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Periodontal disease affects most adults over 50, but the role of aging in periodontal homeostasis 
remains poorly understood. This study examines variations in human gingival gene expression 
over time using transcriptomic and histological approaches. Results show a global decline in gene 
expression with age, suggesting a loss of genetic information that could weaken the gingiva’s 
ability to respond to stressors. The findings experimentally validate the SIM (Structure, Immunity, 
Metabolism) paradigm, emphasizing the central role of structural components in aging. Structural 
changes, including reduced collagen III signaling and decreased periostin levels, indicate impaired 
matrix remodeling as a key feature of gingival aging. These insights mark an important step toward 
defining biological age at the gingival level and improving risk assessment for periodontal diseases. 
This research lays the foundation for predictive and preventive strategies in periodontal medicine, 
aiming to enhance personalized interventions and early treatments to mitigate aging-related oral 
health decline.
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Physiological aging can be defined as the cumulative effect of time on the organism1. It is characterized by 
an imbalance between individual functional reserves and daily stressors, leading to a progressive loss of 
physiological integrity, impaired functions and increased vulnerability to diseases and death2. In an increasingly 
aging global population, the prevalence of age-related illnesses continues to escalate3. Among these, periodontal 
diseases affect a significant portion of the adults aged 50 and older4–6.

Contemporary research faces the challenge to decipher the cellular and tissue mechanisms underlying 
preclinical and clinical changes associated with age-related health impairments. Advancing this understanding 
will enable the identification of aging trajectories through an integrated approach that combines biological 
and physiological markers (biological/physiological age)7–9. Such insights will facilitate the development of 
preventive and early intervention strategies aimed at extending health span and promoting healthy aging.

Recently, it has been proposed that healthy functions are achieved and maintained by an optimized relationship 
between three transversal multiscale elements: Structure/supportive compartment (S), the source and the driver 
of tissue architecture and repair; Immune/inflammatory system (I), that apprehends and defends the organism 
integrity against injuries; and Metabolism (M), which provides energy for organism healthy functioning1. Thus, 
the S – I – M paradigm is a pathophysiological key to identify or predict age-related tissue changes.

As an interface organ, the oral cavity serves a central element between the external environment and the 
entire organism10. Moreover, the mouth’s unique resilience - balancing structure, immune function, and 
metabolism - makes it not only a critical target for early disease detection but also a potential indicator of whole-
body aging trajectories. In the oral cavity, the gingiva is continuously exposed to mechanical, biological and 
chemical stresses11, and undergoes constant remodeling to adapt to these cumulative challenges over time. This 
dynamic nature makes it an ideal site for detecting early alterations in the structural, immune, and metabolic 
(SIM) triad and investigating age-related tissue modifications. However, the role of aging as a major risk factor 
in periodontal homeostasis and its associated SIM changes remain poorly investigated12,13. Understanding these 
transformations could be pivotal in defining gingival biological age as a novel biomarker for aging assessment. 
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Investigating gingival tissues could thus provide insights not only into oral health and its potential variations 
but also into an individual’s overall health status, reinforcing the concept of the mouth as a mirror of systemic 
aging10.

Through a comprehensive bulk RNA-Seq transcriptomic analysis, this study reveals age-related alterations 
in the gingival SIM transcriptomic landscape, with a particular impact on the extracellular matrix. This analysis 
enables the definition of a minimal signature for calculating gingival biological age.

Results
Acquisition and analysis of human gingival transcriptome data
Based on the defined keywords (gingival OR gingivitis OR gingiva on GEO DataSets) and following manual 
screening, 57 datasets corresponding to 57 individuals aged 16 to 78 years were identified (Fig. 1).

Initial data aggregation revealed a noticeable batch effect (Fig. 2A), likely due to heterogeneous sampling and/
or sequencing procedures across the datasets. After removing the batch effect, Principal Component Analysis 
(PCA) conducted on the first two dimensions did not show any obvious segregation based on age or periodontal 
health status (Fig. 2B–D). However, a clear gender effect was observed (Fig. 2E).

Aging was associated with a marked transcriptomic shift in gingival tissue, characterized by a predominant 
downregulation of genes, particularly those related to extracellular matrix organization, and a smaller set of 
upregulated genes enriched for cholesterol metabolism.

To assess the potential effect of age within the local gingival context, a differential gene expression analysis 
was performed across all datasets, without excluding any genes, adjusting for periodontal profile and gender. This 
analysis revealed that 698 genes were significantly differentially expressed with age (Fig. 3A) at the p-value < 0.01 
level, with 171 genes upregulated and 527 genes downregulated in older compared to younger gingival tissue 
samples (Fig.  3B), indicating a decline in gingival gene expression with age. The normalized counts for the 
downregulated genes were lower than those for the upregulated genes, suggesting that downregulated genes 
had a lower basal expression compared to upregulated ones (Fig. 3C). No genes reached significance for the 
periodontal status: age or sex: age interaction terms (FDR < 0.01); subsequent analyses were conducted using 
reduced models without interactions to report the main effects of age adjusted on batch, periodontal status, and 
sex. The periodontal status: age interaction term identifies transcripts whose age-related expression trajectories 
differ by periodontal status, delineating molecular signatures of an age-dependent periodontal effect. Only nine 
genes met the interaction significance threshold, indicating that the interaction signal is present but limited in 
scope. These included CHIT1, IGLV7-46, IGKV2D-40, SPP1, CXorf40A, and IGLV4-60, which are associated 
with the immune (‘I’) function, and MMP9, associated with the structural (‘S’) function. All of these genes 
showed decreased expression with age in the periodontitis group, whereas their expression slightly increased 
with age in the healthy group (Supplementary Fig. 1).

PCA performed on the normalized counts of genes significantly differentially expressed with age revealed 
that two dimensions accounted for 70% of the variance (component 1: 55%, component 2: 15%, Fig. 3D).

Fig. 1.  Flow diagram of the dataset selection process. This flowchart illustrates the steps involved in selecting 
Bulk RNA sequencing datasets for the study, starting with the total number of datasets retrieved from GEO 
DataSets (https://www.ncbi.nlm.nih.gov/gds) based on the search criteria (gingival OR gingivitis OR gingiva) 
and ending with the final number of datasets included in the analysis.
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Genes involved in structure, immunity/inflammation, and metabolism play a key role in 
gingival aging
The 698 significantly differentially expressed genes were then classified into four categories according to 
“SIM” functions, the SIM categorization being applied post hoc as an interpretive framework. “S” refers to 
structural genes, which are involved in maintaining both the external structure (through extracellular matrix 
(ECM) management) and the internal structure related to the external one. “I” refers to immunity-related 
genes, responsible for detecting warning signals and emitting either pro-resolutive or pro-inflammatory 
signals. “M” encompasses genes involved in cell metabolism. A single gene could be categorized in more than 
one SIM category (Venn diagram, Fig. 3E). Genes that did not meet these criteria (e.g., transcription factors 
or proliferation-related genes) were assigned to a separate category (“not SIM”) comprising four subgroups: 
Transcription Factors, Migration, Proliferation related and “unclassified” genes. Overall, 98 (14.0%), 72 (10.3%), 
86 (12.3%) and 477 (68.3%) genes were defined as “S”, “I”, “M”, and “not SIM”, respectively. Within the not SIM 
group, 91 genes were annotated as proliferation-related, 89 as migration-related, and 60 as transcription-related, 
while 196 genes remained unclassified. Furthermore, 6 genes were identified as “S and I”, 5 as “I and M”, and 
4 as “S and M” and 10 as “S, I and M” (Fig. 3E). The top 20 age-associated genes by SIM functional category 
are shown in Supplementary Table 2. Loadings for each gene were extracted for components 1 and 2 of PCA 

Fig. 2.  Batch effect correction. (A) Principal Component Analysis (PCA) of the first two dimensions, 
conducted after data aggregation, revealed a distinct batch effect, likely due to variability in sequencing 
protocols across the datasets. Following batch effect correction, no segregation was observed in the first two 
PCA dimensions, either between datasets from the same study (B), or based on age (C) and periodontal status 
(D). However, a gender effect was detected (E) . Batch assignments correspond to the following GEO datasets: 
Batch 0: GSE111523; Batch 1: GSE83382; Batch 2: GSE173078; Batch 3: SE133603; Batch 4: GSE224044.
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(Fig. 3D), representing the contribution of each gene to explain the variance of significantly expressed genes with 
age. Strikingly, it was found that the S, I, and M groups contributed an average of 40% of the variance explained 
for component 1, while the “not SIM” group explained only 5% (Fig. 3F and Supplementary Fig. 2).

The expression of genes involved in extracellular matrix (ECM) homeostasis is significantly 
decreased with age
To deepen the analysis, a qualitative assessment was performed using STRING, which allowed for the 
classification of transcriptomic data based on their respective protein activities. A functional protein interaction 

Fig. 3.  Analysis of Age-Related Gene Expression Changes. (A) Kernel density plot showing the distribution 
of gene expression p-values. (B) Visualization of gene expression variation over time using volcano plot. All 
genes whose expression changes with age (n = 698) were plotted as individual dots on a graph of log2 fold 
change (log2FC) versus negative log10 adjusted p-value. (C) Genes whose expression significantly changed 
with age were represented as individual point on a graph of log2FC with age versus normalized counts. (D) 
Principal Component Analysis (PCA) performed on the normalized counts of genes significantly differentially 
expressed with age revealed that two dimensions accounted for 70% of the variance with age (component 1: 
50%, component 2: 15%). (E) Venn diagram representing genes distribution into S, I, M and others categories. 
(F) The S (n = 98), I (n = 72), and M (n = 86) gene sets made a major contribution to explaining the variance 
with age in the dataset, compared to the “not SIM” (n = 477).
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network was generated, focusing on physical and functional interactions. The STRING network revealed that 
the ‘S’ genes occupy a central position, connected to various other processes (Fig.  4). Specifically, this node 
was predominantly composed of ECM constituents, including collagens, proteoglycans, and glycoproteins. 
Figure 4 was not designed to foreground individual gene names, but to provide an overview of connectivity 
among gene categories, aided by color coding and a clear legend. The aim was to assess the coherence of gene 
blocks according to their SIM-assigned functions and to identify potential transition zones between them. 
Such transitions were exemplified by genes including ZEB1, ZEB2, TWIST1, and CXCL12, each showing age-
related decreases in expression. These findings were further validated by Gene Ontology Biological Processes 
analysis, which enabled functional enrichment within the STRING network. The top five GO term enrichments 
highlighted include ECM organization, cell adhesion, regulation of developmental processes, response to fluid 
shear stress, and regulation of cell migration.

To identify significant biological pathways potentially linked to aging-related variations, Gene Set Enrichment 
Analysis (GSEA) was performed. This analysis identified 9 enriched Gene Ontology (GO) pathways (Fig. 5A). The 
Normalized Enrichment Score (NES) reflects the degree of overrepresentation at either the top or bottom of the 

Fig. 4.  Functional protein–protein interaction network analysis using STRING. Each node represents a 
protein, while the edges (lines) between nodes represent physical or functional interactions. Node color 
indicates the SIM classification.
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ranked gene list. The top canonical pathways differentially expressed with aging included “ECM organization,” 
“Degradation of the extracellular matrix,” and “ECM proteoglycans.” These pathways exhibited negative NES 
values, with most genes located at the bottom of the list. Their average expression level was high but significantly 
decreased with age (Fig. 5B). Specifically, among the ECM genes most affected by age were collagens and ECM 
regulators (Fig. 5C). When analyzed through the lens of Matrisome annotations, ECM-related genes exhibited a 
consistent decrease in expression across all categories with age, as their log2 fold changes were negative (Fig. 5D). 
Expression on POSTN, COL3 et COL1 decreased over time (Fig. 5E).
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In contrast, genes associated with the “Cholesterol biosynthesis” pathway showed a positive NES, with 
all genes predominantly positioned at the top of the list (Fig.  5B). Furthermore, analysis of the cholesterol 
biosynthesis pathway highlighted CYP51A1 as the gene showing the most significant increase with age (Fig. 5C).

Microscopic analyses highlight extracellular matrix pro-fibrotic profile with aging
To validate key transcriptomic findings indicating the downregulation of extracellular matrix (ECM) remodeling 
genes in aging gingiva, a focused panel of histological and immunofluorescence analyses was conducted. 
Healthy gingival tissue samples were obtained from 40 healthy individuals aged 2 to 87 years and processed for 
microscopic examination. All specimens derived from clinically healthy sites (probing depths ≤ 3 mm, bleeding 
on probing negative at sampled site, no attachment loss), ensuring that observed architectural changes reflect 
ageing rather than subclinical inflammation. Hematoxylin and Eosin (HE) staining provided an overview of 
tissue architecture and cellular distribution across age groups. Younger specimens displayed a uniform, finely 
interspersed dispersion of stromal nuclei within a densely packed, noninflamed lamina propria; older specimens 
showed an apparent reduction in overall stromal nuclear density with focal clustering and intervening hypocellular 
zones, consistent with decreased diffuse fibroblast distribution rather than inflammatory infiltration (leukocytes 
scarce) (Fig. 6A). This pattern was captured by a fibroblast distribution score strongly inversely correlated with 
age (Spearman ρ = −0.62, p < 0.001; Cohen’s κ = 0.60). Transcriptomic data identified COL1A1 and COL3A1 
as two significantly downregulated (log2FoldChange of -2.35 and − 3.23, respectively) ECM-related genes with 
age. Given that type I and III collagens constitute the predominant structural components of gingival connective 
tissue, Masson’s Trichrome (TM) staining was used to evaluate overall collagen content and fiber organization. 
Compared to younger gingival tissue - typically characterized by a dense and homogeneous mesh of fine collagen 
fibers- aging specimens displayed marked increases in fiber heterogeneity, irregular interfibrillar spacing, and 
occasional focal microhyalinization, visible as compact, glassy eosinophilic areas within the connective tissue 
(Fig. 6A). Picrosirius Red (PS) staining under polarized light was applied to distinguish red–orange (thicker, 
highly birefringent, type-I collagen-enriched fibers) and green (thinner, less birefringent, type III collagen-
enriched fibers) pixel classes14,15. PS staining under polarized light further highlighted age-associated collagen 
remodeling: younger specimens presented a balanced interlacing network of thin green and thicker red–orange 
birefringent fibers; older specimens showed disrupted continuity, locally thickened irregular red–orange 
bundles and attenuation of the finer green component. Quantification of birefringence revealed a predominant 
Col I/Col III enriched birefringent fiber area ratio (red–orange/green pixel area; architectural surrogate, Fig. 
6B), indicating a shift toward thicker, densely packed fibrillar bundles and relative depletion of the thin fibrillar 
component. These architectural and cellular changes parallel the age-associated downregulation of COL1A1 
(log2FoldChange − 2.35) and COL3A1 (log2FoldChange − 3.23). Three-dimensional light sheet microscopy 
provided complementary insights into ECM architecture: in young gingiva, collagen fibers appeared thin, 
densely packed, and uniformly distributed. In aged tissue, the matrix exhibited thicker, irregularly arranged 
bundles and greater structural heterogeneity (Fig. 6C). Among the most strongly downregulated genes was 
POSTN (log2FoldChange of − 3.52), encoding periostin, a matricellular protein essential for fibroblast activation, 
mechanotransduction, and collagen cross-linking. To assess whether reduced transcript levels correlated with 
diminished protein expression, periostin localization was examined via immunofluorescence staining. In young 
gingiva, periostin was broadly and homogeneously distributed throughout the lamina propria. With increasing 
age, the signal became sparse, discontinuous, and limited to a narrow band beneath the epithelium (Fig. 6D). The 
periostin localization score declined with age (ρ = −0.884, p < 0.001). Although lectins are not ECM components 
per se, UEA I staining was included to visualize endothelial glycoproteins, based on transcriptomic evidence 
suggesting age-related changes in endothelial function and vascular ECM remodeling. This approach enabled 
visualization of microvascular patterns and their potential association with ECM alterations. UEA I staining 
demonstrated largely preserved microvascular patterning across age groups, indicating that ECM architectural 
changes occur without consistent vascular depletion. Collectively, histological, polarized, three dimensional 
and immunofluorescence findings converged with transcriptomic downregulation of COL1A1, COL3A1 and 
POSTN to depict progressive age-associated remodeling characterized by reduced stromal cellular dispersion, 
increased collagen architectural heterogeneity, a higher predominant Col I–/Col III - enriched birefringent fiber 
area ratio, and periostin spatial restriction - features compatible with a fibrotic like trajectory.

Fig. 5.  Significant age-related decrease in the expression of genes involved in ECM homeostasis. (A) Results 
from the Gene Set Enrichment Analysis (GSEA) showing all enriched pathways. The bars indicate significant 
enrichment at padj < 0.01. A negative Normalized Enrichment Score (NES) indicates enrichment of genes 
that were downregulated over time, while a positive NES indicates enrichment of genes that were upregulated 
over time. Among all the pathways, the one related to ‘Extracellular Matrix Organization’ showed the most 
significant differential expression with age, with a negative NES indicating downregulation. (B) The plots 
show the enrichment score (green line) of enriched GSEA pathways across ranked gene list positions (“ECM 
proteoglycans”, “ECM Organization” and “Degradation of ECM”, “Cholesterol biosynthesis” pathways). 
(C) Extracellular Matrix Organization” and “Cholesterol biosynthesis” pathways representation with the 
differentially expressed genes highlighted in color according to their fold change. (D) Expression of Core 
Matrisome (CM) genes based on genes significantly differentially expressed with age (x-axis: log2FC; y-axis: 
normalized values). All categories showed a decrease in gene expression with age (negative log2FC). (E) 
Decrease in gene expression of collagen I (COL1A1), collagen III (COL3A1) and periostin (POSTN) with 
increasing chronological age.
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Fig. 6.  Pro-Fibrotic Extracellular Matrix Profile with Aging revealed by microscopic analysis. Illustration 
of age-associated microscopic changes in non-inflamed human gingiva (in years, y/o). Data derived from 
the analysis of 40 healthy gingival tissue samples collected from systemically healthy individuals (2–87 years 
old) with no history of medication use or periodontal inflammation. Samples were stratified into three age 
groups: Young < 16 y (n = 20; 12 ♂, 8 ♀), Middle-aged 17–40 y (n = 11; 10 ♂, 1 ♀) and Adult > 40 y (n = 9; 6 ♂, 
3 ♀). All sampled sites were periodontally healthy (probing depth ≤ 3 mm, site with no bleeding on probing, 
no attachment loss. (A_HE) Younger specimens show a uniform, finely interspersed dispersion of stromal 
nuclei within a densely packed, noninflamed lamina propria; older specimens (66 y, 78 y) display reduced 
nuclear density with focal clustering and hypocellular zones (leukocytes scarce) (Hematoxylin-Eosin (HE), 
scale: 250 μm). (A_TM) Dense, homogeneous fine collagen mesh in young gingiva versus heterogeneous, 
disorganized bundles with irregular interfibrillar spacing and focal microhyalinization (*) in the 78y sample 
(n = 40). (Masson’s Trichrome (TM), scale: 100 μm). (A_PS) Polarization: polarized images show a balanced 
interlacing network of thin green and thicker red/orange birefringent fibers in young specimens, while older 
specimens exhibit disrupted continuity, thickened irregular red/orange bundles and attenuation of the green 
component. (B) The scatter plot summarizes the per subject predominant Col I–/Col III–enriched birefringent 
fiber area ratio (red/orange / green pixel area; architectural surrogate); the ratio rises significantly with age 
(n = 40). (C) Three-dimensional light-sheet microscopy. Volumetric renderings a tightly interwoven, uniformly 
distributed network of slender fibrils in young gingiva, contrasting with thicker, irregularly oriented bundles 
and enlarged interfibrillar voids in aged tissue (nuclei, red; collagen, white). (D) Periostin immunofluorescence 
and microvasculature: Periostin (green) is broad and homogeneous in lamina propria of younger samples, 
progressively restricting to a narrow, discontinuous subepithelial band in older samples. UEA I lectin (red) 
indicates largely preserved microvascular patterning; only the 78y specimen shows focal capillary sparsity. 
Nuclei counterstained with DAPI (blue). Scale = 100 μm.

 

Scientific Reports |        (2025) 15:45298 8| https://doi.org/10.1038/s41598-025-29089-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Definition of a minimal gene expression signature of gingival biological age
A sparse partial least squares regression was performed to predict chronological age based on the normalized 
counts of “S” genes that exhibited differential expression with age. After model optimization and adjusting for 
periodontal health status and gender, 21 genes were required to compute gingival biological age, with an adjusted 
R² of 0.74 (Fig. 7A). The model highlighted that the predicted age (biological age) of subjects with periodontal 
disease was higher compared to their chronological age (Fig. 7B).

Discussion
The present study provides significant insights into gingival aging by aggregating and analyzing 57 bulk RNA 
sequencing samples available in public databases. This analysis offers a novel perspective on the aging trajectory 

Fig. 7.  Predicting gingival age to obtain a minimal gene signature. From a clinical perspective, intercepting 
individuals whose biological gingival age exceeds their chronological age could allow for personalized 
preventive strategies to delay or prevent the progression to overt periodontal pathology. (A) A partial least 
square regression (sPLS) was performed to explain chronological age based on the normalized counts of the 
“S” genes, which showed differential expression with age. A total of 10 genes were selected by the model as 
necessary for dimension 1, and 11 genes for dimension 2 to effectively explain chronological age (S signature). 
(B) A linear regression model was then built using the genes of S signature to explain chronological age, 
adjusting for periodontal health categories (healthy, gingivitis, periodontitis) and gender.
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of the superficial periodontium in humans, independent of the local inflammatory status, and primarily suggests 
modification in tissue architecture, including a collapse in matrix remodeling processes with age.

The global age-dependent gene downregulation observed in human gingiva aligns with previous 
transcriptomic studies on both human gingiva16 and skin17. Our findings are consistent with the observation 
that aging is associated with a loss of potential, leading to a global decline in biological functions18–20. It can be 
hypothesized that aging causes tissue-specific functional decline, with a form of “specialization/restriction” in 
response to stimuli21, and a reduced capacity to adapt to daily stresses.

Post hoc functional categorization revealed that SIM-classified genes made an outsized contribution to the 
variance captured by the principal components. Beyond the core SIM domains, a distinct subset of differentially 
expressed genes involved in transcriptional regulation and cell cycle control was identified. These genes likely 
function as upstream modulators that may indirectly influence or orchestrate structural, immune, and metabolic 
changes during gingival aging. Examples include chromatin remodelers, DNA-binding transcription factors, 
and proliferation regulators whose altered expression may affect ECM turnover, immune cell activation, or 
metabolic stress responses. The presence of these regulatory changes suggests that age-related alterations in 
gingival tissue architecture and function may arise not only from localized dysfunction within SIM pathways, 
but also from higher-order perturbations in global gene expression control. This layered regulation underscores 
the complexity of mucosal aging and highlights potential intersections between SIM functions and broader 
transcriptional networks. While the present SIM classification served as a post hoc functional interpretive 
framework, the contribution of regulatory mechanisms is explicitly recognized.

The SIM perspective suggests that healthy functions are achieved and maintained through an optimized 
relationship between Structure/supportive compartment (S), Immune/inflammatory system (I) and Metabolism 
(M)1. Among these components, enrichment findings highlighted canonical pathways specifically associated 
with the “S” part of the triad, with a significant decrease in the expression of pathways related to “Extracellular 
matrix (ECM) organization”, “Collagen formation”, and “ECM proteoglycans (PGs)”. These pathways encompass 
genes involved in remodeling (e.g., Matrix Metalloproteinases (MMPs)) as well as those that constitute the ECM 
(e.g., collagens, periostin). ECM is a dynamic three-dimensional network of macromolecules that provides 
physical scaffolds for cells and tissues22 and plays key regulatory roles in many cellular processes and functions 
(growth, migration, differentiation, survival, homeostasis, morphogenesis and cell signaling23. Age-dependent 
alterations in MMPs have been documented in skin24–26, Bruch’s–choroid27 and cardiovascular system28,29. 
Additionally, MMP3 and MMP27 appeared to be down-regulated in old periodontal ligament cells and in old 
human gingival fibroblasts16,30. Within the pathway associated with collagen formation, several genes exhibited 
significant down-regulation with aging, including fibril-forming collagens (COL3A1, COL5A2, COL24A1), 
fibril-associated collagens with interrupted triple helices (COL9A2, COL12A1, COL14A1, COL22A), beaded 
filaments collagen (COL6A6) and ECM components of the basement membrane, such as laminin (LAMA4, 
LAMB1). A decrease in collagen production with age has been well-documented in the literature, particularly 
in the skin31–34. Collagen I fibers impact rigidity, strength, and resistance to torsion and tension in the tissues, 
whereas collagen III fibers are thinner and more elastic35. Collagen III contributes to the tissue’s resilience and 
distensibility (the ability of biological tissue to stretch and contract in response to different stresses) as well as 
offering structural support during growth. Additionally, collagen III plays a role in tissue regeneration process36. 
The age-related reduction in collagen III signaling may, therefore, contribute to tissue stiffening and the loss of the 
ability to effectively respond to daily stresses. Alongside collagen, the gene expression of periostin also decreases 
with age. Periostin is a matricellular protein expressed in collagen-rich tissues subjected to constant mechanical 
strains, including periodontal tissues37. It may be involved in tissue remodeling by promoting adhesion, cellular 
differentiation, cell survival, and fibrogenesis38. A role for periostin in the regulation of ECM production and 
maturation has been established in various tissues, including the heart39, skin40 and periodontal tissues41. The 
downregulation of periostin with aging has been documented in the skin42, heart43 and adipose tissue44. Based 
on our findings, the decrease in periostin expression, observed at both the transcriptomic and proteomic levels, 
may contribute to increased ECM stiffness, impaired wound healing, and heightened vulnerability to mechanical 
stress and damage. Periostin plays a crucial role in maintaining the integrity and function of the interface 
between the epithelium and the underlying connective tissue45,46. It helps anchor and support the epithelial layer, 
promoting proper tissue architecture and function. A reduction in periostin at this critical interface in older 
individuals could weaken epithelial-connective tissue interactions, potentially impairing tissue barrier function 
and increasing susceptibility to epithelial damage or dysfunction.

Matrisome variations from the analyzed datasets clearly illustrated a global reduction in the expression of 
genes related to ECM as aging progresses. The decline in ECM degradation and diminished collagen formation 
thus emerge as pivotal factors in gingival aging. According to the literature, the reduction in ECM turnover 
is associated with a gradual increase in intra- and inter-molecular post-translational collagen cross-linking 
(covalent bonds)47, leading to enhanced ECM stiffness with age48. ECM accumulation and stiffening play a 
critical role in the initiation and progression of fibrogenesis by promoting mechano-activation of pro-fibrotic 
signaling pathways48. Furthermore, covalent cross-links exhibit resistance to complete proteolytic cleavage. 
Consequently, age-related collagen fragmentation results in the accumulation of fragmented collagen49, 
irreversibly compromising the functional and structural integrity of the ECM34. Moreover, aging severely 
impairs the proliferative and regenerative capacities of oral fibroblasts50, resulting in the downregulation of ECM 
production, disorganization of ECM architecture, inefficient wound healing, and ultimately, distortion of organ 
architecture and loss of function. Aging-related stiffness and fibrosis51 have also been reported in other organs 
and tissues, such as liver52, kidney53,54, lung55,56, heart57, ovary58 and skin59. Furthermore, semi-quantitative 
fibroblast distribution and periostin localization scores in gingival tissue exhibited strong inverse correlations 
with age, supported by moderate to substantial interobserver agreement. These findings indicate a progressive 
reduction in stromal cellular dispersion and a loss of diffuse periostin organization. In parallel, the Picrosirius 
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red–derived birefringent fiber ratio revealed an increased predominance of thick, red–orange (Col I–enriched) 
fibers relative to thin, green (Col III–enriched) fibers. This shift was accompanied by heightened architectural 
heterogeneity, including locally thickened collagen bundles, attenuation of fine birefringent components, and 
focal microhyalinization. Collectively, these findings define a progressive, age-associated fibrotic-like remodeling 
of the gingival lamina propria. This phenotype reflects structural matrix reorganization without evidence of end-
stage fibrosis: no extensive acellular hyalinized plates, no vascular obliteration, and preservation of overall tissue 
architecture. The term “fibrotic-like” is used to denote this intermediate, non-pathological matrix phenotype—
distinct from classical fibrosis yet indicative of declining connective tissue resilience with age54,60–62.

According to our results, aging variations in Structure compartment would also be associated with Metabolism 
changes. The top canonical pathways exhibiting differential expression with aging and characterized by positive 
NES appeared to be those concerning “Cholesterol biosynthesis”. Cholesterol is a critical component of the 
plasma membrane and plays a key role in regulating membrane fluidity and structure, as well as cell adhesion63. 
Significant enrichment of the “cholesterol biosynthesis” pathway during aging has already been reported in 
pneumocytes, lipofibroblasts64 and endothelial cells65,66. The cholesterol biosynthesis pathway intersects with 
several biological programs relevant to aging and immunity. The mevalonate pathway, which underlies cholesterol 
biosynthesis, has been implicated in the induction of cellular senescence through increased oxidative stress, 
mitochondrial dysfunction, and DNA damage signaling67. Furthermore, cholesterol intermediates serve as key 
modulators of innate immunity: they can prime type I interferon responses, promote NLRP3 inflammasome 
activation, and drive trained immunity via epigenetic reprogramming in myeloid cells68,69. In barrier tissues such 
as gingiva, where immune tolerance and microbial vigilance must be tightly balanced, such metabolic rewiring 
could gradually destabilize immune homeostasis. The age-related increase in cholesterol biosynthetic activity 
may therefore reflect both a response to cumulative stress and a contributor to the chronic para-inflammatory 
state observed in aging connective tissues. This aligns with the SIM framework, in which metabolic and immune 
alterations interact with structural decline to drive progressive loss of tissue resilience.

Gingival aging is thus associated with an increase in both ECM and cellular stiffness, supporting the 
hypothesis of the co-evolution between cells and their environment over time70. Additionally, since the elements 
of the SIM are interrelated, any change in either compartment will impact the other two, creating a vicious cycle 
that gradually leads to frailty and disease. In this context, targeted interventions on SIM elements could help 
reverse the vicious cycle, by re-educating the SIM and reestablishing a balance between Structure, Immunity/
Inflammation, and Metabolism, ultimately maintaining tissue homeostasis and health over time. The SIM 
paradigm developed in this study aims to move beyond established models of aging such as inflammaging, 
immunosenescence, or molecularly focused geroscience71. While those frameworks have significantly advanced 
our understanding of age-related molecular deregulations, they often remain anchored in discrete signaling 
cascades or immune dysfunction. By contrast, SIM proposes a functionally and spatially integrative view of aging, 
centered on the progressive disintegration of coordination between structural integrity, immune competence, 
and metabolic adaptability. This model conceptualizes aging not as a linear accumulation of molecular damage, 
but as a systems-level drift in tissue homeostasis - manifesting through architectural disorganization, immune 
inefficiency, and altered energetic regulation. As such, SIM provides a theoretical framework for identifying early, 
subclinical signs of aging at tissue interfaces - such as the gingiva - that are chronically exposed to mechanical 
and microbial stressors.

The identification of a gingival health signature and the evaluation of its evolution with age could allow 
clinicians to monitor an individual’s gingival health and detect early or predictive signs of imbalance or pathology. 
Similarly, analyzing biological gingival age and its variations could help practitioners assess beforehand the 
effectiveness of preventive and therapeutic measures for each patient. The difference between chronological 
age and predicted age (gingival biological age) might reveal a trajectory of oral aging that could be either 
accelerated or decelerated, regardless of the periodontal inflammatory status, and could indicate subclinical 
stages of future oral dysfunctions. Importantly, we observed that individuals with periodontitis tended to have 
a predicted biological age greater than their chronological age, suggesting accelerated gingival aging. This is 
conceptually meaningful, as it supports the notion that transcriptomic aging signatures could help identify 
individuals at higher risk of developing periodontal disease, even before clinical symptoms are apparent. From a 
clinical perspective, intercepting individuals whose biological gingival age exceeds their chronological age could 
allow for personalized preventive strategies to delay or prevent the progression to overt periodontal pathology. 
Conversely, individuals with a biological age below their chronological age may exhibit healthier tissue aging 
trajectories. This predictive modeling approach supports the potential use of transcriptomic data to infer 
biological gingival age and detect early signs of accelerated tissue aging, which could contribute to personalized 
risk stratification in periodontal medicine.

Moreover, the unique position and role of the mouth as an interface and interphase between the external and 
internal environment, coupled with its constant exposure to stress, could provide key insights into aging not 
only at the oral level but also at a general one10. In fact, the mouth could serve as an organ where early signs of 
pre-frailty or frailty are detected, enabling preventive action for the entire organism. In the future, this may allow 
for the identification of potential markers to assess both gingival and overall health, as well as to prevent or treat 
oral and age-related systemic diseases at an early stage. In this context, mesenchymal stromal cells (MSC), which 
play a key role in Structure, Immune and Metabolism regulation72,73, appear to be a crucial element for further 
investigation, to foster preventive and early therapeutic strategies aimed at promoting healthy aging.

Limitations of the study
The present study is subject to certain limitations inherent to the use of publicly available transcriptomic datasets. 
Due to incomplete metadata, potential confounding factors such as lifestyle habits (e.g., smoking, oral hygiene 
practices), systemic health conditions, and ethnic background could not be systematically evaluated. Similarly, 
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granular clinical data regarding gingival status - such as staging or grading of periodontitis beyond general 
classifications - were often unavailable or inconsistently reported. While the present analysis included only non-
malignant, fresh gingival samples and accounted for gender and periodontal status, residual confounding cannot 
be fully excluded. Future prospective studies with comprehensive clinical annotation and diverse populations 
will be essential to confirm and expand upon these findings.

Methods
Acquisition of human gingival transcriptome data
A review was conducted on GEO DataSets (https://www.ncbi.nlm.nih.gov/gds) using the following keywords: 
gingival OR gingivitis OR gingiva. Datasets were included if they contained bulk RNA sequencing data from 
non-pooled samples (individual data) of human fresh, unfixed gingiva (Fig. 1). Information on individual age, 
sex, and the inflammatory status of the sampled tissue (healthy site, inflammatory site with gingivitis alone or 
with periodontitis) is provided in Supplementary Table 1.

Exclusion criteria included: non-human gingival samples, cultured cells or tissue explants, cancer biopsies, 
and absence of data on individual age or tissue inflammation. Last search date: 2024/12/31.

Based on the defined keywords, 3068 records were retrieved. After manual screening, 57 datasets corresponding 
to 57 individuals were identified (Fig. 1). The average age of the entire sample was 44 years, with ages ranging 
from 16 to 78 years. No gingival transcriptomic data on human subjects younger than 16 were available in the 
literature. Detailed information, including age, sex, and the periodontal health status of the subjects (gingivitis, 
periodontitis, or clinically healthy gingiva) is provided in Supplementary Table 1. Tissue samples were annotated 
using the periodontal status available in the corresponding metadata. The following clinical parameters were 
used to categorize samples: Periodontal health: Absence of visible inflammation, mucosal candidiasis, or clinical 
signs of infection at the time of tissue sampling; probing depth (PD) ≤ 3 mm; no clinical attachment loss (CAL); 
and no bleeding on probing (BoP). Gingivitis: PD ≤ 3 mm; no CAL; presence of BoP. Periodontitis (as defined 
by Papapanou et al., 2018): PD ≥ 5 mm with CAL ≥ 3 mm and BoP, consistent with Stage III disease severity74.

Bulk RNA seq quality control, trimming, mapping and counting
The raw data were pre-processed using Galaxy (https://usegalaxy.org), which allowed quality control, trimming, 
mapping and gene counting75. All sequencing raw reads were aligned to the human genome reference hg38. 
Only uniquely and properly mapped read pairs were used for further analysis.

Biostatistical analysis
All subsequent statistical analyses were performed using R/RStudio. The analysis process involved importing all 
the data, removing the batch effect, analyzing the genes differentially expressed with age, functionally grouping 
these genes, and then defining a minimal signature of gingival biological age.

Data integration: All expression data were merged with their corresponding metadata (age and sex of the 
individual, tissue inflammatory status). The transcriptomic dataset was composed of multiple independent 
sub-cohorts originating from different studies or collection periods, referred to as “batches”. Each batch was 
identified by its corresponding GEO accession number (GSE), which was listed in Supplementary Table 1 
along with the distribution of samples across age and periodontal status. Each set of samples sequenced for 
the same study was considered as belonging to the same batch. To mitigate potential non-biological variation 
introduced by differences in experimental protocols, RNA extraction methods, or sequencing platforms, a batch 
correction step was performed prior to downstream analyses. Specifically, the normalized expression matrix 
was adjusted using the removeBatchEffect() function from the limma R package (version 3.62.2), with batch 
identity specified based on GEO dataset origin76. The rationale for early correction was to minimize technical 
artifacts while preserving biological variation of interest. Following batch correction, a variance stabilizing 
transformation (VST) was applied to the expression matrix using the vst() function from the DESeq2 package. 
This transformation was used solely for exploratory analyses, including principal component analysis (PCA) and 
unsupervised clustering, as it stabilizes the variance across genes with differing expression levels and improves 
interpretability of the data in reduced-dimensional space. The batch correction was applied before conducting 
differential gene expression (DGE) analysis.

Differential expression analysis: Differentially expressed genes associated with age were identified using the 
DESeq2 package (version 1.46.0) applying a statistical model adjusted for batch number and inflammatory status. 
The analysis included all genes from all datasets without any a priori exclusion, to provide a comprehensive 
overview of global gene expression changes with age. Raw count matrices were analyzed using DESeq2 (v1.46.0). 
Multivariate models were fitted to assess the effects of age, periodontal status, and sex, while accounting for 
technical batch. Interaction terms (sex: age and periodontal_status: age) were included to test whether age-
related transcriptional changes vary across periodontal-status categories. No genes remained significant after 
multiple-testing correction (FDR < 0.01) for either interaction. Accordingly, a reduced model without interaction 
terms was refit to estimate and report the main effects.

Principal component analysis (PCA): PCA was performed on normalized counts of genes significantly 
differentially expressed with age (p-value threshold of 0.01), to understand their contribution to aging.

Gene set enrichment analysis (GSEA): GSEA was performed using the fgsea package on all genes significantly 
differentially expressed with age. Genes were ranked using a composite score combining the log2FoldChange 
and the corresponding p-value (log2FoldChange * -log10(p-value)). Significantly enriched pathways were 
identified at a False Discovery Rate (FDR) adjusted p-value threshold of 0.001.

SIM categorization: All genes significantly differentially expressed with age were classified into one or more of 
the following functional categories: Structure (S), Immunity (I), and Metabolism (M), based on their annotated 
biological functions. A gene could belong to multiple categories simultaneously. The classification into S, I, and M 
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categories was based on functional annotations from the Gene Ontology (GO) database and the Human Protein 
Atlas. Structure (S): Genes involved in tissue architecture, extracellular matrix organization, cell adhesion to 
ECM, and structural integrity of gingival tissue. Typical GO terms included in this category were extracellular 
matrix organization and collagen binding. Immunity (I): Genes related to immune response, inflammation, 
cytokine signaling, and antigen processing. GO terms included immune system process, inflammatory response, 
cytokine activity, T-cell activation, etc. Metabolism (M): Genes involved in cellular metabolism, including 
oxidative phosphorylation, lipid and glucose metabolism, mitochondrial activity, and biosynthetic processes. 
Relevant GO terms included metabolic process, oxidoreductase activity, lipid metabolic process, and ATP 
synthesis. In addition to the SIM domains, further thematic categories were introduced to account for genes 
not primarily classified under structural, immune, or metabolic processes but nonetheless relevant to aging 
biology: Proliferation-related genes (encompassing regulators of cell cycle progression and mitotic activity); 
transcription factors (including DNA-binding proteins and transcriptional modulators not confined to a specific 
SIM domain); migration-related genes (covering cytoskeletal regulators, and chemotactic mediators); Other/
Unclassified (a residual group capturing genes with diverse or poorly characterized functions not assignable to 
the above categories). This structured classification enabled a layered analysis of transcriptomic trajectories in 
aging gingiva and supported integrative interpretation across molecular and histological findings.

Identifying a “SIM” gene signature within expression data: To assess the contribution of significantly 
differentially expressed genes to aging through ‘SIM’ functions, the average loadings of each category on the 
first two principal PCA components has been calculated. A qualitative assessment was also conducted using 
STRING version 12.0 (https://string-db.org/), enabling the classification of transcriptomic data according to the 
associated protein activities. Finally, to reduce the transcriptomic space, a sparse Partial Least Squares (sPLS) 
regression was optimized to be able to define biological gingival age in a minimal number of variables.

Definition of the gingival biological age model: A linear model to explain chronological age using the previously 
reduced list of genes was ultimately performed. The age predicted by this model was considered as the gingival 
biological age (GBA).

Gingival microscopy
To support transcriptomic findings related to extracellular matrix remodeling, histological staining was performed 
on 40 healthy gingival tissue specimens (2 × 1 mm), obtained from the buccal marginal gingiva, defined as the 
terminal, collar-like edge of the gingiva on the buccal surface, adjacent to the tooth77. This region forms the soft 
tissue wall of the gingival sulcus and is not directly attached to the underlying alveolar bone. Tissue samples 
were collected during tooth extractions performed for non-periodontal clinical indications, including advanced 
carious lesions, dental fractures, or traumatic injuries resulting in structural loss incompatible with restoration. 
Extractions performed for periodontal disease or infection were excluded. Prior to extraction, all sites underwent 
a comprehensive periodontal examination. Only samples meeting the following criteria were included: probing 
depth ≤ 3 mm, no clinical attachment loss, and absence of bleeding on probing (BoP). These criteria ensured the 
inclusion of clinically healthy gingival tissue. To minimize confounding factors, samples were excluded in cases 
of known systemic disease, current medication use (e.g., corticosteroids, immunosuppressants), or any signs 
of periodontal inflammation. Samples were stratified into three age categories: Young (< 16 years, n = 20; 12 
males, 8 females), Middle-aged (17–40 years, n = 11; 10 males, 1 female), and Elderly (>40 years, n = 9; 6 males, 
3 females), according to the NIH Lifespan Categories78.

For 2D microscopy, gingival tissues were fixed in 3.7% paraformaldehyde for 5 h, stored in phosphate-buffered 
saline (PBS) at 4 °C until paraffin wax embedding. Five micrometers-thick section slices were performed and 
processed for hematoxylin/eosin (HE), Masson’s trichrome (TM) and red picrosirius (PS) staining, then scanned 
(Zeiss Axio scan Z1, Centre d’Imagerie Quantitative Lyon Est (CIQLE). For each specimen, four sections were 
analyzed per staining modality: Hematoxylin–Eosin (HE), Masson’s Trichrome (TM), and Picrosirius Red (PS). 
Sections were collected at 50 μm intervals to ensure representative sampling across the connective tissue while 
avoiding redundancy from overlapping anatomical structures.

Hematoxylin and Eosin (HE) offered a global assessment of tissue morphology and cellular organization 
across different age groups (hematoxylin stains nuclei blue, while eosin stains cytoplasm and extracellular 
components pink). Masson’s Trichrome (TM) was used to visualize overall collagen fiber density and orientation 
(with collagen fibers appearing blue/green and cytoplasm red). Picrosirius Red (PS) staining under polarized 
light allowed specific differentiation between red–orange (thicker, highly birefringent, type-I collagen-enriched 
fibers) and green (thinner, less birefringent, type III collagen-enriched fibers) pixel classes14,15.

Periostin immunofluorescence was used to detect periostin expression, a matricellular protein involved in 
fibroblast activation and extracellular matrix remodeling, in order to assess its spatial distribution changes with 
age. UEA I Lectin-based immunofluorescence was employed to label endothelial glycoproteins, serving both as a 
compartmental landmark and as an indicator of microvascular integrity, since ECM stiffening and fibrosis often 
coincide with vascular remodeling.

For light sheet microscopy, samples were fixed using 3.7% PFA before being labelled with Propidium Iodide 
overnight. After rinsing with Propidium Iodide, samples were dehydrated in 100% Methanol before being 
labelled with a solution of Fast Green diluted 1:1000 in Methanol overnight. The Fast Green was rinsed off and 
the sample rehydrated in 1X PBS before embedding in 1% Low Melting agar. For in-depth imaging, the sample 
was dehydrated in 100% Methanol before being cleared with a solution of 1vol. Benzyl Alcohol / 2 vol. Benzyl 
Benzoate (BABB). Light sheet microscopy was performed using a Light Sheet Z7 (Carl Zeiss, Rueil-Malmaison, 
France) and analyzed using Zen Blue Software.

Fluorescence microscopy was assayed after antigen retrieval for 30  min (Citrate buffer at 90  °C in water 
bath), using rabbit anti-human periostin antibody (Abcam (Cambridge, CB2 0AX, UK), Ab 14041 dilution 
1/100, overnight at 4 °C) followed by secondary Alexa 488 donkey anti-rabbit antibody and human lectin (Ulex 
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Europaeus Agglutinin I (UEA I), Biotinylated (B-1065-2) Vector Labs) followed by secondary streptavidin 
(Streptavidin Alexa Fluor 647 conjugated; Life technology) incubation for endothelium and epithelial superficial 
layers localization, for one hour at room temperature following by DAPI incubation for nuclear detection. 
Fluorescence microscopy was acquired using widefield microscope Axio Observer and analyzed with Zen 
software (Carl Zeiss, Rueil-Malmaison, France).

Semiquantitative fibroblast and periostin scoring. Two experienced oral histopathologists independently scored 
fibroblast nuclear distribution on HE sections using a 4-point scale: 0 = very few fibroblast nuclei within dense 
collagen; 1 = sparse nuclei; 2 = heterogeneous clustered nuclei; 3 = numerous nuclei homogeneously dispersed. 
Periostin immunofluorescence was scored on a 4-point scale: 0 = no staining; 1 = focal, rare, discontinuous narrow 
subepithelial staining; 2 = heterogeneous, discontinuous narrow subepithelial staining; 3 = broad, homogeneous 
lamina propria staining. For each specimen, one representative section was used; observers were blinded to age 
group. Interobserver agreement was assessed by Cohen’s κappa and was found to be acceptable (Cohen’s κ = 0.60 
for fibroblast score; κ = 0.70 for periostin).

 Analysis of PS staining. A Fiji® pipeline enabled the semi-automated quantification of collagen birefringence 
patterns in PS-stained sections. Using the Seeded Region Growing Tools plugin in Fiji® to delineate the epithelial 
layer from the underlying lamina propria, only the connective tissue compartment, where collagen fibers are 
most prominent, was retained for analysis. Subsequently, the red-orange/green birefringent pixel area ratio 
per subject was computed. This ratio represents the relative abundance of thick, tightly packed (red-orange) 
versus thin, loosely packed (green) birefringent fibers, interpreted as a surrogate for predominant collagen I 
versus collagen III-enriched matrix components14,15. Each ratio was calculated as the average across three non-
overlapping stromal fields, acquired under standardized illumination and polarization conditions.

Ethics declarations
Healthy gingival tissue was obtained from subjects aged 2 to 87 years, as biological product with change of 
purpose (care leftovers). The protocol of preparation of human biological samples for research approved under 
the N°DC-2019-3731 by the competent authority (CODEOH, part of the Ministry of Higher Education and 
Research). The patients’ non-opposition was duly collected in accordance with ethical requirements. For minors, 
the non-opposition has been obtained from a parent or legal guardian. The metadata collected (age, sex and 
periodontal status) comply with the French the regulatory authority for personal data (CNIL, Commission 
Nationale Informatique Libertés) MR-004 methodology. All methods were carried out in accordance with 
relevant guidelines and regulations.

Data availability
All data generated during this study are included in the Article and the Supplementary Tables. All bulk RNA 
sequencing datasets were downloaded from the Gene Expression Omnibus (GEO): GSE133603, GSE83382, 
GSE173078, GSE111523, GSE224044.
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