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The classification of traditional patterns is of great significance for their digital protection. Most 
studies focus on classifying patterns of different categories, while this study addresses the difficulty of 
classifying patterns of different types within the same category by selecting traditional cloud patterns 
(TCP) with complex structures and numerous types for classification. Due to the large number of label 
annotations required by deep learning algorithms relying on supervised learning, this paper proposes 
a traditional cloud pattern classification algorithm based on semi-supervised learning, which achieves 
high-precision classification with a small number of label annotations. Meanwhile, this paper proposes 
a novel data augmentation strategy called Random Line Augment (RLA) based on the line features 
of cloud patterns and edge detection algorithms. The algorithm also introduces WideResNet as the 
backbone network, which comprehensively captures local detail features in cloud pattern images by 
increasing the number of feature channels. The experimental results show that the algorithm has a 
significant effect on cloud pattern classification with obvious line features, with an accuracy of 97.41%, 
reaching a high level in pattern classification work.

In the digital age, transforming traditional patterns into images and classifying them is the fundamental task of 
digital preservation1. The traditional manual classification method relies on professional background knowledge 
and rich experience, and is also susceptible to the influence of individual subjective differences2. Therefore, 
exploring more efficient and accurate classification methods is particularly important. With the advancement of 
deep computer learning techniques in recent years, its application within the realm of image classification has 
become increasingly widespread. Although many scholars have applied deep learning to pattern classification, 
most scholars only classify patterns of different categories. For example, Sun Xuanming et al.3 used VGGNet, 
ResNet, and MobileNet to classify a pattern sample library that covers four major categories: floral patterns, bird 
patterns, swastika patterns, and cloud patterns, achieving an average accuracy of 83.51%. Zhao Kaiwen et al.4 
conducted classification work on traditional textile patterns of four different nomadic ethnic groups in Xinjiang, 
and used an optimized ResNet 18-CA model, which improved the accuracy by 3.72% compared to the original 
model. Due to the subtle differences between different types of patterns in the same category, classification work 
is relatively difficult, so there is a relative lack of research specifically targeting different types of patterns in the 
same category. This study selects cloud patterns with complex structures and numerous types as research objects 
to overcome the classification problem of different types under the same category.

At the same time, most existing pattern classification algorithms rely on supervised learning and require a 
lot of label annotation work. For example, Ge Mengjia et al.5 used LabelImg open-source software to annotate 
information for a large number of patterns when classifying Xinjiang stamp printing patterns, which increased 
the cost and complexity of classification. To address this issue, we propose a traditional cloud pattern classification 
algorithm TCP-RLA based on semi-supervised learning, which enables it to accurately complete complex cloud 
pattern classification tasks with only a few label annotations.

Secondly, in most existing pattern classification algorithms, scholars only use relatively simple data 
augmentation methods. For example, Duan Yongli et al.6 proposed a traditional window lattice pattern 
classification algorithm based on the VGG16 model in northern Shaanxi, which uses operations such as rotation, 
mirroring, noise addition, brightness and blur for data augmentation. In the Qin embroidery pattern recognition 
and classification algorithm based on GoogLeNet architecture proposed by Yang Huijun et al.7, only the data 
augmentation methods of mirroring and rotation were used. This study focuses on the prominent line features of 
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cloud patterns and combines edge detection algorithms in the data augmentation process to design an innovative 
line augment strategy. By enhancing the line features in pattern images, the model’s sensitivity and capture ability 
to line information are improved. At the same time, we introduced WideResNet as the backbone network. With 
its powerful feature extraction ability, WideResNet can capture more local detail features in pattern images and 
better obtain line information in cloud pattern images by increasing the number of feature channels.

Therefore, our main contributions in this study can be summarized as follows:

•	 We chose cloud patterns that mimic the flow and changes of clouds in nature, with similar structures and 
features, as the research object for different types of classification problems under the same category in pattern 
classification. At the same time, we abandoned the traditional fully supervised algorithm that requires a large 
number of labels and used a semi-supervised algorithm, achieving a high-precision cloud pattern classifica-
tion of 97.41% with only a few label annotations. We also introduced WideResNet as the backbone network, 
which extracts and integrates various local detail features by increasing the number of feature channels, ena-
bling us to perform high-precision classification work equally well when facing different types of classification 
problems under the same category.

•	 This study proposes an innovative data augmentation strategy, Random Line Augment (RLA), based on the 
line features of cloud patterns and edge detection algorithms. By incorporating edge detection algorithms, the 
study has broken the current situation of a single data augmentation strategy for pattern classification, and has 
achieved significant results in cloud pattern classification with obvious line features.

•	 We collected cloud pattern patterns from traditional clothing and further divided them into 7 types through 
professional refinement and segmentation, creating a brand new cloud pattern database with a total of 840 
images. This database not only expands the traditional pattern database, but also further subdivides patterns 
of the same category, providing examples of high-precision pattern partitioning.

Related work
Semi-supervised image classification
In order to solve the problem of deep learning models relying on a large amount of labeled data, semi-supervised 
learning(SSL)8 has gradually emerged as a research hotspot in the field of image classification. Semi-supervised 
learning is a learning method that combines the advantages of supervised learning9 and unsupervised learning10. 
Specifically, it allows the model to train on a small amount of labeled data while fully utilizing a large amount 
of unlabeled data, thereby improving the model’s generalization ability and ultimately enhancing classification 
accuracy and generalization performance. At present, the main techniques for semi-supervised image 
classification include graph based methods, consistency regularization methods, pseudo labeling methods, and 
hybrid methods.

The graph based semi-supervised learning methods utilize the graphical structure of data to assist 
classification or regression tasks, such as Bayesian networks or graph neural networks(GNN)11.In recent years, 
the Semi-Supervised Graph Convolutional Network (SGCN)12 has become a new image classification method 
that combines the advantages of graph convolution and semi-supervised learning. By transforming the image 
into a graph structure and utilizing graph convolution to learn local features and structural information, it can 
achieve good classification results on limited labeled data and handle a large amount of unlabeled data.

The consistency regularization method was gradually developed and improved by Bachman et al.13 and 
subsequent Sajjadi et al.14 in related research. The smoothing assumption and clustering assumption provide 
support for the core principles of consistency regularization. The core idea of these assumptions is that data 
points that are similar to each other will produce similar outputs. Specifically, for an unlabeled data point, even 
minor perturbations (such as data augmentation, dropout, etc.) should not cause significant changes in its 
prediction results.

In the field of semi-supervised image classification, pseudo labeling technology is an important technique. It 
was proposed by Lee et al.15, and the principle is to use a model trained on labeled data to predict unlabeled data, 
and use the predicted results as “pseudo labels”. This simple and effective pseudo labeling technique can utilize 
unlabeled data to improve model performance, while reducing annotation costs and enhancing the model’s 
generalization ability.

The mainstream hybrid methods now mainly combine consistency regularization methods and pseudo 
labeling techniques. MixMatch16 constructed an efficient semi-supervised learning system by integrating 
consistency regularization, minimum entropy principle (generating low entropy pseudo labels), and MixUp17 
data augmentation techniques. RemixMatch18 improves the MixMatch algorithm by introducing two new 
techniques: distribution alignment and enhanced anchoring, significantly enhancing data efficiency and 
reducing the amount of label data required to achieve the same accuracy. FixMatch19 achieves efficient semi-
supervised learning by simplifying the consistency regularization process and combining strong and weak data 
augmentation with pseudo labeling techniques. The Temporal Ensemble20 method, Mean Teacher21, and others 
also combine consistency regularization and pseudo labeling methods.

Data augmentation
Data augmentation involves various transformations and processing operations on existing data to generate new 
training samples, thereby enhancing the diversity and quantity of the dataset.

With the deepening of research, scholars have also developed more comprehensive and effective data 
augmentation methods. AutoAugment22 is a reinforcement learning based method that automatically optimizes 
the process of data augmentation by searching for the best data augmentation strategy. RandAugment23 is a 
simplified version of AutoAugment that reduces the complexity of the search process by directly selecting the 
operation and strength of the augment strategy for random search, while still achieving good results. The concept 
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represented by Mixup17 is to fuse two images in a linear combination to ultimately generate a new image. By 
mixing two images together and weighted averaging the labels, the model can learn more abstract features and 
enhance its generalization ability. CutMix24, as a data augmentation method, integrates the concepts of Cutout25 
and Mixup. By cropping rectangular regions in an image and replacing them with corresponding regions from 
another image, a completely new image can be generated. In addition, the Random erasing data augmentation 
proposed by Zhong et al.26 simulates the occlusion of objects by randomly erasing some regions in the image, 
and enhances the robustness of the model. The Differentiable randaugment technology proposed by Xiao et al.27 
further optimized the data enhancement process and significantly improved the performance of the model on 
different tasks by learning to select the weight and amplitude distribution of image transformation. The Sample-
Aware RandAugment(SA-RandAugment) proposed by Xiao et al.28 effectively improves the image recognition 
performance through an automatic data enhancement strategy without search, and provides a new idea for data 
enhancement in semi supervised learning.In agricultural image recognition, the SpemNet proposed by Qiu et 
al29. Combined with multi-scale attention mechanism effectively improves the ability of feature extraction under 
complex background. These methods provide a useful reference for the data augmentation strategy in this study.

In this study, various data augmentation strategies were integrated and combined with edge detection to 
achieve optimal results for cloud patterns.

Image edge detection
Edges are important visual features in images, and they are crucial for both human and machine vision systems 
to recognize images.Therefore, edge detection is highly significant in various fields, including high-order feature 
extraction, feature description, object recognition, and image segmentation30.

Early exploration of edge detection was mainly based on the drastic changes in grayscale values of image edge 
regions, and researchers attempted to use this grayscale variation characteristic to locate edges. Subsequently, 
gradient detection operators based on convolutional templates emerged, and classic operators such as Roberts31, 
Prewitt32, Sobel33 were proposed successively. The Laplacian34 and Canny35 operators based on second-order 
derivatives are also milestone achievements in image edge detection. In the context of the continuous evolution 
and development of computer technology, two technologies, edge detection based on wavelet transform and edge 
detection based on deep learning, are gradually emerging. Wavelet transform captures local features of images 
through multi-scale analysis and combines different strategies to achieve edge extraction. Convolutional neural 
networks (CNNs) are trained on a large amount of annotated data to automatically learn complex edge features 
in images. Among them, methods such as Xie et al.36 proposed Global Nested Edge Detection (HED), Maninis 
et al.37 used multi-scale information of images, combined with pixel classification and contour direction, to 
propose COB algorithm, He et al.38 used multi-scale proposed bidirectional cascaded network BDCN structure, 
etc.

In this study, different edge detection operators were used to extract the contour of cloud patterns, and 
comparative experiments were conducted to determine the optimal operator that conforms to our method.

Methods
Model construction
Backbone network
Traditional cloud patterns have complex and varied forms and fine details, usually containing rich combinations 
of lines, curves, and patterns. These rich texture information and complex local structures pose high requirements 
for image recognition algorithms. Therefore, to address the specific issues of traditional cloud patterns, we have 
chosen WideResNet as the backbone network model. By increasing the network width, we can extract richer 
features and better capture subtle texture changes and local structural information in cloud pattern images. 
Moreover, WideResNet has strong feature extraction and generalization capabilities, which can better learn 
discriminative features between different categories of cloud patterns, while reducing the impact of intra class 
differences on classification results. At the same time, the data volume of cloud pattern images in this experiment 
is relatively limited. Compared with deeper networks, WideResNet has fewer parameters and is easier to train on 
limited datasets, avoiding overfitting.

The basic building blocks of WideResNet39 and ResNet40 are similar, both based on Residual Blocks. In order 
to achieving specific information transmission, each residual block is equipped with two 3x3 convolutional 
layers, and the input is directly added to the output of the second convolutional layer using skip connections to 
construct a unique structure. The model structure diagram can be referred to in Fig. 1. The WideResNet28*2 
model used in this experiment has a parameter of about 3.8M, a training time of about 1.5 hours (100 epochs), 
and a single training iteration time of about 1.3 ms. In contrast, the Resnet50 has a parameter of 25.6M, a 
training time of about 3 hours, and a single training iteration time of about 3.1 ms. While maintaining high 
accuracy, WideResNet significantly reduces the computational overhead, meets the real-time requirements, and 
is also suitable for resource constrained practical application scenarios.

Semi-supervised learning model
By integrating consistency regularization and pseudo labeling strategies, this paper constructs a semi-supervised 
learning model to fully tap into the potential of unlabeled data and improve model performance. Next, the 
training of the model will be carried out in the following two stages:

Pseudo label generation stage: To ensure the generation of reliable pseudo labels, in the initial stage, the 
model uses weak augment data and Random Line Augment data to generate high confidence pseudo labels, and 
sets a high confidence threshold of 0.95. Only when the maximum probability value predicted by the model 
exceeds this threshold, will the corresponding prediction result be considered as a pseudo label.
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Consistency regularization stage: After generating pseudo labels, the model generates diverse views by 
applying different augment methods to the same input data. Subsequently, calculate the cross entropy loss 
between the predicted results of strong augment data and Random Line Augment data and the pseudo labels, 
and minimize this loss through optimization algorithms. The predicted label results generated by pseudo labeling 
are obtained through argMax(). The model method is shown in the Fig. 2.

The loss function l used in this model includes two cross entropy losses, supervised loss ls and unsupervised 
loss lu , as shown in Equation (1).

	 l = ls + lu� (1)

The definition of the supervised loss function ls is presented in Equation (2). Specifically, let 
X = {(xb, pb) : b ∈ (1, . . . , B)} represent a set of B labeled samples in a batch, where xb is the input training 
sample and pb is the true label distribution corresponding to xb.Meanwhile, U = {ub : b ∈ (1, . . . , B)} 
represent the set of B unlabeled samples in the same batch. The model predicts the class distribution of the 
input x as pm(y|x) .In order to quantify the difference between two probability distributions p and q, this paper 
uses cross entropy CE(p,  q) as the metric function. During training, two data augmentation techniques are 
introduced: weak augmentation (wA) and strong augmentation (SA). For specific forms of wA and SA, as well as 
their implementation details, refer to section Random Line data augmentation method.

	
ls = 1

B

B∑
b=1

CE(pb, pm(y|wA))� (2)

Fig. 2.  Schematic diagram of model method.

 

Fig. 1.  WideResNet model structure diagram.
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The definition of the unsupervised loss function lu is presented in Equation (3).The generation of pseudo labels 
relies on the predicted distribution pm(y|wA) output by the model for weakly augmented data. Specifically, 
for each unlabeled sample ub, a weak augment operation wA is first applied to obtain the augmented sample 
wA(ub). Subsequently, the model performs forward propagation on wA(ub) and outputs its class prediction 
distribution pm(y|wA(ub)).In order to generate high-confidence pseudo labels, this paper employs the 
argMax() to extract the category index with the highest probability value from the predicted distribution, 
specifically ∧qb = argMax(pm(y|wA)), where qb represents the pseudo label of sample ub.

On the other hand, the model’s predicted distribution for SA is denoted as pm(y|SA(ub)). During the 
training process, the cross-entropy loss is calculated between the strongly augmented prediction distribution 
pm(y|SA(ub)) and the pseudo label qb. This approach effectively constrains the consistency of the model’s 
predictions for the same sample across different augmented views, thereby improving the model’s efficiency in 
utilizing unlabeled data.

	
lu = 1

B

B∑
b=1

CE(∧qb , pm(y|SA))� (3)

Random Line Augment strategy
Pattern edge detection
Pattern images often contain complex backgrounds (such as fabric textures and cultural relics), and direct 
classification is susceptible to background noise interference. At the same time, the structure of the pattern is 
the key basis for classification. Using edge detection can extract the contour of the pattern, filter out redundant 
background information, and transform complex image problems into classification based on contour features, 
significantly reducing the sensitivity of the model to background changes. In this experiment, the following 8 
classic operators were used to extract edge features from cloud patterns, namely Sobel operator, Canny operator, 
Laplacian operator, LOG operator, Prewitt operator, Roberts operator, Scharr operator, and DOG operator. The 
edge detection performance is shown in Fig. 3.

Fig. 3.  Pattern original image and effect images of different edge detection operators.
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Random line data augmentation method
Therefore, this paper proposes a RLA strategy for the main form of cloud pattern formation - lines, which 
includes weak augment and strong augment. Weak augment adopts a flipping augment strategy, combining 
strong augment with random horizontal flipping, random cropping, and RandAugment, followed by Cutout 
operation. The RLA strategy mainly consists of two core steps. Firstly, a portion of labeled samples are randomly 
selected proportionally for feature extraction; Then, according to a certain proportion, randomly select strong 
and weak augment examples from unlabeled samples for feature extraction. Then, the Roberts edge detection 
operator is used to extract line features (for a comparison of edge detection operators, please refer to Section 
5.2.1). Afterwards, the extracted line information and samples processed through strong and weak augment are 
sent to the backbone network for training.

The RLA strategy follows Equation (4), where w(.) represents weak augment, S(.) represents strong augment, 
R(.) represents the Roberts edge detection operator extracting line features, X and U represents labeled and 
unlabeled samples.The parameter α is a random proportion. To determine the optimal line enhancement ratio 
α, we tested a series of candidate values (e.g., 0.1, 0.2, ..., 0.8) and selected α = 0.2, which achieved the best 
performance on the validation set. Table 1 shows the experimental results of different parameters with 7 labels 
using WideResNet as the backbone network.

In a semi-supervised learning model, firstly, generate w(X) for batch X. Subsequently, w(X) is randomly 
selected for edge texture feature extraction based on the proportion of parameter α. This process is called RLA, 
represented by R(.). Similarly, for batch U, apply strong augment to create S(U), and then extract pattern edge 
features through RLA.

	

wA = w(X) + R(αw(X))
SA = S(U) + R(αS(U))

� (4)

Experiments and results
Dataset
This experiment sorted out a total of 840 typical cloud patterns from traditional Chinese clothing throughout 
history, including cloud thunder patterns, rolled cloud patterns, clustered cloud patterns, Ruyi cloud patterns, 
square Ruyi cloud patterns, Ren shaped cloud patterns and double hook cloud pattern. This experiment not only 
uses data augmentation strategies to expand the dataset, but also divides the dataset into training and testing sets 
in an 8:2 ratio to ensure the training effectiveness and validation accuracy of the model. The experimental cloud 
patterns dataset is shown in Fig. 4.

Fig. 4.  Schematic diagram of randomly selected cloud pattern samples from the dataset.

 

Parameter α 0.8 0.5 0.4 0.3 0.2 0.1

Accuracy 83.67% 90.45% 93.76% 95.53% 97.41% 92.31%

Table 1.  Influence of different parameters α on accuracy.
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Experimental environment and settings
This experiment focuses on the classification of complex cloud patterns and proposes a RLA strategy based on 
semi-supervised learning. The main core points of this method are: firstly, using Wideresnet as the backbone 
network; secondly, combining edge detection operators to extract pattern edge features and propose a RLA 
strategy. This experiment was run on an RTX 4090D GPU using the PyTorch framework. During the experiment, 
WideResNet was used as the backbone network, and the optimizer of WideResNet was SGD. The input dataset 
size was adjusted to 64 × 64 with a learning rate of 0.0003, with a batch size of 64 to ensure efficient training. The 
epochs were set to 64 and 100, and the number of labels was set to 7 and 70, respectively. The changes in accuracy 
and loss function are shown in Fig. 5 and 6.

Comparative experiments
Comparative experiment of different edge detection operators
In this experiment, different edge detection operators were used to extract edge features, in order to select the 
best edge detection operator suitable for cloud pattern classification. This experiment set the number of labels 
to 7 and Epoch to 100, and conducted a classification comparison experiment in the WideResNet backbone 
network. The experimental results are listed in Table 2. This set of experimental data shows that Roberts operator 
performs best in the task of cloud pattern classification. Roberts operator is sensitive to thin lines and corners, 
and is suitable for the common curves and turning structures in cloud patterns; And its calculation is simple, 
it is not easy to introduce too much noise, and it retains the clarity of the original lines; When the binarization 
threshold is set to 128, it can better balance detail preservation and noise suppression. In contrast, although 
Canny and Sobel operators have good edge continuity, they have weak response to the fine structure of cloud 
patterns, which may lead to the loss of key features. Therefore, Roberts operator is selected in RLA strategy to 
extract the edge features of cloud pattern.

Comparison experiment between WideResNet model and ResNet model
The main differences between WideResNet and ResNet are as follows:

Fig. 6.  Comparative experimental results of different label numbers at epoch=100.

 

Fig. 5.  Comparative experimental results of different label numbers at epoch=64.
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Width Factor: WideResNet has the characteristic of using a width factor to adjust the number of filters in 
each convolutional layer. In this experiment, the WideResNet28 * 2 model used has a depth of 28 layers and 
a width factor of 2. The setting of this width factor makes the number of filters in each convolutional layer of 
the model twice that of the original ResNet28. Experimental data shows that at the same network depth, the 
WideResNet model can achieve higher accuracy in pattern classification.

Network depth: To verify the performance characteristics of WideResNet, we conducted comparative 
experiments comparing the WideResNet28*1 and ResNet50 models. WideResNet is expected to achieve 
comparable or better performance than ResNet with fewer layers by increasing the width of each layer. From the 
experimental results, it can be clearly seen that only the 28 layer WideResNet28*1, as a shallow network model, 
has better classification results than the 50 layer ResNet50.The experimental data is shown in Table 3.

Comparative experiments of different network models
To further validate the superiority of the WideResNet model, this comparative experiment selected EfficientNet, 
ConvNeXt, Vision Transformer, MobileNetV2, MobileNet_XXS, and GoogLeNet as the backbone networks for 
comparison. In the experiment, the image input size was uniformly set to 64 × 64, and different optimal learning 
rates (Lr) and Epoch were used to test the classification accuracy of the model under different label numbers. 
The results are shown in Table 4.

This set of experimental data shows that the WideResNet backbone network can achieve optimal classification 
accuracy even if each class has only one label and uses the same number of epochs.

Comparative experiments of different data augmentation methods
In order to determine the optimal combination of data augmentation strategies in RLA strategy, this experiment 
conducted comparative experiments using different data augmentation methods. The experimental results are 
listed in Table 5.

From the experimental data of this group, it can be seen that the optimal data augmentation strategy 
combination of RLA strategy is “Random horizontal flip+Random clip+RandAugment+Roberts edge detection 
operator”, which significantly improves the accuracy of cloud pattern classification. Specifically, Roberts edge 
detection operator(section Comparative experiment of different edge detection operators for the selection 

Network Input size Epoch Lr 7 labels 70 labels

WideResnet28*2 64*64 100 0.0003 96.55% 97.41%

ConvNeXt-Tiny 64*64 100 0.0003 93.80% 95.71%

Vision Transformer 64*64 100 0.0003 93.50% 95.33%

MobileNetV2 64*64 100 0.0003 93.10% 93.97%

EfficientNet-B0 64*64 100 0.0002 92.27% 93.53%

GoogLeNet_InceptionV3 64*64 100 0.0002 92.24% 93.97%

MobileNet_XXS 64*64 100 0.0003 93.10% 93.96%

Table 4.  Comparative experiments of different network models in cloud pattern classification.

 

Model Number of layers Width Factor Accuracy

ResNet 50 1 91.38%

WideResNet 28 1 95.68%

ResNet 28 1 41.38%

WideResNet 28 2 97.41%

Table 3.  Comparative experiment of WideResNet model and ResNet model in cloud pattern classification.

 

Edge detection method Lr Accuracy

Roberts operator 0.0003 97.41%

Laplacian operator 0.003 96.55%

LOG operator 0.0003 96.55%

Prewitt operator 0.0003 96.55%

Sobel operator 0.003 95.69%

Canny operator 0.003 93.97%

Scharr operator 0.003 92.24%

DOG operator 0.0003 92.24%

Table 2.  Comparative experiment of different edge detection operators in cloud pattern classification.
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process) strengthens the line features of cloud patterns through edge detection, and enhances the model’s 
perception of key structures. Secondly, the combination of RandAugment and other data augmentation methods 
can enhance the diversity of data by simulating diversified morphological changes. At the same time, RLA strategy 
combines strong and weak augmentation and consistent regularization to improve the utilization efficiency of 
the model for unlabeled data. The experimental results show that the accuracy rate of RLA strategy in cloud 
pattern classification reaches 97.41%, which is significantly better than 92.24% using only Random horizontal 
flip and Random crop. This shows that RLA strategy effectively improves the classification performance by 
enhancing the diversity of line features and the sensitivity of the model to line information.

To demonstrate the correlation between the experimental results and the unique structure of cloud 
patterns, the researchers conducted a validation experiment by changing the dataset. The specific process and 
corresponding results of the experiment can be found in Verification test section.

Verification test
The aim of this experiment is to verify whether the differences in the effectiveness of different data augmentation 
methods observed in previous cloud pattern classification are related to the unique structure of cloud patterns, 
such as symmetry. On the conventional dataset CIFAR-10, classification experiments were conducted for the 
same four data augmentation methods, this study compares and analyzes the performance of these methods. The 
goal is to explore the applicability of data augmentation techniques across various datasets.

This experiment selected the CIFAR-10 dataset, which covers 10 categories with a total of 60000 32x32 color 
images. Firstly, prepare the experimental data, with a total of 50000 images for training and 10000 images for 
testing. Next, to ensure the controllability of variables and comparability of results in the experiment, WideResnet 
was chosen as the backbone network for the classification experiment. Finally, during the specific experimental 
process, the number of labels was set to 4000, the learning rate was set to 0.03, and the number of iterations was 
set to 100. The results are presented in Table 6.

The experimental results show that on the CIFAR-10 dataset, when using random horizontal flipping and 
random cropping separately, the classification accuracy may not show significant differences as in cloud pattern 
classification. With the combination of data augmentation methods and the increase in complexity (including 
RandAugment and Roberts edge detection operators), the classification accuracy of the CIFAR-10 dataset may 
not necessarily be improved, which is inconsistent with its performance in cloud pattern classification. Although 
RLA strategy performs well in the task of cloud pattern classification, its applicability may be affected by image 
features. For image recognition tasks with significant nonlinear characteristics (such as complex objects in 
natural images), RLA strategy may need to be further optimized. Future research can explore how to combine 
RLA strategy with other advanced feature extraction methods (such as self attention mechanism) to improve its 
applicability in a wider range of pattern recognition tasks.

Conclusion
This article breaks through the classification problem of different types of patterns under the same category, 
and effectively solves the problem of relying on a large number of label annotations in traditional cloud pattern 
classification through semi-supervised learning methods. At the same time, this article proposes a Random Line 
Augment (RLA) that combines edge detection operators for prominent line features, and introduces WideResNet 
as the backbone network. By increasing feature extraction channels, the model’s ability to capture cloud pattern 
features is significantly improved, further enhancing classification accuracy. The experimental results show that 

Data augmentation methods Accuracy

Random horizontal flip 93.97%

Random cropping 93.97%

Random horizontal flip+Random crop 94.82%

Random horizontal flip+Random crop+RandAugment 93.97%

Random horizontal flip+Random crop+Roberts edge detection operator 92.23%

Random horizontal flip+Random crop+RandAugment+Roberts edge detection operator 93.10%

Table 6.  Comparative experiments of different data augmentation methods on the CIFAR-10 dataset.

 

Data augmentation methods Accuracy

Random horizontal flip 83.62%

Random crop 90.52%

Random horizontal flip+Random crop 92.24%

Random horizontal flip+Random crop+RandAugment 95.55%

Random horizontal flip+Random crop+Roberts edge detection operator 96.55%

Random horizontal flip+Random crop+RandAugment+Roberts edge detection operator 97.41%

Table 5.  Comparative experiment of different data augmentation methods in cloud pattern classification.
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the algorithm can achieve high-precision classification even when there is only one label annotation for each 
class.

Although our semi-supervised method has achieved significant results in reducing the cost of cloud pattern 
classification, lightweighting the model remains a key focus for future work. At the same time, we will continue to 
establish databases for other categories of patterns, further dividing patterns of the same category to form more 
accurate and refined databases, and applying this method to different databases to demonstrate its effectiveness 
in pattern classification.

Data availability
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