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Noise pollution is an important environmental issue that has a significant effect on human health. 
This study investigates the short-term impact of human activities on noise pollution in the Mashhad, 
Iran, and how these patterns changed during the COVID-19 pandemic. By leveraging a dual strategy, a 
comprehensive analysis was initiated. First, the equivalent continuous sound level (Leq) measurements 
collected before (March 21 to April 20, 2019) and during (March 20 to April 19, 2020) the COVID-19 
quarantine period at four key intersections in Mashhad were compared. The non-parametric Wilcoxon 
signed-rank test was employed to evaluate the statistical significance of the observed changes. The 
results showed a statistically significant reduction in Leq at all four intersections during the quarantine 
period. Next, a predictive modeling algorithm named random forest (RF) was developed to predict 
noise pollution levels by considering time factors such as month, day, hour, and cumulative hour. The 
RF model achieved a high R-squared (R2) value (0.914), representing a strong correlation between 
predicted and actual Leq. The predictive power of this model was demonstrated by the root mean 
square error (RMSE) of 0.967 and the mean absolute error (MAE) of 0.620, indicating reasonable 
accuracy. This case study demonstrates evidence that human activities are the main cause of noise 
pollution in Mashhad. The findings highlight the potential benefits of urban planning strategies that 
reduce traffic and noise generation. Furthermore, developing of a noise prediction model using a 
random forest approach provides a practical solution for future noise management efforts at the local 
scale.
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Urban landscapes are places full of noise and activity and alongside this commotion, there is a hidden problem1. 
Noise pollution is a major urban environmental problem, and reducing it improves quality of life and public 
health2. The continuous increase in traffic, urbanization, industrialization, and infrastructure development in 
and around cities are the main sources for the growing problem of noise pollution in metropolitan areas. 75% 
of total noise pollution in urban areas is caused by the combined effects of the commercial, industrial, and 
transportation sectors3. Noise exposure has been proved to have significant and persistent negative human health 
effects4. The importance of understanding noise pollution and its sources within urban settings is highlighted by 
their health impacts5. Exposure to noise pollution can lead to adverse health effects such as increased aggression, 
physical and mental fatigue, heightened stress, feelings of dizziness, headaches, irritability, distraction, disruption 
of sleep patterns, cardiovascular diseases, children’s cognitive, auditory system, obesity, and decreased efficiency 
in work performance4–10. According to Tiwari et al. (2022), mental health symptoms including headache and 
hypertension are significantly affected by noise pollution11. In another study, Patel et al. (2024b) emphasized 
the need for comprehensive noise management approaches using structural equation modeling to demonstrate 
that noise annoyance and sensitivity directly affect human health outcomes12. As stated by Patel et al. (2024a), 
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there are serious concerns about human health related to traffic noise, highlighting the need for accurate noise 
prediction models to enable effective urban noise reduction strategies13.

The year 2020 presented a unique opportunity to investigate the relationship between human activity and 
noise pollution. The global response to the COVID-19 pandemic, with the widespread implementation of 
lockdown measures, significantly altered the structure of daily life in cities worldwide14,15. Movement restrictions 
and lockdowns significantly impacted human activity, transportation, and urban noise levels worldwide, 
leading to broad decreases in traffic, industrial operations, and intercity travel15–20. Understanding how these 
changes impact environmental noise has become a key topic in recent studies. The pandemic offers a unique 
opportunity to assess the effectiveness of public health policies to reduce human activities and the resulting 
environmental pollution, including noise21,22. Although limited studies have been conducted in this field in 
Iran, other environmental indicators, including noise, have been widely studied globally during the pandemic. 
Mishra et al. (2021) explored the impact of COVID-19 lockdown measures on changes in noise levels across 
residential, commercial, industrial, and quiet zones in Kanpur, India, before, during, and after the lockdown 
period10. While noise levels declined significantly in commercial zones during the lockdown, all other monitored 
areas exceeded India’s Central Pollution Control Board’s recommended noise thresholds. Similarly, Joshi and 
Pakhrial (2021) examined noise pollution in Dehradun, a Himalayan city, during lockdown, noting that noise 
levels across monitoring stations dropped fell well below the 60 dB standard23. Basu et al. (2021) analyzed data 
from 12 sound measurement stations in Dublin, Ireland. Their statistical analysis revealed significant reductions 
in noise levels due to traffic movement restrictions during lockdown24. Rumpler et al. (2021) employed statistical 
analysis and linear regression on sound sensor data in a crowded place in Stockholm, Sweden from mid-April 
2019 to the end of June 202025. Despite a few limitations in government measures during the pandemic, their 
study indicated a decrease in noise levels. In another study, Munoz et al. (2020) analyzed sound data from 21 
continuous monitoring stations across five towns in southern France throughout the lockdown period. They 
compared these measurements with pre-lockdown values. Results indicated a decrease in noise levels from 6 to 
4 dB in settlements situated near busy roads26. Although these studies provide useful information about noise 
levels changes under quarantine conditions, it remains unclear how such changes occur in cities with specific 
characteristics and challenges, such as Mashhad, Iran.

Mashhad, located in the northeast of Iran, is at the center of this research. As a major pilgrimage center that 
attracts millions of visitors annually, Mashhad has witnessed an increase in human activities compared to many 
Iranian cities27. Crowded streets, filled with people and vehicles, undeniably contribute to increasing ambient 
noise levels28. However, the urban landscape of Mashhad underwent a significant transformation during the 
COVID-19 pandemic. The strict quarantine measures imposed in March 2020 led to a significant reduction 
in street-level human activity. This temporal shift provided a valuable opportunity to explore the relationship 
between human presence and noise pollution22,29. Therefore, this research aimed to investigate the impact of 
COVID-19 quarantine on urban equivalent continuous sound level (Leq) in Mashhad city. To achieve this 
goal, a dual strategy combining statistical analysis and machine learning method was employed. The primary 
strategy involved comparing Leq measured before (March 21 to April 20, 2019) and during (March 20 to April 
19, 2020) the COVID-19 quarantine period. This direct comparison, using the Wilcoxon signed-rank test, allows 
us to evaluate statistically significant changes in Leq resulting from the implementation of lockdown measures. 
The Wilcoxon signed-rank test was chosen for its suitability for paired data and its robustness in dealing with 
potentially non-normally distributed data such as noise pollution data. Using this test, reliable statistical findings 
were obtained by determining whether the observed fluctuations in Leq over the two time periods are statistically 
significant or simply the result of chance. This approach is in line with previous studies that have successfully 
used the Wilcoxon signed-rank test to assess changes in noise levels and other environmental factors during 
the COVID-19 outbreak. For example, Caraka et al. (2021) and Velastegui-Montoya et al. (2023) used this test 
to analyze noise levels in Taiwan and Guayaquil, Ecuador, respectively30,31. Additionally, other researchers have 
utilized this test to analyze other environmental factors, such as hospital noise32, subjective noise responses33, 
and human perception of environmental sounds34. These studies demonstrate the ability of the Wilcoxon test 
to analyze paired data, specifically skewed data that is often present in environmental studies32–34. It is worth 
noting that, the present study is the first to use the Wilcoxon signed-rank test to investigate urban noise pollution 
in Mashhad during the COVID-19 quarantine period, providing important information about the impact of 
reduced human activities on the city’s soundscape.

In the second approach, a powerful machine learning method, random forest (RF) algorithm was used to 
create a noise-level forecasting model. Machine learning methods such as RF and support vector regression 
perform excellently in analyzing complex environmental noise patterns due to their ability to recognize 
nonlinear relationships between noise levels and other environmental influencing factors35–40. In particular, RF 
has shown great potential in this area. Liu et al. (2020)36 showed superiority of RF over traditional methods 
for noise estimation, while Liu et al. (2021)37 employed RF to develop high-resolution noise maps. Fan and 
Signorelli (2024) successfully applied RF to predict repeat noise complaints to highlight the wide application 
potential of RF41. Moreover, the strength of RF in analyzing complex environmental datasets, including noise 
and temporal data in diverse contexts like COVID −19 pandemic has been demonstrated in studies like Ren et 
al. (2024)42, and Manzella et al. (2021)43. Unlike previous studies, the present research develops the RF model 
by utilizing temporal factors such as month, day, hour, and cumulative hours, as well as the pre-lock noise 
measurements. This approach provides a new way to capture the short-term effects of human activity patterns 
on noise pollution dynamics during the COVID-19 lockdown period. By combining these factors, the RF model 
can learn complex patterns and relationships that traditional methods may ignore. The effectiveness of this 
model will be evaluated based on its performance metrics, such as R-squared (R2), mean absolute error (MAE) 
and root mean squared error (RMSE).
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This localized case study contributes to the limited knowledge about noise dynamics in developing countries 
by analyzing noise pollution in Mashhad during the COVID-19 quarantine. The main motivation of this 
research is the need to understand changes in Mashhad’s urban soundscape after the COVID-19 pandemic by 
implementing machine learning techniques. While this study focuses on a specific context, it provides valuable 
insights by analyzing the relationship between human activities, urban environments, and environmental quality 
during a period of significant social change. As a regionally focused case study, its findings provide practical 
recommendations for local urban planners and policymakers to develop effective noise management strategies 
and improve the acoustic environment for residents in similar urban settings.

Materials and methods
This section provides an overview of the methods used to analyze the impact of COVID-19 quarantine on urban 
noise pollution levels in Mashhad, Iran. It begins by discussing study area, station selection and data acquisition, 
and then describes the Leq measurement equipment at fixed monitoring stations. Subsequently, a statistical 
approach using the Wilcoxon signed-rank test is employed to assess the differences in Leq before and during 
the quarantine. Furthermore, a machine learning approach is introduced, where a RF model is developed to 
predict Leq based on pre-lockdown data and temporal factors. Hyperparameter tuning and model evaluation 
criteria are presented at the end of this section. The complete workflow of this study adapted from Das et al. 
(2021)44 showing the step-by-step methodology from data collection to analysis and prediction. This workflow 
is presented in Fig.1 to provide a clear visual understanding of the process.

Study area
Mashhad is the capital of Razavi Khorasan province in northeastern Iran, with coordinates of 36°16’N and 
59°38’E. The map of Mashhad and the location of monitoring stations in this metropolis are shown in Fig. 2. 
Mashhad is Iran’s second most populous city after Tehran. According to the 2014 census, Mashhad, covering 
about 315 square kilometers, had a population of around 3,001,184. Notably, owing to the existence of the shrine 
of the 8th Shiite Imam, the city annually hosts over 30 million visitors45.

(Fig.2a) was created using QGIS software version 3.40.3 (https://qgis.org) with administrative boundary data 
sourced from the GADM database- GADM’s licensing terms can be accessed directly at: ​h​t​t​p​s​:​/​/​g​a​d​m​.​o​r​g​/​l​i​c​e​n​
s​e​.​h​t​m​l​​​​​; Fig 2b,c were created by OpenStreetMap data (accessed May 2025, ​h​t​t​p​s​:​/​/​w​w​w​.​o​p​e​n​s​t​r​e​e​t​m​a​p​.​o​r​g​/​#​m​
a​p​=​4​/​3​9​.​0​3​/​3​5​.​2​5​​​​​) and Python program (version 3.12.7).)

Station selection and data acquisition
Noise pollution data were obtained from the Urban Pollutants Monitoring Center of Mashhad Municipality, 
which is in charge of city-level environmental surveillance. Although, five fixed sound monitoring stations have 
been installed in the city of Mashhad by this center, only 4 of which were selected during the study period. These 
stations include 15 Khordad Square, Chaman-Mosalla Intersection, Mofatteh-Tabarsi Intersection, and Shohada 
Intersection, all of which are located at key urban intersections (Fig.  2 and Table 1). The main criterion for 
selecting these stations was the completeness and reliability of the data, which is essential for valid comparative 
analysis. Pre-pandemic data from some stations were restricted due to equipment failures, power outages, 
calibration issues, and inadequate infrastructure. Furthermore, geopolitical restrictions and sanctions limited 
access to advanced noise monitoring equipment, replacement parts, and analytical tools impacting data quality 
and long-term research efforts. Particularly, two monitoring sites (Chaman-Mosalla Intersection and Mofatteh-
Tabarsi Intersection) lacked complete full year pre-pandemic data, limiting the analysis to the March–April 2019 
period, when data collection was more consistent. Accordingly, for reliable comparative analysis, an equal one-
month March–April 2020 duration time frame for pandemic has been chosen.

Aside from data quality concerns, the stations were chosen based on their strategic urban importance and 
land-use representation. The surrounding environment within a 1-km radius of each station was taken into 
account, given the influence of land use on noise pollution. This allow the present study to effectively capture the 
initial patterns of noise changes in Mashhad’s urban fabric during the lockdown. Table 1 includes information 
on industrial zones, airports, railroads, commercial centers, and construction activities. Table 2 also provides 
a summary of the geographical coordinates of major intersections in Mashhad. As Table 1 explains, the 
selected intersections are located in mixed-use areas that include administrative, religious, transportation, and 
commercial-residential areas. Even though this study does not cover all land use types in Mashhad, such as purely 
industrial zones or suburban residential areas, the selected typology still reflects the city’s main urban patterns. 
Thus, the chosen intersections can be considered representative of the primary urban fabric that generates noise 
under both normal and lockdown conditions. This targeted selection aligns with international best practices in 
urban environmental research. Recent COVID-19 lockdown studies have similarly focused on monitoring noise 
levels in high-traffic areas, city centers, and major intersections to better capture changes caused by lockdowns. 
These studies found that the greatest reductions in noise occurred in these high-traffic and central areas, while 
changes in low-traffic or suburban areas were significantly smaller. This demonstrates the scientific value of well-
chosen monitoring locations20,24,46,47. The complete hourly Leq datasets for every monitoring station during the 
pre-lockdown and lockdown periods are provided in Supplementary File 1.

Leq measurement equipment at fixed monitoring stations
At the study stations, a NOR140 sound level meter equipped with a NOR1216 microphone, manufactured by 
Norsonic (Norway) was used to measure noise levels. This device complies with EPA and WHO standards 
(ANSI S1.4 for sound level meters and IEC 61672 Class 1 for noise measurement equipment). It was capable 
of measuring sound levels across a dynamic range from 15 dB to 137 dB, with options for 1/1 and 1/3 octave 
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frequency bands (0.4 Hz to 20 kHz). For this study, the system was set up with an A-weighted frequency network, 
fast response speed, and a frequency range of 30–130 dB for hourly noise measurements.

According to WHO guidelines (1999), microphones should be placed 1.2 to 1.5 meters above the ground 
and at least 3.5 meters away from reflective surfaces. However, in this study, to address several key concerns, 
the microphones were positioned 4 meters above the ground at the fixed monitoring stations, rather than at 
the 1.2–1.5 meters recommended by WHO (1999). These concerns include contamination from intermittent 
human and vehicular movement, minimizing the impact of ground-level reflections, capturing a stable, 
integrated environmental noise signature at busy intersections, and reducing potential interference from nearby 
structures or activities. While the microphones’ placement in this study differs from WHO’s (1999) guidelines, 
other international standards such as ISO 1996-2:2017, Acoustics – Description, measurement and assessment 
of environmental noise – Part 2 allow for adjustments in microphone height to improve measurement accuracy 

Fig. 1.  The study framework to assess the influence of covid-19 lockdown measures on noise pollution in 
Mashhad.
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in challenging urban environments48. Similarly, the U.S. Environmental Protection Agency (EPA, 1974) permits 
microphone positioning up to 5 meters in complex urban settings to capture a more stable and representative 
ambient sound level49. Mashhad’s fixed sound monitoring stations are located at the city’s main intersections, 
which are frequently characterized by high levels of vehicular and pedestrian traffic, a lot of commercial activity, 
and numerous reflective surfaces (like storefront windows, traffic signs, billboards, and parked cars), all of which 
deviate from the ideal conditions assumed in WHO’s (1999). In such an environment, placing microphones at 
1.2 to 1.5 meters apart increases exposure to short-distance, low-level transient noise and ground reflections, 
creating significant measurement errors  (such as transient, reflective, and interfering noises).  Studies such 
as Caraka et al. (2021), Rumpler et al. (2021), and Gonzalez et al. (2020) have shown that selecting a higher 
microphone placement (e.g., 4 meters) helps to minimize these effects and improves measurement accuracy in 
urban settings25,30,50.

The microphone sensor was further protected from air currents and weather conditions using an absorbent 
sponge. Fig. 3 shows the measurement setup and surrounding environment at fixed sound measurement stations. 
It should also be noted that no significant background noise from particular sources was present at any of the 
stations, as this factor was carefully considered during the site selection process. However, rainfall occurred on 
March 20–22, 2020, which might have had a minor impact on the recorded Leq.

Instruments were calibrated before each monitoring period using a Class 1 acoustic calibrator (94 dB at 1000 
Hz), following IEC 60942 and the manufacturer’s instructions. Post-measurement calibration checks confirmed 
the instrument’s stability and showed no significant drift. The estimated combined measurement uncertainty 

Fig. 2.  Study area and location of monitoring stations (Source: created by authors).
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(device accuracy, environmental conditions, and microphone positioning) was below ±1 dB which is consistent 
with accepted environmental noise monitoring limits.

The device was set to record sound levels automatically at regular intervals. Data acquired included 
essential characteristics such as Leq, maximum sound levels (Lmax), and minimum sound levels (Lmin). Leq 
represents the average sound energy over a specified period, which is used as the primary metric for assessing 
environmental noise. To preprocess the recorded noise data, Norsonic’s software was used to extract the data 
from the NOR140 device and export it into Excel format. A sample output file from the sound level meter, along 
with the instrument’s technical specifications, is provided in Supplementary Files 2 and 3.

Data analysis
Strategy 1- Wilcoxon signed-rank test
To compare the levels of noise pollution before and during the lockdown, a preliminary comparative analysis 
was conducted. A non-parametric substitute for the paired t-test - the Wilcoxon signed-rank test- was therefore 
used to determine whether or not the variations in Leq between these periods were statistically significant. Each 
monitoring station produced 1,426 paired data points by providing 713 hourly Leq measurements for the pre-
lockdown month and 713 for the during-lockdown month, ensuring no missing data during the analysis period, 
validated the usage of the Wilcoxon signed-rank test for all stations. In order to avoid artificial bias, the Wilcoxon 
signed-rank test was performed using only reliable and uninterrupted measurements, without any extrapolation 
or imputation.

Prior to comparative analysis, the Shapiro–Wilk test of normality was assessed to show significant deviations 
from normality (p < 0.05) across all datasets. This test is necessary to confirm the application of the Wilcoxon 
signed-rank test as a non-parametric approach.  Other nonparametric tests, such as the Mann–Whitney U 
test are not appropriate for the paired measures in this study because they are made for independent samples. 
The Wilcoxon signed-rank test compares the means of two dependent groups at a significance level of 5%. 
Equation (1) provides the test statistic Z for the Wilcoxon signed-rank test, where n is the reduced sample size, 
excluding any differences of zero.

Station name X coordinate Y coordinate

15 Khordad Square 733,452.297 4,016,854.629

Chaman-Mosalla Intersection 736,193.717 4,017,728.706

Moffatteh-Tabarsi Intersection 736,484.193 4,020,351.634

Shohada Intersection 734,400.988 4,019,727.537

Table 2.  Geographical coordinates of major intersections in Mashhad, Iran.

 

Number Land Use Type

Station name

15 Khordad square Chaman-mosalla intersection Moffateh-tabarsi intersection Shohada intersection

Area (square meters)

1 Residential 1,463,311.00 1,362,322.09 719,712.00 1,275,854.00

2 Administrative 77,880.00 4,643.00 111,941.00 40,882.00

3 Educational 104,218.00 132,947.00 67,805.00 87,597.00

4 Commercial-residential 33,434.00 868.00 11,436.00 93,286.00

5 Commercial 167,274.00 39,990.00 24,821.00 110,995.00

6 Religious 34,447.00 - - 23,316.00

7 Medical-healthcare 43,582.00 14,634.00 16,830.00 28,814.00

8 Recreational-sports 452,701.00 143,616.00 16,627.00 26,160.00

9 Hotel-guest house 1,595.00 - - 5,484.00

10 Tourist-hospitality 12,954.00 - - 1,597.00

11 Municipal facilities 57.00 - - 758.00

12 Transportation and warehousing 9,999.00 - 69,734.00 5,701.00

13 Agricultural - - - 93.00

14 Green space 2,854.00 - - 9,423.00

15 Cultural-historical 64,308.00 8,095.00 1,657.00 -

16 Unspecified 13,707.00 235,969.00 13,814.00 242,199.00

17 Other 18,714.0 352.00 495,422.00 -

Table 1.  Existing land use area within a 1000-meter radius of static sound emission stations in mashhad 
city (source: mashhad municipality urban pollutant monitoring center).
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W S denotes the smaller in absolute value of the signed ranks for a two-tailed test, the sum of the positive ranks 
for a left-tailed test, or the sum of the negative ranks for a right-tailed test51.

Strategy 2- Random forest model
The second strategy for predicting noise pollution levels was to use a Random Forest regression model. This 
method is widely used in ensemble machine learning because it is highly effective at predicting continuous 
numerical values. RF was selected as the modeling method due to its ability to handle large datasets, its robustness 
against overfitting, and its suitability for time-structured environmental data52. These qualities, especially its 
capacity to handle complex relationships between the output variable and its features, make it a suitable option 
for estimating noise pollution37. Furthermore, it has been shown to perform better than land use regression 
models in capturing the spatial variability of noise levels36. An RF regression model creates multiple decision 
trees by randomly selecting features and subsets from the dataset. Each tree produces a separate forecast, and 
the final result is calculated by averaging the outputs of all the trees53. Fig. 4 provides an illustration of how 
an RF model integrates multiple decision trees to generate a final prediction for a given input. The RF model 
utilized in this study was developed using Python and the scikit-learn library, which provides robust capabilities 
for developing and evaluating models. To enhance data presentation, Excel was utilized to produce clear and 
understandable graphics.

In the past, RF models have been widely employed for environmental forecasting, including the prediction 
of noise pollution and air quality36,54–56. These studies show how RF models are suitable for handling complex 
environmental data, such as those analyzed in this paper, and how well they manage such data. Although RF is 
widely used in environmental modeling, this study did not aim to present a novel machine learning approach. 
Instead, RF was used as a baseline to capture noise patterns before the COVID-19 lockdown. The model was 
trained on pre-lockdown data using only temporal variables, which allowed it to capture typical noise patterns. 
Deviations from this baseline during the lockdown period were then analyzed as evidence of behavioral and 
mobility changes, rather than as forecasting errors per se. In this context, RF was not used as a forecasting tool 
but rather served as a diagnostic tool to detect changes in urban activity patterns during lockdown. Further 
modeling details of RF are described in the next subsection.

Data preprocessing and modeling details
We first meticulously preprocessed the historical Leq data to ensure data quality and improve the RF model’s 
forecast accuracy. During this step, the data were screened to identify and eliminate any inaccurate readings that 

Fig. 3.  Measurement and surrounding environment at fixed sound measurement stations.

 

Scientific Reports |          (2026) 16:134 7| https://doi.org/10.1038/s41598-025-29011-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


might have been caused by equipment malfunctions, unexpected environmental disturbances, or power outages. 
The statistical techniques were used to identify and eliminate outliers, such as abnormally high or low Leq 
inconsistent with normal environmental conditions. We identified and removed outliers using the Interquartile 
Range (IQR) method. Specifically, we considered the values outside of the range of Q1 − 1.5 × IQR to Q3 + 1.5 × 
IQR (Q1 and Q3 represent the 25th and 75th percentiles, respectively) as outliers57. This resulted in the removal 
of approximately 0.33% of the total data points, a negligible amount that does not affect the representativeness or 
statistical integrity of the dataset. Following common practice in time-series research, we removed these outliers 
and imputed missing values using the mean of the neighboring data points15. This cleaning process ensured that 
the percentage of missing and omitted data for the entire Leq dataset remained below 1%. Fig. 5 illustrates how 
data from almost a year before the lockdown was used to train the RF model. The Leq values ranged from 58.8 
dB to 80.8 dB, with an average of 70.47 dB.

To effectively analyze how Leq changed before and during the COVID-19 lockdown, we chose to focus our 
modeling on the Shohada monitoring station. This decision was based on both the quality and completeness 
of its data. Compared to other stations, Shohada provided the most reliable and consistent dataset. It included 
7,820 hourly Leq measurements, covered a longer period than that used for the Wilcoxon test, and had very 
few missing values. In contrast, the other stations had substantial gaps—especially in the critical pre-lockdown 
period—making them unreliable for modeling. Although we considered using imputation techniques to fill in 
missing values, the extent and pattern of missingness at these stations were too irregular and exceeded acceptable 
thresholds, which could have compromised the validity of our results. As a result, we prioritized using high-

Fig. 5.  Training data used for implementation of random forest model.

 

Fig. 4.  Integration of multiple trees within the random forest algorithm.
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integrity data from a single, dependable source over including more locations with weaker datasets. Beyond 
its data quality, the Shohada station is located in a busy urban district near the Imam Reza Holy Shrine, an 
area known for constant human activity, even during times of restricted movement. This made it a particularly 
insightful setting to assess the impact of lockdowns on urban noise, especially in a place where reductions might 
be less pronounced. Focusing on one high-quality station also allowed us to maintain a consistent and coherent 
analysis, minimizing variability and strengthening the overall reliability of our findings. The decision to use 
Shohada station was, therefore, not only practical but also methodologically sound and aligned with the goals 
of this study.

Although traffic volume, weather, and mobility data are known to influence urban noise levels, these 
variables were intentionally excluded from the RF model to maintain the counterfactual framework of this 
study. In this context, a counterfactual framework simulates a hypothetical scenario in which pre-lockdown 
conditions continued uninterrupted. The RF model was exclusively trained on pre-lockdown data, collected 
from March 21, 2019, to March 19, 2020, using temporal input features such as month, day, hour, and cumulative 
hour, with Leq as the target output. This setup was designed to simulate noise level predictions during the first 
ten days of lockdown period (March 20 to March 30, 2020) based on the assumption that temporal patterns 
remained consistent. The model architecture was intentional, as our goal was to establish a baseline of pre-
pandemic patterns, not to develop a general-purpose model for predicting noise under different conditions. 
Although we did not include traffic volume, weather, or mobility data as features, this decision was consistent 
with our modeling strategy. This design ensures that the observed discrepancy between predicted and actual Leq 
values serves as indirect evidence of the lockdown’s effect on noise independent of short-term variations such 
as weather.

The ability of the RF model to predict Leq values was examined by using walk-forward time-series cross-
validation with an expanding training window and a fixed validation horizon of 73 days (20% of the pre-
lockdown period). In this setup, the model was trained on all available data up to the day before each validation 
window and tested on the subsequent 73 days, with the window advancing by 12 days in each of ten folds. After 
completing cross-validation, the model was retrained on the entire pre-lockdown dataset and used to generate 
counterfactual predictions for the lockdown period (March 20–30, 2020).

To avoid data leakage and ensure the model predicted future values based on historical patterns, we kept the 
data in its original chronological order. The average performance metrics across all iterations provided a reliable 
assessment of the model’s overall performance. We also developed a simpler linear regression model, using the 
same time-based inputs, to predict Leq levels as a baseline for comparison. This comparison tested whether the 
RF model, which captures complex patterns, outperformed the simpler linear regression model.

Hyperparameter tuning and model training
We improved the RF model’s performance using time-series cross-validation and hyperparameter tuning. This 
procedure required careful adjustment of key hyperparameters affecting the model’s learning, including the 
number of trees (n_estimators), the maximum depth of each tree (max_depth), and the random seed (random_
state). To increase the model’s prediction accuracy and generalizability, the goal was to identify the optimal 
parameter configuration for the dataset.

The number of trees in the RF model is determined by then_estimators option. More trees generally result 
in more accurate predictions, but they also need more processing power. Each tree’s maximum depth is set 
by the max_depth, which helps to balance catching intricate patterns in the data with lowering the chance of 
overfitting. Setting a fixed random_state ensures reproducibility and enables the model to produce consistent 
outcomes during several rounds15.

We achieved the model’s optimal configuration by carefully adjusting the hyperparameters across a number of 
iterations. We assessed performance using time-series cross-validation, which preserves the chronological order 
of the data. This method sequentially separates the dataset into training and validation sets while maintaining 
its temporal structure, ensuring that the model is tested on unseen data with time-based patterns similar to real-
world scenarios. This approach provides a trustworthy assessment of the model’s ability to generalize to new 
data, particularly for datasets with temporal dependencies.

Table 3 presents the final configuration of the RF model, determined through hyperparameter tuning 
and time-series cross-validation. Evaluating performance on temporally consistent data subsets significantly 
enhanced the model’s predictive accuracy while reducing the risk of overfitting.

Model evaluation metrics
We evaluated the effectiveness of the optimized RF model in predicting Leq using three common performance 
measures: MAE, RMSE, and R2 Table 3. These measures, described by Equations (2 - 5), numerically assess how 
closely the model’s predictions align with observed noise pollution data. Each metric provides unique insight 
into model performance.

Random forest hyperparameters Value

n_estimators 1000

max_depth 100

random_state 50

Table 3.  Final Random Forest Models Hyperparameters.
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The coefficient of determination, or R2, expresses how much of the variance in observed values (y) can be 
explained by the model’s predictions (f). Higher R2 values, up to 1, signify a better match between the model 
and the observed data. Here, y is the observed or real data, f is the predicted data that came from the model, n 
is the total number of data points that were utilized for validation, and y is the observed data’s overall mean58.

	
R2 = 1 − SSresidual

SStotal
� (2)

	
SSresidual =

∑
i

(yi − fi)2, SStotal =
∑

i

(yi − y)2
� (3)

The RMSE measures thaverage difference between the expected and actual Leq by squaring the errors, averaging 
them, and then taking the square root. Squaring is vulnerable to outliers since it magnifies greater errors. On the 
other hand, the MAE computes the average of the absolute discrepancies between predictions and actual values, 
ignoring their direction. Since MAE does not require squaring the errors, it is less vulnerable to outliers and 
provides a more robust measure when the data contains extreme values58.
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Results and discussion
This section presents a detailed examination of the research findings. We examined the Leq from pre-lockdown 
and lockdown period, using descriptive statistics. Furthermore, we compared noise pollution indices between 
these two periods at each monitoring station using the Wilcoxon signed-rank test. The results of the RF model 
used to predict Leq changes during the COVID-19 lockdown, are analyzed in the second part.

Descriptive statistics and statistical analysis
Table 4 presents the hourly Leq for the four monitoring stations from pre-lockdown and lockdown period, using 
descriptive statistics. The total number of Leq measurements taken at each station during each period is 713. 
The statistics show that the average hourly Leq in March-April 2019 ranged from 71.13 dB at the 15 Khordad 
Square station to 69.18 dB at the Mofatteh-Tabarsi station. All stations exceeded Iran’s Environmental Protection 
Organization’s threshold of 60 decibels for commercial-residential zones. Notably, the Moffatteh-Tabarsi station 
had the lowest average hourly Leq in both 2019 and 2020, while the highest values were found at the 15 Khordad 
and Shohada intersection stations (Table 4). However, these values still exceeded the permitted limit.

These findings are similar to previous studies conducted in Iran by Emamjomeh et al. (2010)59, Moasheri et 
al. (2012)60, and Yari et al. (2016)61, which emphasized the persistent problem of noise pollution in cities.

The violin plots were created to visualize the distribution of Leq at each monitoring station
(Fig. 6). Side-by-side violin plots complemented the descriptive statistics in Table 4 for examining the impact 

of the COVID-19 lockdown on noise pollution levels in Mashhad. These plots represent the distribution of Leq 
at each intersection. Wider sections of the violin plots indicate higher noise density, whereas narrower sections 
suggest lower probability. Python, along with libraries such as Matplotlib and Seaborn, was used to generate the 
plots. Furthermore, Excel was utilized to further process and refine the visual representation of the data.

Violin plots show several important observations. Notably, the quartiles (dotted lines at Q1 and Q3) and 
the median (dashed line) for all four intersections appear to be lower during the lockdown period compared 
to the pre-lockdown period. For example, the average Leq in 15 Khordad Square station decreased from 71.13 
dB before the lockdown to 70.65 dB during the lockdown. This indicates a possible decrease in Leq citywide 
as a result of less human activity during the lockdown. Moreover, violin plots offer a way to gain insight into 

Station name Time frame

Statistical measures

Mean Std. deviation Minimum Maximum

15 Khordad square
Pre-lockdown 71.13 3.49 60.20 81.80

Lockdown 70.65 3.42 60.46 78.03

Chaman-mosalla intersection
Pre-lockdown 70.02 3.67 58.70 77.60

Lockdown 69.19 2.93 60.37 75.69

Moffatteh-tabarsi intersection
Pre-lockdown 69.18 3.50 57.80 75.50

Lockdown 65.23 3.91 53.29 73.10

Shohada intersection
Pre-lockdown 70.48 2.768 61.90 76.50

Lockdown 70.40 2.769 61.82 76.34

Table 4.  Hourly Leq amount in April 2019 and 2020 in four study intersections.
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fluctuations in Leq. In some cases, narrower violin plots are observed during the lockdown period compared to 
the pre-lockdown period. This could suggest a reduction in Leq during lockdown, indicating a more consistent 
noise environment.

The Wilcoxon signed-rank test, a nonparametric statistical test, was used to assess the statistical significance 
of observed differences in Leq between two periods. By examining the descriptive statistics, interpreting the 
violin charts, and performing the Wilcoxon signed-rank test, we can comprehensively understand the impact of 
reduced human activities on the noise pollution levels of Mashhad.

Wilcoxon signed-rank test
We conducted the Shapiro-Wilk test for each station and period to assess the normality of the hourly Leq 
distributions (sample size n = 713 per group). The results revealed the significant deviations from normality 
across all stations (p < 0.05), justifying the use of Wilcoxon signed-rank test as a non-parametric method. For 
instance, the pre-lockdown period at the 15 Khordad Square, had W = 0.836 (p < 0.001), while the lockdown 
period had W = 0.959 (p < 0.001). Other intersections showed similar results, with all p values less than 0.05 
Table 5.

The Wilcoxon signed-rank test was utilized to compare hourly Leq between the pre-lockdown and lockdown 
periods at each monitoring station. The results revealed a statistically significant difference in Leq between these 
periods at all four monitoring stations (p < 0.05). This significance is evident from the Asymptotic Significance 
(Asymp. Sig.) values in Table 6, which are all less than 5%. Moreover, the confidence intervals, at 95% for the 
difference in Leq between the two time frames do not include zero (refer to Table 6), providing additional 
evidence for this conclusion.

In general, the findings suggest that the average Leq at all stations in April 2020 (during the COVID-19 
lockdown) was considerably lower than during the same period in 2019 (before the lockdown). In particular, 

Station name Time frame

Shapiro–Wilk

Statistic df Sig

Chaman-mosalla intersection
Pre-lockdown 0.815 713 0.000

Lockdown 0.905 713 0.000

15 Khordad square
Pre-lockdown 0.836 713 0.000

Lockdown 0.959 713 0.000

Moffatteh-tabarsi intersection
Pre-lockdown 0.836 713 0.000

Lockdown 0.959 713 0.000

Shohada intersection
Pre-lockdown 0.901 713 0.000

Lockdown 0.901 713 0.000

Table 5.  The Shapiro–Wilk Normality Tests of Leq at Various Monitoring Sites in Mashhad in 2019 and 2020.

 

Fig. 6.  Violin plots of leq at monitoring stations.
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decreases in Leq were seen at Moffatteh-Tabarsi (3.95 dB), Chaman-Mosalla (0.83 dB), 15 Khordad (0.48 dB), 
and Shohada (0.08 dB) intersections (Table 4). The reduction in noise from traffic during the pandemic and 
lockdowns aligns with research conducted in Rome62, Argentina63, and Stockholm64.

Nonetheless, the Shohada intersection had the smallest reduction in Leq compared to the other stations. 
The noise reduction at this intersection may result from its proximity to both Imam Reza Shrine and Shohada 
Square (a main square of the city), located about 500 meters away. Concern about contracting COVID-19 within 
the middle to upper-middle-class population likely led to a shift from public transport to private vehicle use 
during the lockdown. Eight out of thirteen urban areas in Mashhad have strong communities located near the 
city center and the Imam Reza Shrine. Therefore, even though the shrine is closed, residents can still drive their 
own cars for pilgrimage, which will reduce the Leq at the Shohada intersection. In addition, the closure of hotels 
and guest houses near the shrine may not lead to a significant reduction in Leq. Local residents may have rented 
accommodations to pilgrims, resulting in continued activity and a slight reduction in noise compared to other 
stations. This finding aligns with Rumpler et al. (2021) who found that noise reduction was lower on weekends 
compared to weekdays25.

Despite the decreases noted,  the average Leq at all stations during April 2020 (lockdown period) still 
surpassed the permissible limit of 60 dB set by the Iranian Environmental Protection Agency for residential-
commercial areas (Table 4). Different environmental factors contribute in this continuous noise pollution. Some 
factors are weather conditions (such as rain and strong winds in early April 2020), narrow roads (like Shirazi 
Street near Shohada Square), poor asphalt quality (seen at most stations), absence of vegetation (particularly in 
Chaman-Mosalla and Moffatteh-Tabarsi), crowded buildings, and commercial hubs (like Shohada intersection). 
These findings are consistent with the research of Alsina-Pags et al. (2021) and Rodríguez et al., (2022)64,65.

In summary, the COVID-19 lockdown led to a notable decrease in noise pollution levels at every monitoring 
site. Nevertheless, these decreases were insufficient to lower Leq below the allowable threshold. Given the 
influence of different environmental factors, additional measures are required to eliminate noise pollution in 
Mashhad.

Random forest model performance
Following validation using a time series cross-validation technique with 10 folds and an 80% training size, the 
RF model performed well. The average R2 value for these folds was 0.914, with a standard deviation of 0.013. 
This result indicates a well-tuned and precise model capable of capturing the underlying relationships within the 
data. Also, the RF model’s feature importance analysis revealed that “hour” had the highest relative importance 
(0.750), followed by “cumulative hour” (0.199), “day” (0.039), and “month” (0.012). This indicates that short-
term diurnal cycles had the strongest correlation with Leq values. The high accuracy of the model (average R2 
> 0.914, low RMSE and MAE) confirms valid and statistically significant results of this study even with a short-
term focus.

Although the study period was limited to March–April of 2019 and 2020, the purpose of the study was to 
examine short-term noise changes during the COVID-19 lockdown rather than the long-term seasonal patterns. 
This period served as a natural experiment, allowing the evaluation of Leq variations by time-related factors 
(month, day of the week, hour) under exceptional conditions. Despite the short time frame the dataset included 
7820 hourly Leq observations which is considered a sufficient and reliable volume for machine learning analysis. 
Furthermore, 10-fold time series cross-validation maintained temporal regularity, prevented data leakage, and 
provided a robust estimate of model performance.

These findings support the validity and scientific relevance of our approach, and confirm the model’s ability 
to capture significant patterns from data even with the limited time frame. This short-term approach is also 
consistent with studies such as Asensio et al. (2020)20, Basu et al. (2021)24, and Ahmed et al. (2021)66.

Fig. 7 visualizes the model’s performance on a single validation fold. The red points represent predicted values 
for unseen data by the final RF model, while the blue line represents all training data. As shown in the figure, 
the RF model accurately forecasts unseen data points. In addition to the time series prediction shown in Fig. 7, 
residual analysis was performed to evaluate the distribution of prediction errors. Fig. 8 presents the residual plot, 
which illustrates the relative difference between predicted and actual Leq values for the same validation fold. The 
vertical axis shows the residual percentage, calculated as (Predicted - Actual)/Actual 100, while the horizontal 
axis corresponds to the index of each data point. The residuals are centered around zero with no strong pattern 
or bias, further confirming that the RF model performs consistently across different time segments and does not 
exhibit systematic over- or under-prediction. Moreover, the scatter plot of actual vs. predicted values is shown in 
Fig. 9. In this figure, the blue dots represent the predicted values, and the red line represents the trend line. If the 
predicted values are closer to the line, it indicates that the predictions are more accurate.

The linear regression model’s results, obtained using the same methods, showed significant variability 
(standard deviation 0.633) and an average R2 close to zero (−0.0254), underscoring its inability to capture the 

Test statisticsa

Station

15 Khordad square Chaman-mosalla intersection Moffatteh-tabarasi intersection Shohada intersection

Z −8.449 −11.473 −19.815b −22.795b

Asymp. Sig. (2-tailed) 0.000 0.000 0.000 0.000

Table 6.  The Wilcoxon signed-rank test of leq at various monitoring sites in Mashhad in 2019 and 2020. a 
Wilcoxon signed rank test. b Based on positive ranks
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complex and non-linear interactions between the predictors and the target variable. However, the RF model, 
by employing multiple decision trees, successfully captured these intricate patterns and achieved a significantly 
higher R2 value. This enhanced ability to generalize to unseen data shows how effective the RF model is for real-
world prediction applications.

Forecasting noise pollution during lockdown
After validating the model’s accuracy, it was used to forecast Leq data for the first ten days of the lockdown 
period (equivalent to the first ten days of the new year) at Shohada. As shown in Fig 10 the RF model’s prediction 
indicate that the lockdown had a relatively small impact on noise pollution levels in this station in Mashhad. The 
forecasted values for the first ten days closely reflect the observed data pattern during that period. Quantifying 
this effect, the average Leq forecast for this period was 73.09 dB, only 3.30% higher than the average of the 
observed data (70.75 dB). The predicted Leq values ranged from 67.85 dB to 75.20 dB, closely matching the 
observed range of 63.60 dB to 76.28 dB.

Comparison with other machine learning models
The performance of the RF model utilized in this study to predict noise pollution levels in Mashhad, Iran, 
was compared to results from similar studies using different machine learning models Table 7. These studies 
examined noise prediction in various locations worldwide, including the New Klang Valley, Malaysia35,66, Quito, 
Ecuador40, and Nicosia, Northern Cyprus67. Table 7 summarizes the performance measures reported in these 
studies, including R2, RMSE, and MAE.

As shown in Table 7 R2 values for various models in different studies range from 0.1894 to 0.914. The RF 
model in this study obtained the highest R-square value (0.914) compared to the models used in other places. 
This indicates a strong positive correlation between forecasted and observed Leq in Mashhad using this model. 
The reported RMSE values ranged from 0.1177 and 5.589. The RMSE of the RF model (0.967) was within this 

Fig. 8.  Visualization of residuals for random forest predictions on the same validation subset used for 
performance evaluation.

 

Fig. 7.  Random forest prediction of leq for one cross-validation subset.
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range, which indicates a reasonable level of accuracy in forecasting Leq. Similarly, reported MAE values ranged 
from 0.620 to 4.46, with the RF model’s MAE (0.620) showing its ability to predict Leq with a mean absolute 
error of 0.62 dB.

Beyond its predictive accuracy, a key advantage of the RF model lies in its efficient performance, characterized 
by lower computational costs and reduced data requirements, especially when compared to neural network 
models68. This makes RF a practical and robust choice for noise prediction tasks. The ensemble-based structure 
of the RF model helps sustain high predictive accuracy even with smaller datasets, as it demonstrates reduced 
susceptibility to overfitting. Moreover, the model requires fewer hyperparameters and less intensive tuning, 
which significantly decreases training time and computational resource needs.

These benefits are particularly valuable in real-time prediction scenarios, where rapid processing of sensor 
or field data is crucial. The RF model can efficiently handle incoming data streams, providing reliable insights in 
dynamic environments—an essential feature for applications like noise level forecasting. Its ability to generate 
fast and accurate predictions with modest data requirements underscores its practical utility.

Fig. 10.  Comparison of random forest model predictions with actual data during the initial ten days of the 
lockdown in shohada station in Mashhad.

 

Fig. 9.  Scatter plot of actual vs. predicted values for random forest model predictions on the same validation 
subset used for performance evaluation.
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Although deep neural networks may excel with very large or highly complex datasets, the RF model offers 
an effective balance between performance and efficiency69. This balance makes it especially suitable for small 
to medium-sized datasets, as demonstrated in the noise prediction tasks of this study. This study demonstrates 
that the RF model proves to be an efficient approach to investigating noise dynamics in local case studies. 
Although not aiming for global generalization, it is useful in providing insights for policy considerations, such 
as quarantines, that influence urban noise patterns. Due to the dataset’s small size and restricted geographical 
scope, the findings should be interpreted with caution and considered primarily as exploratory results in the 
specific context of this regional case study.

Comparing models from different studies directly can be challenging. This results from variations in factors 
such as data collection methods, data quality, and reported performance measures. However, considering 
the range of values observed in other studies, the performance of the RF model in this study highlights its 
effectiveness in predicting Leq in Mashhad. These findings suggest that machine learning can support dynamic 
noise monitoring and guide evidence-based urban planning beyond the COVID-19 pandemic. The COVID-19 
quarantine in Iran provided a unique opportunity to study urban noise dynamics under significantly reduced 
human activity, providing insights for future urban noise management. The clear link between reduced human 
activity and lower Leq indicates that urban planning can significantly reduce noise pollution even in normal 
conditions. These strategies include increasing public transport, developing pedestrian-only zones, and 
promoting active modes of transport to reduce the use of private vehicles. These results support the adoption 
of the low-traffic or car-free policies in crowded commercial and residential zones, as well as further efforts to 
encourage sustainable mobility options, including walking, cycling, and electric vehicles.

Additionally, the growing popularity of remote and hybrid work suggested a possible way to reduce Leq 
during peak hours that cities might incorporate into long-term mobility planning. Urban green infrastructure, 
including vegetative noise barriers and expanded green spaces can also reduce noise while improving air quality, 
thermal comfort, and mental health.

Furthermore, the successful application of the RF model in this study shows how machine learning facilitates 
dynamic, data-driven noise monitoring and policy development. These tools can help urban managers identify 
noise hotspots and deploy targeted, evidence-based interventions. Together, these insights provide a strong 
foundation for designing cities that are not only quieter and healthier, but also more resilient to future disruptions.

Limitation of the study
Although this research offers useful information on how the COVID-19 lockdown affected noise pollution levels 
in Mashhad’s main intersections, it is important to acknowledge several limitations. First, the analysis is based 
on data collected from fixed monitoring stations, which might not accurately represent noise fluctuations in all 
areas of the city. Although the current study may not fully represent residential, industrial, or suburban areas, 
it provides a solid foundation for understanding the dynamics of short-term urban noise. We suggest that the 
monitoring network be expanded in the future research to include a wider range of land use types. Moreover, 
the study period is relatively short, limited to March 21–April 20, 2019, and March 20–April 19, 2020 which may 
not fully reflect long-term trends or seasonal changes in noise pollution. This limitation was due to challenges 
such as equipment failures, inadequate infrastructure, and lack of pre-pandemic data for specific stations. These 
challenges were exacerbated by geopolitical barriers that limited access to advanced monitoring equipment. 
Furthermore, while the Wilcoxon signed-rank test and the RF model provide adequate statistical analyses, the 

Area Model* R2 RMSE MAE Reference

New Klang Valley, Shah Alam, Malaysia

RF 0.90 4.47 3.86

Adulaimi et al. (2021)35
SVM 0.88 4.89 4.30

DT 0.88 4.83 4.26

LR 0.88 4.79 4.46

New Klang Valley, Shah Alam, Malaysia

ANN 0.707 5.589 -

Ahmed et al. (2021)66CFS-ANN 0.688 3.272 -

Ensemble RF-ANN 0.835 2.378 -

Quito, Ecuador

MLR 0.1968 2.6554 -

Bravo-Moncayo et al. (2019)40SVM 0.1894 2.4914 -

ANN 0.3263 1.9133 -

Nicosia city, North Cyprus

FFNN 0.7840 0.1492 -

Nourani et al. (2020)67
ANFIS 0.8670 0.1177 -

SVR 0.7633 0.1570 -

MLR 0.6607 0.1880 -

Mashhad, Iran RF 0.914 0.967 0.620 This study

Table 7.  An overview of analogous studies and their respective validation outcomes in forecasting noise levels. 
*RF: Random forest, SVM: Support vector machine, DT: Decision Tree, LR: Linear regression, ANN: Artificial 
neural network, CFS-ANN: Correlation-based feature selection with artificial neural network, MLR: Multiple 
linear regression, FFNN: Feed forward neural network, ANFIS: Adaptive Neuro Fuzzy Inference System. A 
dash (-) indicates that the study did not include a particular metric in its analysis
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analysis does not explicitly consider other factors impacting Leq like shifts in traffic patterns, weather conditions, 
and human behavior. Finally, the findings of this case study may not directly generalizable to other urban areas 
or regions with different urban characteristics or lockdown measures. Despite these limitations, this study 
highlights the significance of improving infrastructure and developing international collaborations to improve 
long-term data collection efforts.

Conclusion
This study investigated how human activities affect noise pollution in Mashhad by studying the short-term noise 
level fluctuation at key intersections during the COVID-19 lockdown. A two-pronged approach was deployed. 
Initially, a statistical analysis was performed to compare the Leq data obtained during the pre-lockdown (March 
21-April 20, 2019) and lockdown (March 20-April 19, 2020) periods using the Wilcoxon signed-rank test. The 
analysis revealed a significant but modest impact of COVID-19 restrictions, particularly traffic limitations, on 
Leq in Mashhad. Our finding reveals that while Leq in Mashhad decreased during lockdown, the reduction was 
less pronounced compared to other regions. This demonstrate the impact of regional variables such as climatic 
conditions, vegetation cover, vehicle speed and type, asphalt quality, road width, and slope, and the number of 
speed bumps on the way environmental noise reacts to social disruptions.

Additionally, a predictive model utilizing a RF was developed to analyze localized patterns in urban noise 
dynamics. The RF model achieved a high R2 value (0.914), showing a significant positive relationship between 
forecasted and observed Leq. The model’s RMSE and MAE values (0.967 and 0.620, respectively) underscores 
the utility of machine learning techniques for understanding urban noise in a defined setting. Although our 
model is not designed for broad generalization, it establishes a reliable baseline for measuring noise deviation 
during the lockdown. Such insight is useful for localized noise management efforts as well as the future studies.

In conclusion, this study demonstrated that human activities play a major role in contributing to noise 
pollution in Mashhad. The findings emphasize the potential advantages of urban planning strategies that reduce 
traffic and noise generation.
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will be made available on request. Requests for data should be directed to Mitra Mohammadi at mitramoham-
madi@gmail.com.

Received: 11 November 2024; Accepted: 13 November 2025

References
	 1.	 Temtem, F. Soundscapes between the music of the city and the urban noise. Arte Imagen y Sonido 2, 74–95. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​0​

6​4​/​3​a​i​s​3​5​1​9​​​​ (2022).
	 2.	 Bala, M. & Verma, D. Investigation & examination of noise pollution—definition, sources, effects, monitoring and control. Int. J. 

Soc. Sci. 10, 182–207. https://doi.org/10.2139/ssrn.3640509 (2020).
	 3.	 Patel, R., Singh, P. K. & Saw, S. Traffic Noise Modeling under Mixed Traffic Condition in Mid-Sized Indian City: A Linear 

Regression and Neural Network-Based Approach. Int J Mathematical Eng Manag Sci 9(3), 411–434 (2024).
	 4.	 Morillas, J. M. B., Gozalo, G. R., González, D. M., Moraga, P. A. & Vílchez-Gómez, R. Noise pollution and urban planning. Current 

Pollution Reports 4(3), 208–219 (2018).
	 5.	 Buxton, R. T., Pearson, A. L., Allou, C., Fristrup, K. & Wittemyer, G. A synthesis of health benefits of natural sounds and their 

distribution in national parks. Proc. Natl. Acad. Sci. USA 118, e2013097118 (2021).
	 6.	 Alimohammadi, I., Kanrash, F. A., Abolghasemi, J., Vosoughi, S. & Chalak, M. H. Relationship between noise annoyance and 

cognitive performance in automotive workers exposed to chronic noise. J. UOEH. 41, 375–385. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​7​8​8​8​/​j​u​o​e​h​.​4​1​.​
3​7​5​​​​ (2019).

	 7.	 Araújo Alves, J., Neto Paiva, F., Torres Silva, L. & Remoaldo, P. Low-frequency noise and its main effects on human health—A 
review of the literature between 2016 and 2019. Appl. Sci. 10, 5205. https://doi.org/10.3390/app10155205 (2020).

	 8.	 Hahad, O. et al. Cerebral consequences of environmental noise exposure. Environ. Int. 165, 107306. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​e​n​v​i​
n​t​.​2​0​2​2​.​1​0​7​3​0​6​​​​ (2022).

	 9.	 Thompson, R. et al. Noise pollution and human cognition: An updated systematic review and meta-analysis of recent evidence. 
Environ. Int. 158, 106905. https://doi.org/10.1016/j.envint.2021.106905 (2022).

	10.	 Mishra, A., Das, S., Singh, D. & Maurya, A. K. Effect of COVID-19 lockdown on noise pollution levels in an Indian city—a case 
study of Kanpur. Environ. Sci. Pollut. Res. 28, 46007–46019 (2021).

	11.	 Tiwari, S. K., Kumaraswamidhas, L. A. & Garg, N. Assessment of noise pollution and associated subjective health complaints in 
Jharia Coalfield, India: A structural equation model analysis. Noise Mapping 10(1), 20220172 (2023).

	12.	 Patel, R., Singh, P. K., Saw, S. & Tiwari, S. Assessment and prediction of noise pollution–induced health impacts in urban 
environment: a structural equation modeling (SEM)–based approach. Arab. J. Geosci. 17(11), 1–17 (2024).

	13.	 Patel, R., Singh, P. K. & Saw, S. A modeling approach for suitability evaluation of traffic noise prediction under mixed traffic 
situation in mid-sized Indian cities. Innovative Infrastructure Solutions 9(6), 183 (2024).

	14.	 Perez, O. A., Delina, L. L. & Steuer, B. Behavioural responses to the COVID-19 pandemic and their implications for Sustainable 
Development Goals in Hong Kong. Cities Health. 8(2), 226–239. https://doi.org/10.1080/23748834.2024.2303566 (2024).

	15.	 Moezzi, S. M., Mohammadi, M., Mohammadi, M., Saloglu, D. & Sheikholeslami, R. Machine learning insights into PM2.5 changes 
during COVID-19 lockdown: LSTM and RF analysis in Mashhad. Environ Monit. Assess. 196(5), 453 (2024).

	16.	 Sohrabi, S. et al. Health impacts of COVID-19 through the changes in mobility. Sustainability. 15, 4095. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​s​
u​1​5​0​5​4​0​9​5​​​​ (2023).

	17.	 Lee, K. S. & Eom, J. K. Systematic literature review on impacts of COVID-19 pandemic and corresponding measures on mobility. 
Transp https://doi.org/10.1007/s11116-023-10392-2 (2023).

	18.	 Zhang, Z. et al. COVID-19, traffic demand, and activity restriction in China: A national assessment. Travel Behav. Soc. 31, 10–23. 
https://doi.org/10.1016/j.tbs.2022.11.001 (2023).

	19.	 Helmi, A. A., Romli, M. H. & Ezani, E. Influence of COVID-19 lockdown on noise level reduction: A scoping review with 
stakeholders’ consultation. MJMHS https://doi.org/10.47836/mjmhs.19.s14.16 (2023).

Scientific Reports |          (2026) 16:134 16| https://doi.org/10.1038/s41598-025-29011-4

www.nature.com/scientificreports/

https://doi.org/10.33064/3ais3519
https://doi.org/10.33064/3ais3519
https://doi.org/10.2139/ssrn.3640509
https://doi.org/10.7888/juoeh.41.375
https://doi.org/10.7888/juoeh.41.375
https://doi.org/10.3390/app10155205
https://doi.org/10.1016/j.envint.2022.107306
https://doi.org/10.1016/j.envint.2022.107306
https://doi.org/10.1016/j.envint.2021.106905
https://doi.org/10.1080/23748834.2024.2303566
https://doi.org/10.3390/su15054095
https://doi.org/10.3390/su15054095
https://doi.org/10.1007/s11116-023-10392-2
https://doi.org/10.1016/j.tbs.2022.11.001
https://doi.org/10.47836/mjmhs.19.s14.16
http://www.nature.com/scientificreports


	20.	 Asensio, C., Pavón, I. & De Arcas, G. Changes in noise levels in the city of Madrid during COVID-19 lockdown in 2020. J. Acoust. 
Soc. Am. 148(3), 1748–1755. https://doi.org/10.1121/10.0002008 (2020).

	21.	 Terry, C., Rothendler, M., Zipf, L., Dietze, M. C. & Primack, R. B. Effects of the COVID-19 pandemic on noise pollution in three 
protected areas in metropolitan Boston (USA). Biol. Conserv. 256, 109039. https://doi.org/10.1016/j.biocon.2021.109039 (2021).

	22.	 Aumond, P., Can, A., Lagrange, M., Gontier, F. & Lavandier, C. Multidimensional analyses of the noise impacts of COVID-19 
lockdown. J. Acoust. Soc. Am. 151(2), 911–923. https://doi.org/10.1121/10.0009324 (2022).

	23.	 Joshi, K. K. & Pokhriyal, E. A. Impact of coronavirus on noise pollution in the Himalayan city of Dehradun: A case study. Res. Rev. 
Res. J. Biol. 9, 3 (2021).

	24.	 Basu, B. et al. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin. Ireland. Sustain. Cities 
Soc. 65, 102597. https://doi.org/10.1016/j.scs.2020.102597 (2021).

	25.	 Rumpler, R., Venkataraman, S. & Göransson, P. Noise measurements as a proxy to evaluating the response to recommendations in 
times of crisis: An update analysis of the transition to the second wave of the COVID-19 pandemic in Central Stockholm. Sweden. 
J. Acoust. Soc. Am. 149(3), 1838–1842. https://doi.org/10.1121/10.0003778 (2021).

	26.	 Munoz, P. et al. Lockdown during COVID-19 pandemic: Impact on road traffic noise and on the perception of sound environment 
in France. Noise Mapp. 7(1), 287–302. https://doi.org/10.1515/noise-2020-0024 (2020).

	27.	 Romina, I., Jafari, M. & Kalhor, M. Investigating geopolitical factors of religious cities (case study: Mashhad City). PalArch’s J. 
Archaeol. Egypt/Egyptol. 18, 3342–3363 (2021).

	28.	 Gheibi, M., Karrabi, M., Latifi, P. & Fathollahi-Fard, A. M. Evaluation of traffic noise pollution using geographic information 
system and descriptive statistical method: A case study in Mashhad Iran. Environ. Sci. Pollut. Res. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​1​3​5​
6​-​0​2​2​-​1​8​5​3​2​-​4​​​​ (2022).

	29.	 Ulloa, J. S. et al. Listening to cities during the COVID-19 lockdown: How do human activities and urbanization impact soundscapes 
in Colombia?. Biol. Conserv. 255, 108996. https://doi.org/10.1016/j.biocon.2021.108996 (2021).

	30.	 Caraka, R. E. et al. Did noise pollution really improve during COVID-19? Evidence from Taiwan. Sustainability. 13, 5946. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​s​u​1​3​1​1​5​9​4​6​​​​ (2021).

	31.	 Velastegui-Montoya, A. et al. Acoustic contamination assessment during the transition between the COVID-19 restrictions and 
reactivation: An exploratory analysis in Guayaquil. Geogr. Sustain. 4(2), 138–149. https://doi.org/10.1016/j.geosus.2023.02.001 
(2023).

	32.	 Baqar, M. et al. Noise pollution in the hospital environment of a developing country: A case study of Lahore (Pakistan). Arch. 
Environ. Occup. Health. 73(6), 367–374. https://doi.org/10.1080/19338244.2018.1428634 (2018).

	33.	 Casla-Herguedas, B., Romero-Fernández, A., Carrascal, T., Navas-Martín, M. Á. & Cuerdo-Vilches, T. Noise perception and health 
effects on population: A cross-sectional study on COVID-19 lockdown by noise sources for Spanish dwellings. Buildings 13(9), 
2224. https://doi.org/10.3390/buildings13092224 (2023).

	34.	 Lenzi, S., Sádaba, J. & Lindborg, P. Soundscape in times of change: Case study of a city neighbourhood during the COVID-19 
lockdown. Front. psychol. 12, 570741. https://doi.org/10.3389/fpsyg.2021.570741 (2021).

	35.	 Adulaimi, A. A. A., Pradhan, B., Chakraborty, S. & Alamri, A. Traffic noise modelling using land use regression model based on 
machine learning, statistical regression and GIS. Energies 14, 5095. https://doi.org/10.3390/en14165095 (2021).

	36.	 Liu, Y. et al. Comparison of land use regression and random forests models on estimating noise levels in five Canadian cities. 
Environ. Pollut. 256, 113367. https://doi.org/10.1016/j.envpol.2019.113367 (2020).

	37.	 Liu, Y. et al. Integrating random forests and propagation models for high-resolution noise mapping. Environ. Res. 195, 110905. 
https://doi.org/10.1016/j.envres.2021.110905 (2021).

	38.	 Baffoe, P. E. & Boye, C. B. Performance Evaluation of Extreme Learning Machine Techniques for Prediction of Noise Pollution. 
Ghana. Min. J. 24(1), 66–74 (2024).

	39.	 Rehman, M. U., Kamal, M. & Tiwari, S. K. Statistical analysis based on a two-staged SEM-SVM approach for environmental noise 
annoyance prediction and identification of influencing factors. Int. J. Hum. Cap. Urban. Manage. 10(1), 121–134. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​2​2​0​3​4​/​I​J​H​C​U​M​.​2​0​2​5​.​0​1​.​0​8​​​​ (2025).

	40.	 Bravo-Moncayo, L., Lucio-Naranjo, J., Chávez, M., Pavón-García, I. & Garzón,. CA machine learning approach for traffic-noise 
annoyance assessment. Appl. Acoust. 156, 262–270. https://doi.org/10.1016/j.apacoust.2019.07.010 (2019).

	41.	 Fan, Z. & Signorelli, V. Is the noise still going on? Predicting repeat noise complaints with historical time course and random forest 
classifiers. Environ. Plan. B. Urban. Anal. City. Sci. 51(2), 496–511. https://doi.org/10.1177/23998083231184254 (2024).

	42.	 Ren, X., Mi, Z. & Georgopoulos, P. G. Socioexposomics of COVID-19 across New Jersey: a comparison of geostatistical and 
machine learning approaches. J. Expo. Sci. Environ. Epidemiol. 34(2), 197–207. https://doi.org/10.1038/s41370-023-00518-0 
(2024).

	43.	 Manzella, F., Pagliarini, G., Sciavicco, G. & Stan, I. E. (2021) Interval temporal random forests with an application to COVID-19 
diagnosis. In 28th International Symposium on Temporal Representation and Reasoning (TIME 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

	44.	 Das, C. P., Swain, B. K., Goswami, S. & Das, M. Prediction of traffic noise induced annoyance: A two-staged SEM-Artificial Neural 
Network approach. Transp. Res. D: Transp. Environ. 100, 103055. https://doi.org/10.1016/j.trd.2021.103055 (2021).

	45.	 Miri, M. et al. Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis. Iran. The AirQ model 
approach. Environ. Res. 151, 451–457. https://doi.org/10.1016/j.envres.2016.07.039 (2016).

	46.	 Rumpler, R., Venkataraman, S. & Göransson, P. An observation of the impact of CoViD-19 recommendation measures monitored 
through urban noise levels in central Stockholm. Sweden. Sustainable Cities and Society 63, 102469. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​c​s​.​2​
0​2​0​.​1​0​2​4​6​9​​​​ (2020).

	47.	 Hornberg, J. et al. Impact of the COVID-19 lockdown measures on noise levels in urban areas—A pre/during comparison of long-
term sound pressure measurements in the Ruhr Area, Germany. Int. J. Environ. Res. Public Health 18(9), 4653. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​
3​3​9​0​/​i​j​e​r​p​h​1​8​0​9​4​6​5​3​​​​ (2021).

	48.	 U.S. Environmental Protection Agency. Information on levels of environmental noise requisite to protect public health and welfare 
with an adequate margin of safety (Report No. 550/9–74–004). U.S. Government Printing Office. ​h​t​t​​​​p​s​​:​/​​/​​n​e​​p​i​s​​.​​e​p​a​​.​g​o​​v​​/​E​x​e​/​Z​y​P​U​
R​L​.​c​g​i​?​D​o​c​k​e​y​=​2​0​0​0​L​3​L​N​.​T​X​T (1974).

	49.	 International Organization for Standardization. ISO 1996–2:2017 Acoustics — Description, measurement and assessment of 
environmental noise — Part 2: Determination of sound pressure levels. https://www.iso.org/standard/59766.html (2017).

	50.	 Gonzalez, D. M., Morillas, J. M. B., Gozalo, G. R. & Godinho, L. Evaluation of exposure to road traffic noise: Effects of microphone 
height and urban configuration. Environ. Res. 191, 110055 (2020).

	51.	 Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (3rd Edition). Wiley (2013).
	52.	 Gong, H., Sun, Y., Shu, X. & Huang, B. Use of random forests regression for predicting IRI of asphalt pavements. Constr. Build. 

Mater. 189, 890–897. https://doi.org/10.1016/j.conbuildmat.2018.09.017 (2018).
	53.	 Jog, A., Carass, A., Roy, S., Pham, D. L. & Prince, J. L. Random forest regression for magnetic resonance image synthesis. Med. 

Image. Anal. 35, 475–488. https://doi.org/10.1016/j.media.2016.08.009 (2017).
	54.	 Ding, W. & Qie, X. Prediction of air pollutant concentrations via RANDOM forest regressor coupled with uncertainty analysis—A 

case study in Ningxia. Atmosphere 13(6), 960. https://doi.org/10.3390/atmos13060960 (2022).
	55.	 Alsouda, Y., Pllana, S. & Kurti, A. Iot-based urban noise identification using machine learning: performance of SVM, KNN, 

bagging, and random forest. In Proceedings of the international conference on omni-layer intelligent systems. 62–67 (2019). ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​1​4​5​/​3​3​1​2​6​1​4​.​3​3​1​2​6​3​1​​​​​​​

Scientific Reports |          (2026) 16:134 17| https://doi.org/10.1038/s41598-025-29011-4

www.nature.com/scientificreports/

https://doi.org/10.1121/10.0002008
https://doi.org/10.1016/j.biocon.2021.109039
https://doi.org/10.1121/10.0009324
https://doi.org/10.1016/j.scs.2020.102597
https://doi.org/10.1121/10.0003778
https://doi.org/10.1515/noise-2020-0024
https://doi.org/10.1007/s11356-022-18532-4
https://doi.org/10.1007/s11356-022-18532-4
https://doi.org/10.1016/j.biocon.2021.108996
https://doi.org/10.3390/su13115946
https://doi.org/10.3390/su13115946
https://doi.org/10.1016/j.geosus.2023.02.001
https://doi.org/10.1080/19338244.2018.1428634
https://doi.org/10.3390/buildings13092224
https://doi.org/10.3389/fpsyg.2021.570741
https://doi.org/10.3390/en14165095
https://doi.org/10.1016/j.envpol.2019.113367
https://doi.org/10.1016/j.envres.2021.110905
https://doi.org/10.22034/IJHCUM.2025.01.08
https://doi.org/10.22034/IJHCUM.2025.01.08
https://doi.org/10.1016/j.apacoust.2019.07.010
https://doi.org/10.1177/23998083231184254
https://doi.org/10.1038/s41370-023-00518-0
https://doi.org/10.1016/j.trd.2021.103055
https://doi.org/10.1016/j.envres.2016.07.039
https://doi.org/10.1016/j.scs.2020.102469
https://doi.org/10.1016/j.scs.2020.102469
https://doi.org/10.3390/ijerph18094653
https://doi.org/10.3390/ijerph18094653
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000L3LN.TXT
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000L3LN.TXT
https://www.iso.org/standard/59766.html
https://doi.org/10.1016/j.conbuildmat.2018.09.017
https://doi.org/10.1016/j.media.2016.08.009
https://doi.org/10.3390/atmos13060960
https://doi.org/10.1145/3312614.3312631
https://doi.org/10.1145/3312614.3312631
http://www.nature.com/scientificreports


	56.	 Vijayalakshmi, A., Rubi, J., Dhivya, J.A. & AS, A.R. Machine Learning-Based Prediction and Analysis of Air and Noise Pollution 
in Urban Environments. In 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS). 1080–1085. 
IEEE (2024). https://doi.org/10.1109/ICSCSS60660.2024.10625644

	57.	 Vinutha, H.P., Poornima, B. & Sagar, B.M. Detection of outliers using interquartile range technique from intrusion dataset. In 
Information and decision sciences: Proceedings of the 6th international conference on ficta. 511–518 (2018). Springer Singapore. 
https://doi.org/10.1007/978-981-10-7563-6_53

	58.	 Dowlatabadi, Y., Abadi, S., Sarkhosh, M., Mohammadi, M. & Moezzi, S. M. M. Assessing the impact of meteorological factors and 
air pollution on respiratory disease mortality rates: a random forest model analysis (2017–2021). Sci. Rep. 14(1), 24535. ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​7​4​4​4​0​-​2​​​​ (2024).

	59.	 Emamjomeh, M. M., Nikpay, A. & Variani, S. A. study of noise pollution in Qazvin (2010). J. Inflamm. Dis. 15, 63–70 (2011).
	60.	 Moasheri, N., Monazzam Esmaeelpoore, M. R., Abolhasannejad, V., Abbaszadeh, M. & Movahedi, E. Assessment of noise pollution 

indices in Birjand old districts in 2010. J. Birjand Univ. Med. Sci. 19, 439–447 (2012).
	61.	 Yari, A. R. et al. Evaluation of traffic noise pollution and control solutions offering: A case study in Qom. Iran. J. Sabzevar Univ. 

Med. Sci. 23, 600–607 (2016).
	62.	 Aletta, F. et al. Analysing urban traffic volumes and mapping noise emissions in Rome (Italy) in the context of containment 

measures for the COVID-19 disease. Noise Mapp. 7(1), 114–122. https://doi.org/10.1515/noise-2020-0010 (2020).
	63.	 Maggi, A. L. et al. Perception of the acoustic environment during COVID-19 lockdown in Argentina. J. Acoust. Soc. Am. 149(6), 

3902–3909. https://doi.org/10.1121/10.0005131 (2021).
	64.	 Alsina-Pagès, R. M., Bergadà, P. & Martínez-Suquía, C. Changes in the soundscape of Girona during the COVID lockdown. J. 

Acoust. Soc. Am. 149(5), 3416–3423. https://doi.org/10.1121/10.0004986 (2021).
	65.	 Rodríguez, R., Machimbarrena, M. & Tarrero, A. I. Environmental noise evolution during COVID-19 state of emergency: Evidence 

of Peru’s need for action plans. Acoustics. 4(2), 479–491. https://doi.org/10.3390/acoustics4020030 (2022).
	66.	 Ahmed, A. A., Pradhan, B., Chakraborty, S. & Alamri, A. Developing vehicular traffic noise prediction model through ensemble 

machine learning algorithms with GIS. Arab. J. Geosci. 14, 1–14. https://doi.org/10.1007/s12517-021-08114-y (2021).
	67.	 Nourani, V., Gökçekuş, H. & Umar, I. K. Artificial intelligence based ensemble model for prediction of vehicular traffic noise. 

Environ. Res. 180, 108852. https://doi.org/10.1016/j.envres.2019.108852 (2020).
	68.	 Probst, P., Wright, M. N. & Boulesteix, A. L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip Rev. Data 

Min. Knowl. Discov. 9, e1301 (2019).
	69.	 Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M. & Chica-Rivas, M. J. O. G. R. Machine learning predictive models 

for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore 
Geol. Rev. 71, 804–818 (2015).

Author contributions
All authors contributed to the study’s conception and design. Raheleh Valizadeh Ardalan: conceptualization, 
methodology, modeling, writing- original draft. Mitra Mohammadi: supervision, conceptualization, method-
ology, writing- the original draft, editing. Mohammad Sadegh Bahadari: supervision, conceptualization, writ-
ing- original draft, editing. Mandana Mohammadi: methodology, modeling, writing- original draft, software. 
Seyed Mohammad Mahdi Moezzi: methodology, modeling, writing- original draft, software. Didem Saloglu: 
conceptualization, methodology, writing- original draft, editing.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval
All authors have read, understood, and have complied as applicable with the statement on the “Ethical 
responsibilities of Authors” as found in the Instructions for Authors. This article does not contain any studies 
with human/animal participants performed by any of the authors.

Consent to participate 
All the authors gave their consent to participate.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​2​9​0​1​1​-​4​​​​​.​​

Correspondence and requests for materials should be addressed to M.M. or D.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |          (2026) 16:134 18| https://doi.org/10.1038/s41598-025-29011-4

www.nature.com/scientificreports/

https://doi.org/10.1109/ICSCSS60660.2024.10625644
https://doi.org/10.1007/978-981-10-7563-6_53
https://doi.org/10.1038/s41598-024-74440-2
https://doi.org/10.1038/s41598-024-74440-2
https://doi.org/10.1515/noise-2020-0010
https://doi.org/10.1121/10.0005131
https://doi.org/10.1121/10.0004986
https://doi.org/10.3390/acoustics4020030
https://doi.org/10.1007/s12517-021-08114-y
https://doi.org/10.1016/j.envres.2019.108852
https://doi.org/10.1038/s41598-025-29011-4
https://doi.org/10.1038/s41598-025-29011-4
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |          (2026) 16:134 19| https://doi.org/10.1038/s41598-025-29011-4

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Short-term analysis of urban noise dynamics during covid-19 lockdown using a machine learning approach in Mashhad, Iran
	﻿Materials and methods
	﻿Study area
	﻿Station selection and data acquisition
	﻿Leq measurement equipment at fixed monitoring stations
	﻿Data analysis
	﻿Strategy 1- Wilcoxon signed-rank test
	﻿Strategy 2- Random forest model


	﻿Data preprocessing and modeling details
	﻿Hyperparameter tuning and model training
	﻿Model evaluation metrics
	﻿Results and discussion
	﻿Descriptive statistics and statistical analysis
	﻿Wilcoxon signed-rank test
	﻿Random forest model performance
	﻿Forecasting noise pollution during lockdown
	﻿Comparison with other machine learning models
	﻿Limitation of the study

	﻿Conclusion
	﻿References


