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We propose two novel logarithmic ratio—type estimators for the finite-population mean under

simple random sampling without replacement (SRSWOR). The estimators integrate a logarithmic
transformation of the auxiliary variable to stabilize variance, reduce the influence of outliers, and
better capture nonlinear relationships between study and auxiliary variables. We derive closed-form
expressions for first-order bias and mean squared error (MSE) and obtain analytic expressions for

the optimal tuning constants by direct minimization of the approximate MSE. A comprehensive
numerical study, comprising five real engineering datasets and extensive Monte-Carlo simulations
from multivariate normal, log-normal and gamma populations, evaluates finite-sample behavior
across a range of sample sizes and correlation structures. The proposed estimators consistently reduce
MSE and deliver large percent-relative-efficiency (PRE) gains relative to the classical sample mean and
common competitors (empirical PREs = 283; simulation PREs up to = 670), with especially large and
stable improvements under skewed or heavy-tailed populations. Theoretical formulas and simulation
evidence align closely, showing robustness to nonlinearity and skewness while retaining simple
implementation for practitioners. Results are derived under SRSWOR using first-order approximations;
extensions to higher-order corrections, stratified and two-phase designs, and uncertainty in auxiliary
means are recommended for future work.

Keywords Estimation, Auxiliary information, Bias, Efficiency, Logarithmic Estimator, PRE, Ratio Estimator,
Simple Random Sampling

List of symbols

N Size of the population

n Size of the sample

Sé Variance of y

Sz Variance of x

SyT Covariance

Cy Coefficient of variation (y)
Cy Coeflicient of variation (x)
Cyx Coeflicient of covariance x, y
aandf Generalizing constants

eo, €1 Relative error in y = % andr = %respectively
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S2 Population variance of (y)

Sg Population variance of (x)

Py Population correlation coefficient
Y Mean of the population of y

X Population Mean of x

R Population ratios

f Sampling fraction

Tin, First proposed estimator

Tin, Second proposed estimator

ki, ko, ks, k4 Optimizing constants

Accurate estimation of population means from sampled data lies at the heart of survey statistics and many
applied fields, from official statistics and environmental monitoring to engineering quality control and
experimental sciences'. When using simple random sampling (SRS) to collect data on system performance or
material properties, utilizing supplementary information, such as known historical measurements or operating
conditions, can enhance estimator efficacy. Estimation methods such as the ratio estimator and logarithmic-
ratio type estimator utilize this auxiliary data to adjust the primary estimates, reducing the mean squared
error (MSE) compared to baseline classical sample means®. For instance, in structural health monitoring,
using temperature as an auxiliary variable can improve stress estimation in materials under load®. For a variety
of reasons, statisticians urge the incorporation of supplemental information during the estimation step. For
instance, the pioneer work in this regard is due to Cochran®. Since auxiliary information are available to the
researcher, they can be used effectively at either, the design stage or estimation stage®. Since the supplementary
information explain variation in the main study variable due to their correlation, it utilizes extra information
and enhances the efficiency of estimates’. The method of estimation of parameter rely on the nature of relation
between the survey and supplementary variable. When the auxiliary variable has a positive correlation with the
primary study variable the ratio-method of estimate performs efficiently®. Product form estimators, on the other
hand, typically perform better when the regression streak crosses the origin and the connection between the
study and auxiliary variables is linear and strongly negative. These considerations underscore the importance of
selecting an appropriate estimator based on the nature of the statistical association, including both the direction
and the structure of relationship®14,

The concept of using auxiliary information to enhance estimation accuracy was first introduced by Cochran®,
who showed that incorporating related information can substantially improve the precision of survey estimates..
Later, Bahl and Tuteja'®, expanded on this concept by proposing exponential ratio and product-type estimators,
marking a major step forward in the effective use of auxiliary variables. These estimators exploit the functional
relationship between the study and auxiliary variables to obtain more efficient and accurate estimates of
population parameters, especially when the variables are highly correlated. Since then, numerous researchers
have expanded and refined these concepts in the field of survey sampling. Notable contributions include those
by Izunobi and Onyeka!®, Kadilar and Cingi'4, Singh et al.'”, Khoshnevisan et al.'¥, Onyeka et al.'®, Singh et al.%,
Bhushan et al., Gupta and Shabbir?!, Azeem et al.??, Sher et al.?*>, Ahmad et al.?’, and Subramani®® long et al.'>.
Building on this extensive body of work, the present study extends the use of auxiliary information by developing
logarithmic ratio and product-form estimators, aimed at further improving the estimation of population means.

Although several ratio and product-type estimators have been developed to improve the efficiency of
population mean estimation using auxiliary information, there is still a gap in understanding how to effectively
combine auxiliary variables with the study variable to achieve the greatest efficiency gains. For example, most
of these estimators rely on linear or conventional transformations that may not fully exploit the structure of
non-linear between study and auxiliary variables. In particular, limited attention has been given to the use of
logarithmic transformations within the ratio estimation framework under simple random sampling. Furthermore,
existing logarithmic estimators often lack general applicability and are rarely validated on real-world engineering
datasets, where non-linearity and high correlations are common. Thus, there is a need to develop a more flexible
and efficient estimator that integrates logarithmic transformation with ratio-type estimation and to evaluate its
performance through theoretical comparison and empirical validation'®.

Novelty and significance
This study proposes a logarithmic ratio-type estimator for the population mean under simple random sampling
without replacement (SRSWOR), specifically designed for engineering applications where relationships between
study and auxiliary variables are complex and intricate. By applying a logarithmic transformation to the auxiliary
variable, the estimator linearizes variation e.g. y ~ o X7, stabilises variance, reduces the influence of outliers
which causes nonlinearity. We derive closed-form expressions for the bias and mean square error (MSE) up to
the first-order approximation under SRSWOR, and conduct a numerical assessment, based on the correlation,
coefficients of variation, and skewness of the auxiliary variable, to evaluate the efficiency gains of the proposed
estimator obtained through the logarithmic transformation of the auxiliary variable. Finite-sample performance
is assessed through Monte Carlo experiments that emulate engineering sampling conditions (varying sample
size and correlation levels) and also validated empirically on real engineering datasets. The estimator’s simplicity,
theoretical grounding, and robustness make it a readily applicable improvement for mean estimation in
engineering quality control, monitoring, and experimental studies, with straightforward extensions to stratified
and two-phase sampling designs.

The structure of the paper is as follows:

The remainder of the paper proceeds as follows. Section 2 formalizes notation, recalls relevant classical
estimators, and sets up the linearization framework under SRSWOR. Section 3 introduces the two proposed
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logarithmic ratio-type estimators and develops their first-order bias and MSE; closed-form optimal constants
are derived there. Section 4 discusses analytic efficiency conditions and compares the new forms with established
estimators. Section 5 presents empirical evaluations on five engineering datasets and a comprehensive Monte
Carlo study across Normal, Lognormal, and Gamma populations. Finally, Sect. 6 summarizes the implications,
limitations, and practical recommendations for applying the proposed estimators in engineering and survey
practice.

Methodology

Examine a random sample of n units selected from a population of (N = Ny, N3, ... N;) units using the simple
random sampling without replacement (SRSWOR) framework. Assuming that y is the research variable and x
is the auxiliary variable, a sample of size n is chosen from a population of size N using simple random sampling
without replacement (SRSWOR). Assuming that the population mean p, of the auxiliary variable is known,
denote the study variable by y and the auxiliary variable by x. To enhance the estimation of the population, mean
of the research variable y, the estimators consider data from the auxiliary variable. It aims to decrease sampling
error and increase precision by fusing the sample statistics with the known population mean of the auxiliary
variable x assuming that the auxiliary variable’s population mean, £, is known.

Let us define the samphng error as follows:

uz—NZ“ and,uy_Nzlly 0,
n 2
eo = y;—:“ and e = T2, such that E(eo) = E(e1) =0, E(ef) = Vu(:) - (1=m) % ' and
: Y
T 2
E(¢3) = Y2 = (1) S and B (eoer) = (52) e

Existing estimators

The sample statistics and the known population mean of the auxiliary variable are combined to create the
classical estimator. thereby aiming to reduce the sampling error and enhance estimation precision, the classical
is given in the following Eq. (1) as:

Z?:l Yi

== =Ty MSE (To) = AV 2 ey

where ) is the fpc (finite population correction factor) given by:

)\:ﬂ_
n

The classic ratio-type estimator was first presented by Cochran (Cochran, 1940) and is represented as follows
in Eq. (2):

lellfz

8ll<|

The estimator ¢ is biased for the population mean px, and its bias and MSE are determined up to the first-order
approximation may be written as follows, where y and x stand for the sample means of the study and auxiliary

variables, respectively:
. (1= (1 )
Bias (T1) = ( - ) ( ) (DS — Sz )

o e @)

MSE (T1) ~ <T> (S2+ DS? - 2DS.,)
where S; = ZZ (Y= ty)? is population variance of y, S2 = 1 ZZ L ( — p)? is the population
variance of x, Syz = Z Xi — pz) (Vi — py) is the populatlon covariances of x and y, and n = & and

= £, represent the sampling fraction and population ratios, respectively.

The product type estimator in the context of utilizing single auxiliary variables, suggested by Subramani and
Kumarapandiyan'?, and is given as follows:

T =7—
Mz
With MSE given by:
MSE (T) = (1 ) VACE + €2 +200,C) 3)

Likewise, a single exponential ratio-type estimator for the population mean p, was proposed by Bahl and
Tuteja!” and is defined as follows:
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_ Uz — T
T3 = yex —
The bias and mean square error of the exponential ratio-type estimator ¥ ,, which is biased for 1,/, with MSE
given by:

1—n

MSE (T3) = ( ) (55 + i[ﬂsi - Dszy) (4)

Similarly, Gupta and Shabbir!® developed the difference type regression estimator given by:

Ta =7+ @1 (e — T)

where p1- Ssyf is the coefficient of simple regression linked to 31— iyf and the population mean. The MSE of
regression estimator are presented in Eq. (5).
1—n 2 2
MSE (Ty) = C, (11— 5
(@)= ()¢5 (1= ®

The pioneer work on the use of log-auxiliary variable in mean estimation was due to Izunobi and Onyeka'®,
which is given by:

Ts = “ﬁgf) ,Ln (pa) # 0and Ln (T) # 0
With MSE given by:

MSE (Ts) = (#) (S2+ K DS — 2kDS,..) (6)

1
where k = Tni

The innovative use of log-transformed auxiliary variable was found in work by Mishra et al?’. by developing
the following mean estimators:

x
Ts =y + alo (:) ,
6=1Y g X
_ T
T: =y (w1 + 1) + walog (:) ,
X
With MSEs respectively given by:

MSE (Ts) = Y?0C; (1 - p°). (7)

(8)

BC? + AD? — 2CDE
MSE(T7)min =C + ( E2 - AB :

Ca

On the same line most recently Singh and Tiwari?!, introduce the following adapted mean estimator in
SRSWOR scheme:

wherea = — (728 ), 4 = V2003, B = 003, 0 = V*6C3, D = V050, E = V0 (p0,C — %)

B X +Md T+ Md
Tg = K1log |:x+]\4d:| 4 K2log [W] ,
With MSE given by:
BE? + CD? + 2DEF
MSE (1g) = |A
where
EF —-CD BE — DF
Kaope = o antieon = fr—pe

Although the effectiveness of parameter estimates is much increased by the logarithmic-ratio type estimators,
log-ratio estimates still require improvement, which is the main goal of our work. The development of enhanced
log-ratio type estimators of finite population mean under the SRSWOR scheme is the focus of the following
section.
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Proposed class of estimators
Taking motivation from Izunobi and Onyeka'®, Sher et al.??, and Eisa et al.!, Under SRSWOR, two estimators of
the logarithmic ratio type are created for the finite population mean.

Tp1 = (k1§—|— kQ) ( He ) Ln <$) (10)
Tp2 = (kay + ka) Ln <xx> exp <; _T_ Zi) (11)

The estimator increases the estimate process’s efficiency by employing the auxiliary variable’s logarithmic
transformation, particularly in cases when there is a nonlinear relationship between the study and auxiliary
variables.

Asymptotic properties of the proposed estimators
Rewriting Eq. (10) and (11) in term of error due to sampling, given in "Methodology", as following:

Trr= (k1Y (1 +eo) + ke) (X(l +H:1) - m) o (X (1’: 61)> ’ "
T 1 *

Expanding the series and after simplification of Eqs. (12) and (13), we obtain the following:

1 1 1 1 1
Tp1 =~ kijiy — leuyel + gkl,uyef + k1pyeo — §k1uyeoe1 + ko — §/€261 + gkzei

1
8

1

k3uyef 3

1
Tp2 =~ kspyer + kspyeoer — kspyeoer + kaey — gkm? + (kapty + ka) 1

we subtract the population mean from each estimator, express the resulting deviations in terms of sampling
errors, perform a Taylor expansion up to first order, and then take expectations to obtain the bias.

k1/1,y61 + /cl,uye% kluy60€1 +k2 . kzel + k26% (14)

2 3 2 2 3’
[Tps — py] & kspyer + kapyeoer + kaer — 1/8 (kspyel + kapyeoel + kael) + (kapuy + ka) e1 — puy, (15)

(Tr1 — py] = k1pry — py — + kipyeo —

Taking expectation of (14) and (15), to obtain Biases of estimator T, and T}, respectively, as given by:

. k
Bias (Tp1) = =AC2 (kyjiy — ko) — Eluyxcyz (16)

1

3
. 1

Bias (Tps) ~ fgxci (kspry — ka) (17)

Squaring both side of Eqs. (14) and (15), and after simplification, we get:

E[Tpl — F‘y}z ~ Elkipy — ity — (kipyer) /2 + (klﬂye%)/?’ + kipyeo — (kipyeoer)/2 + ko — (k2er) /2 + (kQE?)/?’]Z (18)

1 2
E[Tps — py)* =~ E [ksuyel + kapiyeoer + kaer — 2 (kspyet + kspyeoed + kael) + (kspy + ka) er — py | (19)

Which, after simplifications, we obtain:
MSE (Tp1) ~ ki A1 — 2k Cr — 2kikapuy E1 + k3 By — 2kopy D1 + p1 (20)

MSE (Tpg) ~ F [(TPQ — /.Ly)z] = kg/JéAg — 2]{:3/./,32102 — 2]€3k4uyE2 —+ szg — 2k‘4,LLyCQ =+ Mz (21)

where,
A1 =14 XC; + 12XC7 - 2XC:Cy,By =1 + %Ac%, Ci1 =1+ IXC; —AC.Cy, Dy =1+ iXC3,
=1+ UNC2 - ACoOp = 20+ B, —ata’ g — ata® ) =2 =202, andp = AC?
To minimize MSE of T_{P1}, we use calculus rule by differentiating it with respect to k1, k2 and equating to

zero, as following:

OMSE (T,
& = 2”3141]{31 — 2}1,501 — 2uyE1k2 = 0
Ok1
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OMSE (Tp1)

= —2/j,yE1k,‘1 + 281/{52 — 2/./,1/D1 = O
Oka

We get as system of equations given below:

2 2
pyAl —py Er } [ ki } _ [ pyCi }
[ —pyEr B k2 iy D1 (22)
Using Cramer’s rule to solve the system of equations, we get:
_ BiCi — D Ey _ py (A1D1 + CiEs)
kl(“Pt) - 7k2(opt) = .
A1 A1

On the same line, we proceed for MSE of Ty, as following:

OMSE (T
% = 2“5142]{,‘3 — 2[,6502 — QHyE2k4 = 0
OMSE (Tp2) = —2py Faks + 2Boks — 241, Da = 0.
Oky
2 2
i, o)1 5]- (5
[ “lyE2 B ka iy D2 @3)
We obtain:
k _B202—C2E2 k o Czﬂy(A2+E2)
Blopt) = T A Ry = T A
2 2

where, A} = A1 B1 — F12,Ay = Ay By — E5?
Substituting the values of k1, k2, k3 and k4 into Eq. (20) and Eq. (21) respectively, yields the following
expressions of minimum MSEs:

2 2 _
min MSE (Tp) ~ Hi (1 _ADi + BiCY 201D1E1) (24)
k1,kz Ay
2 p—
min MSE (Tp2) ~ |, (1 _ A2+ By -2 Ez)) (25)
k3,ka Ay

The proposed estimators are highly significant than their counterparts, which will be assessed numerically in the
coming sections with different real as well as synthetic data sets.

Efficiency comparison
The following criteria must be met for our suggested estimate to be more effective than the competing estimators:
its mean square error (MSE) must be lower than that of the competing estimators.

Conditions
From Eq. (1) and Eq. (24) and (25), The classical mean estimator ., will be outperformed by the suggested
estimators if:

MSE (Tp12) < MSE (To)
or
[(ACy —1) +6:] >0
A;D;%?4+B;C;2—2C; D, E;

A;B;—E,;2

By comparing Eq. (2) and Eq. (24) and (25), M SE (Tp1,2) < MSE (T1) if:

where 0; =

,1=1,2 corresponding to the first and second proposed estimator.

[{A (S5 +DS; —2DS,y) —1} +6;] >0
By comparing Eq. (3) and Eq. (24), and (25) M SE (Tp1,2) < MSE (13) if:
[{A(S; +DS; +2DS,y) — 1} +6;] >0

By comparing Eq. (4) and Eq. (24), and (25), M SE (Tp1,2) < MSE (T3) if:
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H?\ (sj + %DQgi - Dszy) - 1} + 91} >0
By comparing Eq. (5), (7) and Eq. (24), and (25), M SE (Tp1,2) < MSE (tas) if:
[{AC] (1=p2,) =1} +06:] >0
By comparing Eq. (6) and Eq. (24), and (25), M SE (Tp1,2) < MSE (T5) if:
[{A(S) +K°D*S: — 2kDSy.) — 1} + 6] >0
By comparing Eq. (8) and Eq. (24), and (25), M SE (Tp1,2) < MSE (T7) if:

_ ) - .
{C+(BC + AD QCDE>_1}+0i <0

E? — AB

By comparing Eq. (9) and Eq. (24), and (25), MSE (Tp1,2) < MSE (1T3) if:

[ BE? + CD? 4+ 2DEF |
A -1 i
{ +( 72— BC +0_>0

The subsequent section confirm that these conditions hold true for all types of real data, when the main study
variable is positively correlated with the auxiliary variable.

Numerical illustration

Using PREs as the performance metric, empirical and simulated experiments are conducted to assess the
effectiveness of the suggested and competing estimators. To assess the performance of the proposed and
competing estimators, we have used PRE (Percent Relative Efficiency) as a performance index, given by

PRE(T.) = (%) x 100 (26)

where T, is the classical/usual estimator and T". are the competing and proposed estimators.

Empirical study

To assess the practical performance of the proposed logarithmic ratio-type estimators we conducted an
empirical evaluation on five real-world engineering datasets. These datasets were chosen to represent a range of
sample sizes, correlation structures, coefficients of variation, and degrees of skewness that commonly occur in
engineering and environmental applications (see Table 1 for summary statistics). The datasets comprise: (i) Ozone
vs. Solar Radiation [Source: Chambers®®], (ii) Ozone vs. Temperature[Source: Chambers?’], (iii) Air Time vs.
Distance[Source: Wickham?*], (iv) Total Deaths vs. Total Vaccinations[Source: Subramanian and Kumar?’], and
(v) Sales: Capital vs. Pindex[Source: Kadilar and Cingi?¢]. Each data source and its salient descriptive statistics
(population/sample sizes, sample means, coefficients of variation, and sample correlation p, ) are summarized
in Table 1. Figure 1a-e shows scatterplots of the study variable.

Y against the auxiliary variable X for the five empirical datasets (Fig. 1a: Ozone vs Solar Radiation; Fig. 1b:
Ozone vs Temperature; Fig. 1c: Air Time vs Distance; Fig. 1d: Total Deaths vs Total Vaccinations; Fig. le: Sales:
Capital vs Pindex), illustrating the varying strengths of association and distributional features that motivate the
proposed log-ratio estimators. All empirical comparisons use simple random sampling without replacement
(SRSWOR) as the design framework, and we evaluate estimator accuracy with Percent Relative Efficiency (PRE)
relative to the classical sample mean:

Source | Data-1 Data-II | Data-III | Data-IV | Data-V
N 327,346 | 4071 255 50 111

n 12 12 12 10 12

X 1048 46,535 41,559.36 | 50,000 184.8018
Y 150.7 1012.587 | 1227.28 2535.321 | 42.0991
P 0.99 0.7123 0.3003735 | 0.9825 0.3483
Cy 0.621743 | 1.84 1.06 0.5887 0.79041
Cy 0.7019 1.54 1.46 0.5830 0.49324
Cya 0.4320 2.01185 | 0.4665513 | 4276.0609 | 0.1357

Table 1. Summary Statistics of different datasets.
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(a) Ozone vs Solar Radiation (b) Ozone vs Temperature
’ [
1501 150
8 8
S Cly
0 0
6 6 i
N 504 N
0 0
0.
0- T T T T T T { § T
0 100 200 300 60 10 80 90
Solar Radiation (lang) Temperature (F)
(c) Air Time vs Distance g (d) Death Exposure vs Mean Vaccination
T Bosnia and Hegzegovfulgar Peny
¢ i } 'sm ] [
% Noth e ® [} U ¢ 0
au- - " RN 02 "4"0\0‘,':;:‘9:'
3 e z 2 UM D st "0 e
- g 0 it
E il . e r g . 0, : a ) " (S.Q 0sca
I: ‘| - 5 Qd.‘.o J * % e o2
- L] ’
q n0- m' E [} Q:s . % . * : :Z
) 0 'x D) (X
0- | | | 1 | J %
0 1000 2000 3000 4000 5000 § T -
Distance % Méan vaccination (per hundred / mech}
8] Mode: linear fit on log1p(death_exposure_sum). Shaded area = 95% CI (mean

Figure-(e): Capital vs Pindex

120- 2l
[ ]
*
* . 0;""_.
- L ]
§115 “ ', "o_..-"c !
: ==
1o- CemmE,
O~ S !
’ ‘e
105- ¢ , : :
80 8 84

Capital Investment (thousands of USD)

Fig. 1. (a-e) Visualizing relationship between survey variable (Y) and auxiliary variable (X) across different
data sets.

Table 2 and its corresponding plot Fig. 2 show that the proposed estimators Tp1 and Tp2 consistently
achieve the highest PRE-values across all five real datasets, with T, reaching a peak of 282.7 on Data-5. The
results confirm that the proposed estimators deliver superior efficiency in real-data applications compared to
both the usual estimator and other traditional methods.

Simulation study

The simulation study was designed to (i) evaluate the finite-sample behaviour and stability of the proposed
logarithmic ratio-type estimators (T,, T,, under controlled distributional regimes, (ii) compare their
performance with a broad set of existing estimators (classical mean, ratio/product, exponential and other

transformed forms), and (iii) verify whether the first-order analytical bias/MSE formulas and the closed-form
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300
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1

1

Percent Relative Efficiency (PRE)

200

50

00

50

T, 100 100 100 100 100

T 42478 | 65.341 |79.436 |91.486 |123.505
Ts 25.817 | 35.643 |51.643 |55.974 |67.015
Ts 100.816 | 112.359 | 125.489 | 134.856 | 151.774
Ty4,7 126.977 | 140.857 | 159.874 | 174.047 | 195.747
Ts 139.54 | 157.472 | 181.490 | 188.484 | 201.539
Te 75.157 | 87.603 | 91.732 |90.904 |91.223
Tg 140.67 | 159.292 | 186.032 | 190.447 | 205.342
Ty, 153.33 | 178.745 | 194.848 | 232.484 | 236.226
Ty, 155.36 | 176.356 | 223.847 | 247.384 | 282.678

Table 2. PREs of the proposed and existing estimators relative to the baseline classical estimators across five
real datasets.

PREs of estimators across five empirical datasets (Renamed Estimators)

282.7

2474

232

188.5 190-§

174

1534354
139.5 1407
127

-
v

Data-1 Data-2 Data-3 Data-4 Data-5

Fig. 2. PREs of the proposed and competing estimators against the classical baseline estimator.

optimal constants derived in Sect. 3 provide realistic guidance for finite samples. Synthetic finite populations
size N=1000 were generated from three distributional families that together span the canonical sampling
regimes practitioners face: Multivariate Normal (symmetric, light tails), Gamma (positively skewed), and
Lognormal (heavy-tailed). These choices allow assessment of estimator robustness to skewness and heavy tails.
For each family we constructed three bivariate populations differing only in the study-auxiliary correlation
py= € (0.92,,0.71,,0.38) (labelled Data-1, Data-2 and Data-3 respectively). All populations share a common
mean vector and a covariance structure given by:

w=[a ] ==l

The core experiments draw repeated SRSWOR samples of sizes n €50, 150, 200 from each synthetic finite
population; additional sensitivity runs that include smaller n (e.g. n = 20) and intermediate values were also
performed to check small-sample behavior. Each simulation was repeated 10,000 times in RStudio, and estimator
performance was evaluated using Percent Relative Efficiency (PRE), defined as:

PRE (T}) = Var (Tp)

Where T, denotes the reference estimator and 7; represents the i*" competing estimator. The variance and mean
squared error (MSE) were computed over the 10,000 replications as:
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700 "

- Classical baseline (100)
== Datal
= Datall

600 | == Data-m

PRE (Relative Efficiency)

Estimators 50 150 200
Data-1 | Data-II | Data-III | Data-I | Data-II | Data-III | Data-I1 | Data-II | Data-IIl

To 100 100 100 100 100 100 100 100 100
T, 174.5 171.23 168.87 187.75 | 184.48 181.05 | 216.69 213.32 209.71
T, 69.8 67.47 65.87 95.92 92.34 89.73 104.74 102.64 99.59

Ts 184.54 | 180.45 176.07 219.93 | 215.56 213.76 | 251.84 246.43 241.78

T4,7 203.24 | 199.28 196.01 254.58 | 249.62 245.86 | 274.76 269.62 265.92
Ts 86.83 75.94 85.91 101.95 99.71 94.85 110.03 104.95 92.60
Te 245.62 | 239.41 229.47 268.51 | 243.17 231.78 | 310.54 | 256.61 248.35
Tg 398.54 | 302.67 278.95 355.82 | 289.45 275.01 | 351.45 289.77 270.70
Tpy 478.47 | 472.48 469.97 | 616.03 | 612.58 608.11 | 650.83 | 645.67 643.93
Tp2 574.57 | 568.36 564.32 | 638.85 | 633.51 629.63 | 671.38 | 666.73 663.86

Table 3. Heatmap table of PREs of the proposed and competing Estimators against the classical estimator for
Simulated Data-1 when p_is high Correlation.

PREs of Estimators (T1:T8, TP1, TP2) across Data-I/ll/Il for different n (corrected Table 4)

Table 3 (n=50) Table 4 (n=150) Table 5 (n=200)

--- Classical baseline (100) ---- Classical baseline (100)

= Datal = Datal
= Datall = Datall ’]

= Data-lil

- Data-ill

<> £ <& < < N T T B LS 24 IS O A B S T B 3

Fig. 3. visualization of PREs of the proposed and competing estimators against the classical estimators for
different setup of sample size and correlation levels for Data-I(MV-Normal), Data-II(Gamma), and Data-
ITI(Lognormal).

R r 2 R r 2
Zr:1 (T(g ) - :“y) Zr:1 (Ti( ) - My) (27)
MSE

Var (Ty) = R ) (T:) =

where R = 10,000 is the number of simulation replications.

The mean PRE-values across all replications and sample sizes were recorded and summarized in Table 3 to
evaluate estimator efficiency under different distributional and correlation scenarios.

Table To further evaluate the robustness of the proposed estimators under non-normal and positively
skewed settings, we conducted a simulation study using a Gamma-distributed finite population with a strong
positive auxiliary correlation p = 0.90. Figure 3 presents bar-plots of the replicate-wise percent relative efficiency
(PRE) for all considered estimators relative to the classical estimator To across three sample sizes n € 50, 150,
200. For each scenario, finite-population characteristics were employed to compute the tuning constants, and
optimal parameters for T,and T, were obtained via a data-driven numerical minimization of the empirical
mean-squared error. The results demonstrate a clear and consistent dominance of the proposed estimators Ty,
and T, both in terms of median PRE and distributional stability, especially as the sample size increases. The
remaining logarithmic and exponential-type estimators also exhibit improved performance over the classical
mean estimator; however, they are comparatively less stable and efficient than the proposed class. These findings
reinforce the efficacy of the proposed estimators under skewed populations and high-correlation structures.

In Tables 6,7,8, we report uncertainty for PREs via both Monte-Carlo standard errors and nonparametric
percentile confidence intervals (CI). For simulations we compute per-replicate PREs across RRR Monte-Carlo
replicates and report the mean PRE with its Monte-Carlo standard error (SE = sd(PRE)/+/R)together with
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Estimators 50 150 200
Data-1 | Data-II | Data-III | Data-I | Data-II | Data-III | Data-I | Data-II | Data-III

To 100 100 100 100 100 100 100 100 100

T, 134.5 122.23 104 162.75 144.48 138.42 | 216.69 | 213.32 210.37
T, 69.8 67.47 169.61 95.92 92.34 72.42 109.74 | 102.64 89.59
T3 184.54 | 170.45 153.5 223.93 215.56 202.03 | 251.09 | 235.43 221.29

T4z 216.24 | 203.28 182.39 | 249.58 289.62 281.26 | 264.85 | 245.62 220.15

Ts 91.083 84.89 52.293 99.04 92.67 57.78 108.13 92.79 62.60
Te 251.45 | 238.56 225.46 | 263.27 240.62 230.75 | 304.41 | 251.67 240.31
Ts 268.01 | 250.51 24569 | 287.67 | 230.49 230.23 | 290.78 | 210.34 221,73
Tp1 478.47 | 453.48 41195 | 616.03 | 612.58 599.10 | 650.83 | 645.67 632.01
Tp; 574.57 | 558.36 532.04 | 638.85 | 633.51 591.63 | 673.54 | 666.73 615.86

Table 4. Heatmap table of PREs of the proposed and alternative estimators relative to the classical estimator
for Simulated Data-2 under moderate Py

Estimators 50 150 200
Data-I | Data-1I | Data-III | Data-I | Data-II | Data-III | Data-I | Data-II | Data-III
To 100 100 100 100 100 100 100 100 100
T, 125.64 114.54 111.12 148.4 139.56 132.76 217.65 211.32 194.46
T, 79.8 74.47 4491 95.09 82.34 79.94 110.03 102.64 92.76
Ts 154.54 138.45 127.87 223.93 203.56 188.85 241.09 223.43 202.03
Ts7 155.24 133.28 119.54 298.58 289.62 177.05 261.23 245.62 229.77
Ts 96.083 85.889 55.293 101.09 89.67 59.78 110.03 92.79 62.60
Te 255.71 240.41 129.54 268.32 293.51 156.67 310.54 | 305.46 168.43
Ts 299.78 | 278.65 240.32 378.98 | 275.53 210.56 420.11 | 320.33 207.12
Tp1 418.47 | 405.48 393.21 566.03 545.58 527.34 664.83 | 645.67 636.43
Tp2 574.57 | 538.36 503.11 622.85 597.51 585.85 671.53 | 666.73 534.09

Table 5. Heatmap table of PREs of the proposed and alternative estimators relative to the classical estimator
for Simulated Data-3 under low correlation Py

the empirical 95% percentile CI (2.5%-97.5% quantiles). For empirical/finite-population analyses, repeated
SRSWOR resampling from the known population (or a design-consistent bootstrap when the population is not
fully available) was used to estimate MSEs and PREs; the resulting replicate PREs are summarized with mean
(£ MC SE) and percentile CI.

Extremely high PRE-values and wide CIs for classical ratio/product-type estimators T,-T reflect instability
under skewed Gamma populations, especially with small samples, as revealed by Table 3, 4 and 5. In contrast,
the proposed log-ratio estimators T}, Tp, demonstrate stable PRE, narrow confidence intervals, and robust
behavior, confirming their suitability for non-normal data structures (Table 8). The proposed estimators therefore
offer a computationally efficient and versatile framework for modern sampling applications, particularly where
skewness, auxiliary information, and finite-population structures play a central role.

Results and discussion

In this article, we developed two log-ratio type estimators of finite population mean under SRSWOR scheme. We
derived first order Bias and MSE for both estimators to theoretically validate our methodology. The empirical
and simulation evidence together provide a consistent and interpretable picture of the proposed estimators’
performance. Table 1 contextualizes the real datasets by summarizing sample sizes, variability and correlation
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Normal Percentile

Estimator | Mean LCL UCL LCL UCL

T, 1.000e+02 | 1.000e +02 1.000e+02 | 1.000e+02 | 1.000e +02
T, 3.810e+05 | - 3.070e+05 | 1.070e+06 | 1.060e+00 | 1.030e+05
T, 1.140e+03 | 2.150e+02 2.060e+03 | 8.700e-01 | 5.390e+03
T, 1.200e+04 | - 3.170e+03 | 2.710e+04 | 3.720e+00 | 8.850e+03
T, 3.890e+04 | 4.010e+03 7.380e+04 | 1.290e+00 | 1.720e+05
T 3.560e+03 | - 6.270e+02 | 7.740e+03 | 3.960e+00 | 1.630e+04
T, 7.980e+04 | - 2.580e+04 | 1.850e+05 | 1.320e+00 | 7.870e+04
T, 1.960e+06 | - 1.740e+06 | 5.660e+06 | 1.070e+00 | 3.090e+05
T, 1.380e+05 | — 3.840e+04 | 3.150e+05 | 1.050e+00 | 3.270e+05
Ty, 4.840e-08 | 4.080e-08 5.600e-08 | 3.450e-11 | 2.590e-07
Ty, 9.140e-04 | 7.700e-04 1.060e-03 | 6.440e-07 | 4.890e-03

Table 8. Percent relative efficiency (PRE) of competing and proposed estimators under Gamma population
with strong auxiliary correlation p = 0.90, and sample size n=200.

Normal Percentile
Estimator | Mean Lowe confidence limit(LCL) | Upper confidence limit (UCL) | Lowe confidence limit (LCL) | Upper confidence limit (UCL)
T, 100.00 100.00 100.00 100.00 100.00
T, 3.970e +04 2.250e+03 7.710e + 04 1.320e+00 1.430e+05
T, 2.480e+03 | — 1.840e+03 6.810e+03 1.530e+00 9.970e +02
T 5.670e+03 | - 1.030e+02 1.140e + 04 5.070e+00 1.430e +04
T, 1.810e+07 | - 1.650e+07 5.260e+07 1.940e + 00 9.060e + 05
T 2.690e+04 | - 1.690e +04 7.070e + 04 5.460e + 00 1.230e + 04
T, 1.090e+08 | — 1.040e +08 3.210e+08 1.580e +00 4.390e +05
T, 4.110e+04 | - 3.770e+03 8.610e+04 2.260e + 00 7.970e + 04
T, 4.360e+04 | -8.170e+03 9.530e +04 2.290e+00 9.540e + 04
Tp, 3.180e-06 2.700e-06 3.660e-06 3.170e-09 1.400e-05
Tp, 3.720e-03 3.150e-03 4.290e-03 3.690e-06 1.680e-02

Table 6. Percent relative efficiency (pre) of competing and proposed estimators under gamma population with

strong auxiliary correlation p = 0.90, and sample size n=150.

structures, and Table 2 shows that the proposed log-ratio estimators achieve uniformly higher percent-relative-
efficiency (PRE) than the classical mean across all five empirical datasets. The simulation tables (Tables 3-8)
systematically confirm these gains: as sample size increases from n=50 to n=200 the PRE of the proposed
estimators rises markedly and they maintain top ranking across Data-I/II/III, with the corrected values for
Table 4 removing parsing artefacts and reinforcing the same conclusion. Monte-Carlo summaries (Tables 6,
7, 8) quantify the uncertainty around mean PREs and show that estimator spread and Monte-Carlo standard
errors shrink with larger n, indicating both higher efficiency and greater stability. Figures la—e visualizes the
study-auxiliary relationships that motivate auxiliary-based adjustments, Fig. 2 highlights the empirical PRE
advantages, and the box-plots in Fig. 4 demonstrate that the proposed estimators not only improve median PRE
but also yield substantially narrower replicate-wise distributions under skewed Gamma populations. Finally,
the three-panel grouped figure (n=>50, 150, 200) provides a direct visual comparison across sample sizes and
confirms that the proposed estimators deliver robust, monotonic improvements in efficiency as sample size and
correlation increase, making them practically attractive for survey and engineering applications where auxiliary
information is available.The proposed estimators reduce to or improve upon several established estimators under
special parameter choices, confirming theoretical coherence. Relative ranking is stable across scenarios: the two
proposed forms dominate classical, product, and exponential competitors in both empirical and simulated
environments.

Conclusion

We propose two logarithmic ratio-type estimators, Tp,, and T

P2’

for finite-population mean estimation under

simple random sampling without replacement (SRSWOR). Closed-form first-order expressions for bias and
mean squared error (MSE) are derived and used to obtain analytic tuning constants. Empirical evaluation on five
engineering datasets and extensive Monte-Carlo experiments (multiple distributions, correlations, and sample
sizes) shows that the proposed estimators yield consistent and often large percent-relative-efficiency (PRE) gains
over the classical sample mean and common competitors; gains increase with sample size and with positive
study-auxiliary correlation. The estimators are computationally simple to implement and, when the auxiliary
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Normal Percentile

Estimator | Mean LCL UCL LCL UCL

T, 1.000e+02 | 1.000e +02 1.000e+02 | 1.000e+02 | 1.000e +02
T, 7.150e+05 | - 9.150e+04 | 1.520e+06 | 3.100e-01 | 4.290e +05
T, 5.140e+03 | - 9.170e+02 | 1.120e+04 | 4.100e-01 | 2.000e +03
T, 1.070e+04 | - 1.160e+03 | 2.240e+04 | 5.300e-01 | 4.390e+03
T, 1.090e+05 | - 1.010e+04 | 2.290e+05 | 2.600e-01 | 1.870e+05
T 8.870e+03 | - 1.630e+03 | 1.940e+04 | 5.300e-01 1.020e + 04
T, 1.430e+05 | - 1.850e+04 | 3.050e+05 | 5.000e-01 | 2.630e+05
T, 6.470e+04 | - 6.180e+03 | 1.350e+05 | 3.900e-01 | 5.610e+04
T, 1.180e+04 | 2.160e+03 2.150e+04 | 4.100e-01 4.260e + 04
Ty, 1.200e-07 | 9.970e-08 1.390e-07 | 3.930e-11 | 4.920e-07
Ty, 1.260e-03 | 1.050e-03 1.470e-03 | 4.170e-07 | 5.230e-03

Table 7. Percent Relative Efficiency (PRE) of competing and proposed estimators under Gamma population
with strong auxiliary correlation p = 0.90, and sample size n = 150.

Boxplots of per-replicate PREs for Gamma DGP (rho=0.9) — Extended Estimators
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Fig. 4. Box-plots of percent relative efficiency (PRE) for proposed and competing estimators under a Gamma
population with strong auxiliary correlation p =~ 0.90 and sample sizes n=50,150,200. Dots represent mean
PRE; vertical lines denote 95% Monte-Carlo confidence intervals.

mean is known and the auxiliary variable is positively correlated with the study variable, offer a practical route
to substantially reduced MSE and smaller required sample sizes for a given precision.

We also identify important limitations: the current theory assumes SRSWOR, known auxiliary means, and
positive correlation between study and auxiliary variables, conditions that facilitate closed-form analysis but
may be restrictive in some applied settings. To widen applicability, future research should (i) relax the known-
mean assumption via calibration, model-assisted, or empirical-Bayes corrections; (ii) adapt the estimators to
stratified and two-phase sampling by incorporating stratum- or phase-specific adjustment factors; (iii) derive
higher-order bias/MSE approximations and robust variance estimators for small-sample inference; and (iv)
address practical data issues such as nonresponse and measurement error. Finally, while our focus is parameter
estimation rather than prediction, the efficiency principles developed here could be embedded within parameter-
estimation components of machine-learning pipelines (e.g., regression weighting, EM steps) to improve stability
and predictive performance. Overall, T,, and T, provide a theoretically grounded and practically useful
improvement for mean estimation when reliable auxiliary information is available.

Data availability
The data used and analyzed in this article are available in the published article as cited against each data sets in
the numerical section of this article.
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