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We propose two novel logarithmic ratio–type estimators for the finite-population mean under 
simple random sampling without replacement (SRSWOR). The estimators integrate a logarithmic 
transformation of the auxiliary variable to stabilize variance, reduce the influence of outliers, and 
better capture nonlinear relationships between study and auxiliary variables. We derive closed-form 
expressions for first-order bias and mean squared error (MSE) and obtain analytic expressions for 
the optimal tuning constants by direct minimization of the approximate MSE. A comprehensive 
numerical study, comprising five real engineering datasets and extensive Monte-Carlo simulations 
from multivariate normal, log-normal and gamma populations, evaluates finite-sample behavior 
across a range of sample sizes and correlation structures. The proposed estimators consistently reduce 
MSE and deliver large percent-relative-efficiency (PRE) gains relative to the classical sample mean and 
common competitors (empirical PREs ≈ 283; simulation PREs up to ≈ 670), with especially large and 
stable improvements under skewed or heavy-tailed populations. Theoretical formulas and simulation 
evidence align closely, showing robustness to nonlinearity and skewness while retaining simple 
implementation for practitioners. Results are derived under SRSWOR using first-order approximations; 
extensions to higher-order corrections, stratified and two-phase designs, and uncertainty in auxiliary 
means are recommended for future work.
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List of symbols
N	� Size of the population
n	� Size of the sample
S2

y 	� Variance of y
S2

x	� Variance of x
syx	� Covariance
Cy 	� Coefficient of variation (y)
Cx	� Coefficient of variation (x)
Cyx	� Coefficient of covariance x, y
α and β	� Generalizing constants
e0, e1	� Relative error in ȳ = ȳ−µy

µy
   and x̄ = x̄−µx

µx
respectively
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S2
y 	� Population variance of (y)

S2
x	� Population variance of (x)

ρyx	� Population correlation coefficient
Ȳ 	� Mean of the population of y
X̄ 	� Population Mean of x
R	� Population ratios 
f	� Sampling fraction
Tln1 	� First proposed estimator
Tln2 	� Second proposed estimator 
k1, k2, k3, k4	� Optimizing constants

Accurate estimation of population means from sampled data lies at the heart of survey statistics and many 
applied fields, from official statistics and environmental monitoring to engineering quality control and 
experimental sciences1. When using simple random sampling (SRS) to collect data on system performance or 
material properties, utilizing supplementary information, such as known historical measurements or operating 
conditions, can enhance estimator efficacy. Estimation methods such as the ratio estimator and logarithmic-
ratio type estimator utilize this auxiliary data to adjust the primary estimates, reducing the mean squared 
error (MSE) compared to baseline classical sample means2. For instance, in structural health monitoring, 
using temperature as an auxiliary variable can improve stress estimation in materials under load3. For a variety 
of reasons, statisticians urge the incorporation of supplemental information during the estimation step. For 
instance, the pioneer work in this regard is due to Cochran4. Since auxiliary information are available to the 
researcher, they can be used effectively at either, the design stage or estimation stage5,6. Since the supplementary 
information explain variation in the main study variable due to their correlation, it utilizes extra information 
and enhances the efficiency of estimates7. The method of estimation of parameter rely on the nature of relation 
between the survey and supplementary variable. When the auxiliary variable has a positive correlation with the 
primary study variable the ratio-method of estimate performs efficiently8. Product form estimators, on the other 
hand, typically perform better when the regression streak crosses the origin and the connection between the 
study and auxiliary variables is linear and strongly negative. These considerations underscore the importance of 
selecting an appropriate estimator based on the nature of the statistical association, including both the direction 
and the structure of relationship9–14.

The concept of using auxiliary information to enhance estimation accuracy was first introduced by Cochran4, 
who showed that incorporating related information can substantially improve the precision of survey estimates.. 
Later, Bahl and Tuteja15, expanded on this concept by proposing exponential ratio and product-type estimators, 
marking a major step forward in the effective use of auxiliary variables. These estimators exploit the functional 
relationship between the study and auxiliary variables to obtain more efficient and accurate estimates of 
population parameters, especially when the variables are highly correlated. Since then, numerous researchers 
have expanded and refined these concepts in the field of survey sampling. Notable contributions include those 
by Izunobi and Onyeka16, Kadilar and Cingi14, Singh et al.17, Khoshnevisan et al.18, Onyeka et al.19, Singh et al.20, 
Bhushan et al., Gupta and Shabbir21, Azeem et al.22, Sher et al.23, Ahmad et al.20, and Subramani25 long et al.15. 
Building on this extensive body of work, the present study extends the use of auxiliary information by developing 
logarithmic ratio and product-form estimators, aimed at further improving the estimation of population means.

Although several ratio and product-type estimators have been developed to improve the efficiency of 
population mean estimation using auxiliary information, there is still a gap in understanding how to effectively 
combine auxiliary variables with the study variable to achieve the greatest efficiency gains. For example, most 
of these estimators rely on linear or conventional transformations that may not fully exploit the structure of 
non-linear between study and auxiliary variables. In particular, limited attention has been given to the use of 
logarithmic transformations within the ratio estimation framework under simple random sampling. Furthermore, 
existing logarithmic estimators often lack general applicability and are rarely validated on real-world engineering 
datasets, where non-linearity and high correlations are common. Thus, there is a need to develop a more flexible 
and efficient estimator that integrates logarithmic transformation with ratio-type estimation and to evaluate its 
performance through theoretical comparison and empirical validation16.

Novelty and significance
This study proposes a logarithmic ratio-type estimator for the population mean under simple random sampling 
without replacement (SRSWOR), specifically designed for engineering applications where relationships between 
study and auxiliary variables are complex and intricate. By applying a logarithmic transformation to the auxiliary 
variable, the estimator linearizes variation e.g. Y ≈ αXβ , stabilises variance, reduces the influence of outliers 
which causes nonlinearity. We derive closed-form expressions for the bias and mean square error (MSE) up to 
the first-order approximation under SRSWOR, and conduct a numerical assessment, based on the correlation, 
coefficients of variation, and skewness of the auxiliary variable, to evaluate the efficiency gains of the proposed 
estimator obtained through the logarithmic transformation of the auxiliary variable. Finite-sample performance 
is assessed through Monte Carlo experiments that emulate engineering sampling conditions (varying sample 
size and correlation levels) and also validated empirically on real engineering datasets. The estimator’s simplicity, 
theoretical grounding, and robustness make it a readily applicable improvement for mean estimation in 
engineering quality control, monitoring, and experimental studies, with straightforward extensions to stratified 
and two-phase sampling designs.

The structure of the paper is as follows:
The remainder of the paper proceeds as follows. Section  2 formalizes notation, recalls relevant classical 

estimators, and sets up the linearization framework under SRSWOR. Section 3 introduces the two proposed 
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logarithmic ratio–type estimators and develops their first-order bias and MSE; closed-form optimal constants 
are derived there. Section 4 discusses analytic efficiency conditions and compares the new forms with established 
estimators. Section 5 presents empirical evaluations on five engineering datasets and a comprehensive Monte 
Carlo study across Normal, Lognormal, and Gamma populations. Finally, Sect. 6 summarizes the implications, 
limitations, and practical recommendations for applying the proposed estimators in engineering and survey 
practice.

Methodology
Examine a random sample of n units selected from a population of (N = N1, N2, . . . Ni) units using the simple 
random sampling without replacement (SRSWOR) framework. Assuming that y is the research variable and x 
is the auxiliary variable, a sample of size n is chosen from a population of size N using simple random sampling 
without replacement (SRSWOR). Assuming that the population mean μₓ of the auxiliary variable is known, 
denote the study variable by y and the auxiliary variable by x. To enhance the estimation of the population, mean 
of the research variable y, the estimators consider data from the auxiliary variable. It aims to decrease sampling 
error and increase precision by fusing the sample statistics with the known population mean of the auxiliary 
variable x assuming that the auxiliary variable’s population mean, µx, is known.

Let us define the sampling error as follows:
µx = 1

N

∑N

i=1 (Xi − µ) and µy = 1
N

∑N

i=1 (Yi − µ) ,

e0 = y−µy

µy
, and e1 = x−µx

µx
, such that  E(e0) = E (e1) = 0, E

(
e2

0
)

= V (y)
µy

 = 
(

1−n
n

) S2
y

µ2
y

 , and 

E
(
e2

1
)

= V (x)
µx

 = 
(

1−n
n

)
S2

x

µ2
x

, and E (e0e1) =
(

1−n
n

)
Syx

µyµx
.

Existing estimators
The sample statistics and the known population mean of the auxiliary variable are combined to create the 
classical estimator. thereby aiming to reduce the sampling error and enhance estimation precision, the classical 
is given in the following Eq. (1) as:

	

∑n

i=1 yi

n
= T0 MSE (T0) = λY

2
C2

y
� (1)

where λ is the fpc (finite population correction factor) given by:

	
λ = 1 − f

n
.

The classic ratio-type estimator was first presented by Cochran (Cochran, 1940) and is represented as follows 
in Eq. (2):

	
T1 = µx

y

x  

The estimator t is biased for the population mean μx, and its bias and MSE are determined up to the first-order 
approximation may be written as follows, where y and x stand for the sample means of the study and auxiliary 
variables, respectively:

	

Bias (T1) =
(1 − f

n

) (
1

µx

) (
DS2

x − Sxy

)

MSE (T1) ≈
(1 − f

n

) (
S2

y + DS2
x − 2DSxy

)� (2)

where S2
y = 1

N−1

∑N

i=1 (Yi − µy)2 is population variance of y, S2
x = 1

N−1

∑N

i=1 (Xi − µx)2 is the population 

variance of x, Syx = 1
N−1

∑N

i
(Xi − µx) (Yi − µy) is the population covariances of x and y, and n = n

N  and 

D = µx
µy

 , represent the sampling fraction and population ratios, respectively.
The product type estimator in the context of utilizing single auxiliary variables, suggested by Subramani and 

Kumarapandiyan14, and is given as follows:

	
T2 = y

x

µx

With MSE given by:

	
MSE (T2) =

(1 − n

n

)
Ȳ 2(C2

y + C2
x + 2ρCyCx)� (3)

Likewise, a single exponential ratio-type estimator for the population mean µy ​ was proposed by Bahl and 
Tuteja17 and is defined as follows:
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T3 = yexp

(
µx − x

µx + x

)

The bias and mean square error of the exponential ratio-type estimator yp, which is biased for µy , with MSE 
given by:

	
MSE (T3) =

(1 − n

n

) (
S2

y + 1
4D2S2

x − DSxy

)
� (4)

Similarly, Gupta and Shabbir18 developed the difference type regression estimator given by:

	 T4 = y + φ1 (µx − x)

where φ1=
syx

s2
x

​​ is the coefficient of simple regression linked to β1=
Syx

S2
x

  and the population mean. The MSE of 
regression estimator are presented in Eq. (5).

	
MSE (T4) =

(1 − n

n

)
C2

y

(
1 − ρ2)

� (5)

The pioneer work on the use of log-auxiliary variable in mean estimation was due to Izunobi and Onyeka19, 
which is given by:

T5 = µyLn(y)
Ln(x) , Ln (µx) ̸= 0 and Ln (x) ̸= 0

With MSE given by:

	
MSE (T5) =

(1 − f

n

) (
S2

y + k2D2S2
x − 2kDSyx

)
� (6)

where k = 1
Ln(µx)

The innovative use of log-transformed auxiliary variable was found in work by Mishra et al20. by developing 
the following mean estimators:

	
T6 = y + αlog

(
x

X

)
,

	
T7 = y (w1 + 1) + w2log

(
x

X

)
,

With MSEs respectively given by:

	 MSE (T6) = Y 2θC2
y

(
1 − ρ2)

.� (7)

	
MSE(T7)min = C +

(
BC2 + AD2 − 2CDE

E2 − AB

)
.� (8)

where α = −
(

Y ρCy

Cx

)
, A = Y

2
θC2

y , B = θC2
x, C = Y

2
θC2

y , D = Y θρCyCx, E = Y θ
(

ρCyCx − C2
x

2

)
.

On the same line most recently Singh and Tiwari21, introduce the following adapted mean estimator in 
SRSWOR scheme:

	
T8 = K1log

[
X + Md

x + Md

]
+ K2log

[
x + Md

X + Md

]
,

With MSE given by:

	
MSE (T8) =

[
A +

(
BE2 + CD2 + 2DEF

F 2 − BC

)]
.� (9)

where

	
K1opt = EF − CD

F 2 − BC
andK2opt = BE − DF

F 2 − BC
.

Although the effectiveness of parameter estimates is much increased by the logarithmic-ratio type estimators, 
log-ratio estimates still require improvement, which is the main goal of our work. The development of enhanced 
log-ratio type estimators of finite population mean under the SRSWOR scheme is the focus of the following 
section.
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Proposed class of estimators
Taking motivation from Izunobi and Onyeka19, Sher et al.22, and Eisa et al.1, Under SRSWOR, two estimators of 
the logarithmic ratio type are created for the finite population mean.

	
TP 1 = (k1y + k2)

(
µx

x − µx

)
Ln

(
x

µx

)
� (10)

	
TP 2 = (k3ȳ + k4) Ln

(
x̄

µx

)
exp

(
x̄ − µx

x̄ + µx

)
� (11)

The estimator increases the estimate process’s efficiency by employing the auxiliary variable’s logarithmic 
transformation, particularly in cases when there is a nonlinear relationship between the study and auxiliary 
variables.

Asymptotic properties of the proposed estimators
Rewriting Eq. (10) and (11) in term of error due to sampling, given in "Methodology", as following:

	
TP 1 =

(
k1Y (1 + e0) + k2

) (
µx

X (1 + e1) − µx

)
Ln

(
X (1 + e1)

µx

)
,� (12)

	
TP 2 =

(
k3Ȳ (1 + e0) + k2

)
Ln

(
X̄ (1 + e1)

µx

)
exp

(
X̄ (1 + e1) − µx

X̄ (1 + e1) + µx

)
� (13)

Expanding the series and after simplification of Eqs. (12) and (13), we obtain the following:

	
TP 1 ≈ k1µy − 1

2k1µye1 + 1
3k1µye2

1 + k1µye0 − 1
2k1µye0e1 + k2 − 1

2k2e1 + 1
3k2e2

1,

	
TP 2 ≈ k3µye1 + k3µye0e1 − 1

8k3µye2
1 − 1

8k3µye0e2
1 + k4e1 − 1

8k4e2
1 + (k3µy + k4) e1

we subtract the population mean from each estimator, express the resulting deviations in terms of sampling 
errors, perform a Taylor expansion up to first order, and then take expectations to obtain the bias.

	
[TP 1 − µy] ≈ k1µy − µy − k1µye1

2 + k1µye2
1

3 + k1µye0 − k1µye0e1

2 + k2 − k2e1

2 + k2e2
1

3 ,� (14)

	 [TP 2 − µy] ≈ k3µye1 + k3µye0e1 + k4e1 − 1/8
(
k3µye2

1 + k3µye0e2
1 + k4e2

1
)

+ (k3µy + k4) e1 − µy,� (15)

Taking expectation of (14) and (15), to obtain Biases of estimator TP1 and TP2 respectively, as given by:

	
Bias (TP 1) ≈ 1

3λC2
x (k1µy − k2) − k1

2 µyλCyx� (16)

	
Bias (TP 2) ≈ −1

8λC2
x (k3µy − k4)� (17)

Squaring both side of Eqs. (14) and (15), and after simplification, we get:

	 E[TP 1 − µy]2 ≈ E[k1µy − µy − (k1µye1)/2 + (k1µye2
1)/3 + k1µye0 − (k1µye0e1)/2 + k2 − (k2e1)/2 + (k2e2

1)/3]2� (18)

	
E [TP 2 − µy]2 ≈ E

[
k3µye1 + k3µye0e1 + k4e1 − 1

8
(
k3µye2

1 + k3µye0e2
1 + k4e2

1
)

+ (k3µy + k4) e1 − µy

]2
� (19)

Which, after simplifications, we obtain:

	 MSE (TP 1) ≈ k2
1µ2

yA1 − 2k1µ2
yC1 − 2k1k2µyE1 + k2

2B1 − 2k2µyD1 + µ2
y � (20)

	 MSE (TP 2) ≈ E
[
(TP 2 − µy)2]

≈ k2
3µ2

yA2 − 2k3µ2
yC2 − 2k3k4µyE2 + k2

4B2 − 2k4µyC2 + µ2
y � (21)

where,
A1 = 1 + λC2

y + 11
12 λC2

x − 2λCxCy ,B1 = 1 + 11
12 λC2

x , C1 = 1 + 1
3 λC2

x − λCxCy , D1 = 1 + 1
3 λC2

x , 
and E1 = 1 + 11

12 λC2
x − λCxCy, A2 = α (1+β) + α2

64 , B2 = α + α2

64 , E2 = α + α2

32 , C2 = α
4 , α = λC2

x, andβ = λC2
y.

To minimize MSE of T_{P1}, we use calculus rule by differentiating it with respect to k1, k2 and equating to 
zero, as following:

	
∂MSE (TP 1)

∂k1
= 2µ2

yA1k1 − 2µ2
yC1 − 2µyE1k2 = 0.

Scientific Reports |           (2026) 16:29 5| https://doi.org/10.1038/s41598-025-29127-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
∂MSE (TP 1)

∂k2
= −2µyE1k1 + 2B1k2 − 2µyD1 = 0.

We get as system of equations given below:

	

[
µ2

yA1 −µyE1
−µyE1 B1

] [
k1
k2

]
=

[
µ2

yC1
µyD1

]
� (22)

Using Cramer’s rule to solve the system of equations, we get:

	
k1(opt) = B1C1 − D1E1

∆1
, k2(opt) = µy (A1D1 + C1E1)

∆1
.

On the same line, we proceed for MSE of TP2 as following:

	
∂MSE (TP 2)

∂k3
= 2µ2

yA2k3 − 2µ2
yC2 − 2µyE2k4 = 0.

	
∂MSE (TP 2)

∂k4
= −2µyE2k3 + 2B2k4 − 2µyD2 = 0.

	

[
µ2

yA2 −µyE2
−µyE2 B2

] [
k3
k4

]
=

[
µ2

yC2
µyD2

]
� (23)

We obtain:

	
k3(opt) = B2 C2 − C2 E2

∆2
, k4(opt) = C2 µy (A2 + E2)

∆2

where, ∆1 = A1 B1 − E1
2, ∆2 = A2 B2 − E2

2

Substituting the values of k1​, k2,​ k3 and k4 into Eq.  (20) and Eq.  (21) respectively, yields the following 
expressions of minimum MSEs:

	
min
k1,k2

MSE (TP 1) ≈ µ2
y

(
1 − A1D2

1 + B1C2
1 − 2C1D1E1

∆1

)
� (24)

	
min
k3,k4

MSE (TP 2) ≈ µ2
y

(
1 − C2

2 (A2 + B2 − 2 E2)
∆2

)
� (25)

The proposed estimators are highly significant than their counterparts, which will be assessed numerically in the 
coming sections with different real as well as synthetic data sets.

Efficiency comparison
The following criteria must be met for our suggested estimate to be more effective than the competing estimators: 
its mean square error (MSE) must be lower than that of the competing estimators.

Conditions
From Eq.  (1) and Eq.  (24) and (25), The classical mean estimator µy  will be outperformed by the suggested 
estimators if:

	 MSE (TP1,2) < MSE (T0)

or

	
[(
λC2

y − 1
)

+ θi

]
> 0

where θi = AiDi
2+BiCi

2−2CiDiEi
AiBi−Ei

2  , i = 1,2 corresponding to the first and second proposed estimator.
By comparing Eq. (2) and Eq. (24) and (25),  MSE (TP1,2) < MSE (T1) if:

	
[{

λ
(
S2

y + DS2
x − 2DSxy

)
− 1

}
+ θi

]
> 0

By comparing Eq. (3) and Eq. (24), and (25) MSE (TP1,2) < MSE (T2) if:

	
[{

λ
(
S2

y + DS2
x + 2DSxy

)
− 1

}
+ θi

]
> 0

By comparing Eq. (4) and Eq. (24), and (25),  MSE (TP1,2) < MSE (T3) if:
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[{
λ

(
S2

y + 1
4D2S2

x − DSxy

)
− 1

}
+ θi

]
> 0

By comparing Eq. (5), (7) and Eq. (24), and (25),  MSE (TP1,2) < MSE (t4,6) if:

	
[{

λC2
y

(
1 − ρ2

xy

)
− 1

}
+ θi

]
> 0

By comparing Eq. (6) and Eq. (24), and (25),  MSE (TP1,2) < MSE (T5) if:

	
[{

λ
(
S2

y + k2D2S2
x − 2kDSyx

)
− 1

}
+ θi

]
> 0

By comparing Eq. (8) and Eq. (24), and (25),  MSE (TP1,2) < MSE (T7) if:

	

[{
C +

(
BC2 + AD2 − 2CDE

E2 − AB

)
− 1

}
+ θi

]
> 0

By comparing Eq. (9) and Eq. (24), and (25), MSE (TP1,2) < MSE (T8) if:

	

[{
A +

(
BE2 + CD2 + 2DEF

F 2 − BC

)
− 1

}
+ θi

]
> 0

The subsequent section confirm that these conditions hold true for all types of real data, when the main study 
variable is positively correlated with the auxiliary variable.

Numerical illustration
Using PREs as the performance metric, empirical and simulated experiments are conducted to assess the 
effectiveness of the suggested and competing estimators. To assess the performance of the proposed and 
competing estimators, we have used PRE (Percent Relative Efficiency) as a performance index, given by

	
P RE (T..) =

(
V ar (T0)

MSE (T..)

)
× 100� (26)

where T0 is the classical/usual estimator and T.. are the competing and proposed estimators.

Empirical study
To assess the practical performance of the proposed logarithmic ratio–type estimators we conducted an 
empirical evaluation on five real-world engineering datasets. These datasets were chosen to represent a range of 
sample sizes, correlation structures, coefficients of variation, and degrees of skewness that commonly occur in 
engineering and environmental applications (see Table 1 for summary statistics). The datasets comprise: (i) Ozone 
vs. Solar Radiation [Source: Chambers23], (ii) Ozone vs. Temperature[Source: Chambers23], (iii) Air Time vs. 
Distance[Source: Wickham24], (iv) Total Deaths vs. Total Vaccinations[Source: Subramanian and Kumar25], and 
(v) Sales: Capital vs. Pindex[Source: Kadilar and Cingi26]. Each data source and its salient descriptive statistics 
(population/sample sizes, sample means, coefficients of variation, and sample correlation ρyx) are summarized 
in Table 1. Figure 1a–e shows scatterplots of the study variable.

Y  against the auxiliary variable X  for the five empirical datasets (Fig. 1a: Ozone vs Solar Radiation; Fig. 1b: 
Ozone vs Temperature; Fig. 1c: Air Time vs Distance; Fig. 1d: Total Deaths vs Total Vaccinations; Fig. 1e: Sales: 
Capital vs Pindex), illustrating the varying strengths of association and distributional features that motivate the 
proposed log-ratio estimators. All empirical comparisons use simple random sampling without replacement 
(SRSWOR) as the design framework, and we evaluate estimator accuracy with Percent Relative Efficiency (PRE) 
relative to the classical sample mean:

Source Data-1 Data-II Data-III Data-IV Data-V

N 327,346 4071 255 50 111

n 12 12 12 10 12

X 1048 46,535 41,559.36 50,000 184.8018

Y 150.7 1012.587 1227.28 2535.321 42.0991

ρ 0.99 0.7123 0.3003735 0.9825 0.3483

Cy 0.621743 1.84 1.06 0.5887 0.79041

Cx 0.7019 1.54 1.46 0.5830 0.49324

Cyx 0.4320 2.01185 0.4665513 4276.0609 0.1357

Table 1.  Summary Statistics of different datasets.
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Table 2 and its corresponding plot Fig.  2 show that the proposed estimators TP1​ and TP2​ consistently 
achieve the highest PRE-values across all five real datasets, with TP2​ reaching a peak of 282.7 on Data-5. The 
results confirm that the proposed estimators deliver superior efficiency in real-data applications compared to 
both the usual estimator and other traditional methods.

Simulation study
The simulation study was designed to (i) evaluate the finite-sample behaviour and stability of the proposed 
logarithmic ratio–type estimators (TP1, TP2 under controlled distributional regimes, (ii) compare their 
performance with a broad set of existing estimators (classical mean, ratio/product, exponential and other 
transformed forms), and (iii) verify whether the first-order analytical bias/MSE formulas and the closed-form 

Fig. 1.  (a–e) Visualizing relationship between survey variable (Y) and auxiliary variable (X) across different 
data sets.
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optimal constants derived in Sect. 3 provide realistic guidance for finite samples. Synthetic finite populations 
size N = 1000 were generated from three distributional families that together span the canonical sampling 
regimes practitioners face: Multivariate Normal (symmetric, light tails), Gamma (positively skewed), and 
Lognormal (heavy-tailed). These choices allow assessment of estimator robustness to skewness and heavy tails. 
For each family we constructed three bivariate populations differing only in the study–auxiliary correlation 
ρyx ∈ (0.92, , 0.71, , 0.38) (labelled Data-1, Data-2 and Data-3 respectively). All populations share a common 
mean vector and a covariance structure given by:

	
µ =

[ 40
50

]
, Σ =

[ 1 ρyx

ρyx 1
]

The core experiments draw repeated SRSWOR samples of sizes n ε50, 150, 200 from each synthetic finite 
population; additional sensitivity runs that include smaller n (e.g. n = 20) and intermediate values were also 
performed to check small-sample behavior. Each simulation was repeated 10,000 times in RStudio, and estimator 
performance was evaluated using Percent Relative Efficiency (PRE), defined as:

	
PRE (Ti) = Var (T0)

MSE (Ti)
× 100

 

Where T0​ denotes the reference estimator and Ti represents the ith competing estimator. The variance and mean 
squared error (MSE) were computed over the 10,000 replications as:

Fig. 2.  PREs of the proposed and competing estimators against the classical baseline estimator.

 

Estimators Data-1 Data-2 Data-3 Data-4 Data-5

T0 100 100 100 100 100

T1 42.478 65.341 79.436 91.486 123.505

T2 25.817 35.643 51.643 55.974 67.015

T3 100.816 112.359 125.489 134.856 151.774

T4,7 126.977 140.857 159.874 174.047 195.747

T5 139.54 157.472 181.490 188.484 201.539

T6 75.157 87.603 91.732 90.904 91.223

T8 140.67 159.292 186.032 190.447 205.342

TP1 153.33 178.745 194.848 232.484 236.226

TP2 155.36 176.356 223.847 247.384 282.678

Table 2.  PREs of the proposed and existing estimators relative to the baseline classical estimators across five 
real datasets.
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Var (T0) =

∑R

r=1

(
T

(r)
0 − µy

)2

R
, MSE (Ti) =

∑R

r=1

(
T

(r)
i − µy

)2

R

� (27)

where R = 10,000 is the number of simulation replications.
The mean PRE-values across all replications and sample sizes were recorded and summarized in Table 3 to 

evaluate estimator efficiency under different distributional and correlation scenarios.
Table To further evaluate the robustness of the proposed estimators under non-normal and positively 

skewed settings, we conducted a simulation study using a Gamma-distributed finite population with a strong 
positive auxiliary correlation ρ ≈ 0.90. Figure 3 presents bar-plots of the replicate-wise percent relative efficiency 
(PRE) for all considered estimators relative to the classical estimator T0​ across three sample sizes n ε 50, 150, 
200. For each scenario, finite-population characteristics were employed to compute the tuning constants, and 
optimal parameters for ​ T7and T8​ were obtained via a data-driven numerical minimization of the empirical 
mean-squared error. The results demonstrate a clear and consistent dominance of the proposed estimators TP1​ 
and TP2, both in terms of median PRE and distributional stability, especially as the sample size increases. The 
remaining logarithmic and exponential-type estimators also exhibit improved performance over the classical 
mean estimator; however, they are comparatively less stable and efficient than the proposed class. These findings 
reinforce the efficacy of the proposed estimators under skewed populations and high-correlation structures.

In Tables 6,7,8, we report uncertainty for PREs via both Monte-Carlo standard errors and nonparametric 
percentile confidence intervals (CI). For simulations we compute per-replicate PREs across RRR Monte-Carlo 
replicates and report the mean PRE with its Monte-Carlo standard error (SE = sd(P RE)/

√
R)together with 

Fig. 3.  visualization of PREs of the proposed and competing estimators against the classical estimators for 
different setup of sample size and correlation levels for Data-I(MV-Normal), Data-II(Gamma), and Data-
III(Lognormal).

 

50 150 200Estimators

Data-I Data-II Data-III Data-I Data-II Data-III Data-I Data-II Data-III

100 100 100 100 100 100 100 100 100

174.5 171.23 168.87 187.75 184.48 181.05 216.69 213.32 209.71

69.8 67.47 65.87 95.92 92.34 89.73 104.74 102.64 99.59

184.54 180.45 176.07 219.93 215.56 213.76 251.84 246.43 241.78

203.24 199.28 196.01 254.58 249.62 245.86 274.76 269.62 265.92

86.83 75.94 85.91 101.95 99.71 94.85 110.03 104.95 92.60

245.62 239.41 229.47 268.51 243.17 231.78 310.54 256.61 248.35

398.54 302.67 278.95 355.82 289.45 275.01 351.45 289.77 270.70

478.47 472.48 469.97 616.03 612.58 608.11 650.83 645.67 643.93

574.57 568.36 564.32 638.85 633.51 629.63 671.38 666.73 663.86

Table 3.  Heatmap table of PREs of the proposed and competing Estimators against the classical estimator for 
Simulated Data-1 when ρyx is high Correlation.
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the empirical 95% percentile CI (2.5%–97.5% quantiles). For empirical/finite-population analyses, repeated 
SRSWOR resampling from the known population (or a design-consistent bootstrap when the population is not 
fully available) was used to estimate MSEs and PREs; the resulting replicate PREs are summarized with mean 
(± MC SE) and percentile CI.

Extremely high PRE-values and wide CIs for classical ratio/product-type estimators T1–T8 reflect instability 
under skewed Gamma populations, especially with small samples, as revealed by Table 3, 4 and 5. In contrast, 
the proposed log-ratio estimators TP1, TP2​ demonstrate stable PRE, narrow confidence intervals, and robust 
behavior, confirming their suitability for non-normal data structures (Table 8). The proposed estimators therefore 
offer a computationally efficient and versatile framework for modern sampling applications, particularly where 
skewness, auxiliary information, and finite-population structures play a central role.

Results and discussion
In this article, we developed two log-ratio type estimators of finite population mean under SRSWOR scheme. We 
derived first order Bias and MSE for both estimators to theoretically validate our methodology. The empirical 
and simulation evidence together provide a consistent and interpretable picture of the proposed estimators’ 
performance. Table 1 contextualizes the real datasets by summarizing sample sizes, variability and correlation 

50 150 200Estimators

Data-I Data-II Data-III Data-I Data-II Data-III Data-I Data-II Data-III

100 100 100 100 100 100 100 100 100

125.64 114.54 111.12 148.4 139.56 132.76 217.65 211.32 194.46

79.8 74.47 44.91 95.09 82.34 79.94 110.03 102.64 92.76

154.54 138.45 127.87 223.93 203.56 188.85 241.09 223.43 202.03

155.24 133.28 119.54 298.58 289.62 177.05 261.23 245.62 229.77

96.083 85.889 55.293 101.09 89.67 59.78 110.03 92.79 62.60

255.71 240.41 129.54 268.32 293.51 156.67 310.54 305.46 168.43

299.78 278.65 240.32 378.98 275.53 210.56 420.11 320.33 207.12

418.47 405.48 393.21 566.03 545.58 527.34 664.83 645.67 636.43

574.57 538.36 503.11 622.85 597.51 585.85 671.53 666.73 534.09

Table 5.  Heatmap table of PREs of the proposed and alternative estimators relative to the classical estimator 
for Simulated Data-3 under low correlation ρyx.

 

50 150 200Estimators

Data-I Data-II Data-III Data-I Data-II Data-III Data-I Data-II Data-III

100 100 100 100 100 100 100 100 100

134.5 122.23 104 162.75 144.48 138.42 216.69 213.32 210.37

69.8 67.47 169.61 95.92 92.34 72.42 109.74 102.64 89.59

184.54 170.45 153.5 223.93 215.56 202.03 251.09 235.43 221.29

216.24 203.28 182.39 249.58 289.62 281.26 264.85 245.62 220.15

91.083 84.89 52.293 99.04 92.67 57.78 108.13 92.79 62.60

251.45 238.56 225.46 263.27 240.62 230.75 304.41 251.67 240.31

268.01 250.51 245.69 287.67 230.49 230.23 290.78 210.34 221,73

478.47 453.48 411.95 616.03 612.58 599.10 650.83 645.67 632.01

574.57 558.36 532.04 638.85 633.51 591.63 673.54 666.73 615.86

Table 4.  Heatmap table of PREs of the proposed and alternative estimators relative to the classical estimator 
for Simulated Data-2 under moderate ρyx.
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structures, and Table 2 shows that the proposed log-ratio estimators achieve uniformly higher percent-relative-
efficiency (PRE) than the classical mean across all five empirical datasets. The simulation tables (Tables 3–8) 
systematically confirm these gains: as sample size increases from n = 50 to n = 200 the PRE of the proposed 
estimators rises markedly and they maintain top ranking across Data-I/II/III, with the corrected values for 
Table 4 removing parsing artefacts and reinforcing the same conclusion. Monte-Carlo summaries (Tables 6, 
7, 8) quantify the uncertainty around mean PREs and show that estimator spread and Monte-Carlo standard 
errors shrink with larger n, indicating both higher efficiency and greater stability. Figures 1a–e visualizes the 
study–auxiliary relationships that motivate auxiliary-based adjustments, Fig.  2 highlights the empirical PRE 
advantages, and the box-plots in Fig. 4 demonstrate that the proposed estimators not only improve median PRE 
but also yield substantially narrower replicate-wise distributions under skewed Gamma populations. Finally, 
the three-panel grouped figure (n = 50, 150, 200) provides a direct visual comparison across sample sizes and 
confirms that the proposed estimators deliver robust, monotonic improvements in efficiency as sample size and 
correlation increase, making them practically attractive for survey and engineering applications where auxiliary 
information is available.The proposed estimators reduce to or improve upon several established estimators under 
special parameter choices, confirming theoretical coherence. Relative ranking is stable across scenarios: the two 
proposed forms dominate classical, product, and exponential competitors in both empirical and simulated 
environments.

Conclusion
We propose two logarithmic ratio–type estimators, TP1 and TP2, for finite-population mean estimation under 
simple random sampling without replacement (SRSWOR). Closed-form first-order expressions for bias and 
mean squared error (MSE) are derived and used to obtain analytic tuning constants. Empirical evaluation on five 
engineering datasets and extensive Monte-Carlo experiments (multiple distributions, correlations, and sample 
sizes) shows that the proposed estimators yield consistent and often large percent-relative-efficiency (PRE) gains 
over the classical sample mean and common competitors; gains increase with sample size and with positive 
study–auxiliary correlation. The estimators are computationally simple to implement and, when the auxiliary 

Estimator Mean

Normal Percentile

Lowe confidence limit(LCL) Upper confidence limit (UCL) Lowe confidence limit (LCL) Upper confidence limit (UCL)

T0 100.00 100.00 100.00 100.00 100.00

T1 3.970e + 04 2.250e + 03 7.710e + 04 1.320e + 00 1.430e + 05

T2 2.480e + 03 – 1.840e + 03 6.810e + 03 1.530e + 00 9.970e + 02

T3 5.670e + 03 – 1.030e + 02 1.140e + 04 5.070e + 00 1.430e + 04

T4 1.810e + 07 – 1.650e + 07 5.260e + 07 1.940e + 00 9.060e + 05

T5 2.690e + 04 – 1.690e + 04 7.070e + 04 5.460e + 00 1.230e + 04

T6 1.090e + 08 – 1.040e + 08 3.210e + 08 1.580e + 00 4.390e + 05

T7 4.110e + 04 – 3.770e + 03 8.610e + 04 2.260e + 00 7.970e + 04

T8 4.360e + 04 – 8.170e + 03 9.530e + 04 2.290e + 00 9.540e + 04

TP1 3.180e-06 2.700e-06 3.660e-06 3.170e-09 1.400e-05

TP2 3.720e-03 3.150e-03 4.290e-03 3.690e-06 1.680e-02

Table 6.  Percent relative efficiency (pre) of competing and proposed estimators under gamma population with 
strong auxiliary correlation ρ ≈ 0.90, and sample size n=150.

 

Estimator Mean

Normal Percentile

LCL UCL LCL UCL

T0 1.000e + 02 1.000e + 02 1.000e + 02 1.000e + 02 1.000e + 02

T1 3.810e + 05 – 3.070e + 05 1.070e + 06 1.060e + 00 1.030e + 05

T2 1.140e + 03 2.150e + 02 2.060e + 03 8.700e-01 5.390e + 03

T3 1.200e + 04 – 3.170e + 03 2.710e + 04 3.720e + 00 8.850e + 03

T4 3.890e + 04 4.010e + 03 7.380e + 04 1.290e + 00 1.720e + 05

T5 3.560e + 03 – 6.270e + 02 7.740e + 03 3.960e + 00 1.630e + 04

T6 7.980e + 04 – 2.580e + 04 1.850e + 05 1.320e + 00 7.870e + 04

T7 1.960e + 06 – 1.740e + 06 5.660e + 06 1.070e + 00 3.090e + 05

T8 1.380e + 05 – 3.840e + 04 3.150e + 05 1.050e + 00 3.270e + 05

TP1 4.840e-08 4.080e-08 5.600e-08 3.450e-11 2.590e-07

TP2 9.140e-04 7.700e-04 1.060e-03 6.440e-07 4.890e-03

Table 8.  Percent relative efficiency (PRE) of competing and proposed estimators under Gamma population 
with strong auxiliary correlation ρ ≈ 0.90, and sample size n = 200.
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mean is known and the auxiliary variable is positively correlated with the study variable, offer a practical route 
to substantially reduced MSE and smaller required sample sizes for a given precision.

We also identify important limitations: the current theory assumes SRSWOR, known auxiliary means, and 
positive correlation between study and auxiliary variables, conditions that facilitate closed-form analysis but 
may be restrictive in some applied settings. To widen applicability, future research should (i) relax the known-
mean assumption via calibration, model-assisted, or empirical-Bayes corrections; (ii) adapt the estimators to 
stratified and two-phase sampling by incorporating stratum- or phase-specific adjustment factors; (iii) derive 
higher-order bias/MSE approximations and robust variance estimators for small-sample inference; and (iv) 
address practical data issues such as nonresponse and measurement error. Finally, while our focus is parameter 
estimation rather than prediction, the efficiency principles developed here could be embedded within parameter-
estimation components of machine-learning pipelines (e.g., regression weighting, EM steps) to improve stability 
and predictive performance. Overall, TP1 and TP2 provide a theoretically grounded and practically useful 
improvement for mean estimation when reliable auxiliary information is available.

Data availability
The data used and analyzed in this article are available in the published article as cited against each data sets in 
the numerical section of this article.
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Fig. 4.  Box-plots of percent relative efficiency (PRE) for proposed and competing estimators under a Gamma 
population with strong auxiliary correlation ρ ≈ 0.90  and sample sizes n = 50,150,200. Dots represent mean 
PRE; vertical lines denote 95% Monte-Carlo confidence intervals.

 

Estimator Mean

Normal Percentile

LCL UCL LCL UCL

T0 1.000e + 02 1.000e + 02 1.000e + 02 1.000e + 02 1.000e + 02

T1 7.150e + 05 – 9.150e + 04 1.520e + 06 3.100e-01 4.290e + 05

T2 5.140e + 03 – 9.170e + 02 1.120e + 04 4.100e-01 2.000e + 03

T3 1.070e + 04 – 1.160e + 03 2.240e + 04 5.300e-01 4.390e + 03

T4 1.090e + 05 – 1.010e + 04 2.290e + 05 2.600e-01 1.870e + 05

T5 8.870e + 03 – 1.630e + 03 1.940e + 04 5.300e-01 1.020e + 04

T6 1.430e + 05 – 1.850e + 04 3.050e + 05 5.000e-01 2.630e + 05

T7 6.470e + 04 – 6.180e + 03 1.350e + 05 3.900e-01 5.610e + 04

T8 1.180e + 04 2.160e + 03 2.150e + 04 4.100e-01 4.260e + 04

TP1 1.200e-07 9.970e-08 1.390e-07 3.930e-11 4.920e-07

TP2 1.260e-03 1.050e-03 1.470e-03 4.170e-07 5.230e-03

Table 7.  Percent Relative Efficiency (PRE) of competing and proposed estimators under Gamma population 
with strong auxiliary correlation ρ ≈ 0.90, and sample size n = 150.
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