellow spots, ring spots, brown stripe, and downy mildew6. These diseases severely impact sugarcane 
yield and quality, with estimated losses of up to 40% of the crop annually. The morphological similarities 
between these diseases make them difficult to diagnose accurately, even for experienced farmers. Furthermore, 
traditional disease identification procedures, which frequently rely on visual inspection, are tedious, expensive, 
and vulnerable to human error, limiting their ability to provide timely and precise interventions.

With the advent of advanced technologies, artificial intelligence (AI) has developed as a reliable tool for 
addressing these challenges. The adoption of AI in farming practices could revolutionize disease management, 
enabling timely and precise interventions that could enhance crop health and productivity. By utilizing large 
datasets and complex algorithms, AI systems can analyze plant images with remarkable precision, enabling 
automatic disease identification and classification7. Among these technologies, Convolutional Neural Networks 
(CNNs) demonstrated tremendous potential in image-based applications, particularly in detecting and 
classifying diseases in plants. Deep learning applications in agricultural disease detection have the potential 
to not only increase the accuracy of disease diagnosis but also enhance the speed and scalability of disease 
monitoring, providing farmers with timely and actionable insights. Several studies have explored deep learning 
techniques for sugarcane disease detection. S. Srivastava et al.8 proposed a deep learning-based system for 
detecting sugarcane plant diseases using leaf, stem, and color features, employing VGG-16, Inception V3, and 
VGG-19 as feature extractors. They compared various models, including neural networks and hybrid AdaBoost, 
and used Orange software to evaluate performance using metrics like sensitivity, specificity, and AUC. S. D. 
Daphal et al.9 introduced an attention-based multilevel residual convolutional neural network (AMRCNN) for 
classifying sugarcane leaf diseases, combining spatial and channel attention mechanisms to enhance feature 
learning. They collected a dataset from diverse field and weather conditions, organized it into training, validation, 
and testing subsets, and used TensorFlow Lite tools for real-time deployment. Bangladesh is an agricultural 
country where sugarcane plays a vital role in both daily life and national economic stability. However, diseases 
in sugarcane present a substantial challenge, resulting in the devastation of harvests and considerable economic 
setbacks for smallholder farmers10. Traditional disease detection methods, primarily based on morphological 
analysis, are time-consuming, inefficient, and inadequate for large-scale monitoring. Institutions like the 
Bangladesh Sugarcane Research Institute (BSRI) still rely on traditional morphological analysis methods and 
lack comprehensive image datasets for research and innovation. These challenges motivated the development of 
an AI-driven deep learning solution aimed at improving sugarcane leaf disease detection.

Using Kaggle’s publicly available sugarcane leaf image dataset, combined with real-world samples from BSRI, 
this research seeks to build a model that facilitates timely and accurate diagnosis, enhances sugarcane health, and 
supports sustainable agricultural development. This study presents a comprehensive study aimed at improving 
sugarcane disease detection by incorporating deep learning techniques. In this study, we propose a Multi-Scale 
Attention-Based Dense Residual Network (MADRN) to boost accuracy and robustness by capturing both 
local and global features, enabling the model to handle intricate disease patterns and environmental variations 
effectively. Additionally, this research leverages a blended dataset that integrates local data from the BSRI with 
publicly available datasets.

This approach creates a more diverse and comprehensive training set, enhancing the models’ ability to 
generalize across various environmental conditions and disease manifestations. The integration of these datasets 
ensures improved adaptability and resilience of the models in practical applications. However, this study aims 
to improve the early detection and classification of sugarcane leaf diseases using advance deep learning model. 
objectives of this study are to flourish classification of sugarcane leaf diseases. For this reason, we proposed an 
attention-based model (MADRN) to enhance feature representation and disease classification performance. An 
integrated dataset from BSRI and Kaggle is used to improve the model’s robustness across diverse environmental 
conditions and disease variations. Additionally, a web-based application is developed for real-time, offering 
practical, user-friendly tools for farmers and researchers. By leveraging AI, this research supports timely disease 
identification and intervention, helping reduce crop losses, improve sugarcane health, and promote sustainable 
agricultural practices in Bangladesh and beyond.

The structure of this paper is as follows: "Introduction" provides an introduction to the study, "Related work" 
covers the literature review,"Materials and methodology" describes the dataset, materials, and proposed model, 
focusing on its architecture and classification approach, "Results and discussion" presents results and discussion, 
including the web-based implementation and a comparison with existing studies and "Conclusion and Future 
Work" offers the conclusion along with recommendations for future research.

Related work
Recent studies explore deep learning architectures for crop disease classification, with CNNs emerging as the 
preferred method for detecting and classifying plant diseases. S. Srivastava et al.8 proposed a deep learning 
system for detecting sugarcane plant diseases by examining leaves, stems, and color. This approach utilized three 
scenarios based on VGG-16, Inception V3, and VGG-19 feature extractors, comparing cutting-edge algorithms 
to deep learning models such as neural networks and hybrid AdaBoost. Orange software was used to calculate 
statistical measures like sensitivity, AUC, specificity, accuracy, and precision. Using VGG-16 as the feature 
extractor and SVM as the classifier, the scenario with the highest accuracy was chosen, and an AUC of 90.2% 
was attained. S. D. Daphal et al.9 proposed an attention-based multilevel residual convolutional neural network 
(AMRCNN) for accurately classifying sugarcane leaf diseases. The proposed architecture combines spatial and 
channel attention techniques to increase prominence detection, as well as traits from several layers to improve 
categorization. The researchers gathered a dataset of sugarcane leaf images from a variety of cultivated fields and 
weather conditions. There are five classes in the dataset: one healthy class and four disease classes (rust, mosaic, 
red rot, and yellow). Each class contains approximately 500 images, with a total of 2569 images and the dataset 
had been organized into training, validation, and testing subsets at a 70:15:15 ratios. Tested upon a self-created 
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database, an AMRCNN achieved a classification accuracy of 86.53%, outperforming advanced models like 
XceptionNet, ResNet50, EfficientNet_B7, and VGG19. They used Tensor Flow Lite tools to improve the model 
for quantization in order to enable real-time application. C. Sun et al.11 proposed a SE-VIT hybrid network 
that combines ResNet-18 with squeeze-and-excitation (SE) attention, multi-head self-attention (MHSA), and 
2D relative positional encoding for sugarcane leaf disease detection. To improve lesion segmentation, they 
compared thresholding, K-means, and SVM, with SVM providing the best results. Their model achieved 97.26% 
accuracy on the PlantVillage dataset and 89.57% accuracy with 90.19% precision on the private SLD dataset. 
N. Paramanandham et al.12 introduced LeafNet, a deep learning architecture for detecting six groundnut leaf 
classes Early Rust, Early Leaf Spot, Nutrition Deficiency, Rust, Late Leaf Spot, and Healthy Leaf using a dataset 
of 10,361 images. The model leverages residual networks and optimized weight initialization within an ensemble 
framework. To evaluate adaptability and generalizability, LeafNet was tested on multiple plant disease datasets, 
achieving 82.67% validation accuracy on the Sugarcane Leaf Disease dataset, along with 85.41% (Rice), 93.30% 
(Tomato), 89.35% (Maize), and 94.57% (Potato). Tamilvizhi, T. et al.13 proposed a Quantum-Behaved Particle 
Swarm Optimization-Based Deep Transfer Learning (QBPSO-DTL) model for accurate classification and 
detection of sugarcane leaf diseases, addressing the limitations of existing methods. The approach integrates 
pre-processing, optimal region growing segmentation for identifying affected regions, Squeeze Net for feature 
extraction, and a Deep Stacked Autoencoder (DSAE) for classification. Hyperparameter tuning was performed 
using the QBPSO algorithm to boost the model’s effectiveness.

I. Kunduracıoğlu et al.14 conducted a study that explores the use of deep learning for the detection of 
sugarcane leaf diseases, circumventing the inefficiencies and inaccuracies of handcrafted diagnosis approaches. 
The researchers worked with the openly accessible Sugarcane Leaf Dataset, which consists of 6748 images and 
11 illness classes, to train and assess models from the EfficientNetv1 and EfficientNetv2 architectures as well 
as other well-known convolutional neural networks (CNNs). For this dataset, there was no direct association 
between model depth, complexity, or accuracy. InceptionV4 and EfficientNet-b6 achieves the greatest accuracy 
rates of 93.10% and 93.39%, respectively, out of the 13 models that were tested. D. Bou et al.15 carried out a study 
integrating hyperspectral imaging (HSI) with deep learning techniques to facilitate the swift identification of 
sugarcane diseases, specifically sugarcane smut and sugarcane mosaic virus (ScMV). Hyperspectral imaging 
captured a broad spectral range, including near-infrared (NIR), which allowed the identification of disease-
related features that were not visible to the human eye. The researchers created a high-resolution HSI dataset 
of healthy and diseased sugarcane plants, which they used to train and evaluate deep neural network models. 
Experimental results showed over 80% detection accuracy for sugarcane smut 8 weeks after inoculation and over 
90% accuracy by 10 weeks, detecting symptoms a week earlier than visible signs. Within a week of inoculation, 
ScMV was identified with over 90% accuracy, which was far earlier than the onset of symptoms. Additionally, 
the study found that NIR and visible and near-infrared (VNIR) spectral ranges were superior to RGB images 
for disease detection. The models achieved over 90% accuracy across most datasets. N. Amarasingam et al.16 
applied deep learning and UAV-based remote sensing for detecting White Leaf Disease (WLD) in the fields of 
sugarcane located at Sri Lanka’s Gal-Oya region. The standard WLD detection methodology includes acquiring 
RGB (red, green, blue) images using UAVs, dataset pre-processing, labeling, DL model tuning, and prediction. 
Four deep learning models— Faster R-CNN, YOLOv5, DETR, YOLOR and—were evaluated for their ability to 
detect WLD. Among them, YOLOv5 performed the best, with 95% precision, 92% recall, 93% mAP@0.50, and 
79% mAP@0.95. DETR performed the worst, with respective metrics of 77%, 69%, 77%, and 41%. Militante 
and Gerardo17 explored the integration of various CNN frameworks within deep learning approaches to 
optimize the accuracy of sugarcane disease recognition and detection. Their model was trained using a database 
that included 14,725 photos of both diseased and healthy sugarcane leaf surfaces. The suggested approach 
achieved a peak accuracy of 95.40%. The CNN architectures employed for disease detection included LeNet, 
VGGNet, and StridedNet. D. Padilla et al.18 developed a portable device employing support vector machines 
(SVM) for recognizing yellow spot disease on sugarcane leaves. The study’s objective was to create an image 
processing apparatus that uses sugarcane leaf pictures to record and display them in a single integrated unit. 
The model was trained to characterize and classify the variations between diseased and healthy leaves by 
identifying yellow spots on the foliage. M. Ozguven et al.19 developed an enhanced Fast RCNN framework by 
modifying CNN parameters, presenting an automated system for recognizing leaf diseases in sugar beet. This 
optimized architecture improved the efficiency and accuracy of disease detection through advanced parameter 
adjustments. N. Hemalatha et al.20 designed a deep learning neural network (DL-NN) platform for forecasting 
various sugarcane diseases via trained a model using pictures of infected foliage. Diseases such as rust spots, 
red rot, yellow leaf disease, cercospora leaf spot, and helmanthospura leaf spot were all successfully detected by 
this approach. The approach employed a CNN architecture specifically trained for accurate image classification, 
enabling precise disease recognition. While previous studies demonstrate the effectiveness of CNNs, attention 
mechanisms, residual networks, and multispectral imaging in crop disease detection, they face limitations such 
as region-specific datasets, variations in image quality, and limited robustness across multiple disease classes. 
MADRN addresses these gaps by integrating multi-scale convolutional kernels, dense residual blocks, and both 
channel and spatial attention mechanisms into a unified framework. This comprehensive design enables more 
accurate and reliable sugarcane leaf disease classification, particularly under real-world conditions. Existing 
studies in Bangladesh remain limited, underscoring the need for models like MADRN for early diagnosis and 
treatment.

Materials and methodology
Proposed blended dataset description
In this research, a dataset sourced from Kaggle is utilized, containing 2521 images of sugarcane leaves21. The 
dataset is organized into five distinct categories, each representing a specific leaf health condition: ‘Red rot’, 
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‘Yellow’, ‘Rust’, ‘Mosaic’, ‘Healthy’. Approximately 500 images are available in each category, ensuring balanced 
representation across the different conditions. Figure 1 displays a sample from each class, Table 1 and exhibits 
the dataset’s statistical summary.

Figure 1a gives an example image from the healthy class, Fig. 1b illustrates the mosaic class, Fig. 1c represents 
the red rot class, Fig. 1d depicts an image from the rust class, and Fig. 1(e) depicts an image from the yellow class. 
In addition to the Kaggle dataset, a small dataset from the Bangladesh Sugarcane Research Institute (BSRI) has 
been used to test the model’s adaptability to real-world conditions. This dataset includes representative images of 
sugarcane leaves exhibiting different disease symptoms under varied environmental conditions. The BSRI dataset 
covers the following disease categories: ‘Mosaic’, ‘RedRot’, ‘White Leaf ’, ‘Smut’, ‘Wilt’, ‘Healthy’. Figure 2 illustrates 
a sample image for every class from the BSRI dataset. The blended dataset is formed by combining images 

Fig. 2.  Sample of sugarcane leaf image dataset from BSRI.

 

class names Image number Percentage (%)

Healthy 522 20.71

Mosaic 462 18.33

Red rot 518 20.55

Rust 514 20.39

Yellow 505 20.02

Total 2521 100.00

Table 1.  Sugarcane leaf image dataset statistic obtained from Kaggle.

 

Fig. 1.  Sample images representing each class from the dataset for analysis.
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from both Kaggle and BSRI datasets, ensuring a diverse and representative sample for robust sugarcane leaf 
disease detection, as illustrated in Fig. 3. The Kaggle dataset contains 2521 high-resolution images representing 
five disease classes: mosaic, rust, red rot, yellow, and healthy with relatively balanced class distributions. The 
BSRI dataset provides images captured in real-world field conditions in Bangladesh, depicting additional disease 
classes such as white leaf, wilt, and smut. Challenges in the BSRI data include a limited number of images and 
environmental variations such as lighting conditions, plant growth stages, and humidity, all of which affect image 
quality and disease severity. To unify the datasets, common class labels are merged, while unique BSRI classes 
are set aside for future analysis. To address class imbalances, oversampling techniques such as synthetic image 
generation and image augmentation are employed, enhancing diversity and ensuring a balanced representation 
across classes. The datasets are combined in a way that maintains proportional representation, ensuring that the 
model remains robust and generalizes effectively across the diverse conditions present in both datasets. In order 
to maintain interoperability with deep learning networks, all images are scaled to 224 × 224 pixels.

To improve model convergence, pixel intensities are standardized by scaling those to the [0, 1] range. To 
improve the diversity of the training samples and shrink overfitting, data augmentation techniques are used, such 
as random rotations (± 20°), zooming (± 20%), contrast modifications, and random flipping of the horizontal 
and vertical planes. Additionally, quality control measures are implemented by removing blurry, misclassified, 
or poor-quality images to improve the overall reliability of the dataset.

Methodology
In this study, two datasets are employed to evaluate the performance of various deep learning models for 
sugarcane leaf disease classification. The first dataset is sourced from Kaggle, while the second referred to as the 
blended dataset is constructed by combining images from the Kaggle dataset and BSRI dataset to assess model 
generalization across diverse environments. Initially, images from both datasets are subjected to a series of 
preprocessing steps, including resizing, normalization, and data augmentation, to enhance quality and diversity. 
Following pre-processing, the datasets are split into training and testing subsets. Several deep learning models, 
including CNN, VGG16, MobileNetV2, and XceptionNet, are fine-tuned using transfer learning techniques to 
optimize performance for the specific classification task. To improve classification accuracy and robustness, 
a novel attention-based architecture named MADRN (Multi-scale Attention-based Dense Residual Network) 
is proposed. The MADRN model integrates multi-scale feature extraction, residual learning, and attention 
mechanisms to effectively capture discriminative patterns in leaf images. Extensive experiments are conducted 
using both datasets to evaluate and compare the performance of the proposed model against the fine-tuned 
conventional models. The evaluation metrics include accuracy, precision, recall, and F1-score. The overall 
methodology followed in this study is illustrated in Fig. 4, highlighting the systematic approach to developing an 
effective deep learning-based model for real-time sugarcane leaf disease classification.

Attention mechanism
A crucial aspect of the human visual system (HVS) is its capacity to focus attention. Instead of processing the 
whole scene at once, the HVS selectively concentrates on important regions to gather vital information and 
make informed judgments22. Inspired by this selective attention capability, this study incorporates attention 
mechanisms to enhance the performance of the proposed sugarcane disease detection model by focusing on 
disease-relevant image features. Specifically, Channel Attention (CA) and Spatial Attention (SA) are employed 
for effective saliency detection and feature enhancement.

Fig. 3.  Blended dataset creation for sugarcane leaf disease detection.
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Channel attention (CA)
Channel attention captures relationships between feature map channels to determine their importance for 
classification23. It determines “what” is important in the scene, and each channel serves as a feature detector. 
Given an input feature map F ∈ RC× H× W .To efficiently compute channel attention, spatial information is 
pooled using both average pooling and maximum pooling, which capture different statistical features. These 
pooled features are then passed through a shared multi-layer perceptron (MLP) with hidden activations of size 
RC/r × 1 × 1 to generate the channel attention map Mc ∈ RC × 1 × 124. Figure 5 illustrates the detailed 
process of channel attention. The mathematical computation of the channel attention map is presented in Eq. (1),

	 MCA (F ) = σ (MLP (AvgP ool (F )) + MLP (MaxP ool (F ))) = σ
(
W1

(
W0

(
F c

avg

))
+ W1 (W0 (F c

max))
)
� (1)

Where, F  represents the input feature map, σ  represents the sigmoid activation function, Favg  and Fmax 
present features obtained through average pooling and max pooling, respectively, and W0 and W1​ are learnable 
weights of the MLP layers and the ReLU activation function is followed by W0. By utilizing these techniques, CA 
expands the network’s ability to prioritize relevant features, hence boosting overall representational efficiency.

Fig. 5.  Channel attention diagram.

 

Fig. 4.  A block diagram of the proposed working system for sugarcane leaf disease detection.
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Spatial attention
Spatial attention focuses on identifying “where” disease-related information is located in an image by 
highlighting significant regions and suppressing irrelevant areas, complementing channel attention’s focus on 
feature channels25. The spatial attention map Ms (F ) ∈ RH× W  is generated by performing average-pooling 
and max-pooling along the channel axis to create two 2D maps, as illustrated in Fig. 6. These pooled maps are 
concatenated and passed through a 7 × 7 convolution layer, followed by a sigmoid activation to produce the 
spatial attention map. The formula for computing spatial attention is expressed mathematically in Eq. (2):

	 MSA (F) = σ
(
f7× 7 ([AvgP ool (F ) ; MaxP ool (F )])

)
= σ

(
f7× 7 ([

F s
avg; F s

max

]))
� (2)

Here, f7× 7 represents a convolutional layer with a filter size of 7 × 7, AvgP ool (F ) ∈ R1× H× W  and 
MaxP ool (F ) ∈ R1× H× W  are the average-pooled and max-pooled features, respectively. This approach 
enables the model to dynamically focus on disease-specific regions by emphasizing areas critical for classification 
and ignoring less informative regions.

Proposed multi-scale attention-based dense residual network (MADRN)
In this study, we propose a novel Multi-Scale Attention-Based Dense Residual Network (MADRN) for sugarcane 
disease classification, as illustrated in Fig. 7. The architecture integrates dense residual blocks with multi-scale 
attention mechanisms to improve feature extraction and enhance disease classification performance while 
addressing the limitations of conventional CNNs. Traditional CNNs, when stacking multiple convolutional 

Fig. 7.  Proposed MADRN approach for sugarcane leaf disease prediction.

 

Fig. 6.  Spatial Attention.
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layers, often face challenges such as increased parameters, computational complexity, and gradient vanishing 
issues as the network depth increases. To overcome these challenges, the proposed architecture introduces a 
feature extraction module employing dense residual blocks and multi-scale convolutional kernels (3 × 3, 5 × 5, 
and 7 × 7) to capture features at varying resolutions. This enables the network to extract both local and global 
disease-specific features. These extracted features are processed through concatenation, followed by Dense 
Residual Blocks that progressively increase filter sizes (#128, #256, and #512), ensuring comprehensive learning 
of low-level, mid-level, and high-level features. The initial layers of the network capture low-level features, such 
as simple textures, edges, and color patches, which serve as the foundation for extracting more complex disease-
specific patterns. Mid-level features, learned in the second Dense Residual Block, represent textures and object 
shapes relevant to identifying sugarcane diseases, while high-level features captured in the third Dense Residual 
Block provide global representations essential for distinguishing between disease classes. Unlike conventional 
CNNs that primarily emphasize basic features, the proposed architecture carefully combines local and global 
features from each block to create a more informative feature representation. To enhance feature learning, Dense 
Residual Blocks utilize dense connections in which every layer is associated with every additional layer in the 
block, ensuring feature reuse and efficient gradient flow. These connections are mathematically expressed as:

	
H (x) = F (x) +

∑
n
i=1 xi � (3)

Where, xi represents the outputs from previous layers, and F (x) is the transformation function applied to the 
input x 

	 H (x) = F (x) + x � (4)

This helps avoid the degradation problem in deep networks by learning residual functions rather than direct 
mappings, facilitating better convergence and model optimization. Attention mechanisms are embedded after 
each Dense Residual Block to further refine feature learning. A channel attention (CA) module emphasizes 
essential feature channels, while a spatial attention (SA) module focuses on disease-relevant regions. These 
modules play a vital role in accurately localizing disease spots in input images by enhancing significant features 
and suppressing redundant or noisy information, thereby improving recognition accuracy and robustness to 
variations in image quality. The attentive features extracted from all three Dense Residual Blocks are combined 
using element-wise addition operations and downsampled using convolution and max-pooling to maintain 
consistent feature map sizes across the network. This down sampling ensures the extraction of more intuitive 
features relevant to sugarcane disease detection while maintaining spatial consistency for effective feature 
fusion. The fused features are passed through two fully connected layers with 512 and 256 neurons, followed by 
a softmax activation function for five-class classification (healthy, mosaic, red rot, rust, yellow).

The novelty of MADRN lies in its integration of multi-scale feature extraction, dense residual learning, 
and attention mechanisms into a single framework. While multi-scale kernels capture both fine-grained local 
features and broader global patterns, dense residual connections enable efficient feature reuse and prevent 
gradient vanishing in deep networks. Attention modules further refine these features by emphasizing the most 
disease-relevant channels and spatial regions, suppressing irrelevant information. This combination allows 
MADRN to learn richer, more discriminative features than conventional CNNs or models using these strategies 
in isolation, resulting in improved accuracy and robustness for sugarcane disease classification. By focusing 
on both local and global features, the system can more accurately detect and classify sugarcane diseases while 
reducing the loss of critical feature information. This comprehensive approach ensures resilience to real-world 
conditions, improving disease classification rates and enabling timely, accurate diagnoses. The attention-based 
dense residual structure plays a pivotal role in mitigating gradient vanishing issues and optimizing network 
learning, enabling robust performance and improved recognition rates for sugarcane disease detection .

Fine tuned parameters of MADRN
All critical network configuration settings are carefully selected to highlight the flexibility and generalization 
capability of the proposed architecture in Table 2, regardless of the specific characteristics of the input data or 
application domain. The Adam optimizer, with default initialization settings, is used to efficiently update the 
network weights. Categorical cross-entropy serves as the loss function to address the multi-class classification 
task.

Parameter Value / description

Optimizer Adam (with default initialization settings)

Loss Function Categorical Cross-Entropy (suitable for multi-class classification)

Learning Rate 0.0001 (fixed to ensure stable and consistent training)

Activation Function LeakyReLU (α = 0.02, used in all convolutional and fully connected layers)

Dropout Rate 0.5 (applied in dense layers)

Normalization Technique Batch Normalization

Early Stopping, Learning Rate Scheduling, Model Checkpointing Enabled

Table 2.  Hyperparameter settings and training configuration for MADRN.
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The learning rate is fixed at 0.0001 to ensure stable and consistent training. Additionally, LeakyReLU 
activation with an alpha value of 0.02 is applied in all convolutional and fully connected layers to maintain 
gradient flow even in inactive neurons, supporting effective learning across the network.

Evaluation metrics
For model development and evaluation, the dataset is split into 70% for training, 15% for validation, and 15% 
for testing. This allocation allows for robust model training, hyperparameter tuning, and final performance 
assessment. To evaluate the classification performance of the model, standard metrics derived from the confusion 
matrix are used, including Accuracy, Precision, Recall, and F1-Score. These metrics provide a comprehensive 
assessment of the model’s predictive performance, particularly in the presence of class imbalance.

Results and discussion
Comparative analysis of model performance
Table  3 presents a comprehensive performance comparison of four deep learning models-CNN, VGG16, 
MobileNetV2, XceptionNet, and the proposed MADRN (Multi-scale Attention-based Dense Residual Network) 
evaluated on both the Kaggle dataset and a blended dataset comprising images from the Kaggle and BSRI 
datasets.

The results indicate that the proposed MADRN model consistently outperformed the baseline models across 
all evaluation metrics, including accuracy, precision, recall, and F1-score. Specifically, on the Kaggle dataset, 
MADRN achieves the highest accuracy of 94.78%, with a precision of 91.00%, recall of 93.00%, and F1-score 
of 92.00%. XceptionNet emerges as the closest competitor, achieving 92.97% accuracy, but with slightly lower 
precision (90.25%), recall (89.56%), and F1-score (91.36%). Traditional CNN and lightweight architectures such 
as MobileNetV2 exhibit lower performance, indicating a limited ability to extract complex features required for 
accurate classification. When evaluated on the blended dataset, which merges the variability and complexity 
of both the Kaggle and BSRI sources to test the models’ generalization capabilities, MADRN continues to 
deliver robust results with 92.25% accuracy, 93.00% precision, 92.00% recall, and 92.00% F1-score. In contrast, 
XceptionNet’s performance drops significantly to 79.67% accuracy, revealing a potential sensitivity to domain 
variation. VGG16 and MobileNetV2 maintain relatively stable yet inferior performance across datasets. The 
superior performance of MADRN is attributed to its architectural design, which seamlessly integrates dense 
residual connections and multi-scale attention mechanisms. This combination enables the model to capture 
subtle, disease-specific features and complex data patterns, resulting in enhanced feature extraction and improved 
generalization. Figure 8 shows the confusion matrix of the proposed MADRN model on both the Kaggle and 
blended datasets, demonstrating its accurate classification across multiple disease categories. Figure 9 illustrates 
the ROC curve for the proposed MADRN model on the Kaggle dataset, further validating the model’s robust 
discriminative capability and balanced sensitivity-specificity trade-off. This comprehensive evaluation highlights 
MADRN’s effectiveness as a robust and scalable solution for real-world agricultural disease detection challenges. 
Figure 10 illustrates the accuracy and loss curves for the proposed MADRN model on the blended sugarcane 
leaf disease dataset and Fig. 11.

depicts the confusion matrices for various baseline models on the same dataset for comparative analysis. 
These findings demonstrate that MADRN not only excels at learning discriminative features from a single-
source dataset but also generalizes effectively to diverse, real-world data—making it a highly promising model 
for accurate and scalable sugarcane leaf disease classification in practical agricultural applications.

Statistical significance and robustness of the proposed MADRN model
To further validate the superiority of the proposed MADRN model, we have performed paired t-tests on 
the results of 5-fold cross-validation using the Kaggle dataset. The goal is to verify whether the performance 
improvements of MADRN over baseline models are consistent and not due to random variation.

Table  4 summarizes the paired t-test results comparing the accuracy of MADRN with four baseline 
deep learning models (CNN, MobileNetV2, VGG16, and XceptionNet). The reported metrics include mean 
accuracies with standard deviations (SD), 95% confidence intervals (CI), t-statistics, and p-values. The paired 
samples t-test results provide compelling evidence that the proposed MADRN model consistently outperforms 

Dataset Model Accuracy Precision Recall F1-Score

Kaggle dataset

CNN 86.85 80.56 81.25 83.06

VGG16 84.75 85.00 85.00 85.00

MobileNetV2 82.03 84.00 79.00 81.00

XceptionNet 92.97 90.25 89.56 91.36

Proposed MADRN 94.78 91.00 93.00 92.00

Blended dataset

CNN 83.23 85.00 83.00 83.00

VGG16 85.51 86.00 85.00 86.00

MobileNetV2 84.88 85.00 85.00 85.00

XceptionNet 79.67 79.00 80.00 79.00

Proposed MADRN 92.25 93.00 92.00 92.00

Table 3.  Performance (in %) comparison of deep learning models on the proposed datasets.
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all baseline deep learning models across five folds, with improvements that are statistically significant in every 
comparison. Specifically, CNN achieves a mean accuracy of 76.64 ± 2.66% (95% CI: [73.34, 79.94]), while 
MADRN reaches 90.64 ± 2.31%. The paired t-test yields t = 7.9941 and p = 0.0007, strongly rejecting the null 
hypothesis and confirming that the nearly 14% improvement is highly significant and not due to chance. Against 
MobileNetV2, which achieves 86.32 ± 1.14% (95% CI: [84.90, 87.74]), MADRN shows a mean improvement 
of 4.32%, with t = 6.3745 and p = 0.0016, indicating strong statistical evidence of superiority. Similarly, for 
VGG16 with 84.92 ± 0.14% (95% CI: [84.75, 85.09]), MADRN achieves an improvement of 5.72%, and the 
paired t-test result (t = 5.2561, p = 0.0031) confirms that the improvement is statistically significant. Finally, 
even against XceptionNet, which records 88.80 ± 2.94% (95% CI: [85.15, 92.45]), MADRN secures an additional 
1.83% improvement, with t = 4.6559 and p = 0.0048, demonstrating that the performance gain is still significant 
despite being relatively smaller. Importantly, in all cases, the p-values are less than 0.01, which according to 
conventional thresholds indicates strong statistical significance. Moreover, the 95% confidence intervals for the 
mean differences do not cross zero, further confirming that the observed improvements are genuine and not 
due to random variation. The consistently small SD values across folds also suggest that MADRN’s performance 
is stable and reliable. Similar statistical validation on the Blended dataset is planned for future work, which 
will further confirm the generalizability and robustness of the proposed model. Overall, the large t-statistics, 
very small p-values (p < 0.01), and positive confidence intervals collectively demonstrate that MADRN delivers 

Fig. 9.  ROC curve of proposed MADRN using the Kaggle dataset.

 

Fig. 8.  Confusion matrix of the proposed MADRN model on (A) Kaggle and (B) Blended sugarcane leaf 
disease datasets.
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consistent, reliable, and statistically significant improvements over all baseline deep learning models. This 
establishes MADRN as a robust and superior architecture for the given datasets.

Leaf disease prediction using web based system
To enhance the accessibility and practical usability of the proposed technology, a web-based application is 
developed using the Streamlit framework, providing a user-friendly platform for real-time sugarcane disease 
detection, shown in Fig.  12. This application allows users, such as farmers and agricultural professionals, to 
upload images of sugarcane leaves and receive instant predictions on disease classification. It leverages proposed 
MADRN models on a combined dataset from Kaggle and BSRI. Key features of the application include an 
intuitive interface for image uploading, real-time prediction capabilities, and seamless integration of high-
performing models to ensure accuracy and reliability. Rigorous testing with the BSRI dataset confirms the 
application’s robustness and adaptability, achieving exceptional accuracy across diverse datasets. In terms of 
computational performance, the model processes a 224 × 224 input image in approximately 3.0–5.0  s on a 
standard GPU enabled server. While running the full MADRN model directly on mobile devices is challenging 
due to memory and processing constraints, the current architecture supports server based inference, allowing 
farmers to upload images via mobile devices or web browsers and receive rapid, high-accuracy predictions. This 
setup is scalable, supports multiple concurrent users, and provides a robust solution suitable for deployment 
in agricultural settings. In the future, lightweight or optimized versions of MADRN could enable fully offline, 
real-time mobile deployment, further extending its usability in field conditions. By enabling timely interventions 
and optimizing resource allocation, this scalable solution reduces dependency on traditional manual inspection 
methods, which are often time-consuming and error-prone. With its potential for large-scale deployment in 
agricultural settings, the application offers an efficient and impactful tool for improving sugarcane disease 
management and advancing precision agriculture.

Benchmarking with similar existing studies
Benchmarking is an essential method of comparing and assessing the performance of the proposed models in 
this research against similar studies in the field. For this study, the focus is on evaluating the performance of the 
sugarcane leaf disease detection models against various recent studies that address plant disease classification 
using deep learning techniques Srivastava et al.26 proposed a deep learning system for sugarcane disease 
detection using features from leaves, stems, and color. They evaluated VGG-16, Inception V3, and VGG-19 as 
feature extractors, comparing them with algorithms like neural networks and hybrid AdaBoost. Using VGG-16 
with SVM, the best accuracy and an AUC of 90.2% were achieved, with statistical metrics calculated via Orange 
software. Daphal et al.9 proposed an attention-based multilevel residual CNN (AMRCNN) for classifying 
sugarcane leaf diseases. The architecture integrates spatial and channel attention to enhance feature detection 
and classification. Using a dataset of 2569 images across five classes (healthy, rust, mosaic, red rot, and yellow), 
divided into 70:15:15 for training, validation, and testing, AMRCNN achieved 86.53% accuracy, outperforming 
XceptionNet, ResNet50, EfficientNet_B7, and VGG19. TensorFlow Lite tools were used for model quantization 
to enable real-time applications. C. Sun et al.11 proposed a SE-VIT hybrid network combining ResNet-18 with 
SE attention, multi-head self-attention, and 2D positional encoding for sugarcane leaf disease detection. Using 

Fig. 10.  (A) Accuracy Curve and (B) Loss Curve for proposed MADRN model on Blended sugarcane leaf 
disease dataset.
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SVM for lesion segmentation yielded the best results, achieving 97.26% accuracy on PlantVillage and 89.57% 
accuracy with 90.19% precision on a private SLD dataset. N. Paramanandham et al.12 introduced LeafNet, a deep 
learning model for six groundnut leaf classes, leveraging residual networks within an ensemble. Tested across 
multiple datasets, LeafNet achieved 82.67% validation accuracy on the Sugarcane Leaf Disease dataset and high 
performance on Rice (85.41%), Tomato (93.30%), Maize (89.35%), and Potato (94.57%). Kunduracıoğlu et al.14 
investigated deep learning for sugarcane leaf disease detection, addressing inefficiencies in traditional diagnostic 
methods. Using the Sugarcane Leaf Dataset with 6748 images across 11 classes, they evaluated EfficientNetv1, 
EfficientNetv2, and other CNNs. Among 13 tested models, InceptionV4 and EfficientNet-B6 achieved the 
highest accuracies of 93.10% and 93.39%, respectively .

Comparison (MADRN vs.) Mean accuracy (Baseline ± SD) Mean accuracy (MADRN ± SD) 95% CI t-statistic p-value Significance

CNN 76.64 ± 2.66 90.64 ± 2.31 [73.34,79.94] 7.9941 0.0007 Significant

MobileNetV2 86.32 ± 1.14 90.64 ± 2.31 [84.90,87.74] 6.3745 0.0016 Significant

VGG16 84.92 ± 0.14 90.64 ± 2.31 [84.75,85.09] 5.2561 0.0031 Significant

XceptionNet 88.80 ± 2.94 90.64 ± 2.31 [85.15,92.45] 4.6559 0.0048 Significant

Table 4.  Statistical comparison of proposed MADRN and baseline models using paired t-Tests.

 

Fig. 11.  Confusion matrix for different models on blended dataset.
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Bou et al.15 used hyperspectral imaging (HSI) and deep learning to detect sugarcane diseases like smut and 
ScMV. HSI, leveraging NIR and VNIR spectral ranges, enabled early detection, achieving over 90% accuracy 
for ScMV within a week and smut a week before visible symptoms. HSI outperformed RGB imaging for disease 
detection. Padilla et al.18 developed a portable device using SVM to detect yellow spot disease on sugarcane 
leaves. The integrated unit processed images to classify healthy and diseased leaves based on yellow spot features, 
achieving 86% accuracy. Our proposed intensive statistical exploration for sugarcane leaf disease detection, 
utilizing advanced deep learning models XceptionNet, ResNet101 for feature extraction and fine-tuning, achieved 
the highest accuracy score of 98.22% and an AUC score of 95.00%. Furthermore, our proposed MADRN achieved 
a notable accuracy of 94% and an AUC score of 99%, further validating the effectiveness of our approach. These 
results surpass those from previous studies in the field of plant disease detection, underscoring the robustness 
and precision of our methodology. However, our research emphasizes the importance of thoroughly analyzing 
statistical data and image features before applying machine learning algorithms. Deep learning-based approaches 
consistently outperformed conventional machine learning techniques in the context of sugarcane leaf disease 
classification, showcasing their significant potential for agricultural research and early disease detection. Table 5 
provides a detailed comparison of benchmarking studies alongside our proposed model’s results.

Dataset limitations
Although this study utilizes two datasets (Kaggle and BSRI) to provide diverse and representative samples 
for sugarcane leaf disease detection, certain limitations remain. The Kaggle dataset, while relatively balanced 
across five classes, still shows minor discrepancies in class counts, and the BSRI dataset is relatively small with 
additional disease categories, which may introduce variability in training and evaluation. Environmental factors 
in the BSRI images, such as lighting conditions, plant growth stages, and humidity, can introduce noise and affect 
image quality. Furthermore, some disease classes are underrepresented, potentially impacting the generalizability 
of the model to rare conditions. While oversampling and data augmentation help mitigate these imbalances, 
future studies could benefit from larger, more diverse datasets with standardized imaging conditions to further 

Author Technique Accuracy AUC

Srivastava et al.,26 VGG-16, InceptionV3, VGG-19 – 90.20

Daphal et al.,9 Attention-based Multilevel Residual Convolutional Neural Network (AMRCNN) 86.53 94.00

C. Sun et al.,11 SE ( squeeze-and-excitation) attention -VIT hybrid network (private SLD dataset ) 89.57 –

N. Paramanandham et al.,12 LeafNet architecture on Sugarcane Leaf Disease dataset 82.67 –

Kunduracıoğlu et al.,14 InceptionV4, EfficientNet-b6 93.10 –

Bou et al.,15 Integrating HSI with deep learning techniques 90.00 –

Padilla et al.,18 SVM 86.63 –

Proposed study
MADRN (Kaggle Dataset) 94.78 99.00

MADRN (Blended Dataset) 92.25 95.00

Table 5.  Several sugarcane disease recognition performances (in %) compared against our proposed 
performance.

 

Fig. 12.  Results from in-field testing of the web application for classification.
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enhance model robustness and reliability. Additionally, our model relies solely on an attention mechanism to 
focus on diseased regions, without using explicit segmentation. While effective in most cases, attention may 
occasionally fail to capture all diseased regions when they are small, patchy, or sparsely distributed, potentially 
leading to false positives or false negatives. Incorporating explicit segmentation techniques in future work could 
help mitigate these limitations and further improve model performance.

Impact of domain shift and model generalization
One of the key challenges in plant disease detection is domain shift, arising from differences in image 
characteristics across datasets. The Kaggle dataset contains high resolution images captured under controlled 
conditions, where disease symptoms are clearly visible. In contrast, the BSRI dataset reflects real-world field 
environments in Bangladesh, where irregular lighting, shadows, overlapping leaves, varying growth stages, and 
humidity effects introduce significant complexity and variability. Baseline models such as CNN, VGG16, and 
MobileNetV2 showed reduced performance on the blended dataset, particularly for mosaic when leaf textures 
overlapped. In comparison, the proposed MADRN demonstrated greater adaptability by combining multi-scale 
feature extraction with attention mechanisms, enabling it to capture both fine-grained and contextual disease 
patterns while suppressing background noise and irrelevant variations. While traditional CNN and transfer 
learning models showed accuracy drops of 4–7% when moving from Kaggle to the blended dataset, MADRN 
maintained higher robustness, achieving 92.25% accuracy on the blended dataset with consistent precision 
and recall across classes. This demonstrates MADRN’s robustness and ability to generalize under real-world 
variability, making it suitable for practical precision agriculture applications.

Conclusion and future work
This research successfully presents a comprehensive deep learning-based solution for sugarcane leaf disease 
detection, leveraging the innovative MADRN architecture. Through extensive experimentation and evaluation 
on both the Kaggle dataset and a blended dataset incorporating images from the BSRI, MADRN consistently 
demonstrates superior performance in terms of accuracy, precision, recall, and F1-score compared to baseline 
models. The key strength of MADRN lies in its ability to effectively extract discriminative features by combining 
dense residual learning and multi-scale attention mechanisms, which not only enhances its performance on a 
single-source dataset but also enables robust generalization across diverse real-world conditions. This outcome 
reinforces the importance of using advanced architectural techniques for addressing the challenges inherent in 
agricultural disease detection. However, the study is limited by the dataset size and environmental variations that 
may affect field level generalization. In future work, we plan to enhance model explain ability through saliency 
and Grad-CAM visualizations, and to integrate the trained MADRN model into IoT-based monitoring systems 
for real time disease classification. Expanding the approach to other crops and diseases will further improve its 
applicability in precision agriculture.

Data availability
The data supporting the findings of this study are publicly available and can be accessed through the following 
sources. Kaggle Sugarcane Leaf Disease Dataset ​[​h​t​t​p​s​​:​/​/​w​w​w​​.​k​a​g​g​l​​e​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​n​i​r​m​a​l​s​a​n​k​a​l​a​n​a​/​s​u​g​a​r​c​a​n​
e​-​l​e​a​f​-​d​i​s​e​a​s​e​-​d​a​t​a​s​e​t​]​(​h​t​t​p​s​:​/​w​w​w​.​k​a​g​g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​n​i​r​m​a​l​s​a​n​k​a​l​a​n​a​/​s​u​g​a​r​c​a​n​e​-​l​e​a​f​-​d​i​s​e​a​s​e​-​d​a​t​a​s​e​t​) (ac-
cessed Jan. 15, 2025). Bangladesh Sugarcrop Research Institute (BSRI): Data available upon request. For BSRI 
data inquiries, please contact the corresponding author, Dr. Md. Shamim Reza.
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