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Mucosal DNA methylation reveals
iImmune-related methylation
profile and correlates with crohn’s
disease status
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Zhengting Wang'™ & Jie Zhong?

Altered DNA methylation (DNAm) patterns have been proven to play a key role in Crohn’s disease
(CD) pathogenesis. However, DNAm and its association with disease status in Chinese CD remain
unclear. This study systematically examines DNAm patterns in Chinese patients with CD and their
association with disease status. By elucidating specific DNAm alterations involved in CD pathogenesis,
it aims to provide a molecular foundation for early diagnosis, prognosis assessment, and personalized
treatment strategies. In this study, 24 adult treatment-naive patients with CD were enrolled between
January 2022 and May 2023. We performed reduced representation bisulfite sequencing (RRBS) on
paired inflamed and non-inflamed intestinal mucosa samples from these patients, and inflammation-
specific and disease severity-specific differential methylation signatures were identified. A total of
17,097 differentially methylated sites (DMCs) and 2,687 differentially methylated regions (DMRs)
were identified in inflamed mucosa. Biological association analysis revealed that inflammation-
associated DMRs were enriched in immune function, with 123 DMRs annotating 89 genes involved

in immune cell function while 173 DMRs annotating 117 genes participated in cell adhesion function.
Analysis of DNAm profiles of inflamed mucosal samples by disease severity revealed that 389 DMRs
were associated with the Simple Endoscopic Score for Crohn’s Disease (SES-CD) and 327 DMRs with
the Crohn Disease Activity Index (CDAI). Of these, six genes, KDM4B, CLDN15, PGGHG, SLC25A10,
KIAA2013, and N4BP1, were significantly associated with inflammation, SES-CD and CDAI. Hence,
DNAm reflects immunological changes in the gut of CD patients and discriminates patients based on
disease severity, highlighting its potential as a predictive marker for disease management.
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Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation that can affect any segment
of the digestive tract, as observed in Crohn’s disease (CD), or be limited to the colon, as seen in ulcerative colitis
(UC). The prevalence of IBD is increasing, especially in Eastern countries. IBD arises in the context of intricate
interplays between genome, epigenome, gut microbiota, immune dysregulation and the environment, the full
understanding of which remains elusive. Large-scale genome-wide association studies have revealed over 200
disease-associated loci, yet the overall genetic contribution to IBD risk remains modest, estimated at 13.1%
for CD and 8.2% for UC!~>. Recently, epigenetic mechanisms, including DNA methylation (DNAm), histone
modifications, and miRNA synthesis, have been recognized as plausible mechanisms for both initiating and
sustaining intestinal mucosal inflammation in human IBD*.

Remarkably, the most consistent progress in understanding DNAm changes in IBD has been achieved due
to technological innovations for genome-wide methylation assessment. For instance, a recent systematic review
and meta-analysis of peripheral blood DNAm studies in IBD observed differentially methylated positions
(DMPs), such as VMP1/TMEM49/MIR21 and RPS6KA2, were consistently differentially methylated across all
studies®. However, DNAm changes in peripheral blood cells are primarily associated with inflammatory status
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rather than disease status®. It also found that methylation patterns in blood tend to revert to “normal” following
anti-inflammatory treatment, irrespective of the underlying disease state. Consequently, an increasing number
of studies have focused on the DNA methylome of specific mucosal cell types in IBD, including epithelial
cells’, adipose stem cells'’, and CD4* lymphocytes'!. These studies have unveiled distinct DNAm patterns
linked to inflammation and different disease subtypes. Additionally, investigations into genome-wide DNAm
in the intestinal tissue of UC have identified specific DNAm alterations associated with genetic variations,
disease status, severity, and clinical outcomes'2 14, However, the differentiation in DNAm between inflamed and
non-inflamed mucosa, as well as the relationship between DNAm and disease severity in treatment-naive CD
patients, remains unclear.

This study analyzed the DNAm profiles in the mucosa of treatment-naive CD patients and examined the
correlation between DNAm patterns and disease severity. It aims to investigate the role of inflammation-
associated DNAm in the immune signaling pathways of CD and to identify specific DNAm alterations that are
significantly associated with disease severity, thereby enhancing the management of CD.

Methods

Patient enrollment and sample collection

All patient recruitment and sample collection were performed under full ethical approval from the Ruijin Hospital
Ethics Committee, Shanghai Jiaotong University School of Medicine (2019 — 186). The study was conducted in
accordance with the principles of the Declaration of Helsinki and all methods were performed according to
the relevant guidelines and regulations'>~'”. This study enrolled 24 consecutive adult patients with treatment-
naive Crohn’s disease between January 2022 and May 2023. The diagnosis of CD requires a comprehensive
evaluation based on clinical manifestations, laboratory tests, endoscopic examinations and histopathological
analyses in accordance with guideline!®. A paired tissue sample consists of two specimens obtained from the
same patient during a single colonoscopic examination: one from the diseased tissue (inflammatory regions) and
the other from adjacent normal tissue. Typical preparatory protocols preceding a colonoscopy include dietary
modifications, the administration of oral laxatives, and the suspension of certain medications, among other
interventions!'®. All participants adhere to a standardized bowel preparation regimen and subsequently undergo
a colonoscopic examination. The area around the ulcer was inflammation site, and biopsy should be performed
on the surrounding area, rather than at the base of the ulcer. Biopsies were obtained from intestinal segments
exhibiting the most pronounced inflammation and ulceration. Four biopsies were collected from both inflamed
and non-inflamed sites and stored at — 80 °C. The key clinical characteristics, including age, gender, disease
location (according to Montreal classification), Simple Endoscopic Score for Crohn’s Disease (SES-CD)?, Crohn
Disease Activity Index (CDAI)?!?2, and behaviour, were collected (Table 1). Informed consent was obtained
from all patients in this study.

Characteristics n=24
Age, years

Mean [SD] 33.8[10.2]
Gender, 1 [%)]

Male 21 [87.5]
Female 3[12.5]

Disease location at diagnosis, 7 [%]

Small bowel alone 22 [91.7]
Colon alone 1[4.2]
Small bowel and colon 1[4.2]
SES-CD, 1 [%]

Mild 10 [41.7]
Moderate 12 [50.0]
Severe 2[8.3]
CDAI 1 [%]

Mild 5[20.8]
Moderate 16 [66.7]
Severe 3[12.5]

Behaviour,  [%]

Bl 15 [62.5]
B2 6 [25.0]
B3 3[12.5]

Table 1. Basic characteristics of patients with CD in this study. SES-CD, simple endoscopic score for Crohn’s
disease; CADI, Crohn disease activity index.
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DNA extraction and RRBS

According to the manufacturer’s instructions, formalin-fixed paraffin-embedded (FFPE) samples from
CD patients were underwent DNA extraction using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden,
Germany)?. Quality control measures were implemented to ensure the integrity of the extracted DNA samples.
The methylation status of CpG sites was assessed using the reduced representation bisulfite sequencing (RRBS)
method, as previously described?’. A DNA input ranging from 50 ng to 100 ng was digested with the Mspl
enzyme prior to ligation with a methylated adaptor containing complementary sticky ends. Subsequently, the
ligation products underwent bisulfite conversion using the Methylcode Bisulfite Conversion Kit (ThermoFisher,
MECOV50), followed by purification and recovery steps?>?°. To introduce a barcode for lllumina sequencing,
the converted DNA was amplified. Finally, the libraries were sequenced on the Illumina Hiseq X10 platform?”25.

DNA methylation analysis

The Illumina bcl2fastq software was performed to do the demultiplexing of reads (https://support.illumina.com
/sequencing/sequencing_software/bcl2fastq-conversion-software.html). FASTQ data were adapter-trimmed by
the first 2 bases from each end with trim-galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_ga
lore). Single-end reads were generated by merging the paired-end read FASTQ files. The single-end reads were
aligned to the bisulfite-converted human reference genome (version hgl9) using Bismark® and Bowtie v.1%,
resulting in BAM files. The mapped bam files were subsequently utilized for further analysis. CpG methyRate
calculating was performed with Bismark to identify the differentially methylated sites (DMCs) between inflamed
and non-inflamed samples from CD patients. A minimum of five CpG sites was required to define a differentially
methylated region (DMR). p-values were adjusted using the false discovery rate (FDR). The definitive DMCs
were selected using the following criteria: an absolute methylation difference (JAp value|) of at least 10 and a
corrected p-value (P.adjust) below 0.0001. Likewise, the definitive DMRs between inflamed and non-inflamed
samples were determined by a threshold of | A value| > 10 coupled with a P.adjust < 0.01. For subgroup analyses
stratified by SES-CD and CDALI, the DMR criteria were adjusted to an |Ap value| = 10 and a P.adjust < 0.05.

Statistical analysis

The volcano plot was generated using the ggplot2 package in R software (version 4.3.2, R Foundation for
Statistical Computing, Vienna, Austria), and the heatmap was constructed with the pheatmap package in R*'.
Gene Ontology (GO) for biological process enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment (www.kegg.jp/kegg/keggl.html)**-3* analyses were performed for genes annotated to DMRs using R
with the BiocManager package clusterProfiler®>3¢. KEGG copyright permission is 251,684. To cluster similarity
matrices of the GO terms, the simplifyEnrichment R package was implemented for visualizing, summarizing,
and comparing the clusterings®”. The VennDiagram R package was used to create a Venn diagram to illustrate
the intersection of the DMRs. Two-tailed Mann-Whitney tests were used to compare distributions between two
groups. A two-sided P value < 0.05 was considered statistically significant. Statistical analyses for the two groups
in Figs. 1 and 3 were conducted using R version 4.3.2, while those for the two groups in Fig. 4 were performed
with GraphPad Prism version 9.0.

Results

Identification of inflammation-associated methylation signatures in CD

A total of 17,097 DMCs (Additional file 1) and 2,687 DMRs (Additional file 2) were identified between inflamed
and non-inflamed mucosae. Significant DMR differences, with more hypermethylated DMR and reduced
hypomethylated DMR were observed in inflamed regions than in non-inflamed regions (Fig. 1A-B). The
majority of DMRs were in promoter regions (32%) and intron regions (31%). Specifically, hypermethylated
DMRs were predominantly present in promoter regions (33%) and intron regions (30%), while hypomethylated
DMRs showed a similar distribution in promoter regions (31%) and intron regions (32%) (Fig. 1C). Heatmap
revealed a clear visual distinction of methylation features between the two groups (Fig. 1D). The top 10 DMRs
are presented in Table 2.

Immunological relevance of inflammation-associated DMRs in CD

GO analysis for biological process enrichment revealed that the set of genes (n = 2,028) annotated to our
inflammation-associated DMRs were enriched in immune function, including changes in immune cell
proliferation, activation, and differentiation (Additional file 3). After clustering the similarity matrices of the
221 biological process terms, 14 clusters were obtained with 8 of these clusters containing at least five biological
processes each (Fig. 2A). In alignment with our priori hypotheses, two clusters, immune cell function and cell
adhesion were closely related to the immunology of IBD (Table 3). Intriguingly, several other clusters pointed
towards a convergence with epithelial development and proliferation pathways, suggesting a broader impact of
the identified DMRs on both immune regulation and tissue homeostasis. The cluster of immune cell functions
comprises 14 biological processes and involves 89 genes, corresponding to 123 DMRs (Additional file 4).
Similarly, the cluster of cell adhesion includes seven biological processes and 117 genes, accounting for 173 DMRs
(Additional file 5). To prioritize the most significant DMRs, we ranked them based on P.adjust and listed them in
Supplementary Table 1, for further examination. Among the genes annotated to these DMRs, the methylation of
JAK3, SBNO2, LIMK1, CXCL5, and RUNX3 has been reported to associated with IBD, confirming the findings
of previous studies**~*2. The top 20 biological processes associated with immunology were presented in a bubble
chart (Fig. 2B). KEGG enrichment analysis revealed nine significant pathways, including axon guidance, the
Rapl signaling pathway, regulation of actin cytoskeleton, Yersinia infection, the Notch signaling pathway, focal
adhesion, Fc gamma R-mediated phagocytosis, bacterial invasion of epithelial cells, and pathogenic Escherichia
coli infection (Fig. 2C). These signaling pathways play crucial roles in various biological processes, including

Scientific Reports |

(2026) 16:2848 | https://doi.org/10.1038/s41598-025-29123-x nature portfolio


https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
http://www.kegg.jp/kegg/kegg1.html
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

100 —
== =

infl: d  Inflamed

Methylation level (B value)
a
&

50

* Hypomethylation

7
2
s
c4
s
>
g
g

No difference (n=1933)
80 —
%
2
to| ==
5
&
220
5
A " =
ES i o 1 2 3 i
M thylation diffe
oan methyiation diference Non-inflamed Inflamed
(n=754)
Hypermethylation BN Non-inflamed

B inflamed

Hypomethylation

144

5 ACTR
el

88

i

g
Cpemedy

[ g

Fig. 1. Differential methylation analysis of inflamed and non-inflamed mucosae from CD patients. (A) A
volcano plot based on DMRs (P.adjust <0.01, |Ap value| = 10). Blue represents hypomethylation sites, while
red represents hypermethylation sites. (B) A total of 1933 DMRs were hypermethylated (upper), while 764
DMRs were hypomethylated (lower) (p-values calculated using the Mann-Whitney U test). (C) Pie charts
illustrate functional genomic distribution of hypermethylated (upper) and hypomethylated DMRs (lower). (D)
A heatmap of DMRs identified in inflamed and non-inflamed mucosae. Each row represents a DMR based tag.
Each column represents a tissue specimen. The brown represents inflamed samples, and the green represents
the non-inflamed ones. Yellow indicates increased DNA methylation in inflamed tissues compared to non-
inflamed tissues, blue indicates decreased DNA methylation in inflamed tissues. ***P<0.001.

immune regulation, inflammatory responses, cell migration, and cell adhesion, and are intimately linked to the
pathological mechanisms underlying IBD.

Methylation signatures were associated with disease severity in CD

As a proof-of-concept, we further investigated whether DNAm could distinguish patients with CD based on
their disease severity. We compared the inflamed mucosae from 10 patients with mild CD (0 <SES-CD<3)
to 12 patients with moderate CD (4 <SES-CD<6) and 2 patients with severe CD (SES-CD>7). The analysis
revealed significant DNAm differences between patients with mild CD and those with moderate to severe
(serious) CD. A total of 9,029 DMCs (Additional file 6) and 389 DMRs (Additional file 7) were identified based
on a P.adjust<0.05 (Fig. 3A). Among these, 291 were hypermethylated and 98 were hypomethylated (Fig. 3B).
Most DMRs were located in promoter regions (33%) and intron regions (26%). Hyper- and hypomethylated
DMRs were similarly distributed, with 32% and 36% in promoter regions and 27% and 20% in intron regions,
respectively (Fig. 3C). Importantly, a heatmap shows the top 100 DMRs based on P.adjust displayed a clear visual
distinction between mild and moderate to severe mucosae from CD patients, indicating unique DNAm patterns
associated with disease severity (Fig. 3D). DMRs associated with both SES-CD and inflammation are displayed
in Table 4. Likewise, we compared the inflamed mucosae from 5 patients with mild CD (150 < CDAI<220) to
16 patients with moderate CD (221 < CDAI<450) and 3 patients with severe CD (CDAI >450). A total of 9,268
DMCs (Additional file 8) and 327 DMRs (Additional file 9) were identified, with 201 being hypermethylated
and 126 hypomethylated (Fig. 3E-F). The global distribution of hypermethylated and hypomethylated DMRs
was like that compared by SES-CD (Fig. 3G). A heatmap results of the top 100 DMRs displayed an unclear visual
distinction between mild and moderate to severe mucosae from CD patients (Fig. 3H). We identified 18 DMRs
associated with both CDAI and inflammation. However, only SLC25A10 has been reported to be associated with
IBD (Table 5).
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Biological
Ap functions
Gene Official gene symbol Coordinates CpGs | qvalue |value |Tumor-related functions in IBD Reference
Polycystin 1. transient recentor Involved in intercellular communication
PKD1 yeys > . €p chr16:2091823-2,092,152 | 30 6.53E-90 19.09 | between intestinal epithelial and Yes 44
potential channel interacting immune cells
PRDM16-DT | PRDM16 divergent transcript | chr1:3063390-3,063,913 | 69 | 6.53E-90 | 19.05 i‘}vc‘;lr‘l’cegr;“ the malignant progression | ¢, 4849
Chromosome 6 open reading | chr6:30648558— Involved in the malignant progression 50,51
Coorf136 frame 136 30,649,000 41 6.53E-90 | 17.27 of cancers No
SH2D3A SH2 domain containing3 A | chrl19:6752565-6,752,802 | 35 |6.53E-90 | 17.25 i‘;vc‘glr‘l’cefr;“ the malignant progression | ¢, 5253
AGAP2-AS1 | AGAP?2 antisense RNA 1 chr12:57726603- 26 6.53E-90 | 16.78 Involved in the malignant progression No 54
57,726,692 of cancers
RNF186 Ring finger protein 186 igr;?fllf“’ 40 | 653E-90 | 15.55 | Involved in UC pathogenesis Yes as
Tubulin polymerization .
TPPP3 promoting protein family 2}7“31965617 23 19 4509~ 106 | 6.53E-90 | —15.07 | Involved in UC pathogenesis Yes 6
member 3 I
MIR4648 | MicroRNA 4648 chr7:2531297-2531,973 | 53 | 653E-90 | 1500 | volved in the malignant progression 5556
PRDM16-DT | PRDM16 divergent transcript | chr1:3062330-3,063,378 | 71 | 6.53E-90 | 13.23 f)f;vc‘;lr‘l’fi;“ the malignant progression | ¢, 4849
RUNX family transcription chr1:24931340- . . — 4
RUNX3 factor 3 24,931,585 28 1.68E-85 | 16.55 | Associated with IBD susceptibility Yes

Table 2. Top 10 DMRs associated with inflammation. UC, ulcerative colitis; IBD, inflammatory bowel disease.
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Fig. 2. Biological relevance of the inflammation-associated DMRs in CD. (A) Similarity matrix of 221
biological process terms obtained from the enrichment analysis of genes mapped by the inflammation-
associated DMRs. (B) The top 20 biological processes related to immunology, identified through GO
enrichment analysis. (C) Enriched KEGG categories for DMRs.

Disease severity-specific inflammatory DMRs

To further select DNAm signatures specific to inflammation and disease severity in CD, we compared
inflammation-associated DMRs with those identified in subgroups categorized by the SES-CD and CDAIL
We found significant overlap within these groups of DMRs, particularly between inflammation-associated
DMRs and those associated with severe disease status (Fig. 4A). Subsequently, we identified DMRs that were
simultaneously hypermethylated or hypomethylated in both inflammation-associated and severe disease status-
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GO Term ‘ Biological Process GeneRatio | p.adjust
Immune Cell Function

GO:0050900 | Leukocyte migration 55/1536 0.0064
GO:0002886 | Regulation of myeloid leukocyte mediated immunity 14/1536 0.0118
GO:0002444 | Myeloid leukocyte mediated immunity 21/1536 0.0151
GO0:0002275 | Myeloid cell activation involved in immune response 19/1536 0.0152
GO:1,905,521 | Regulation of macrophage migration 11/1536 0.0250
GO0:0030595 | Leukocyte chemotaxis 34/1536 0.0307
GO0:1,905,517 | Macrophage migration 13/1536 0.0320
G0:0002263 | Cell activation involved in immune response 41/1536 0.0344
GO:0010758 | Regulation of macrophage chemotaxis 8/1536 0.0349
GO0:0002279 | Mast cell activation involved in immune response 12/1536 0.0411
GO:0002448 | Mast cell mediated immunity 12/1536 0.0411
GO0:0002433 | Immune response-regulating cell surface receptor signaling pathway involved in phagocytosis | 7/1536 0.0411
GO:0038096 | Fc-gamma receptor signaling pathway involved in phagocytosis 7/1536 0.0411
GO0:0002366 | Leukocyte activation involved in immune response 40/1536 0.0432
Cell Adhesion

GO0:0022407 | Regulation of cell-cell adhesion 62/1536 0.0208
GO:0045785 | Positive regulation of cell adhesion 60/1536 0.0277
GO:0007162 | Negative regulation of cell adhesion 42/1536 0.0283
GO:0007159 | Leukocyte cell-cell adhesion 53/1536 0.0313
GO:0031589 | Cell-substrate adhesion 46/1536 0.0431
GO0:1,903,037 | Regulation of leukocyte cell-cell adhesion 48/1536 0.0460
GO:0022409 | Positive regulation of cell-cell adhesion 42/1536 0.0491

Table 3. GO clusters associated with the immunology of IBD. IBD, inflammatory bowel disease.

associated DMRs. This screen identified 36 shared DMRs between high SES-CD-associated and high CDAI-
associated DMRs, of which 6 were also inflammation-associated (Fig. 4B). Of these six DMRs, KDM4B and
CLDN15 showed the most significant differences between groups (P<0.001).

Discussion

Over the past decades, extensive research has established a strong correlation between DNAm and the
pathogenesis of IBD. Studies have shown that altered DNAm patterns in the circulation of IBD patients reflect
inflammatory states and correlate with disease progression, treatment response, and genetic variants. Despite
identifying methylation changes in disease tissues and specific cell types in IBD, the precise differences in DNAm
between inflamed and non-inflamed mucosa, and their impact on disease severity and clinical outcomes in
treatment-naive CD patients, remain unclear. In this study, we utilized a treatment-naive CD cohort to uncover
distinct methylation patterns between inflamed and non-inflamed mucosae, as well as between inflamed
mucosae of CD patients with varying disease severity.

We first demonstrated that significant DMRs were identified between inflamed and non-inflamed mucosa in
CD, with most of them being hypermethylated (1,933 hypermethylated DMRs and 754 hypomethylated DMRs).
The majority of these DMRs were located in gene body regions, including exons and introns, and secondarily in
promoter and distal intergenic regions. This localization pattern aligns well with the DMC outcomes reported in
previous investigations, which compared colonoscopy samples of CD patients against healthy controls utilizing
the HumanMethylation450K BeadChip platform*®. Notably, no significant differences in the distribution patterns
were discerned between hypermethylated and hypomethylated DMRs. Furthermore, several genes annotated to
the most prominent DMRs. Among the genes annotated as DMRs, PKD1*, RNF186*° and TPPP3¢ have been
implicated in the pathogenesis of UC, while RUNX3" as a gene associated with IBD susceptibility. In addition,
other notable DMRs have been shown to act as biomarkers of malignancy in a variety of cancers**-, suggesting
their potential role in CD. Notably RNF186 and RUNX3, have been previously implicated in UC, highlighting
the potential involvement of inflammation-associated DMRs in the underlying mechanisms of CD #2°7:38,

The intestinal immune system, composed of the intestinal epithelium, immune cells, and the gut microbiota,
playsa crucial role in maintaining gut health. IBD arises from an atypical immune reaction to gut microorganisms
in individuals with a genetic predisposition; however, the detailed mechanisms underlying this condition are still
being elucidated. GO analysis revealed that the 2,028 genes associated with inflammation-related DMRs are
significantly enriched in immune-related biological processes, including immune cell proliferation, activation,
and differentiation. This enrichment underscores the pivotal role of epigenetic modifications in orchestrating
immune responses central to CD pathology. Notably, the clustering of biological processes highlighted two
major clusters—immune cell function and cell adhesion—that are intrinsically linked to IBD immunology.
These findings align with established evidence that immune dysregulation and impaired cell adhesion are
critical drivers of IBD pathogenesis. Furthermore, the identification of additional clusters related to epithelial
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Fig. 3. Differential methylation analysis of inflamed mucosae categorized by SES-CD and CDALI scores. (A) A
volcano plot based on DMRs (P.adjust<0.05, |Ap value| = 10) between mild and moderate to severe (serious)
inflamed mucosal samples. Blue represents hypomethylation sites, while red represents hypermethylation sites.
(B) A total of 291 DMRs were hypermethylated (upper), while 98 DMRs were hypomethylated (lower). (C)
Pie charts illustrate functional genomic distribution of hypermethylated (upper) and hypomethylated DMRs
(lower). (D) A heatmap of DMRs identified in mild and serious inflamed mucosal samples from CD patients
categorized by SES-CD score. (E) A volcano plot based on DMRs (P.adjust<0.05, |AB value| > 10) between
mild and moderate to severe (serious) inflamed mucosal samples. Blue represents hypomethylation sites,
while red represents hypermethylation sites. (F) A total of 291 DMRs were hypermethylated (upper), while

98 DMRs were hypomethylated (lower). (G) Pie charts illustrate the proportion of genome-wide coverage of
hypermethylated (upper) and hypomethylated (lower) DMRs. (H) A heatmap indicated the top 100 DMRs
profile between mild and serious inflamed mucosal samples from CD patients categorized by CDAI score.
Each row represents a DMR based tag. Each column represents a tissue specimen. The brown represents mild
samples, and the green represents the serious ones. Yellow indicates increased DNA methylation in serious
tissues compared to mild tissues, blue indicates decreased DNA methylation in serious tissues. ***P<0.001.
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Gene Official gene symbol Coordinates CpGs | qvalue | Apvalue | Biological functions in IBD | Reference
APBBI1IP QXI&E f’fﬁgiﬁ;‘ggfgﬁm binding family B | ,110.26567048-26,567,206 |42 | 3.59E-20 | 18.44901 ;ﬁiﬁiﬁiﬁﬁﬁfﬁ?e 5
unctions
KDM4B Lysine demethylase 4B chr19:5068592-5,068,724 20 1.38E-13 | 10.87079 | No /
PGGHG Protein-glucosylgalactosylhydroxylysine glucosidase | chr11:286733-286,870 18 1.33E-08 | 12.4665 | No /
CLDN15 Claudin 15 chr7:101234277-101,234,588 | 12 5.71E-07 | 11.60488 | No /
GCNT1 Glucosaminyl (N-acetyl) transferase 1 chr9:76461341-76,461,508 14 1.84E-06 | 18.47662 | No /
SLC25A10 | Solute carrier family 25 member 10 chr17:81727492-81,727,669 13 2.05E-06 | 15.48557 | Play a role in the risk of IBD | ©
FMO5 Flavin containing dimethylaniline monoxygenase 5 | chr1:147224669-147,224,807 | 24 0.00025 | 10.46524 Ie\g?ti}?;iliit?n: healthy intestinal | 65
NLRP6 NLR family pyrin domain containing 6 chr11:283513-283,609 12 0.00087 | 10.22478 | Involved in UC and CD 6162
KANK1 KN motif and ankyrin repeat domains 1 chr9:611821-612,014 19 0.001188 | 11.41923 | No /
PDGFRL Platelet derived growth factor receptor like chr8:17628444-17,628,724 15 0.001418 | 15.32036 | No /
KIAA2013 | KIAA2013 chr1:11919055-11,919,152 10 0.001767 | 12.66426 | No /
CANT1 Calcium activated nucleotidase 1 chr17:78998626-78,998,831 17 0.002244 | 12.77673 | No /
CRTC1 CREB regulated transcription coactivator 1 chr19:18743290-18,743,387 12 0.005102 | 14.42441 | No /
NOTCHI1 | Notch receptor 1 chr9:136527727-136,527,864 | 18 0.005256 | 11.43256 | Involved in UC and CD 63,64
N4BP1 NEDDA4 binding protein 1 chr16:48542004-48,542,143 10 0.009779 | 15.6634 | No /
ECE1 Endothelin converting enzyme 1 chr1:21262899-21,263,058 10 0.009911 | 12.62271 fﬁ;‘iﬁi;‘:ﬁf‘“al 66
MACROD1 | Mono-ADP ribosylhydrolase 1 chr11:64115946-64,116,155 12 0.012122 | 13.88014 | No /
ZNF217 Zinc finger protein 217 chr20:53577816-53,577,969 12 0.016323 | 10.10471 | No /
CELSR1 Cadherin EGF LAG seven-pass G-type receptor 1 chr22:46525741-46,526,071 13 0.023839 | 12.94408 | No /
GSTO2 Glutathione S-transferase omega 2 chr10:104275213-104,275,389 | 16 0.030425 | 12.62861 | No /
KDELR2 i?i%:rnzd‘ml"‘smic reticulum protein retention chr7:6482162-6,482,295 10 | 0034972 | 13.76684 | No /
TCF20 Transcription factor 20 chr22:42340965-42,341,117 13 0.035158 | 10.40919 | No /
Table 4. A total of 22 DMRs associated with simple endoscopic score for crohn’s disease (SES-CD) and
inflammation. IBD, inflammatory bowel disease; UC, ulcerative colitis; CD, crohn’s disease.
Biological
functions in
Gene Official gene symbol Coordinates CpGs | qvalue | A value | IBD Reference
KDM4B Lysine demethylase 4B chr19:5068592-5,068,724 20 6.84E-08 | 11.91051 | No /
LCT Lactase chr2:135837336-135,837,418 | 13 3.82E-06 | 10.50302 | No /
AATK Apoptosis associated tyrosine kinase chr17:81130829-81,131,150 | 24 7.80E-05 | 10.86843 | No /
MPP7 Membrane palmitoylated protein 7 chr10:28248358-28,248,457 | 12 0.000143 | —12.9402 | No /
PGGHG Protein-glucosylgalactosylhydroxylysine glucosidase chr11:289827-289,980 26 0.000206 | 10.15373 | No /
MY Junction mediating and regulatory protein, p53 cofactor chr5:79238824-79,238,959 16 0.000714 | 12.35282 | No /
CLDN15 Claudin 15 hr7:101234277-101,234,588 | 12 0.000872 | 12.27227 | No /
MICAL3 i’é‘rft'a‘:;‘ilr"‘g‘lg associated monooxygenase, calponin and LIM domain | 4. »).17858138_17,858263 |10 | 0.003779 | 11.81343 | No /
ITPR2 Inositol 1,4,5-trisphosphate receptor type 2 chr12:26815815-26,815,950 | 12 0.011457 | 12.20762 | No /
HDHD3 Haloacid dehalogenase like hydrolase domain containing 3 chr9:113374253-113,374,345 | 10 0.013967 | 11.82067 | No /
SLC25A10 | Solute carrier family 25 member 10 chr17:81727492-81,727,669 | 13 0.014161 | 12.70424 ﬂﬁz’ ;frl‘gle)i“ the | ¢
PGGHG Protein-glucosylgalactosylhydroxylysine glucosidase chr11:286733-286,870 18 0.021165 | 10.29931 | No /
KIAA2013 | KIAA2013 chr1:11919055-11,919,152 10 0.022485 | 16.23294 | No /
PTTGIIP PTTGI interacting protein chr21:44849191-44,849,309 10 0.025713 | 14.28627 | No /
LINCO00482 | Long intergenic non-protein coding RNA 482 chr17:81340405-81,340,511 10 0.040399 | 10.31658 | No /
LFNG LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase chr7:2508408-2,508,590 32 0.040514 | 10.11981 | No /
LOC441179 | Uncharacterized LOC441179 chr6:167795993-167,796,316 | 19 0.047271 | 10.60061 | No /
N4BP1 NEDD4 binding protein 1 chr16:48542004-48,542,143 | 10 0.047808 | 14.31582 | No /
Table 5. A total of 18 DMRs associated with crohn’s disease activity index (CDAI) and inflammation. IBD,
inflammatory bowel disease.
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Fig. 4. Relationship between DNA methylation signatures of inflammation and disease severity. (A) Study
design and the workflow of finding disease severity-specific inflammatory DMRs. Upon 24 patient admission,
clinical information was collected, and paired tissues were obtained for RRBS. We compared inflammation-
associated DMRs with those identified in subgroups categorized by the SES-CD and CDAI A Venn diagram
displays the intersection of DMRs associated with inflammation, SES-CD and CDALI. (B) Six shared DMRs
exhibit a consistent pattern of hypermethylation across inflammation, high SES-CD, and high CDAI
conditions.

development and proliferation suggests that the epigenetic alterations in CD extend beyond immune regulation
to encompass epithelial integrity and tissue homeostasis. This dual impact is consistent with the multifactorial
nature of CD, where both immune dysfunction and epithelial barrier defects contribute to disease progression.
The interplay between immune cells and epithelial cells is crucial for maintaining intestinal homeostasis, and
disruptions in this balance can lead to chronic inflammation and tissue damage observed in CD patients.
KEGG pathway enrichment analysis identified nine significant pathways. These pathways are integral to various
biological processes such as immune regulation, inflammatory responses, cell migration, and adhesion, all
of which are intimately linked to the pathological mechanisms of IBD. The identification of these pathways
highlights the complex interplay between immune responses and epithelial cell functions in CD.

Upon conducting a more detailed analysis of the DNAm profiles in the mucosae of patient subgroups
categorized by SES-CD and CDAI, we uncovered a substantial number of DMRs. This finding suggests that
there are significant epigenetic variations in the mucosal tissues of patients with differing levels of disease activity
and severity as measured by these clinical indices. However, the heatmap representation of the top 100 DMRs
distinctly visualized a separation between the mild and moderate-to-severe mucosae of CD patients when
categorized using the SES-CD, whereas no such clear distinction was observed when utilizing the CDAI. The
clear distinction in DNAm patterns between mild and severe CD mucosae, as evidenced by heatmap analyses,
indicates that DNA methylation profiles could serve as biomarkers for disease severity and progression. This
prognostic potential is particularly valuable for tailoring therapeutic interventions and monitoring treatment
efficacy. Additionally, our analysis revealed that several genes annotated to the top 10 DMRs, such as APBB1IP%,
SLC25A10%, NLRP6%62 and NOTHC1 %*5*have been previously implicated in IBD. FMO5% and ECE1% have
been implicated in intestinal inflammation, further validate the relevance of our findings and highlight key
players in the epigenetic regulation of CD. These observations contribute to the growing understanding of the
role of epigenetics in the progression of IBD and suggest that endoscopic assessments like the SES-CD may be
particularly valuable in identifying molecular signatures associated with disease activity. This knowledge could
pave the way for the development of more targeted diagnostics and personalized treatment strategies tailored to
the specific epigenetic profiles of individual patients.

In our final analysis, we explored the overlaps among DMRs linked to inflammation and disease severity
in patients with CD. Our findings revealed that a significant proportion of these shared DMRs display
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consistent methylation patterns—either hypermethylation or hypomethylation——across inflammation, high
SES-CD, and high CDAI-associated DMRs. This consistency suggests that there may be common epigenetic
mechanisms underlying the inflammatory process and the severity of the disease as assessed by these clinical
metrics. The identification of overlapping DMRs across different evaluations of disease severity highlights
the intricate relationship between epigenetic modifications and the pathophysiology of CD. Specifically, the
recurring methylation patterns indicate that certain epigenetic changes are central to both the initiation and
exacerbation of inflammatory responses in CD patients. These shared epigenetic signatures may serve as critical
biomarkers for disease monitoring and prognosis, offering insights into the molecular underpinnings that drive
disease progression. Among the shared DMRs, KDM4B and CLDN15 emerged as a particularly noteworthy
gene. KDM4B is hypomethylated in favorable clinical outcomes related to high CDAI and SES-CD scores. This
inverse relationship implies that distinct methylation patterns may be associated with better disease control and
improved patient outcomes, as opposed to those indicative of active disease or higher disease activity. CLDN15
plays a key role in intestinal barrier function. CLDN15 methylation levels are also positively correlated with the
occurrence and severity of inflammation, which may influence the permeability of intestinal epithelial cells and
exacerbate intestinal inflammatory responses in patients with IBD.

Beyond KDM4B and CLDN15, the consistency of methylation patterns across various DMRs underscores the
potential of DNA methylation profiling as a tool for personalized medicine in CD. Future research should focus
on the functional validation of identified DMRs and associated genes to uncover their mechanistic roles in CD.
Integrating genetic and epigenetic data could provide a more comprehensive understanding of CD susceptibility
and progression, elucidating how genetic predispositions interact with epigenetic modifications to drive disease.
Moreover, exploring the therapeutic potential of targeting specific epigenetic regulators, such as KDM4B, may
pave the way for innovative interventions aimed at restoring immune balance and epithelial integrity in CD
patients.

While our study provides significant insights into the epigenetic mechanisms underlying CD, several
limitations must be acknowledged. First, the relatively small sample size, particularly within the severe CD
subgroup, may limit the generalizability of our findings and necessitate validation in larger, independent cohorts.
Second, the absence of a well-matched control group restricts our ability to fully contextualize the methylation
changes observed in CD patients. Including a healthy control group in future studies would allow for a more
comprehensive comparison and enhance the robustness of our conclusions. Additionally, the cross-sectional
design of our study precludes establishing causal relationships between DNA methylation (DNAm) changes
and disease progression. Longitudinal studies are essential to elucidate the temporal dynamics of epigenetic
modifications and their causal roles in CD pathogenesis.

Conclusions

Our study identifies distinct DNAm patterns in inflamed mucosae in treatment-naive CD patients. These DMRs
are involved in immune cell function and cell adhesion, suggesting a potential role in immune modulation and
tissue equilibrium in CD. Our analysis further suggests the potential relevance of six inflammation-associated
markers, particularly those identified by SES-CD/CDALI, in understanding disease activity and progression.

Data availability
The datasets generated and/or analyzed during the current study are available in the NCBI-Sequence Read Ar-
chive (SRA), PRJNA1278942, and further queries can be directed to the corresponding author.
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